
FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

2003/12/16 Page 1 of 71 Copyright 2003 SIIA

Software & Information Industry (SIIA) Financial Information Services Division (FISD)

FISD’s XML Messaging Specification

“fisdMessage” Version 1.0-beta 16 December 2003

fisdMessage Reference Guide

http://www.mddl.org/ -> http://www.fisd.net/ -> http://www.siia.net/

SIIA/FISD Chief Technologist:
James E. Hartley, FISD/SIIA, Denver, U.S.A.

Editor:
James E. Hartley, FISD/SIIA, Denver, U.S.A.

Copyright 2003 Software & Information Industry Association. All Rights Reserved.

Abstract

The FISD Message Technical Specification (“fisdMessage”) defines the protocol and “on-
wire” encoding of statically formed eXtensible Markup Language (XML) documents in a
flexible and efficient manner. The fisdMessage specification represents a standard for
the transmission and reception of certain types of XML documents and defines neither
he content of the data distributed nor the use of that information. t

It is intended that applications (via toolkits) that implement this protocol faithfully,
consistent with XML processing guidelines, will enable senders to distribute high-
volumes of content changes in the lowest possible bandwidth while maintaining the
bility to add content without breaking processing applications. a

This document uses the Market Data Definition Language (MDDL) to illustrate
examples and demonstrate the functionality. MDDL is a specification based on the
XML standard to enable interchange of data necessary to account for, to analyze, and to
trade instruments of the world’s financial markets (see http://www.mddl.org/).

http://www.mddl.org/
http://www.fisd.net/
http://www.siia.net/

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

Acknowledgements

This specification is a cooperative effort of representatives of the financial industry at
the behest of the general membership of the Financial Information Services Division of
the Software & Information Industry Association. Those organizations, and the
individual contributors, are hereby thanked and commended for contributing staff and
energy to this volunteer collective. Inherit competition has been cast aside and
common goals have been pursued to bring this industry-wide goal to fruition.

Conventions Used in This Document

The following highlighting is used to present technical material in this document:

Complete examples or fragments

The following highlighting is used for commentary in this document:
Example
<fisdMessage version="1.0-beta" > (Incomplete examples or fragments)

And an explanation of the example.
NOTE: General comments directed to all readers.

All fisdMessage specific XML elements and attributes will be bolded in monospace.
All words, other than elements or attributes, for which fisdMessage has a specific
definition will be colored and italicized. The following example paragraph illustrates
relevant highlighting:

The main XML element of an FISD Message instance document, fisdMessage, has one
required attribute, version, containing the explicit version of FISD’s XML Messaging
Specification W3C Schema used to validate the document. The element fisdMessage
must then contain a header element followed by any of the valid constructs for the
referenced version of fisdMessage.

Status of this Document

This is the first formal release of this document and is available coincident with the
public announcment of FISD Message Version 1.0-beta at the FISD Quarterly Meetings
held 10 and 11 December 2003 in New York City.

This document is independent of the other MDDL-related specifications except
mddlService which defines similar underlying concepts to fisdMessage. Revisions
will be noted within the Change Log section of this document. All modifications to
either specification will likely necessitate a re-release of this document.

NOTE: This is a “beta” document showing a plausible solution to the basic
problem. Significant technical review and modification is likely as the
specification is discussed among FISD/MDDL members. Please contact FISD if
you have any questions or comments. See http://www.fisd.net/.

2003/12/16 Page 2 of 71 Copyright 2003 SIIA

http://www.fisd.net/
http://www.siia.net/
http://www.fisd.net/

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

History of MDDL and fisdMessage

The original concept for the Market Data Definition Language was envisioned by Jeremy
Sanders in 4th quarter of 2000. While there were some foundational activities by
members of the Financial Information Services Division (FISD) of the Software &
Information Industry Association (SIIA), it was not until Mr. Sanders urged the FISD
membership to consider the concept of a standardized XML for market data that any
coordinated industry-wide activity began.

The first structured meeting was held on 17 January 2001 at the offices of Merrill
Lynch, in New York City, involving some thirty different participants from market data
companies wanting to harmonize the vocabulary of market data via XML. Using
separate offerings from Bridge Information Systems (now Reuters) and Dow Jones
labeled “mdml” or “Market Data Markup Language” as a basis, the group formed the
MDDL committees that would develop the vocabulary and the technical aspects of the
new specification to become an industry-wide standard.

The first formal release of MDDL, “mddl 1.0-final”, was presented at the 5th World
Financial Information Conference in London, on 02 November 2001, signaling the
successful coordination of competitors to provide a unified foundation for forward
development. Through the addition of various asset classes and other constructs,
MDDL now stands as the prominent market data standard for a wide range of data
content fulfilling various market data needs. Implementations of market data systems
and data feeds with MDDL as a foundation are now evident throughout the industry.
Through the work of FISD members doing real implementations, MDDL is maturing to
provide the full capability necessary for a modern market data system.

In the 1st quarter of 2003, it became obvious that several additional technical
capabilities were necessary to enable MDDL adoption at a broader scale. These
shortcomings are identified when the following questions are proffered:

• MDDL provides a mechanism for formatting market data to be sent from provider to

consumer. How does the consumer ask for the data of interest? The result - the
definition of mddlQuery as the “query” to support MDDL’s “response” nature.

• How does one get an MDDL document from one point A to point B? The result - the

definition of mddlService to identify query/response interfaces like web services.

• The value of MDDL for reference data is apparent but two different ways of handling

market data - one for static data and one for realtime - does not seem reasonable.
Is there no way to use MDDL for streaming of realtime market data? The result -
the definition of fisdMessage to stream MDDL (and other) content.

• Accepting multiple data feeds comes with the burden of developing and maintaining

separate data feeds from many sources or, similarly stated, focusing on distributing
quality and new content is important but too many resources are devoted to
researching, developing, and maintaining data feeds. Is there no way to leverage
industry standards? The result - more support for fisdMessage.

2003/12/16 Page 3 of 71 Copyright 2003 SIIA

The fisdMessage specification is the realization of a standards-based realtime
streaming data feed. In effect, fisdMessage defines an “industry-standard” data feed
protocol for transmitting statically formed content from producers to consumers. The
proper implementation of an fisdMessage enabled data feed thus allows a consumer to
accept encoded XML content from any fisdMessage enabled provider.

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

Overview of fisdMessage

The fisdMessage specification is intended as a standard protocol for the exchange of
XML content. Specifically, fisdMessage facilitates an industry standard protocol for the
financial industry to exchange market data content. Note that fisdMessage does not
seek to dictate what data is exchanged over such a datafeed, only how that data is
delivered. For the financial industry, Market Data Definition Language (MDDL) is the
natural choice for market data feed applications but any relevant XML derived
specification may be appropriate depending on the capabilities of the provider and the
needs of the consumer.

The fisdMessage protocol is predicated on the fact that most data for a particular class
of information, as distributed from a source or aggregator, has the same structure when
represented in XML. For example, one can abstract that all equities reported from a
particular exchange will have the same datafields for each of the instruments traded.
This fact is evident in the existing datafeeds that are prevalent in the financial industry
- although the exact fields available for specific instruments varies, the datafeeds are
able to deliver the exact same fields for all instruments of a particular class. The
fisdMessage protocol capitalizes on this normalization and seeks to formalize a datafeed
based on this consistency of source content.

The initial test case for fisdMessage is market data (specifically MDDL) but the protocol
is applicable to all XML derived specifications that result in documents that have the
same “static” structure - the only real differences between one instance of the document
and the next being the content of the elements within the document. The protocol
provides a structure for delivering the maximum number of updates to the content with
the mimimal use of bandwidth - a key factor in many realtime updating systems.

The fisdMessage protocol utilizes a “template” that outlines the static structure of an
instance document. The template identifies all of the fields within the XML document
that are of interest to the datafeed. Individual “instances” of that template are created
to carry the values for a unique dataset of interest - for example, there would be an
instance for each stock traded on a particular exchange that references the template of
content for that exchange. The protocol uses messages to define a template (or multiple
templates), create an instance of a template (also called an “image” or “refresh”), and
update fields within the instance.

2003/12/16 Page 4 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

Table of Contents

Change Log... 8

Pending Issues.. 8

1. Introduction.. 9
1.1. Purpose ...10
1.2. Terminology ..10
1.2.1. Sender.. 10
1.2.2. Recipient.. 10
1.2.3. Directory .. 11
1.2.4. Enumeration .. 11
1.2.5. Template .. 11
1.2.6. Instance ... 11
1.2.7. Image ... 11
1.2.8. Update.. 12
1.2.9. XML Specific Terms.. 12
1.3. Relationship to Other Work ...12

2. General Overview .. 13
2.1. Protocol Applicability ..13
2.2. Reference Model ..13
2.2.1. Simple Two-Node Model .. 14
2.2.2. Complex Multi-Node Model ... 14
2.2.3. Additional Extensions to the Reference Model 16
2.3. Connection Scenarios ..17
2.3.1. Selective Interactive Connectivity .. 17
2.3.2. Broadcast Mode .. 17
2.3.3. Broadcast Mode (with Slow Backchannel) .. 17
2.4. Image and Update Methodology...18
2.5. Document Template and Instance..18
2.5.1. Specifying a Template .. 18
2.5.2. Specifying a Field ... 18
2.5.3. Applicability to an Instance .. 19
2.5.4. Extracting a Complete XML Document.. 19
2.5.5. Use of an Enumeration ... 19
2.6. How a sender Behaves ...20
2.7. How a recipient Behaves..21

3. The fisdMessage Schema ... 23
3.1. Applied to Messages...23
3.2. Applied to the Directory ..23
3.3. Applied to an Enumeration ..23
3.4. Applied to a Template..23

4. Packet Characteristics .. 24
4.1. Message “Header” ..24
4.2. Query Requests and Responses..26

2003/12/16 Page 5 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

5. Session Establishment Messages ... 27
5.1. SMsg Service Notification ..28
5.2. SMsg Service Request ..29
5.3. SMsg Service Response..30
5.4. SMsg Authentication Request ..31
5.5. SMsg Authentication Response (with Directory)...........................32
5.6. SMsg Entry Request...33
5.7. SMsg Session Notification..34
5.8. SMsg Session Notification Response ..35
5.9. SMsg Session Session Termination Request.................................36
5.10. SMsg Query for Instance (Mark) ...37
5.11. SMsg Query to Unmark ..38
5.12. SMsg Query for All Data ...39
5.13. SMsg Query for Other Content...40

6. Administrative Messages ... 41
6.1. AMsg Timestamp (Heartbeat) ...42
6.2. AMsg Directory Response ..43
6.3. AMsg Enumeration Response...44
6.4. AMsg Enumeration Renumber..45
6.5. AMsg Enumeration Extend...46
6.6. AMsg Enumeration Remove ...47
6.7. AMsg Template Response...48
6.8. AMsg Template Remap...50
6.9. AMsg Template Expansion ...51
6.10. AMsg Template Remove...52
6.11. AMsg Instance Reindex..53
6.12. AMsg Instance Remove ..54

7. Content Messages.. 55
7.1. CMsg Image Update ...56
7.2. CMsg Fielded Image Update ...57
7.3. CMsg Uncompressed Field Update..58
7.4. CMsg Compressed Field Update ...59
7.5. CMsg Alternate Field Update..60
7.6. CMsg Compressed Range Update..61
7.7. CMsg Undefine Field Update ..62
7.8. CMsg Instance Expansion Update ..63
7.9. CMsg Blocked Field Update..64
7.10. CMsg Query Response..65

8. Example Templates ... 66
8.1. For Messages ...66
8.2. For Content ...68

2003/12/16 Page 6 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

Index of Figures

Figure 1 - Simple Two-Node Reference System... 14
Figure 2 - The Generic Market Data System ... 15

Index of Tables

Table 1 - fisdMessage 1.0-beta header .. 25
Table 2 - SMsg Service Notification.. 28
Table 3 - SMsg Service Request.. 29
Table 4 - SMsg Service Response.. 30
Table 5 - SMsg Authentication Request.. 31
Table 6 - SMsg Authentication Response.. 32
Table 7 - SMsg Entry Request .. 33
Table 8 - SMsg Session Notification ... 34
Table 9 - SMsg Session Notification Response .. 35
Table 10 - SMsg Session Termination Request ... 36
Table 11 - SMsg Query for Instance.. 37
Table 12 - SMsg Query to Unmark.. 38
Table 13 - SMsg Query for All Data... 39
Table 14 - SMsg Query for Other Content... 40
Table 15 - AMsg Timestamp... 42
Table 16 - AMsg Directory Response .. 43
Table 17 - AMsg Enumeration Response... 44
Table 18 - AMsg Enumeration Renumber.. 45
Table 19 - AMsg Enumeration Extend .. 46
Table 20 - AMsg Enumeration Remove ... 47
Table 21 - AMsg Template Response .. 49
Table 22 - AMsg Template Remap .. 50
Table 23 - AMsg Template Expansion ... 51
Table 24 - AMsg Template Remove... 52
Table 25 - AMsg Instance Reindex.. 53
Table 26 - AMsg Instance Remove.. 54
Table 27 - CMsg Image Update ... 56
Table 28 - CMsg Fielded Image Update ... 57
Table 29 - CMsg Uncompressed Field Update.. 58
Table 30 - CMsg Compressed Field Update ... 59
Table 31 - CMsg Alternate Field Update.. 60
Table 32 - CMsg Compressed Range Update.. 61
Table 33 - CMsg Undefine Field Update .. 62
Table 34 - CMsg Instance Expansion Update .. 63
Table 35 - CMsg Blocked Field Update.. 64
Table 36 - CMsg Query Response ... 65

2003/12/16 Page 7 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

Change Log

2003/12/05 JE Hartley First formal release.
2003/12/16 JE Hartley Added provider vs. framework directories

Pending Issues

• Look for a better way to change scheme values. Perhaps the list of legal schemes for

a particular attribute can be placed in an enumeration. The existing syntax results
in ill-formed XML documents AND requires a very large message if it needs to be
changed.

• Develop an application, protocol, and flow graph. Primary to this is finding a point

in the stack where this particular method of delivering content can be replaced with
another while still maintaining a standard higher level intereface.

• Consider that a turnaround key should be prefixed with user identify of some sort.

In other words, establish guidelines or format for the key.

• A mechanism for specifying an alternate default compression scheme for most of the

Session Establishment messages and the AMsg Directory Response needs to be
investigated and formalized. However, the list should be restricted and known.

• The convention for session establishment and negotiation of encryption needs to be

established, formalized, and documented. The use of three-way handshake, trusted
third party, and Diffie-Hellman key exchange in combination with AES/DES, RSA,
MD5, and combinations of digital signatures needs to be documented.

• Clarify the way to add additional fields to an already distributed template. Some

fields will be defined as “repeating sets” which, when specified, can dynamically
increase the number of fields.

• Specify the timeout values for Session Establishment communications. Other

message timeouts are a function of the prevailing AMsg Timestamp frequency.

• Processing rules for each message need to be emphasized.

• The schema needs to be completed and made available.

• Although the framework distribution order is enumerations, templates, directory

this creates some problems if the compression schemes for integers and timestamps
are different than the defaults. An abbreviated directory message needs to be
created that contains only this information for use during these updates.

• Verify that 64kB-48-20-2 is a reasonable upper limit for the size of an fisdMessage

protocol packet. Thus, the packet will fit within TCP over IPv4 or IPv6.

• The “CMsg Blocked Field Update” needs to be completed.

2003/12/16 Page 8 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

1. Introduction

The realities of distributing realtime streaming XML-encoded market data content (like
MDDL - Market Data Definition Language) has led to the need for a compaction scheme
and messaging protocol for efficiently conveying XML content from sender to recipient.
The fisdMessage specification defines session establishment protocols as well as “on-
wire” message structures that are suitable for high-volume high-throughput of statically
formed XML documents. Proper adherence to the specification enables any
fisdMessage capable receiver to accept all content from any fisdMessage conformant
distributor via interactive or broadcast network media.

The fisdMessage protocol uses a “dynamic template” methodology whereby a template
of the content is distributed and then specific instances of that template are referenced
for each unique data object within the system. The overriding assumption is that
(generally) all instances of a particular source within the system will require the same
content. Thus, there is a unique template for each type of data collection, and many
references to that template by each instance of that same type.

fisdMessage includes features for redefining content models so that new information
can be added to the governing template, consistent with XML processing guidelines,
without affecting existing applications. Thus, when new data needs to be made
available via a datafeed, a provider may add the content and begin distributing new
information immediately – via the fisdMessage protocol – without modification to
existing fisdMessage compliant receiving applications. The receiving applications may
then be upgraded to process the new content when convenient.

fisdMessage DOES NOT define the network media or the configuration necessary to
exchange content between provider and consumer. fisdMessage defines the packets of
data necessary to convey the source data, without loss, to the target application. The
implementer must provide the binding to the network transport (and lower) layers. It is
envisioned that a sender and recipient each would use toolkits that provide a viable
implementation of fisdMessage for a common network infrastructure. fisdMessage is
compatible with broadcast (multicast) and interactive networking modes.

The examples in this document use Market Data Definition Language (MDDL) as the
content to be streamed with fisdMessage. Specifically, the examples discuss market
data encoded in MDDL for realtime streaming of quotes and trade reports. The reader
should note that, although the specification was originally designed with MDDL in
mind, fisdMessage has applicability beyond market data and the financial industry.

MDDL is the XML derived specification to enable the interchange of information
necessary to account for, to analyze, and to trade financial instruments of the world’s
markets. MDDL defines a common vocabulary and format for exchange to facilitate the
interaction between exchanges, vendors, redistributors, and consumers. The common
market data terminology embraced by MDDL allows providers to clearly state the nature
and origin of market data elements thus removing ambiguity. The straightforward
format of MDDL provides a convenient vehicle for exchanging this data between XML
aware systems.

2003/12/16 Page 9 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

1.1. Purpose
This document describes the methodology and processing guidelines to send and/or
receive the fisdMessage protocol. The messages are categorized as three major types
with a section assigned to each:

Session Establishment: The communication necessary for a recipient to connect to a
sender, authenticate, and configure to begin to receive administrative and content
messages. This section does not apply for broadcast scenarios (where there is no
backchannel for authentication) – in such cases, the recipient must be preconfigured
manually for proper encoding with frequent update support by the broadcaster.
Session Establishment messages also include “query” messages sent by the recipient to
specify which content is of interest to the consumer for that session.

Administrative Messages: The messages, sent by the sender, which provide the
content templates and other dynamic configuration parameters (collectively called the
framework). Once configuration information is received, the recipient can begin
decoding the content messages. In a broadcast scenario, where there is no
backchannel for queries, these definition messages may only be distributed once or
twice a day at the discretion of the sender, or provided via some other mechanism for
initial configuration. Administrative messages also include reconfiguration messages
used to optimize distribution.

Content Messages: The content messages with updates to particular instances of a
type of data (as outlined in the Administrative Messages). There are two basic types of
content messages distributed from the sender – the image or “refresh” containing the
current values for all of the fields within an instance; and the update containing
changes to specific fields within the image. It is up to the receiving application to
decide how to store this information, or act upon it, but fisdMessage does specify how
the image should be modified. The sender may also send query messages – consistent
with an applicable query specification like mddlQuery – to specify which content is of
interest or to make a request for historical or other non-realtime streaming information.

1.2. Terminology
The documentation uses various terms that have a specific meaning within the confines
of this specification. Those terms related to fisdMessage are defined here as a way to
clarify the intended meaning in reference to the reference system.

Presenting the details of an XML-based specification, like fisdMessage, requires the
use of various terms unique to that genre. These terms are described in relation to the
specification but also to XML in general.

1.2.1. Sender
A sender is any system that generates and provides content documents regardless of
the industry role. Note that processing within a system may include subsystems that
are senders as well as recipients. fisdMessage defines a protocol between a specific
sender and recipient which is extendible to a large system with many applications. A
sender may also be called a “provider”.

1.2.2. Recipient

2003/12/16 Page 10 of 71 Copyright 2003 SIIA

A recipient is any system that, regardless of industry role, receives or processes content
documents. Recipients of fisdMessage encoded documents will validate and parse the

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

instances updating local copies of the image. Recipient systems may process
documents and then provide that data to subordinate recipients in the same format
thus fulfilling the role of sender as well. A recipient may also be called a “consumer”.

1.2.3. Directory
A directory is the listing of all templates and enumerations used in the sender’s data
framework. The directory provides a checklist, including descriptions and other
parameters, of those supporting documents that are necessary for the recipient to
process all of the data available from the sender.

1.2.4. Enumeration
An enumeration is a list of terms that are mapped to integral values (0, 1, 2, etc.). Each
enumeration has a unique URI (Universal Resource Identifier) which is provided as an
entry in the directory. In MDDL, these are Controlled Vocabularies that contain
abbreviations, with definitions, that are valid representations of the content for the
corresponding data field. As an example, one controlled vocabulary for country code is
identified by the URI http://www.mddl.org/ext/scheme/iso3166-alpha-2.xml which
contains the ISO 3166 codes and country names. In the list at the above URL, the code
“AQ” is defined as “ANTARCTICA” and is the 3rd item in the default list; Instead of
transmitting the string “AQ” to represent the country Antarctica, the integer value 2
could be transmitted - generally at a significant bandwidth savings.

1.2.5. Template
A template defines the format of an XML instance document. Specifically, the template
defines which portions of an instance document are static (the markup and non-
changing data) with relationship to those pieces that change with each unique
instantiation of the template, or over time. The template defines parameters about the
dynamic elements that can be used to efficiently compress and distribute the instance.

The field definitions are the byproduct of the template and are used to deliver the
content using fisdMessage. Each field identifies a unique piece of data that can be
communicated independently of the framework. In many cases, a compound field will
be defined which is comprised of many actual fields concatenated together. The
compound field is a convenience notation for a collection of items that are updated
together. A compound field may also specify some calculations that may be applied to
the data provided before populating an actual field.

1.2.6. Instance
An instance is a specific instantiation of a template with a unique value for the key field.
Generally, this term is used to refer to the “XML instance document” that is generated
by applying the image data to the template. However, there is a subtle distinction in
that a fisdMessage instance is not necessarily stored as an XML document.

1.2.7. Image
An image contains all of the content for a particular instrument as defined by the
template. The image is the bits-and-bytes of data while the template outlines how this
data should be represented in XML - the two combined generate an XML instance
document.

2003/12/16 Page 11 of 71 Copyright 2003 SIIA

http://www.mddl.org/ext/scheme/iso3166-alpha-2.xml

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

1.2.8. Update
An update is a modification to one (or more) of the values in the image. The update
contains the identifier of the field to be updated as cross-referenced in the template, and
the implied processing rules on how to update the image (storage) of that field.

1.2.9. XML Specific Terms
XML is becoming a more prevalent standard within the computer and data industries
and, as such, it has terminology that is unique to that standard.

1.2.9.1. Standard vs. Specification
XML is a metalanguage standard, developed and supported by the World Wide Web
Consortium, intended to provide a flexible and adaptable scheme for information
identification. MDDL is an XML specification – MDDL uses the XML standard to define
the syntax for creating market data related documents.

1.2.9.2. Schema
A schema, when used to describe XML concepts, defines the collections of terms that
can be used in a specific XML instance document. The schema (fisdMessage
specifically uses W3C Schema) limits which elements and attributes can be placed
within a document, what content they may contain, and how they are positioned within
the document. Please read more at http://w3.org/TR/xmlschema-0/.

1.2.9.3. Instance Document
While schemas define the XML specification of interest (i.e. mddl and fisdMessage), the
actual data interchanged between sender and recipient is formatted in an instance
document based on the rules defined in the specification. An instance document is
itself XML and the textual representation is dictated by the XML standard. An instance
document is said to be well-formed XML if the elements and angle-brackets follow the
rules of the XML standard and are correctly started, nested, and terminated
independent of the governing specification.

An MDDL-based instance document is only valid if it is well-formed XML, validates
against the correct version of the appropriate MDDL-based W3C schema, and is
consistent with the intent of the written specification. In other words, there are
implications of the content and format of an instance document that is above and
beyond the capabilities of the schema to restrict.

1.3. Relationship to Other Work
MDDL and its derived specifications use several World Wide Web Consortium (W3C)
recommendations including, but not limited to, XML 1.0, XML Namespaces, XLink, with
specific references to XSLT. MDDL relies extensively on W3C XML Schema. Please see
the W3C XML Website for references to XML related work.

Other XML specifications in the financial space have direct relationship to MDDL and
integration is being pursued ala ISO TC68/SC4/WG11 (and other avenues). Targeted
specifications for ongoing interoperability discussions include FIX (Financial Instrument
eXchange Protocol), XBRL (eXtensible Business Reporting Language), FpML (Financial
Products Markup Language, RIXML (Research Information Exchange Markup
Language), and specifications of the IPTC (International Press Telecommunications
Council) including NewsML and NITF (News Industry Text Format).

2003/12/16 Page 12 of 71 Copyright 2003 SIIA

http://w3.org/TR/xmlschema-0/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml-names
http://www.w3c.org/TR/XLink/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/XML/
http://www.fixprotocol.org/
http://www.xbrl.org/
http://www.fpml.org/
http://www.rixml.org/
http://www.iptc.org/
http://www.newsml.org/
http://www.nitf.org/

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

2. General Overview

The fisdMessage protocol is an open-standards based protocol for the exchange of
rapidly changing, statically formed, XML documents in simple and complex systems.
While specifically focused on the communication between a single provider and single
consumer of market data, the specification is applicable to any large system (for
example, the Generic Market Data System as described below). It is important to
understand the reference framework for fisdMessage and the specific efficiencies that
are possible within the closed system defined.

2.1. Protocol Applicability
The fisdMessage protocol is appropriate for realtime streaming of XML documents
distributed using an “image with updates” paradigm. In this model, the image contains
a complete snapshot of the data at a specific moment in time while the updates convey
specific changes or replacement values to specific fields, or collections of fields,
contained within the image.

The ability to define an image and apply updates is feasible when a relatively large
number of instance documents can be said to have the same (ideally identical) structure
but vary only in the data content of specific elements within the documents (which may
included “undefined” values for some fields). By abstracting the commonality of those
instance documents, a template can be defined which specifies the format of the
document independent from the content.

Consider a Generic Market Data System which collects quote and trade market data
from various exchanges and then merges the realtime information with static reference
data from a database. In this system, it is likely that a particular exchange distributes
approximately the same data for all like instruments traded on that exchange (for
example, the Antarctica Exchange - AQE - reports the same basic data for all Antarctica
common equities). Therefore, a template can be defined for “Antarctica Exchange
Common Equities” data encoded in MDDL and thus distributed using the fisdMessage
protocol. (At this point the reader is wondering whether there is an Antarctica
Exchange - there isn’t but the exchange processes every class of instrument known to
MDDL and so it makes a good reference for the documentation.)

2.2. Reference Model
A reference system is appropriate to place the functionality of fisdMessage within a
real world application. In this document, a Generic Market Data System will be
described that illustrates the foundational capabilities of fisdMessage as well as some
of the more complex interactions that are necessary when considering a large system.

The Generic Market Data System is a complex interconnection of nodes that combine to
perform the primary function of the system – combining market data from multiple
sources and presenting it to the end-user in a coherent and timely fashion. As
diagrammed in Figure 2 below (discussed as the “Complex Multi-Node Model”), each
node has a specific purpose within the system and communicates with its peer nodes
on a simpler sender and recipient arrangement as diagrammed in Figure 1 below
(discussed as the “Simple Two-Node Model”).

2003/12/16 Page 13 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

2003/12/16 Page 14 of 71 Copyright 2003 SIIA

2.2.1. Simple Two-Node Model
The Generic Market Data System can be decomposed into multiple interfaces where two
separate components communicate, one as sender and one as recipient. While the
interface may permit bidirectional interchange of information, the sender is defined as
dominant provider of information and the other receives that data and processes it. In
a bidirectional connection the recipient may send specific requests to the provider thus
indicating the type of information requested. While it is the individual application that
decides what data is required and how it is processed, the implied sender-recipient
relationship governed by the fisdMessage protocol places specific requirements on
each of the participants to guarantee complete and accurate exchange of data.

fisdMessage – Basic Functionality

Source Application

Encode Decode Datafeed Display

Query (secondary data flow)

Response (primary data flow)

Figure 1 - Simple Two-Node Reference System

2.2.2. Complex Multi-Node Model
The Generic Market Data System, diagrammed in Figure 2 below, includes data sources
(Datafeeds and Databases), one or more Processing Engines, a System Headend that
serves as the top of the distribution network, various Relay Nodes that act as cache and
fanout units for the distribution network, and end applications (either Display
Applications or Output Datafeeds to another system). fisdMessage is appropriate for
use between each of the components of the system, as discussed in the section “Simple
Two-Node Model” above, to convey the content of statically formed XML documents in
their entirety and for communicating changes to the content efficiently.

Market data in the Generic Market Data System nominally flows from left to right
through the nodes diagrammed. The Processing Nodes receive all data distributed from
the System Headend and perform value added functions contributing the results back
into the distribution network. While the individual end applications may enable users
to contribute content, this is realized as a separate communication from the end-user
application whereby it is viewed as a data source to the system.

The Datafeeds bring raw “realtime” data into the system. Each datafeed acquires the
data from the specific source, transforms it into the Generic Market Data System
representation of that content (ie. maps it into the appropriate template for that source),
and distributes the resultant images and updates to the System Headend.

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

2003/12/16 Page 15 of 71 Copyright 2003 SIIA

Datafeed
Redistributor fisdMessage Generic Market Data System

Application
Display Datafeed

Contributor

System
Headend

Relay
Node(s)

Database
Reference Data Application

Datafeed

Query (secondary data flow)

Processing
Node

Response (primary data flow)

Figure 2 - The Generic Market Data System

The Databases contain relatively static data (static meaning the data doesn’t change
often during a day or comes from an overnight download) that needs to be merged with
the realtime content of the datafeeds. While the datafeeds may bring in the latest quote
and trade information for particular instruments, the databases contain the historical
analysis and reference data necessary - for example the country of registry, the
exchanges on which the instrument trades, the dividend history, or even the previous
day’s trading analytics.

The Processing Engine provides the bulk of the content value-add produced by the
system. In an exchange, this would be the main trading system while in a vendor this
might calculate analytic values or create historic data stores. Similarly, a market data
user firm may perform its own analysis and perform portfolio calculations and risk
analysis. The Processing Engine may take in any and all market data available and
massage it, create new values (a “Calculation Engine”), or generate alerts based on user
defined thresholds (an “Alert Engine”). A Processing Engine is unique in that it accepts
content messages from a System Headend and may send different content messages
back to the System Headend over the same connection.

The System Headend is the main focal point of the market data system through which
all content must pass before it is distributed to the end users. While this may be a
collection of computers performing multiple tasks, the purpose of the System Headend
is to hold the definitive list of templates and enumerations (as well as the latest image of
each instance) that are valid within this closed system. The System Headend acts as a
concentrator of content from the various sources when a template requires data from
more than one source - the System Headend merges partial image updates from each of
the contributing Datafeeds, Databases, and Processing Engines to create a complete
view of a particular instance.

The Relay Node is a “cache and fan-out” node for the distribution system. The Relay
Node connects “upstream” to another Relay Node or the System Headend and accepts

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

all updates from the upstream node. The Relay Node accepts “downstream”
connections from other Relay Nodes or various applications and forwards (ie. copies) all
content received from upstream to the downstream connections (perhaps on a selective
by-interest basis). If the Relay Node performs caching functions, it may be able to
service requests from downstream nodes from its stores.

The Display application is responsible for accepting the market data and displaying it in
a form that the human user can understand. In most interactive scenarios, the Display
application will accept input from the user and indicate to the upstream distribution
system which information is of interest to the user.

The Output Datafeed is the output from the system that is analogous to the Datafeed
source described above. The Output Datafeed translates the market data of this closed
system into the format of the next - whether it is MDDL based or some legacy format.
Note that the “Output Datafeed” of one system may, in fact, be the “Redistributor
Datafeed” source of the next system.

2.2.3. Additional Extensions to the Reference Model
A production market data system, when compared to the Generic Market Data System,
will have two significant additional features – 1) the number of nodes involved and 2)
redundant sources and connectivity. A third consideration involves the monitoring,
configuration, and control of the system.

2.2.3.1. Large Number of Nodes in System
A full production system comprises many Datafeeds, Databases, Processing Engines,
and a significant distribution network serving many end applications. The total system
may include anywhere from a few nodes to thousands of interconnecting computers
distributed across the globe. The fisdMessage protocol is independent of the size of
the system – it is the engineering applied to the various applications that ensure that
the desired scalability can be achieved. The functionality implicit in the correct
processing of the fisdMessage protocol is consistent with large scale implementations.

2.2.3.2. Redundant Processing and Delivery
A production system will contain redundant processing and distribution nodes to
ensure delivery of information to the end-user in the event of telecommunications or
hardware failure. The fisdMessage Version 1.0-beta protocol does not include any
explicit support for redundant processing or delivery as it is envisioned that the
principal applications (the System Headend, a specific Processing Node, a Relay Node,
and end-user applications) would be designed to provide this required functionality.
Should this assumption prove incorrect, the specification will be enhanced to include
the necessary support.

2.2.3.3. Monitoring, Configuration, and Control
The realities of operational environments require (potentially remote) monitoring,
configuration, and control. Monitoring involves two components – the analysis of the
bandwidth and throughput of the data, and status of the health of the system.
Configuration includes the parameters of the individual node and the interconnection
pattern of the nodes within the system and is a function of the individual
implementation. Control is exercised to bring nodes in and out of the system, and to
initiate processing or reconfiguration.

2003/12/16 Page 16 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

Analysis of the operational system is an application with respect to fisdMessage
Version 1.0-beta. In this model, individual nodes are responsible for collecting the
necessary statistics and reporting it on request. Monitoring the health of the computer
systems, individual processes, and network infrastructure is outside the scope of
fisdMessage and should be incorporated into the system and application design.

While fisdMessage does contain some configuration and control features, it is
recognized that Version 1.0-beta of the specification may not include all necessary
functionality. Careful design of the templates and corresponding applications can
accommodate all required parameters and processing but the protocol specification may
require extension should standardization be necessary.

2.3. Connection Scenarios
The fisdMessage protocol is expressly for the purpose of exchanging XML documents
efficiently between two nodes in a binary system. The protocol specifies the packets
that are exchanged between the two nodes but not the underlying connectivity model.
fisdMessage is consistent with a full interactive communication circuit as well as
broadcast modes of operation. Note that the protocol does not specify the network layer
connectivity but only the message payload transmitted and/or exchanged.

2.3.1. Selective Interactive Connectivity
In a fully interactive mode, all nodes will initiate connection to the System Headend, or
“upstream” Relay Node within the distribution network. The requesting nodes must
authenticate and fulfill the session validation requirements specified by the System
Headend. Downstream nodes may then request content from the System Headend via
the distribution network (which may involve simply asking for all content available).
The requested content will then be returned back to the downstream node. In this
model, the only content delivered to a downstream node was originally requested by
that node (in addition to compulsory session and administrative messages) and for
which the node is entitled to receive the data.

2.3.2. Broadcast Mode
In many scenarios it is not possible for downstream nodes to connect upstream such
that the upstream node broadcasts all data and updates (for example, using multicast
or satellite transmission). In this scenario, the recipient nodes must be preconfigured
with appropriate authentication credentials and encryption keys. The recipient
application must still process all administrative and content messages but need not
generate, nor process, session establishment messages. The recipient application is
responsible, however, for validating access to the delivered data based on entitlements.

2.3.3. Broadcast Mode (with Slow Backchannel)
The backchannel can be used for session establishment and/or marking interest or
requesting content (other than primary distribution content). This scenario behaves
like the broadcast mode configuration in that all peer nodes connected to the same
distribution node will receive all content broadcast as a result of the requests from
individual downstream nodes. However, it behaves as an interactive node for the
purposes of establishing authentication and determining the current encryption as well
as permitting downstream users to request content to be broadcast.

2003/12/16 Page 17 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

2.4. Image and Update Methodology
The fisdMessage protocol is predicated on the fact that the data may be modeled as a
snapshot (or image) of current content with messages containing each change (or
update) to be applied to the image. The structure of the image is static, as defined in
the template, and each fielded value has a specific location (or locations) within the
document created when the values are merged with the template to create the XML
representation of the specific instance.

Although the protocol defines how updates are to be applied to an image, this is for the
purposes of keeping an up-to-date copy of the instance for caching or display purposes.
Receiving applications may choose to keep the initial image independent of the updates
(or in addition to the updates) thus providing a “historical” list of changes to the image.
The clever crafting of the template facilitates this application requirement.

2.5. Document Template and Instance
The fisdMessage protocol makes use of a template to describe the content distributed
within the system – for example, two different instruments from a particular stock
exchange are considered to be instances of the single template representing content
from that stock exchange. Each instance maps to the template but may contain
different values for each fielded value within the template – and must contain different
values for the field identified as the key for that template.

2.5.1. Specifying a Template
An fisdMessage template is an XML document that defines the structure of the content
document which represents the image for a particular source. The required
fisdMessage elements defining the parameters of each field are substituted for the real
content of the document thus the template will not validate against the governing
content document schema. However, the additional markup will validate against the
governing fisdMessage schema.

There are predefined templates that are foundational to the fisdMessage protocol
which represent the structure of the individual protocol messages. The same rules that
relate images to templates and thus specific fielded content, also apply to messages that
are transmitted as part of the protocol. The structure and content of the protocol
messages are not updated in the same way as the primary content instances. The
protocol messages are defined in templates that explicitly must not be modified.

The dictionary lists all templates that are valid within the system. Adding a new
template is as simple as modifying the dictionary and having it distributed throughout
the system. Note: it is advised that the template be broadcast to all recipients before
redistributing the directory because sending a directory with a reference to an unknown
template (or enumeration) will force all recipients to send a query for the template.

2.5.2. Specifying a Field
A template is defined to isolate the changing content from the static content in an XML
document. The individual pieces of changing content are defined as fields that may be
referenced as tokenized values in update communications. Each field is delimited in
the template and will contain the following amplifying properties:

• Field Moniker - used by applications
• Field Name - formal field name for display
• Field Number - as encoded in the protocol

2003/12/16 Page 18 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

• Key Field - Boolean indicating if this field is the instance unique identifier
• Index Bits - number of bits used to encode the Key Field
• Source - data source for use by System Headend for merging content
• Update Frequency - clue to relative frequence of changes to field’s values
• Atomic Type - integer, string, float, Boolean, enumeration, etc.
• Range - range of values for the field (numerical types)
• Enumeration Scheme - scheme governing legal values (if applicable)
• Formula - to be applied to value placed in field when updating
• Entitlement Mnemonic Fomula - expression governing access to the field
• Entitlement Value - required to access this field
• Compressions - for this field used in processing
• Subordinate Fields - children (and formulas) of this field if it is a compound field
• Coordinating Fields - other fields that must be transmitted simultaneously

Field specifics are defined in more detail in the appendix.

2.5.3. Applicability to an Instance
An instance is a specific image, identified by a unique key field, where the fields that are
the content for that image are governed by the corresponding template. Every field
identified within the template is contained within the instance - although some fields
may not have values and thus are “undefined”. The recipient is responsible for keeping
the current value of each field, as published by the distribution system, so that it may
be used to map the instance to the template thus yielding an XML instance document
representing the content – at the moment of creation – of the image.

2.5.4. Extracting a Complete XML Document
The process of merging an image with its governing template creates an instance XML
document. The resulting document will validate against the appropriate schema – for
example, an instance of a protocol message template will validate against the
fisdMessage schema while an instance of a template for MDDL content will validate
against the appropriate MDDL schema.

Each field defined within the template indicates the atomic type of the field and the
rules for adapting the fielded value to the XML representation. This process is identical
for every template and the rules are consistent for all fields thus the process is easily
automated and should require very little processing overhead. The algorithm required
for this conversion is part of the fisdMessage protocol specification and is discussed
within the appendix.

Note that within the Reference System, an actual XML document derived from an
instance is expected to only be necessary at interface points out of the system – within
the system most processing can be performed using the tokenized content passed via
fisdMessage.

2.5.5. Use of an Enumeration
Many XML-based specifications make use of enumerations – lists of string values
mapped to integral numbers. The integral value of the appropriate item from the
enumeration, not the string itself, is passed within the system.

The enumeration is distributed, and is required to be stored by the recipient, so that it
may be referenced whenever the string value mapping to the integral value is required.

2003/12/16 Page 19 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

Implementers should be aware that the enumeration used within one system is specific
to that use because the provider may have reordered the enumeration to facilitate
compression or improve other performance factors.

The value of the scheme attribute can be a field itself as the enumeration may be
changed (for any number of reasons). Note that changing the value of a scheme
attribute field is a relatively costly operation because of the length of the string (it is a
URI that typically looks like a URL). Care should be taken to define templates so values
of scheme attributes are changed infrequently (or not at all).

Changing the mapping of an enumeration should be avoided as well. When mappings
are changed, every instance derived from every template using the enumeration must be
scanned and values substituted (which is potentially a very expensive operation). By
definition, an enumeration change invalidates every instance derived from every affected
template. It is recommended that enumeration changes that require remapping should
be postponed until system load is low or until affected instances can be republished.
The fisdMessage specification does provide facilities to dynamically extend an
enumeration (thus adding values to it) efficiently. While these additions may not provide
optimally ordered schemes, the dynamic extension will allow delivery of new content
until a complete remapping can be executed (perhaps in an “overnight” update).

2.6. How a sender Behaves
A sender is responsible for specifying the framework under which updates to instances
are delivered. By defining the enumerations and templates that define the XML
documents, the sender (effectively) automatically configures the delivery system. Once
the framework is delivered (generally via Administrative messages), the sender must
deliver AMsg Timestamp messages (heartbeats) and compressed or uncompressed
updates consistent with the configuration.

Assuming a valid network channel is available (either through an interactive session or
over some broadcast medium), the sender should distribute the following Administrative
messages to configure the framework in the following recommended order:

• AMsg Directory Response - the digest of the framework
• AMsg Enumeration Response - for all enumerations
• AMsg Template Response - for all templates
• AMsg Directory Response - the digest of provider content
• AMsg Timestamp - per frequency established in the directory
• Content messages as appropriate…

It is not required to send all enumerations before all templates but it is mandatory that
all enumerations required for a template be delivered before the template is transmitted.
This is necessary because recipients must determine the number of entries in an
enumeration to know how to interpret field references to them.

The directory should contain all protocol message templates and enumerations as well.
It should not be assumed that all recipients have the exact same release of software and
framework as the sender. The fisdMessage protocol is intended to be flexible enough
that all relevant information can be sent from the sender allowing the recipient to
automatically configure to receive content (given a proper receiving application).

A sender must be prepared to send all enumerations - those used within the
fisdMessage framework as well as those in the content defined by the templates. In an
interactive feed, the recipient will check the entries in the directory and ask for those

2003/12/16 Page 20 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

that it does not have or have been determined to be out of date or different. In a
broadcast scenario, while it is convenient to assume that all recipients are configured
from an initial installation, it is prudent to broadcast the directory and all enumerations
and templates as frequently as feasible to guarantee accurate configuration on an
ongoing basis.

The AMsg Timestamp message is not required for proper operation of the protocol but
content that uses time sensitive information relies on a “heartbeat” to verify upstream
connectivity (particularly in broadcast mode). Further, content that makes reference to
the current time can be more efficiently compressed the more often a heartbeat is
transmitted. The sender should weigh the ability to generate reliable heartbeat
messages against the compression benefit derived (if necessary) as well as the ability for
a recipient to notice a circuit is down. As the beginning point of a discussion - consider
sending a timestamp once every 500 milliseconds (with potential delays stretching the
delta up to 1000 milliseconds) in the system design. If time resolution is required to the
hundredths of seconds (10-2), then a timestamp delta can be encoded in 7 bits - a
significant savings over the 64 bit absolute time encoding. Remember that the
heartbeat is not so much about dictating the accurate current time (although it is
useful for that function) but in giving a known reference on which to base deltas within
messages as well as assurance the system is operational.

2.7. How a recipient Behaves
A recipient should be designed to configure itself automatically around the framework
and content distributed by the sender. The recipient should make as few assumptions
about directory, enumeration, and template content as possible - instead, the
configuration information as dictated by the sender should be used. While the receiving
application will most likely configure itself to process particular data (for example, a
particular field within a particular template), it should not hardcode its expectations of
the framework - instead abstract the references to particular data into a configuration
file or other mapping facility using the field mnemonic for references.

The discussion on “How a sender Behaves” above has significance to the recipient as
well. The guidelines applicable to the sender also outline what a recipient can expect -
but nothing should be assumed. Given a sufficiently flexible receiving application,
there are two concerns for recipients: 1) guidelines for making requests upstream (if an
upstream connection exists), and 2) what to do in the case of errors or inconsistencies.

The initial AMsg Directory Response (or the same content embedded in the SMsg
Authentication Response) provides crucial configuration information and outlines which
framework pieces are required to operate. The receiving application should accept all
Administrative messages and store the directory, enumerations, and templates for
comparison even if content defined by some templates will be ignored by the
application. If the directory specifies framework items that the recipient does not have
then they should be requested and stored. Keeping the framework consistent assures
the recipient can properly decode all messages and ignore the undesired content. If the
sender adds new content to templates of interest that reference framework elements
that are not available then the recipient may lose the ability to interpet the data.

Error processing is always a concern for data and time sensitve applications. The
problems can usually be categorized as a) failure in delivery of messages and b)
improper content. The former is a reality of even the most reliable communication
media and must be accepted. A receiving application may re-request data from
upstream nodes (if connectivity is available) but such requests should be made with
discretion or else the recipient node may inadvertently cause system overload.

2003/12/16 Page 21 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

Messages containing content that is improperly encoded must be addressed with the
provider. At the time of this writing, there is no certification program in place for the
fisdMessage protocol but one is being devised to provide some third-party verification
of capabilities. If bad messages are suspected, document specifically the most recent
AMsg Timestamp content as well as the enumerations, templates, images, and all
intervening updates so that the provider may correctly diagnose the problem.

Although it is encouraged that the recipient should not assume anything about the
messaging protocol messages, enumerations, or templates, the following assumptions
must be made (as of version 1.0-beta):

• The enumeration “requestStatus” values. For fisdMessage 1.0-beta, this
enumeration is fixed at 256 entries and requires exactly 1 byte.

• The enumeration “encryptionMethod” values. For fisdMessage 1.0-beta, this
enumeration is fixed at 256 entries and requires exactly 1 byte.

• The enumeration “entryType” values. For fisdMessage 1.0-beta, this
enumeration is fixed at 256 entries and requires exactly 1 byte.

• The enumeration “enumerationType” values. For fisdMessage 1.0-beta, this
enumeration is fixed at 256 entries and requires exactly 1 byte.

• The compression “zlib” for whole message compression is the default.
• The default compression for integer fields is “i8.0”.
• A timestamp is exactly 8 bytes (5 bytes for seconds since the Epoch followed by

3 bytes for the number of microseconds in the current second).
• The enumeration “messageType” is encoded with 6 bits.
• Every message has the same 5 fields at the beginning (see later sections).

2003/12/16 Page 22 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

3. The fisdMessage Schema

The fisdMessage schema defines the XML markup used to specify field and template
parameters as well as the XML format of the fisdMessage framework messages. Note
that the specification uses the schema to govern the templates for the protocol
messages in the same way that templates are defined for the system data content.

There are four major functions to the schema: 1) governing the protocol messages, 2)
outlining the directory of content, 3) portraying an enumeration, and 4) defining a
template for content of interest.

3.1. Applied to Messages
Each of the messages defined in this protocol is described by a special template just as
the content is defined. While it is more of an intellectual exercise, the mapping of
protocol message templates to the on-wire protocol gives insight into how a template can
be defined for content of interest. Please note that currently the specification does not
permit any flexibility in altering protocol messages (in other words, a recipient could
“hard-code” the processing of protocol messages for a given version of the protocol).
Future releases of the specification will rely heavily on the use of templates for the
protocol messages so that custom messages (especially compressions) can be defined.

3.2. Applied to the Directory
The directory is the core of the framework of fisdMessage and conveys needed
configuration information to the downstream applications. The specification provides
the core (minimum necessary) directory to which the sender may add enumerations and
templates. The sender must not modify the core elements defined in the directory.

3.3. Applied to an Enumeration
The representation of an enumeration is fairly straightforward with fisdMessage and
there are few variables to the specification. The protocol message enumerations may be
used as examples of this encoding, as can the examples provided in the appendix.

While there are a number of enumerations that are specified by the protocol, a sender
may create many additional enumerations to convey the data of interest or facilitate
compression (for example, some of the large enumerations like the country codes may
be broken into smaller enumerations based on regions or a subset of the currency codes
may be extracted because the sender only deals in certain currencies).

3.4. Applied to a Template
The protocol message templates may be used as an example for some of the
functionality available. In addition, a complete set of examples is available in the
appendix (based on MDDL).

The creation of templates is the most complicated aspect of configuring fisdMessage
and care must be exercised to define templates that are meaningful and functional.
Each field defined within a template has many parameters and all should be specified
explicitly. Further, the creation of virtual fields, particularly permutations, provides for
the greatest flexibility, and thus efficiency, of bandwidth usage.

2003/12/16 Page 23 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

4. Packet Characteristics

Each message is governed by a template defined by the fisdMessage schema. Sections
5-7 describe the detailed contents of packets on-the-wire as derived from the template
provided with this release of the specification. Section 8 presents examples of templates
and their corresponding “on-wire” formats. It may be adisable to read Section 8 both
before and after reviewing sections 5, 6, and 7.

Changing the order of contents in any of the templates may affect some field lengths or
values – for example, adding new templates may affect the size of the
templateIdentifier field. Fields that are sensitive to these changes are indicated by
an italicized “Name” and “Size” in the message description sections. The recipient
should programmatically determine these values and field sizes from configuration
information as provided by the sender.

The fisdMessage protocol uses network standard big-endian convention – all integer
and floating values requiring more than one byte are delivered with the most significant
bits of the most significant byte first. All character values are sent as null-terminated
UTF-8 strings, with the first byte first, unless a specific byte count is otherwise defined.
The recipient application must handle conversion of all values to local byte ordering and
form, if necessary.

4.1. Message “Header”
All fisdMessage based messages are derived directly from the governing XML
document (the template) that is conformant to the applicable fisdMessage W3C
schema. All templates are defined, in this version of the specification, with the same
fields at the beginning of the message to facilitate processing by the recipient. This
section illustrates how the messages are documented and highlights the fields that are
common to all documents which comprise the header as described in the table below.

Column definitions

Field Mnemonic: Denotes the abbreviation of the field used in the template defining
the message and has a unique meaning across all templates defined by the provider. In
all cases, the field mnemonic should be prefaced with “/fisdMessage/” to construct the
full field mnemonic. e.g, “messageType” is really “/fisdMessage/messageType”.

Name: The full textual name of the field. An italicized name is indicative of a field with
a variable size dependent on content within the message or configuration framework.

Size: The number of bits or bytes required to represent the UNCOMPRESSED field.
The exact length of each field is defined by the template for that message and the
applicable controlled vocabulary (for enumerations), the length of a string, or applicable
compressions. The size of the field will be in italicized print if it is variable (string
variables are implicitly variable length). Note that this version of the specification may
define constant sized fields that may be variable in future versions.

Type: The basic type of the field (listed here for convenience) as defined by the template
and governing schema. The type provides hints about interpreting the value of the field
and memory requirements for storing the value.

2003/12/16 Page 24 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

Value/Notes: Specific values are provided for those fields providing identifying features
(like the messageType). Comments may require additional discussion which will be
included following the table.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum.
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed

Table 1 - fisdMessage 1.0-beta header

Special field processing considerations

messageType: The unique identifier for this type of message as defined by the
messageType enumeration. The value of the messageType may change between versions
of fisdMessage but will always be mapped to the governing enumeration.

encrypted: Indicates if the message content, after the (2 or more bytes EXCLUDING
the fullLength) header is encrypted as negotiated (or specified) for the communications
channel. Initial Session Establishment messages MUST NOT be encrypted until the
encryption protocol has been specified. All other messages will be encrypted in
identical fashion as dictated by the provider. Encryption keys and protocols are
negotiated during Session Establishment or prearranged via separate communications
as necessary. The unencrypted packet must be null padded to the appropriate length
for the encryption protocol in effect. Note that encryption is applied to a compressed
message packet immediately before message delivery. Therefore, the recipient must
perform decryption before message-level decompression can take place (if applicable).

compressed: Indicates if the message content, after the header, is compressed using
the message-level compression algorithm defined in the directory (the default is zlib). If
compression is used, the fullLength field defines the uncompressed message payload
EXCLUDING the header.

messageLength: The total length of the message EXCLUDING the first 2 bytes of the
header. The messageLength field is used by the recipient to preallocate buffers
necessary to read the content from the network. The messageLength field is an integer
that is compressed using the “i8.0” compression scheme – there will be one byte
containing 7 bits of the message length - if the upper bit is set (for any of the bytes)
then there are additional bytes following, containing 7 bits each, that when
concatenated provide the message length. The last byte of the length will have the
upper bit clear. NOTE: The messageLength SHOULD NOT EXCEED 64kB-48-20-2
bytes. Thus, an fisdMessage packet can be accommodated by TCP with IPv4 or IPv6
(allowing for network specific fragmentation and reassembly). To be reviewed…

fullLength: The total length o the pre-compression message payload EXCLUDING the
full header (which may be 3 or more bytes). The fullLength field is used by the recipient
to preallocate buffers necessary to perform zlib decompression. This field will be absent
if zlib compression of the message payload has not been applied. The fullLength field is
an integer that is compressed using “i8.0” compression (unless redefined in the
directory).

2003/12/16 Page 25 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

4.2. Query Requests and Responses
The nature of an interactive feed requires that the downstream application (or “user”) be
permitted to make requests upstream for specific types of content. The fisdMessage
protocol defines four query messages and a single response message to allow the user to
identify the data of interest. Three of the query messages are specific to the “image with
updates” model that fisdMessage is based on. The fourth (“SMsg Query for Other
Content”) is a general vehicle for ad-hoc queries. The single response message (“CMsg
Query Response”) conveys the status for the first three types of queries and the actual
response document for the fourth.

SMsg Query for Instance: Specifies a template and makes a request for a specific
instance of that template. The request signals the sender that the recipient is interested
in all content for that template as applied to the requested instance, including the image
and all updates.

SMsg Query to Unmark: Indicates that the recipient is no longer interested in receiving
the indicated content - send no more updates for that instance.

SMsg Query for All Data: Allows the receipient to request “All Data that is Available” or
“All Data that All Others have Requested”. The former indicates that the sender should
transmit all instances that are available in the sender’s databases. The latter informs
the sender that the recipient would like a copy of all streaming content sent to other
recipients.

SMsg Query for Other Content: A general ad-hoc query mechanism that results in a
specific XML instance document being returned with the requested content.

CMsg Query Response: Generic response mechanism with status information for each
request - may include actual content message in the case of “SMsg Query for Other
Content”.

2003/12/16 Page 26 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

5. Session Establishment Messages

Session Establishment messages are used on fully or partially interactive feeds to
authenticate and configure a new recipient of the data feed into the system. The
Session Establishment messages allow negotiation of communication encryption
parameters and permit the recipient to request configuration information that it may
not already have. In addition, Session Establishment messages allow a downstream
application to request certain framework or content that it does not have.

NOTE: Session negotiation has not been completed. Most notably missing are requisite
three-way handshakes and specifics on type of authentication and encryption to be
used. It is intended that a subscriber may interactively negotiate AES/DES, RSA,
and/or MD5 based criteria for session authentication and establishment. The provider
will dictate the form of the encryption used for administrative and content messages.
Subsequent encryption may employ any combination of fisdMessage defined
encryptions deemed appropriate by the provider that can be communicated via the
session establishment mechanism.

2003/12/16 Page 27 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

5.1. SMsg Service Notification

URI: http://www.fisd.net/fisdMessage/SMsgServiceNotification/

Direction: From sender
Tag line: “I am ready to serve”
Description: The Service Notification message is sent from the provider to
announce that the service is ready. This message is sent when the system has started,
has been reset, or at periodic intervals. An initial timestamp is included.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 1 (0x01)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
timestamp Timestamp 8 Bytes time
version Messaging Version n Bytes string “x.y-z”
servicesLength Number of Services n Bytes integer “i8.0” compression
…Repeating Entries… 1 set per “servicesLength”
serviceRequested Requested Service n Bytes string “fisdMessage x.y-z”
…End Repeating Entries… for “servicesLength”

Table 2 - SMsg Service Notification

Special field processing considerations

encyrpted: This message must not be encrypted (as the encryption method has not
been negotiated).

servicesLength: Compressed with the default “i8.0” compression.

Discussion

After initial network connection, recipients should not attempt to interact with the
service until this message or a heartbeat (AMsg Timestamp) message has been received.

2003/12/16 Page 28 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

5.2. SMsg Service Request

URI: http://www.fisd.net/fisdMessage/SMsgServiceRequest/

Direction: From recipient
Tag line: “I want to connect and here is my user name”
Description: The Service Request message is sent from the consumer (the recipient)
to the provider (sender) requesting connectivity to the distribution network or system
specifying the type of encryption to use.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 2 (0x02)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
timestamp Timestamp 8 Bytes time
version Messaging Version n Bytes string “x.y-z”
requestKey Request Key n Bytes string
requestStatus Request Status n bits enum. per enumeration
encryptionMethod Encryption Method n bits enum. per enumeration
encryptionKey Encryption Key n Bytes string
encryptionValue Encryption Value n Bytes integer “i8.0” ocmpression
serviceRequested Requested Service n Bytes string “fisdMessage x.y-z”
username User Name n Bytes string

Table 3 - SMsg Service Request

Special field processing considerations

encyrpted: This message must not be encrypted (as the encryption method has not
been negotiated).

encyrptionMethod: Specifies the encryption method for subsequent interactions. The
implications of this selection are covered in the appendix. The encyrptionMethod
enumeration must be preconfigured at the recipient.

requestKey: Each request upstream should be given a unique requestKey. The
requestKey, with an appropriate status, will be echoed in subsequent responses.

Discussion

In conjunction with the SMsg Service Response message, this message is used to
coordinate encryption for subsequent messages.

2003/12/16 Page 29 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

5.3. SMsg Service Response

URI: http://www.fisd.net/fisdMessage/SMsgServiceResponse/

Direction: From sender
Tag line: “Okay, now authenticate in this way over specified channel”
Description: The Service Response message is sent from the sender acknowledging
the Service Request message. The sender will provide the encryption key to be used on
all future requests and may specify an alternate channel to make subsequent requests.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 3 (0x03)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
timestamp Timestamp 8 Bytes time
version Messaging Version n Bytes string “x.y-z”
requestKey Request Key n Bytes string from ServiceRequest
requestStatus Request Status n bits enum. per enumeration
encryptionMethod Encryption Method n bits enum. per enumeration
encryptionKey Encryption Key n Bytes string
encryptionValue Encryption Value n Bytes integer “i8.0" compression
serviceRequested Requested Service n Bytes string “fisdMessage x.y-z”
channelIdentifier Channel Identifier n Bytes string

Table 4 - SMsg Service Response

Special field processing considerations

requestStatus: The requestStatus enumeration must be preconfigured at the recipient.

encyrptionMethod: Specifies the encryption method for subsequent interactions. The
implications of this selection are covered in the appendix. The encyrptionMethod
enumeration must be preconfigured at the recipient.

channelIdentifier: In some instances, the sender may require that the recipient
continue the communication on another channel. The recipient should disconnect from
the current channel and resume the conversation on the specified channel.

Discussion

In conjunction with the SMsg Service Request message, this message is used to
coordinate encryption for subsequent messages.

2003/12/16 Page 30 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

5.4. SMsg Authentication Request

URI: http://www.fisd.net/fisdMessage/SMsgAuthenticationRequest/

Direction: From recipient
Tag line: “Please authenticate me”
Description: The Authentication Request is sent by the recipient requesting
authentication and access.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 4 (0x04)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
timestamp Timestamp 8 Bytes time
version Messaging Version n Bytes string “x.y-z”
requestKey Request Key n Bytes string new value…
username User Name n Bytes string
password Password n Bytes string

Table 5 - SMsg Authentication Request

Special field processing considerations

Discussion

This must be encrypted using the encryption scheme the encryption key from the
Service Response.

2003/12/16 Page 31 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

5.5. SMsg Authentication Response (with Directory)

URI: http://www.fisd.net/fisdMessage/SMsgAuthenticationResponse/

Direction: From sender
Tag line: “You are authenticated, and this is what you need”
Description: The Authentication Response is sent from the sender acknowledging
the previous Authentication Request and specifying the messages, templates, and
enumerations that are required to fully process the framework of the datafeed.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 5 (0x05)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
timestamp Timestamp 8 Bytes time
version Messaging Version n Bytes string “x.y-z”
requestKey Request Key n Bytes string new value…
requestStatus Request Status n bits enum. per enumeration
providerDirectory Provider Directory 1 Byte bool should be false
compression Compression Scheme n Bytes string for subsequent msgs
compressionInt Integer Compression n Bytes string for integer counts
compressionTSD Timestamp Delta Cmp. n Bytes string for timestamp deltas
directoryLength Directory Length n bits integer see compressionInt
…Repeating Entries… 1 set per “directoryLength”
entryType Entry Type n bits enum. per enumeration
entryNumber Entry Number n bits integer see compressionInt
entrySize Entry Size n bits integer see compressionInt
entryExpression Entitlement Expression n Bytes string
entryEntitlement Entry Entitlement 4 Bytes integer
entryChecksum Entry Checksum 2 Bytes integer
entryDate Entry Date/Time 8 Bytes time of modification
entryURI Entry URI n Bytes string
entryName Entry Name n Bytes string
…End Repeating Entries… for “directoryLength”

Table 6 - SMsg Authentication Response

Special field processing considerations

entryType: The entryType enumeration must be preconfigured at the recipient.

Discussion

This message defines the default compression scheme for integers and message-level
compression. Subsequent messages may therefore use compressions other than zlib.

The provider will also send an “AMsg Directory Response” for provider content.

2003/12/16 Page 32 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

5.6. SMsg Entry Request

URI: http://www.fisd.net/fisdMessage/SMsgEntryRequest/

Direction: From recipient
Tag line: “I need this entry”
Description: A request for a required entry (as defined in the directory) that the
recipient may not have (or may have an outdated version).

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 6 (0x06)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
requestKey Request Key n Bytes string new value…
entryURI Entry URI n Bytes string
entryType Entry Type n bits enum. per enumeration

Table 7 - SMsg Entry Request

Special field processing considerations

entryType: The entryType enumeration must be preconfigured at the recipient.

Discussion

The sender should deliver an AMsg Entry Response with the requested entry.

2003/12/16 Page 33 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

5.7. SMsg Session Notification

URI: http://www.fisd.net/fisdMessage/SMsgSessionNotification/

Direction: From recipient
Tag line: “I’m synched and ready to go”
Description: An indication that the recipient has received all framework items and
is ready to accept content updates. Generally, this message is followed by some sort of
Query message.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 7 (0x07)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
requestKey Request Key n Bytes string new value…

Table 8 - SMsg Session Notification

Special field processing considerations

Discussion

2003/12/16 Page 34 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

5.8. SMsg Session Notification Response

URI: http://www.fisd.net/fisdMessage/SMsgSessionNotificationResponse/

Direction: From sender
Tag line: “Okay, here comes the data”
Description: An acknowledgement by the sender that content messages, including
AMsg Timestamp “heartbeats” will begin to flow on this channel.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 8 (0x08)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
requestKey Request Key n Bytes string new value…
requestStatus Request Status n bits enum. per enumeration

Table 9 - SMsg Session Notification Response

Special field processing considerations

Discussion

This message may also be sent in response to the SMsg Session Termination Request
indicating a successful termination of the requestor’s session.

2003/12/16 Page 35 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

5.9. SMsg Session Session Termination Request

URI: http://www.fisd.net/fisdMessage/SMsgSessionSessionTerminationRequest/

Direction: From recipient
Tag line: “Please terminate my session”
Description: A request by the recipient to terminate the active session.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 9 (0x09)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
requestKey Request Key n Bytes string new value…
username User Name n Bytes string

Table 10 - SMsg Session Termination Request

Special field processing considerations

Discussion

The sender will return with the SMsg Session Notification Response but the recipient is
free to abandon the connection once this message is delivered.

2003/12/16 Page 36 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

5.10. SMsg Query for Instance (Mark)

URI: http://www.fisd.net/fisdMessage/SMsgQueryInstance/

Direction: From recipient
Tag line: “I would like this instance of this template”
Description: A request for an instance of a specific template. The recipient is
asking that the image for the instance, and all subsequent updates, be delivered. This
effectively “marks” interest in particular content for streaming purposes.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 10 (0x0A)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
requestKey Request Key n Bytes string new value…
templateURI Template URI n Bytes string
queryLength Query Length n bits integer see compressionInt
…Repeating Entries… 1 set per “queryLength”
keyFieldValue Key Field Value n Bytes string
…End Repeating Entries… for “queryLength”

Table 11 - SMsg Query for Instance

Special field processing considerations

Discussion

The sender will respond with a CMsg Query Response message with the success status.
If the query is successful, the sender will distribute a CMsg Image Update (or CMsg
Fielded Image Update).

2003/12/16 Page 37 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

5.11. SMsg Query to Unmark

URI: http://www.fisd.net/fisdMessage/SMsgQueryUnmark/

Direction: From recipient
Tag line: “I am no longer interested in this instance of this template”
Description: This “unmarks” interest in particular content. Depending on the
nature of the feed, the sender may be able to stop distributing updates of this instance
thus conserving bandwidth.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 11 (0x0B)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
requestKey Request Key n Bytes string new value…
queryLength Query Length n bits integer see compressionInt
…Repeating Entries… 1 set per “queryLength”
keyField Key Field n bits enum. per directory
…End Repeating Entries… for “queryLength”

Table 12 - SMsg Query to Unmark

Special field processing considerations

Discussion

The sender will respond with a CMsg Query Response message with the success status.
Note that the response is merely an acknowledgement of receipt of the message. In a
fully selective feed, the sender will stop sending updates to the recipient.

2003/12/16 Page 38 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

5.12. SMsg Query for All Data

URI: http://www.fisd.net/fisdMessage/SMsgQueryAllData/

Direction: From recipient
Tag line: “I would like all content requested by anybody”
Description: A request for all instances of all templates - in effect all images and
subsequent updates. The request may be qualified by a specific template of interest.
The request may be further qualified with an implied “mark” of existing data.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 12 (0x0C)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
requestKey Request Key n Bytes string new value…
templateURI Template URI n Bytes string for qualification
markAll Mark All Content 1 bit bool

Table 13 - SMsg Query for All Data

Special field processing considerations

templateURI: A null field indicates that all templates are of interest. Otherwise, the
sender specifies which template is of interest thus implying all instances of that specific
template should be delivered.

markAll: A Boolean differentiating the request for “All Data Available” and “All Data of
Interest to other subscribers”. If true, the recipient is effectively marking all data that is
available from the sender. If false, the recipient is requesting a duplicate of all
information that is sent to other subscribers and does not wish to mark any content.

Discussion

The sender will respond with a CMsg Query Response indicating the status of the
request.

The SMsg Query for All Data may be used by nodes that wish to receive all content that
is of interest to other nodes (for monitoring or analysis) or all information that is
available (for complete duplication of content). In either event, the request may put
excessive demands on the communications circuit and should only be used when
confident that sufficient bandwidth exists to send all of the data requested.

2003/12/16 Page 39 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

5.13. SMsg Query for Other Content

URI: http://www.fisd.net/fisdMessage/SMsgQueryOther/

Direction: From recipient
Tag line: “I would like this content retrieved and returned to me”
Description: A request for content that may not be governed by a template or the
image and update paradigm of fisdMessage. The form of the request is governed by a
template which the sender will route to the appropriate node for processing.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 13 (0x0D)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
requestKey Request Key n Bytes string new value…
templateURI Template URI n Bytes string for qualification
queryLength Query Length n bits integer see compressionInt
…Repeating Entries… 1 set per “queryLength”
fullQuery Full Query n Bytes string
…End Repeating Entries… for “queryLength”

Table 14 - SMsg Query for Other Content

Special field processing considerations

templateURI: The template that governs the form of the query. Only query templates
specified by the provider can be accepted.

fullQuery: The query as constructed by the consumer. The form of this query is
governed by the template and is serviced at the discretion of the provider. For example,
in an MDDL based system, this query will be structured as mddlQuery.

Discussion

The sender will respond with a CMsg Query Response which include the status of the
request and, if successful, will contain the XML document with the requested content.

2003/12/16 Page 40 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

6. Administrative Messages

The Administrative messages deliver the content framework of the sender to all
downstream recipients. There are three basic types of messages:

• Status - specifically the AMsg Timestamp “heartbeat” message.
• Framework - the directory, enumerations, and templates
• Adjustment - to the framework to improve efficiency

In a fully interactive feed, the framework messages are returned as responses to specific
requests (see Session Establishment messages). However, once the session is enabled,
the interactive feed receives the same types of Adminstrative messages as would a
broadcast connection.

The “heartbeat” message is transmitted by the sender on a regularly scheduled basis
(perhaps twice a second) so that the recipient knows that the circuit is active and the
sender can use the heartbeat as a reference for compression.

The framework messages are sent whenever it is necessary to synchronize the
framework between the sender and recipient - perhaps twice a day (especially important
on pure broadcast feeds). The framework messages define the scope of content that will
be delivered by the sender and provide the recipient with vital sizing and scaling
information.

The adjustment messages are delivered when the sender wishes to reconfigure or adjust
the existing framework to remove unneeded information or to add new content to the
system unobtrusively. These messages can be as simple as adding a new value to an
enumeration or as complex as removing all content derived from a template.

2003/12/16 Page 41 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

6.1. AMsg Timestamp (Heartbeat)
Direction: From sender
Tag line: “Please note the time”
URI: http://www.fisd.net/fisdMessage/AMsgTimestamp/
Description: The Timestamp message is sent by the sender and indicates the
current time as well as channel sequencing information.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 15 (0x0F)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
timestamp Timestamp 8 Bytes time
version Messaging Version n Bytes string “x.y-z”
sequenceNumber Timestamp Sequence n bits integer see compressionInt
previousTimeDelta Delta Since Previous n bits integer see compressionInt

Table 15 - AMsg Timestamp

Special field processing considerations

compressed: This message will never be compressed. Thus the “Compressed” bit must
always be zero (0) and there will not be a “fullLength” field.

timestamp: The timestamp includes two fields – a 5 byte field containing the number
of seconds since midnight of 01 January 1970, and a 3 byte field containing the
number of microseconds (10-6). This time is consistent with the features of most
prevailing operating systems at the time of writing of this document.

sequenceNumber: The sequenceNumber is an integer that is incremented with each
timestamp message delivered. The recipient may use this field to identify missing
messages or to query for recovery purposes. The sequenceNumber should be unique
over AT LEAST a 96-hour period.

previousTimeDelta: This is the number of microseconds (10-6) since the previous
timestamp was delivered.

Discussion

In broadcast mode, the Timestamp will be present as soon as network connectivity is
established. In interactive mode on a fully selective feed, the sender will not transmit
the timestamp on the recipient’s channel until after the Session Establishment
Authentication Response has been sent (which also includes a Timestamp).

2003/12/16 Page 42 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

6.2. AMsg Directory Response
Direction: From sender
Tag line: “This is what you need to participate”
URI: http://www.fisd.net/fisdMessage/AMsgDirectoryResponse/
Description: The Directory Response is sent from the sender specifying the
messages, templates, and enumerations that are required to fully process the datafeed.
Enumerations for all protocol messages are compulsory entries in the directory.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 16 (0x10)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
timestamp Timestamp 8 Bytes time
version Messaging Version n Bytes string “x.y-z”
requestKey Request Key n Bytes string from request…
requestStatus Request Status n bits enum. per enumeration
providerDirectory Provider Directory 1 Byte bool vs. framework
compression Compression Scheme n Bytes string for subsequent msgs
compressionInt Integer Compression. n Bytes string for integer counts
compressionTSD Timestamp Delta Cmp. n Bytes string for timestamp deltas
directoryLength Directory Length n bits integer
…Repeating Entries… 1 set per “directoryLength”
entryType Entry Type n bits enum.
entryNumber Entry Number n bits integer
entrySize Entry Size n bits integer
entryExpression Entitlement Expression n Bytes string
entryEntitlement Entry Entitlement 4 Bytes integer
entryChecksum Entry Checksum 2 Bytes integer
entryDate Entry Date/Time 8 Bytes time
entryURI Entry URI n Bytes string
entryName Entry Name n Bytes string
…End Repeating Entries… for “directoryLength”

Table 16 - AMsg Directory Response

Special field processing considerations

Discussion

2003/12/16 Page 43 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

6.3. AMsg Enumeration Response
Direction: From sender
Tag line: “This is an enumeration”
URI: http://www.fisd.net/fisdMessage/AMsgEnumerationResponse/
Description: The Enumeration Response is sent from the sender specifying an
enumeration including all of its values and mappings.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 17 (0x11)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
timestamp Timestamp 8 Bytes time
version Messaging Version n Bytes string “x.y-z”
requestKey Request Key n Bytes string new value…
requestStatus Request Status n bits enum. per enumeration
enumerationType Enumeration Type n bits enum. form of enumeration
enumerationURI Enumeration URI n Bytes string
enumLength Enum Length n bits integer
…Repeating Entries… 1 set per “enumLength”
enumOrder Enum Order n bits integer Order in file…
enumValue Enum Value n bits integer Value transmitted
enumShort Enum Short Desc. n Bytes string
enumLong Enum Long Desc. n Bytes string
…End Repeating Entries… for “enumLength”
enumeration Enumeration Text n Bytes string Full XML Text

Table 17 - AMsg Enumeration Response

Special field processing considerations

Discussion

enumOrder: Specifies the order of the value within the file. Normally, this should be
an increasing integer but may not be if there have been changes since the upstream
system performed a restart.

enumValue: The equivalent integer value for the enumShort description.

2003/12/16 Page 44 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

6.4. AMsg Enumeration Renumber

URI: http://www.fisd.net/fisdMessage/AMsgEnumerationRenumber/

Direction: From sender
Tag line: “Renumber this enumeration as defined”
Description: Instructs the recipient to renumber the enumeration referenced. Note
that this may be a very expensive command as it requires processing all instances of all
templates using the enumeration.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 18 (0x12)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
enumerationURI Enumeration URI n Bytes string
enumLength Enum Length n bits integer
…Repeating Entries… 1 set per “enumLength”
enumOrder Enum Order n bits integer
enumValue Enum Value n bits integer
enumValueNew Enum Value New n bits integer
…End Repeating Entries… for “enumLength”

Table 18 - AMsg Enumeration Renumber

Special field processing considerations

Discussion

enumOrder: Specifies the order of the value within the file. Normally, this should be
an increasing integer but may not be if there have been changes since the upstream
system performed a restart.

enumValue: The equivalent integer value for the enumShort description.

enumValueNew: The new equivalent integer value fo the enumShort description.
Thus, entry enumOrder in the enumeration that previously had a value of enumValue is
now changed. Note that there should generally always be at least two entries (two
values swap locations).

2003/12/16 Page 45 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

6.5. AMsg Enumeration Extend
To be completed… From provider – “Add some new values to this enumeration”.
Generally used to add enumerations without the expense of the re-number option.

URI: http://www.fisd.net/fisdMessage/AMsgEnumerationExtend/

Direction: From sender
Tag line: “Add new entries to this enumeration.”
Description: Instructs the recipient to add new entries to the end of an existing
enumeration. This expansion may cause the number of bits necessary to encode a field
containing a value from this enumeration to change.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 19 (0x13)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
enumerationURI Enumeration URI n Bytes string
enumLength Enum Length n bits integer
…Repeating Entries… 1 set per “enumLength”
enumOrder Enum Order n bits integer
enumValue Enum Value n bits integer
enumShort Enum Short Desc. n Bytes string
enumLong Enum Long Desc. n Bytes string
…End Repeating Entries… for “enumLength”

Table 19 - AMsg Enumeration Extend

Special field processing considerations

Discussion

enumOrder: Specifies the order of the value within the file. At least one of the entries
should specify a number one greater than the number of entries already within the file.
However, if another value is provided (thus implying a swap),

2003/12/16 Page 46 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

6.6. AMsg Enumeration Remove

URI: http://www.fisd.net/fisdMessage/AMsgEnumerationRemove/

Direction: From sender
Tag line: “Remove this enumeration and invalidate references to it”
Description: Instructs the recipient to delete the enumeration from its processing
and set all fields that refer to this enumeration to “undefined”. This is potentially an
expensive operation.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 20 (0x14)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
enumerationURI Enumeration URI n Bytes string

Table 20 - AMsg Enumeration Remove

Special field processing considerations

Discussion

2003/12/16 Page 47 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

6.7. AMsg Template Response
Direction: From sender
Tag line: “This is a template”
URI: http://www.fisd.net/fisdMessage/AMsgTemplateResponse/
Description: The Template Response is sent from the sender specifying a template
including all of its actual and virtual fields. This message may be broadcast periodically
or transmitted when a template is redefined.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 21 (0x15)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
timestamp Timestamp 8 Bytes time
version Messaging Version n Bytes string “x.y-z”
requestKey Request Key n Bytes string from request…
requestStatus Request Status n bits enum.
templateURI Template URI n Bytes string
keyFieldNumber Key Field Number n bits integer
keyFieldSize Key Field Size n bits integer #bits in key allowed
fieldLength Field Length n bits integer
…Repeating Entries… 1 set per “fieldLength”
fieldNumber Field Number n bits integer
fieldMnemonic Field Mnemonic n Bytes string
fieldName Field Name n Bytes string
fieldType Field Type n Bits enum.
fieldUnits Field Units n bits enum.
fieldDisplayUnits Field Display Units n bits enum.
fieldSize Field Size n bits integer
fieldMinValue Field Minimum Value n bits integer
fieldMaxValue Field Maximum Value n bits integer
fieldEntitlement Field Entitlement n bits integer
fieldEntExpression Field Ent. Expression n Bytes string
fieldEnumeration Field Enumeration n Bytes string
fieldDescription Field Description n Bytes string
fieldDefaultComp Field Def. Compression n bits enum. Default from list
fieldCompressions Field Compressions n bits integer Excludes Default
…Repeating Entries… 1 set per “fieldCompressions”
fieldCompression Field Compression n bits enum.
…End Repeating Entries… for “fieldCompressions”
fieldDependencies Field Dependencies n bits integer Includes Self
…Repeating Entries… 1 set per “fieldDependencies”
fieldDependency Field Dependency n bits integer
…End Repeating Entries… for “fieldDependencies”
fieldSubordinates Field Subordinates n bits integer
…Repeating Entries… 1 set per “fieldSubordinates”
fieldSubordinate Field Subordinate n bits integer
fieldSubFormula Field Sub. Formula n bytes string Interpretive Logic
…End Repeating Entries… for “fieldSubordinates”
fieldSource Field Source n Bytes string Defined by Headend

2003/12/16 Page 48 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

fieldFormula Field Formula n Bytes string Interpretive Logic
…End Repeating Entries… for “fieldLength”
template Template n Bytes string Full XML Text

Table 21 - AMsg Template Response

Special field processing considerations

Discussion

It may seem that the AMsg Template Response will invalidate all instances that refer to
the template. However, the recipient should invalidate only those fields within those
instances that have changed.

2003/12/16 Page 49 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

6.8. AMsg Template Remap

URI: http://www.fisd.net/fisdMessage/AMsgTemplateRemap/

Direction: From sender
Tag line: “Remap this template for all current instances”
Description: Instructs the recipient to renumber the fields within a template and
thus change all instances of this template. This may be done to resequence fields for
more efficient distribution of updates.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 22 (0x16)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
templateURI template URI n Bytes string

Table 22 - AMsg Template Remap

Special field processing considerations

Discussion

TO BE COMPLETED…

2003/12/16 Page 50 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

6.9. AMsg Template Expansion

URI: http://www.fisd.net/fisdMessage/AMsgTemplateExpansion/

Direction: From sender
Tag line: “Add these new fields to the template”
Description: Instructs the recipient to add new fields to a template in preparation
of new content to be delivered. There is an implied change to the template which will be
performed by the sender and realized when next the directory is synchronized.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 23 (0x17)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
templateURI template URI n Bytes string

Table 23 - AMsg Template Expansion

Special field processing considerations

Discussion

TO BE COMPLETED…

2003/12/16 Page 51 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

6.10. AMsg Template Remove

URI: http://www.fisd.net/fisdMessage/AMsgTemplateRemove/

Direction: From sender
Tag line: “Delete this template and all instances”
Description: Instructs the recipient to delete the template from its processing
system and remove all instances that refer to the template. The content of interest is
not “unmarked” but all content is invalidated.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 24 (0x18)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
templateURI template URI n Bytes string

Table 24 - AMsg Template Remove

Special field processing considerations

Discussion

2003/12/16 Page 52 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

6.11. AMsg Instance Reindex

URI: http://www.fisd.net/fisdMessage/AMsgInstanceReindex/

Direction: From sender
Tag line: “Reindex the instances using the mapping provided”
Description: Instructs the recipient to renumber the instances to a different order.
This is done to bring the most frequently updated instances to lower numbers to enable
more effective compression

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 25 (0x19)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed

Table 25 - AMsg Instance Reindex

Special field processing considerations

Discussion

TO BE COMPLETED…

2003/12/16 Page 53 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

6.12. AMsg Instance Remove

URI: http://www.fisd.net/fisdMessage/AMsgInstanceRemove/

Direction: From sender
Tag line: “Delete this instance from your storage”
Description: Instructs the recipient to delete the specified instance from its stores
and perform any cleanup processing that is appropriate. This may be done in
preparation of sending a fresh image.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 26 (0x1A)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
templateURI Template URI n Bytes string
keyFieldRaw Key Field Provided Raw 1 bit bool keyField is string
keyField Key Field n bits … string or integer

Table 26 - AMsg Instance Remove

Special field processing considerations

Discussion

2003/12/16 Page 54 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

7. Content Messages

The Content messages are the most frequently used messages within the system and
deliver the data, in a tokenized form, to the consumer. The messages can be
categorized in three ways:

• Image - complete content for an instance
• Field - updates to specific field(s) within an instance
• Query - responses to previously issued queries (on an interactive feed)

The Content messages are selected, by the sender, to deliver the content as efficiently as
possible. While the selection of Session Establishment and Administrative messages is
straightforward and predictable, the proper selection of Content messages for the
optimum bandwidth vs. processing performance is complex. It is encumbent on the
sender to always send accurate data but the sender may choose to expend more
processing resources to select a better combination of messages to deliver the data more
efficiently or compromise bandwidth for easier implementations and quicker delivery.

2003/12/16 Page 55 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

7.1. CMsg Image Update
URI: http://www.fisd.net/fisdMessage/CMsgImageUpdate/

Direction: From sender
Tag line: “This is an image – a new or changed instance of a template”
Description: Contains new values for all fields of an instance of a template. Only
standard atomic fields are sent – neither compound nor derived fields are transmitted.
No compression is applied to the individual fields.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 28 (0x1C)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
timestamp Timestamp 8 Bytes time
version Messaging Version n Bytes string “x.y-z”
templateURI Template URI n Bytes string
keyField Key Field n bits enum.
keyFieldValue Key Field Value n Bytes string
fieldLength fieldLength n bits integer see compressionInt
…Repeating Entries… 1 set per “fieldLength”
fieldUndefined Field Value Undefined 1 byte bool No value present
fieldValue Field Value n Bytes … field dependent
…End Repeating Entries… for “fieldLength”

Table 27 - CMsg Image Update

Special field processing considerations

keyField: Identifies an integral index value used in future messages to represent the
“keyFieldValue”. The number of bits allocated is defined in the template “keyFieldSize”.

keyFieldValue: The unique identifier for this instance. The template may define this
field as a fixed number of bytes rather than a null-terminated string.

fieldLength: Included only as a convenience and sanity check – this number can be
derived from the template definition that is referenced.

fieldUndefined: Indicates no value is present and field should be set to “undefined”.

version: Provided as a verification of expected messaging structure.

Discussion

All fields are sent in numerically increasing order (although due to template sorting
subsequent fields may not be sequentially adjacent). All included fields are not field-
level compressed (the raw values are sent) and all non-transmitted fields should be set
to “undefined”. After initializing all fields with the provided (or “undefined”) values, all
compound and virtual fields should be processed.

The image defines the initial content on which all subsequent update messages are
applied. Processing update packets without having a complete image may produce
undesired results and is therefore discouraged.

2003/12/16 Page 56 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

7.2. CMsg Fielded Image Update
URI: http://www.fisd.net/fisdMessage/CMsgFieldedImageUpdate/

Direction: From sender
Tag line: “This is an image with fields explicitly identified”
Description: Identical to the Image Update message except that each field number
is included with its corresponding value. All fields not transmitted should be set to
“undefined”. As with Image Update, no field level compression is performed.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 29 (0x1D)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
timestamp Timestamp 8 Bytes time
version Messaging Version n Bytes string “x.y-z”
templateURI Template URI n Bytes string
keyField Key Field n bits enum.
keyFieldValue Key Field Value n Bytes string
fieldLength fieldLength n bits integer see compressionInt
…Repeating Entries… 1 set per “fieldLength”
fieldNumber Field Number n bits integer
fieldValue Field Value n bits … field dependent
…End Repeating Entries… for “fieldLength”

Table 28 - CMsg Fielded Image Update

Special field processing considerations

See “CMsg Image Update”.

fieldNumber: Number of bits set by number of fields defined in template “fieldLength”.

Discussion

See “CMsg Image Update”. All comments apply EXCEPT that the sender may not
distribute all fields. Fields not sent should be set to “undefined”.

The Fielded Image Update is generally used when a large number of basic fields in the
image should be set to “undefined” or when the sender wishes to limit processing delays
and use of computational resources.

2003/12/16 Page 57 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

7.3. CMsg Uncompressed Field Update
URI: http://www.fisd.net/fisdMessage/CMsgUncompressedFieldUpdate/

Direction: From sender
Tag line: “Update this field where key and value are not compressed”
Description: Contains new values for a field within a particular instance. No
compression is used on the field – the entire raw value is passed for the field. However,
enumerations will be sent as integral values. May contain compound updates.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 30 (0x1E)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
timestampDelta Timestamp Delta n bits time delta from heartbeat
keyFieldRaw Key Field Provided Raw 1 bit bool keyField is string
keyField Key Field n bits … string or integer
fieldNumber Field Number n bits integer
fieldValue Field Value(s) n bits … field dependent

Table 29 - CMsg Uncompressed Field Update

Special field processing considerations

keyField: May be an integer, a fixed-length string, or a null-terminated string (see
CMsg Image Update). If “keyFieldRaw” is clear then this field is an integer, otherwise
the type is controlled by the prevailing template (a string or fixed number of bytes).

fieldNumber: Number of bits set by number of fields defined in template “fieldLength”.

Discussion

The Uncompressed Field Update is most applicable for values of a field that are near
their maximums or, for whatever reason, may not compress efficiently using the default
compression scheme. Uncompressed Field Update may also be used by the sender to
limit processing delays and use of computational resources.

The fieldNumber may point to a single or compound field. In the event of a compound
field, the uncompressed values of all subordinate fields will be concatenated into
fieldValue. The number of bits assigned to each fieldValue is a function of the
maximum number of bits defined with the template for the field.

2003/12/16 Page 58 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

7.4. CMsg Compressed Field Update

URI: http://www.fisd.net/fisdMessage/CMsgCompressedFieldUpdate/

Direction: From sender
Tag line: “Update this field with value compressed normally”
Description: Contains new values for a field where the standard compression
defined for this field has been applied. This message is identical to the Uncompressed
Field Update in every other respect.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 31 (0x1F)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
timestampDelta Timestamp Delta n bits time delta from heartbeat
keyFieldRaw Key Field Provided Raw 1 bit bool keyField is string
keyField Key Field n bits … string or integer
fieldNumber Field Number n bits integer
fieldValue Field Value(s) n bits … field dependent

Table 30 - CMsg Compressed Field Update

Special field processing considerations

See “CMsg Uncompressed Field Update”.

Discussion

The Compressed Field Update is most applicable when the value for a field can be
compressed most efficiently using the default compression defined for that field.

The fieldNumber may point to a single or compound field. In the event of a compound
field, the compressed values of all subordinate fields, using the default compression for
each field, will be concatenated into fieldValue. The number of bits assigned to each
fieldValue is a function of the compression schemed selected for the field.

2003/12/16 Page 59 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

7.5. CMsg Alternate Field Update

URI: http://www.fisd.net/fisdMessage/CMsgAlternateFieldUpdate/

Direction: From sender
Tag line: “Update this field with specified alternate compression”
Description: Contains new values for a field within a particular instance when the
standard field compression is not appropriate. The compression applied, which must
be from the list of legal compressions for this field, is included.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 32 (0x20)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
timestampDelta TimestampDelta n bits time delta from heartbeat
keyFieldRaw Key Field Provided Raw 1 bit bool keyField is string
keyField Key Field n bits … string or integer
fieldNumber Field Number n bits integer
fieldCompression Field Compression n bits enum. field dependent
fieldValue Field Value n bits … field dependent

Table 31 - CMsg Alternate Field Update

Special field processing considerations

See “CMsg Uncompressed Field Update”.

fieldCompression: The compression selected from the list of compressions that are
legal for the field (independent of the base type). This list may include two values that,
if selected, would be better distributed using another message: 1) “none” should be
delivered as an Uncompressed Field Update, and 2) the default compression for the field
would be better sent as a Compressed Field Update.

fieldNumber: May only point to a single field - compound fields are not allowed.

Discussion

The Alternate Field Update is most applicable when the value for a field can be
compressed most efficiently using a compression other than the default compression
defined for that field. Certain compressions, namely those that use a “continuation bit”
to indicate follow-on bits or bytes, may create compressed values that are inordinately
longer than the original value. However, an alternate compression may prove more
efficient. The overhead of indicating the fieldCompression should be weighed into the
decision to use this message.

2003/12/16 Page 60 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

7.6. CMsg Compressed Range Update

URI: http://www.fisd.net/fisdMessage/CMsgCompressedRangeUpdate/

Direction: From sender
Tag line: “Update this range of fields”
Description: Contains new values for a contiguous range of fields within a
particular instance. This message is similar to the Compressed Field Update message
except that multiple sequential fields are concatenated.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 33 (0x21)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
timestampDelta Timestamp Delta n bits time delta from heartbeat
keyFieldRaw Key Field Provided Raw 1 bit bool keyField is string
keyField Key Field n bits … string or integer
fieldNumberBegin Field Number Begin n bits integer
fieldNumberDelta Field Number Delta n bits integer
fieldValue Field Value(s) n bits .. field dependent

Table 32 - CMsg Compressed Range Update

Special field processing considerations

See “CMsg Uncompressed Field Update”.

fieldNumberBegin: The first field included in the update.

fieldNumberDelta: The number of fields included in the update.

Discussion

The Compressed Range Update is most applicable when sequential fields need to be
updated that are not part of a predefined compound field.

The fieldValue contains fieldNumberDelta fields whose compressed values are
concatenated together. The field numbers are identified sequentially beginning at
fieldNumberBegin.

2003/12/16 Page 61 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

7.7. CMsg Undefine Field Update

URI: http://www.fisd.net/fisdMessage/CMsgUndefineFieldUpdate/

Direction: From sender
Tag line: “Update this field by setting its value to undefined”
Description: Indicates that the specified field should be cleared or set to
“undefined” because it is no longer valid or is contradictory to other field values. The
identified field may be a compound field so all applicable processing should be applied.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 34 (0x22)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
timestampDelta Timestamp Delta n bits time delta from heartbeat
keyFieldRaw Key Field Provided Raw 1 bit bool keyField is string
keyField Key Field n bits … string or integer
fieldNumber Field Number n bits integer

Table 33 - CMsg Undefine Field Update

Special field processing considerations

See “CMsg Uncompressed Field Update”.

fieldNumber: The field that should be set to “undefined”.

Discussion

The fieldNumber may point to a single or compound field. In the event that a
compound field is referenced, all subordinate fields should also be set to “undefined”.

2003/12/16 Page 62 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

7.8. CMsg Instance Expansion Update

URI: http://www.fisd.net/fisdMessage/CMsgInstanceExpansionUpdate/

Direction: From sender
Tag line: “Add a new collection of fields to the end of the instance”
Description: Contains values for a new occurrence of all the fields in a compound
field within a particular instance. The subordinate fields of the compound field are
copied. Normal compression is used for each of the fields within the compound field.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 35 (0x23)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
timestampDelta Timestamp Delta n bits time delta from heartbeat
keyFieldRaw Key Field Provided Raw 1 bit bool keyField is string
keyField Key Field n bits … string or integer
fieldNumber Field Number n bits integer
newFieldNumber New Field Number 3 Bytes integer first of field list
fieldValue Field Value(s) n bits … field dependent

Table 34 - CMsg Instance Expansion Update

Special field processing considerations

See “CMsg Uncompressed Field Update”.

newFieldNumber: An uncompressed field number. If the number of bits necessary to
define the newFieldNumber (plus the number of fields necessary for all of the
subordinate fields of fieldNumber) then the number of bits for fieldNumber fields in all
updates must be adjusted.

Discussion

The fieldNumber is most normally a compound field of a repeating series. All of the
fields that are part of the compound field are copied to sequentially subsequent fields
beginning with newFieldNumber.

The newFieldNumber value identifies a field number previously not defined for the
instance. As noted above, if the magnitude of newFieldNumber, plus the number of
subordinate fields, exceeds the number of bits necessary to represent the previous
maximum field number for the instance, then the number of bits must be adjusted. All
updates from this point forward MUST use the new bit count when identifying fields.

2003/12/16 Page 63 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

7.9. CMsg Blocked Field Update

URI: http://www.fisd.net/fisdMessage/CMsgBlockedFieldUpdate/

Direction: From sender
Tag line: “Update these fields on these instances”
Description: Multiple updates applicable to the same timestamp or same instance
have been lumped together in a single message. Process each of the updates against
the appropriate instance(s).

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 36 (0x24)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed

Table 35 - CMsg Blocked Field Update

Special field processing considerations

Discussion

TO BE COMPLETED…

The intent with this message is to provide a container for multiple field updates to limit
the duplication of the header for each message, to potentially eliminate multiple
references to the key field, and promote transport layer (TCP and/or IP) economies that
can be accommodated when multiple fisdMessage packets are put into a single
communications message (for the lower levels).

The structure (when finalized) will accommodate:

• An implied “AMsg Timestamp” for facilitating compression
• Multiple “CMsg Compressed Field Update” messages for the same instrument
• Multiple “CMsg Compressed Field Update” messages for different instruments
• Support for “CMsg Uncompressed Field Update” messages
• Support for “CMsg Alternate Field Update” messages
• Support for “CMsg Compressed Range Update” messages
• Support for “CMsg Undefine Field Update” messages
• In short, support for all content field update messages in a shared wrapper

2003/12/16 Page 64 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

7.10. CMsg Query Response

URI: http://www.fisd.net/fisdMessage/CMsgQueryResponse/

Direction: From sender
Tag line: “Here is the response to your query”
Description: Contains the status to a previous query. If the query was for other,
non-markable content, it may contain the response document as well.

Field Mnemonic Name Size Type Value/Notes
encrypted Encrypted 1 bit bool for payload
compressed Compressed 1 bit bool for payload
messageType Message Type 6 bits enum. 37 (0x25)
messageLength Message Length n Bytes integer “i8.0” compression
fullLength Uncompressed Length n Bytes integer Only if compressed
requestKey Request Key n Bytes string new value…
queryLength Query Length n bits integer see compressionInt
…Repeating Entries… 1 set per “queryLength”
requestStatus Request Status n bits enum. per enumeration
queryResponse Query Response n Bytes string
…End Repeating Entries… for “queryLength”

Table 36 - CMsg Query Response

Special field processing considerations

Discussion

2003/12/16 Page 65 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

8. Example Templates

The following examples show how templates are used to construct messages. While the
details of each field have been omitted for brevity, the reader should be able to garner
an understanding of the methodology and considerations when designing a system with
this protocol. More detailed examples are provided in the appendix.

On example is provided for the protocol messages and a second example is provided
showing a potential use with a content XML like MDDL.

8.1. For Messages

The complete format for each message is included in a separate distribution. This
example illustrates how the “AMsg Timestamp” is encoded for delivery “over-the-wire”
and decoded on reception.

Template Outline for AMsg Timestamp (actual field specifiers removed for brevity):
<fisdMessage version=”1.0-beta”>
 <header>
 <messageType><!-- messageType --></messageType>
 <encrypted><!-- encrypted --></encrypted>
 <compressed><!-- compressed --></compressed>
 <messageLength><!-- messageLength --></messageLength>
 <fullLength><!-- fullLength --></fullLength>
 </header>
 <AMsgTimestamp>
 <timestamp><!-- timestamp --></timestamp>
 <version><!-- version --> </version>
 <sequenceNumber><!-- sequenceNumber --></sequenceNumber>
 <previousTimeDelta><!-- previousTimeDelta --></previousTimeDelta>
 </AMsgTimestamp>
</fisdMessage>

With the following information relative to the framework:

• “compressionInt” is the default value of “i8.0”
• There are no additional compressions defined for any of the fields
• There are no entitlements required for the fields
• There are no formulas (or other complications)
• All fields are dependent on one another (and so are always sent together)

And the following information about the template (XML of field definitions not provided)

• Field #1- “encrypted” with no compression fixed at 1 bit
• Field #2- “compressed” with no compression fixed at 1 bit
• Field #3- “messageType” with no compression fixed at 6 bits
• Field #4- “messageLength” with compression “i8.0”
• Field #5- “fullLength” with compression “i8.0” dependent on field #2=1
• Field #6- “timestamp” with no compression fixed at 64 bits
• Field #7- “version” and is a string
• Field #8- “sequenceNumber” with compression “i8.0”
• Field #9- “previousTimeDelta” with compression “i8.0”

2003/12/16 Page 66 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

Example Instance for AMsg Timestamp (which is 473 bytes):
<fisdMessage version=”1.0-beta”>
 <header>
 <messageType>AMsgTimestamp</messageType>
 <encrypted>false</encrypted>
 <compressed>false</compressed>
 <messageLength></messageLength>
 <!-- no fullLength -->
 </header>
 <AMsgTimestamp>
 <timestamp>2003-12-06T03:30:23.12Z</timestamp>
 <version>1.0-beta</version>
 <sequenceNumber>53367</sequenceNumber>
 <previousTimeDelta>5089</previousTimeDelta>
 </AMsgTimestamp>
</fisdMessage>

The byte stream transmitted for the above message looks like this (24 bytes total):
Field Value In hex (encoded)
encrypted 0 0
compressed 0 0
messageType 15 0F
messageLength 21 15 (15)
fullLength ----- --
timestamp (above) 00 3F D1 4D 4F 01 D4 C0
version 1.0-beta 31 2E 30 2D 62 65 74 61 00
sequenceNumber 53367 D0 77 (83 A0 77)
previousTimeDelta 5089 13 E1 (A7 61)

Concatenated “over-the-wire”:
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0F 15 00 3F D1 4D 4F 01 D4 C0 31 2E 30 2D 62 65 74 61 00 83 A0 77 A7 61

This is how the byte stream might be decoded (depending on implementation):
• 2 bytes are read from the network and compared against the header configuration
• Field #1- high bit is tested for “encrypted” -> it is not
• Field #2- second bit is tested for “compressed” -> it is not
• Field #3- remaining 6 bits are compared -> “messageIdentifier” is “AMsgTimestamp”
• Field #4- second byte is examined and decoded -> 21 more bytes to be read
• 21 more bytes are read from the network
• Field #5- is “zero length” and is skipped as no decompression is needed
• Processing of an “AMsgTimestamp” starts at byte 3
• Field #5- 8 bytes are decoded -> timestamp is “2003-12-06T03:30:23.120000Z”
• Field #6- String is read starting at byte 11 -> “version” is “1.0-beta” with null
• Field #7- Byte 20 is examined and decoded -> need another byte
• Byte 21 is examined and decoded -> need another byte
• Byte 22 is examined and decoded with bytes 20-21 -> “sequenceNumber” is 53367
• Field #8 - Byte 23 is examined and decoded -> need another byte
• Byte 24 is examined and decoded with byte 23 -> “previousTimeDelta” is 5089.

2003/12/16 Page 67 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

8.2. For Content

Example template of trade (field specifics removed for brevity):
<mddl version=”2.3-beta”>
<header>
 <dateTime><!-- myMessageTime --><dateTime>
 <source>XTC Demonstration</source>
</header>
<snap><equityDomain><commonClass>
 <instrumentIdentifier>
 <code scheme=”http://www.mddl.org/ext/scheme/symbol?SRC=XTKS”
 ><!-- myTicker --></code>
 <name><!-- myCompanyName --></name>
 </instrumentIdentifier>
 <sequence><!-- mySequence --></sequence>
 <session><!-- mySession --></session>
 <trade>
 <last><!-- myTradePrice --></last>
 <dateTime><!-- myTradeTime --></dateTime>
 <marketCenter>
 <code scheme=”http://www.mddl.org/xtc/scheme/iso10383.xml”
 ><!-- myTradeExchange --></code>
 </marketCenter>
 <size><!-- myTradeSize --></size>
 <currency><!-- myTradeCurrency --></currency>
 <status scheme=”http://www.mddl.org/xtc/scheme/tradeStatus.xml”
 ><!-- myTradeStatus --></status>
 </trade>
</commonClass></equityDomain></snap>
</mddl>

Example instance document of trade (which is 912 bytes):
<mddl version=”2.3-beta”>
<header>
 <dateTime>2003-12-05T22:30:23.380+05:00<dateTime>
 <source>XTC Demonstration</source>
</header>
<snap><equityDomain><commonClass>
 <instrumentIdentifier>
 <code scheme=”http://www.mddl.org/ext/scheme/symbol?SRC=XTKS”
 >6501</code>
 <name>A Company in Your Neighborhood</name>
 </instrumentIdentifier>
 <sequence>1306</sequence>
 <session>1</session>
 <trade>
 <last>12375</last>
 <dateTime>2003-12-05T22:30:23.360+05:00</dateTime>
 <marketCenter>
 <code scheme=”http://www.mddl.org/xtc/scheme/iso10383.xml”
 >XTKS</code>
 </marketCenter>
 <size>200</size>
 <currency>JPY</currency>

2003/12/16 Page 68 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

 <status scheme=”http://www.mddl.org/xtc/scheme/tradeStatus.xml”
 >normal</status>
 </trade>
</commonClass></equityDomain></snap>
</mddl>

With the following information relative to the framework:

• “compressionInt” is the default value of “i8.0”
• There are no entitlements required for the fields
• There are no formulas (or other complications)
• System time resolution is defined to be 10 milliseconds (10-2) or 0.01.
• A heartbeat message is sent once a second.
• Key fields are given 12 bits with compression “i8.0”.
• This template has 12 fields so 4 bits are assigned. However, the most frequent

field is #1 so compression “i3.0” is selected.

And the following information about the template (XML of template fields not provided)

• Field #1- a compound for fields 2-7
• Field #2- “mySequence” with compression “i8.1”
• Field #3- “myTradePrice” with compression “i8.1”
• Field #4- “myTradeTime” with compression “tHs8.2”
• Field #5- “myTradeSize” with compression “i8.0”
• Field #6- “myTradeStatus” as enumeration with 32 values “i4.0” comp.
• Field #7- “myTradeExchange” as enumeration with 16 values “i4.0” comp.
• Field #8- “mySession” with compression “i4.0”
• Field #9- “myTradeCurrency” as enumeration with 16 values “i4.0” comp.
• Field #10- “myCompanyName” is a string
• Field #11- “myMessageTime” derived from message timestamp
• Field #12- “myTicker” derived from message index

Now, compose an update for compound field #1 with the following values:

• Field #2- mySequence is 1306
• Field #3- myTradePrice is 12375 (yen)
• Field #4- myTradeTime is “2003-12-05T22:30:23.360+05:00”
• Field #5- myTradeSize is 200
• Field #6- myTradeStatus is “normal” (value 2 of 16)
• Field #7- myTradeExchange is “XTKS” (value 7 of 16)
• Field #12- myTicker is “6501” (assigned index 0xEF4 in the system)
• Last timestamp is 2003-12-06T03:30:23.12Z

So, why not send the other fields with every trade?

• Field #8- the session only changes twice a day
• Field #9- all trades are done in Japanese yen
• Field #10- the company name is loaded once and never changes
• Field #11- myMessageTime is linked to the field update timestamp
• Field #12- myTicker is linked to the message key field

The System Headend decides to use a “CMsg Compressed Field Update” (see Section
7.4). Each of the fields from the message must be compressed:

2003/12/16 Page 69 of 71 Copyright 2003 SIIA

Field Value In hex (encoded)
mySequence 1306 05 1A (05 1A)
myTradePrice 12375 30 57 (30 57)
myTradeTime 24 18 (18)

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

myTradeSize 200 C8 (C8)
myTradeStatus 2 02 (02) 4 bits
myTradeExchange 7 07 (07) 4 bits

Concatenated for “over-the-wire” delivery:
 1 2 3 4 5 6 7
05 1A 30 57 18 C8 27

The byte stream transmitted for the above message looks like this (13 bytes total):
Field Value In hex (encoded)
encrypted 0 0
compressed 0 0
messageType 31 1F
messageLength 12 0C (0C)
fullLength ----- --
timestampDelta 26 1A (1A)
keyFieldRaw 0 00 (00) 1 bit
keyField 3828 0E F4 (9D 74)
fieldNumber 1 01 (01) 3 bits
fieldValue (above) 05 1A 30 57 18 C8 27
waste 00 00 (00) 4 bits

Concatenated “over-the-wire”:
 1 2 3 4 5 6 7 8 9 10 11 12 13
1F 0C 1A 4E BA 10 51 A3 05 71 8C 82 70

Possible reductions in the size of the message:

• myTradeSize is encoded as a full byte. In many cases, such trades can be
reported as n*10 or n*100. Using compression “i4.0” with a formula of “*100”,
myTradeSize could be reported in 4 bits. Similarly, other formulas for a factor of
5 or other multiples could be used. Note that this would cause an increase in
the number of fields such that 3 bits would not be sufficient.

• myTicker (the keyField) required 16 bits to encode. Judicious selection of the
integral value for an instrument (i.e. by putting the most frequently used
instruments in the lower numbers) could bring this size down to 8 bits for the
most active instruments.

• mySequence is an integral counter for updates to the instrument. Many
systems do not report this kind of number with the message thus the message
size could be reduced by 16 bits by eliminating this field.

• myExchange allows for a stock to trade on 16 exchanges and requires 4 bits to
encode. Many stocks only trade on a couple of exchanges so this field could be
sized at 2 bits (for Tokyo listed instruments). In fact, additional virtual fields
with formulas can be added which set the value of this field explicitly thus this
field can be removed from the update entirely.

• myTradeStatus can be handled via formulas (as with myExchange) thus
removing this field from the update (but increasing the number of fields).

• The timestamp deltas were encoded with 8 bits each because the heartbeat
message is sent once per second and the time resolution is 0.01 (so we must be
able to count +/- 100 units since the last timestamp). If we increase the
timestamp to once every quarter second, then time deltas can be calculated to
+/- 25 units and 5 bits each would be sufficient (thus saving 6 bits).

• Basically, this 13 byte message could be sent in 9 bytes or fewer if similar
adjustments are made. Understanding of the most commonly distributed data
will help the system designer pick the right compressions, proper sequencing of

2003/12/16 Page 70 of 71 Copyright 2003 SIIA

FISD XML Messaging – “fisdMessage” – 1.0-beta Technical Specification

2003/12/16 Page 71 of 71 Copyright 2003 SIIA

values within enumerations, efficient field ordering, and effective compound
fields. Consider these assignments for 8 bytes 2 bits of packet structure:

o mySequence - average of 12 bits (optional!)
o myTradePrice - 4 bits with formula support
o myTradeTime - 6 bits
o myTradeSize - 4 bits with formula support
o myTradeStatus - 0 bits with formula support
o myTradeExchange - 0 bits with formula support
o timestampDelta - 6 bits
o keyField (w/Raw) - average of 10 bits
o fieldNumber - average of 8 bits
o messageType and messageLength - 16 bits

	Change Log
	Pending Issues
	Introduction
	Purpose
	Terminology
	Sender
	Recipient
	Directory
	Enumeration
	Template
	Instance
	Image
	Update
	XML Specific Terms
	Standard vs. Specification
	Schema
	Instance Document

	Relationship to Other Work

	General Overview
	Protocol Applicability
	Reference Model
	Simple Two-Node Model
	Complex Multi-Node Model
	Additional Extensions to the Reference Model
	Large Number of Nodes in System
	Redundant Processing and Delivery
	Monitoring, Configuration, and Control

	Connection Scenarios
	Selective Interactive Connectivity
	Broadcast Mode
	Broadcast Mode (with Slow Backchannel)

	Image and Update Methodology
	Document Template and Instance
	Specifying a Template
	Specifying a Field
	Applicability to an Instance
	Extracting a Complete XML Document
	Use of an Enumeration

	How a sender Behaves
	How a recipient Behaves

	The fisdMessage Schema
	Applied to Messages
	Applied to the Directory
	Applied to an Enumeration
	Applied to a Template

	Packet Characteristics
	Message “Header”
	Query Requests and Responses

	Session Establishment Messages
	SMsg Service Notification
	SMsg Service Request
	SMsg Service Response
	SMsg Authentication Request
	SMsg Authentication Response (with Directory)
	SMsg Entry Request
	SMsg Session Notification
	SMsg Session Notification Response
	SMsg Session Session Termination Request
	SMsg Query for Instance (Mark)
	SMsg Query to Unmark
	SMsg Query for All Data
	SMsg Query for Other Content

	Administrative Messages
	AMsg Timestamp (Heartbeat)
	AMsg Directory Response
	AMsg Enumeration Response
	AMsg Enumeration Renumber
	AMsg Enumeration Extend
	AMsg Enumeration Remove
	AMsg Template Response
	AMsg Template Remap
	AMsg Template Expansion
	AMsg Template Remove
	AMsg Instance Reindex
	AMsg Instance Remove

	Content Messages
	CMsg Image Update
	CMsg Fielded Image Update
	CMsg Uncompressed Field Update
	CMsg Compressed Field Update
	CMsg Alternate Field Update
	CMsg Compressed Range Update
	CMsg Undefine Field Update
	CMsg Instance Expansion Update
	CMsg Blocked Field Update
	CMsg Query Response

	Example Templates
	For Messages
	For Content

