
Meta Data Coalition
Open Information Model

XML Encoding

Version 1.0

Review Draft

September, 1999

Copyright Microsoft Corporation, 1999.

Microsoft agrees to grant, and does grant to the Meta Data Coalition ("MDC"), a perpetual, nonexclusive,
royalty-free, world-wide right and license under any Microsoft copyrights in this contribution to copy,
publish and distribute the contribution, as well as a right and license of the same scope to any derivative
works prepared by MDC and based on, or incorporating all or part of the contribution. Microsoft further
agrees that, upon adoption of this contribution as a MDC Standard, any party will be able to obtain a
royalty-free license under applicable Microsoft rights to implement and use the technology described in this
contribution for the purpose of supporting the MDC Standard by entering into an agreement to be
negotiated with Microsoft. One condition of this license shall be the party's agreement not to assert patent
rights against Microsoft and other companies for their implementation of the MDC Standard. Microsoft
expressly reserves all other rights it may have in the material and subject matter of this contribution.
Microsoft expressly disclaims any and all warranties regarding this contribution including any warranty
that (a) this contribution does not violate the rights of others, (b) the owners, if any, of other rights in this
contribution have been informed of the rights and permissions granted to MDC herein or (c) any required
authorizations from such owners have been obtained.

This is a preliminary document and may be changed substantially prior to final release. THIS
DOCUMENT IS PROVIDED FOR EVALUATION PURPOSES ONLY AND THE META DATA
COALITION (MDC) MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, IN THIS
DOCUMENT. THE ENTIRE RISK OF THE USE OR THE RESULTS OF THE USE OF THIS
DOCUMENT REMAINS WITH THE USER.

Companies, names, and data used in examples herein are fictitious unless otherwise noted. No part of this
document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of the Meta Data Coalition (MDC).

Open Information Model Meta Data Coalition

XML Encoding

TABLE OF CONTENTS

1 OVERVIEW .. 1

2 BACKGROUND.. 3
2.1 XML STANDARDS AND DRAFTS ... 3
2.2 XML DOCUMENT TYPE DEFINITION (DTD) .. 3

3 XML ENCODING DEFINITION ... 5
3.1 CHARACTER SET AND DATA TYPES... 5
3.2 TOP-LEVEL ELEMENT.. 5
3.3 ELEMENTS ... 6
3.4 NAMESPACES ... 7
3.5 NESTED LISTS .. 7
3.6 ELEMENT REFERENCES... 8
3.7 EXTENSIBILITY .. 8

4 OIM TO XML MAPPING .. 9
4.1 CLASSES AND ATTRIBUTES... 9
4.2 CLASSES AND SINGLE INHERITANCE ... 9
4.3 CLASSES AND MULTIPLE INHERITANCE ... 10
4.4 ASSOCIATIONS ... 10
4.5 OBJECT REFERENCES.. 11
4.6 ASSOCIATION CLASSES (MANY TO MANY).. 11
4.7 ASSOCIATION CLASSES (ONE TO MANY OR ONE TO ONE) .. 12

APPENDIX A – SAMPLE ENCODING.. 13

APPENDIX B – EBNF REPRESENTATION ... 15

APPENDIX C – NAMESPACES IN THE OIM .. 17

APPENDIX D – DTD FOR THE OIM NAMESPACE.. 19

Open Information Model Meta Data Coalition

XML Encoding 1

1 Overview
The Meta Data Coalition (MDC) Open Information Model (OIM) is a vendor-neutral and technology-
independent specification of core meta data types found in operational and data warehousing environments.

This document describes a recommended format for exchanging instances of the OIM through the use of
Extensible Markup Language (XML). It is assumed that the reader is familiar with the concepts represented
by the OIM. For an overview of the OIM, please refer to the specification available on-line at
http://www.mdcinfo.com.

Open Information Model Meta Data Coalition

XML Encoding 3

2 Background
This document describes a set of rules that govern the encoding of metadata objects described by OIM in
XML. The XML encoding of OIM types enables the interchange of metadata between heterogeneous
repositories. It is also a wire-encoding format to use between repositories and tools. The encoding format
defined in this specification is completely driven by the abstract model. As the names of the element and
attribute tags used in the representation are derived from the model, documents can be generated and parsed
automatically by any implementation of OIM, regardless of technology.

2.1 XML Standards and Drafts

This document is based on Extensible Makeup Language (XML) 1.0 as defined by the W3C. REC-xml-
19980210 is the XML specification that was used in the preparation of this document.

XML Namespaces provide a simple method to qualify names in XML documents. The implementation of
namespaces in this document is based on the W3C recommendation, Namespaces in XML, REC-xml-
names-19990114.

2.2 XML Document Type Definition (DTD)

Accompanying this specification is a set of XML Document Type Definitions (DTDs), which together form
a grammar to express the structure of XML instances. DTDs are currently the only approved mechanism to
describe the structure of XML documents. In its current form, DTD is not expressive enough to completely
cover the semantics of OIM. A correct interpretation of an XML document is therefore only possible based
on the OIM specification. However, DTDs have been supplied to make understanding of the XML
documents easier and to help with the development of XML import/export functionality based on this
encoding format.

Open Information Model Meta Data Coalition

XML Encoding 5

3 XML Encoding Definition
XML encodes information as content enclosed in nested begin/end tag elements and name/value pair
attributes on these elements. The XML encoding format defined in this document is completely based on
this encoding rule.

XML provides the following basic concepts to encode information:

• Character Set – The encoding used for all information in an XML document.

• Top-level Element – The element that encapsulates all transfer information in an XML document.

• Elements – Begin/end tag pairs and the content (transfer information or subordinate element
structure) encapsulated between them.

• Attributes – Name/value pairs contained in the begin tag of an element that represent meta-
information about the element.

• Namespaces – Scope for the tags of elements to make them unique in a XML document.

• Nested Lists – Ordered or unordered sets of elements that can be used to represent hierarchies of
elements.

• Element References – Connections between elements to represent network structures of elements.

• Representation of data types such as strings, dates, etc.

3.1 Character Set and Data Types

The XML encoding proposed in this document relies on the XML character set handling based on Unicode.
See the Extensible Markup Language (XML) 1.0 specification document for more information.

Values appear as attribute-tagged values. They are represented using the following rules:

Data type Encoding

String Any occurrence of & must be replaced by &
Any occurrence of < must be replaced by <
Any occurrence of > must be replaced by >
Any occurrence of " (double quote) must be replaced by "e;

Date Must follow the ISO86011 format
Numbers Punctuation must use US English rules (i.e. period as a decimal separator). Can

include exponents
Boolean 0 = False 1 = True
Blob Use MIME Base642 encoding

3.2 Top-level element

XML requires a top-level element (begin/end tag) that encapsulates all information contained in an XML
document. DTDs defined or referenced in the document apply to the content of the top-level element.

The OIM to XML mapping defines a Transfer element as the top-level structure. This element encapsulates
all structured information that is exchanged between repositories. Additional features of the Transfer
element are that it can be nested and that it maintains administrative information, e.g. what exporter
generated the data, version, etc.

1 See http://www.cl.cam.ac.uk/~mgk25/iso-time.html for descriptions of the ISO8601 format
2 See Internet RFC1521 (for example at http://ds.internic.net/rfc/rfc1521.txt) for a definition of the Base64
format.

Meta Data Coalition Open Information Model

6 XML Encoding

Example

<?xml version=”1.0”?>

<oim:Transfer version=”1.0”

 xmlns:oim=”http://www.mdcinfo.com/oim/oim.dtd”>

 <oim:TransferHeader

 Exporter=”MSRXML”

 ExporterVersion=”2.0”

 TransferDateTime=”19980804T08:15:00”

 >

 . . . user-defined information . . .

 </oim:TransferHeader>

 . . . objects . . .

</oim:Transfer>

All structures defined in the remainder of this section are valid only within the begin (<oim:Transfer>) and
end (</oim:Transfer>) tags of the Transfer element. The TransferHeader element is used to contain
information about the component that generated the transfer.

3.3 Elements

Elements in XML are represented by an opening tag and closing tag pair, which encapsulate the content of
the element. The content can be either a structure of sub-elements or an unstructured data representation.
The following table shows how the different UML types used to model the Open Information Model are
mapped into XML:

UML Element XML representation

Information Model No mapping. See Namespaces section for more detail.
Concrete Class <class_name>…</class_name>
Attribute Included as an XML attribute on an XML element, e.g attribute=value
Association <association_name>…</association_name>

The tag identifies the type of an element. Additional meta-information about the element can be
represented by predefined attributes. The following attributes are currently predefined:

Attribute
Name

Defined for: Mandatory/
Optional

Description

Id Object,
Association

Optional Transfer ID, which is used to uniquely identify an
element in an XML document. The id has no
meaning outside of a transfer. The Id is mandatory
on objects, but optional on object references.

objid Object,
Association

Optional Unique identifier of an element in the source or
target repository.

seqno Object Optional Number that defines the position of an element in a
collection.

href Objects Optional Hyperlink mechanism to reference objects.
label Objects Optional The name of object within the encapsulating

association
supertype Object Optional Used by extensions to indicate the OIM type that

can be used for importing an object.

Open Information Model Meta Data Coalition

XML Encoding 7

The OIM to XML mapping separates the transfer ID and object ID and, in addition, treats the object ID as
an attribute of the element. This XML encoding is designed to enable the interchange of objects between
heterogeneous repositories. There is no common format for object identifiers and furthermore there is no
common agreement how to implement object identity (name based, GUID, disk pointer, etc.).

To provide a generic solution, an ID is defined that uniquely identifies an object within a transfer; i.e. an ID
can serve as the target of a reference in the transfer. The structure of the ID is unspecified, except that it
must be unique in a transfer and must contain an underscore as first character. Examples of valid transfer
IDs are a running number (“_007”) or the name of an object (“_Invoice007”).

Note that object identity is necessary to allow a meaningful synchronization of objects between
repositories. In a heterogeneous environment, this requires the XML encoding to maintain a cross-reference
between the globally unique identifiers of objects maintained by different repository products. To exchange
object IDs as attributes of objects requires that exchanging repositories agree on the semantics of the
exchange mechanism. The attribute objid has been included in the encoding format to simplify this process.
The first source of a transfer, if necessary, can generate the object ID. Each successive transfer step must
maintain the whole object ID and pass it on.

3.4 Namespaces

In the OIM, classes and associations share the same namespace for a single sub-model. What that means is
that there cannot be more than one class and/or association within the same sub-model that have the same
name. The following shows the basic structure of the OIM namespace hierarchy:

Level 1 Level 2 Description

Sub-model Corresponds to a sub-model in OIM.
Class Class name and the associated attributes.
Association A collection of nested or linked classes.

The OIM to XML mapping combines XML Namespaces and a naming convention to provide the following
solution.

< Namespace Name >

< Sub-Model Prefix : Class Name >
< Sub-Model Prefix : Association Name >

For example, <x:y> is a element tag for an object of class y in sub-model x. Note that because attributes are
represented as XML attributes and XML attributes are scoped as part of the element, the attribute names
only need to be unique within the class, not the whole sub-model.

If more than one attribute in the inheritance chain of the class has the same name, then both attributes have
their names expanded to ClassName.AttributeName. If the class name is not unique, then it is prefixed
with the namespace.

3.5 Nested Lists

XML represents information as nested lists of elements or references to elements. Lists can be either
ordered or unordered and the occurrence of element types might be optional or mandatory.

The following diagram shows the representation of the OIM “class has associations” and “associations
contain objects” in XML:

Meta Data Coalition Open Information Model

8 XML Encoding

Object

Association

Object

Object

Object

<object attribute=“…”>

<association>

<object label=“C” name=“Lisa” seqno=“1”>

…

</object>

<object label=“A” name=“John” seqno=“2”>

…

</object>

<object label=“B” name=“Tom” seqno=“3”>

…

</object>

</association>

...

</object>

Example:

Object elements contain lists of association elements, which in turn contain lists of object elements.

3.6 Element References

Nested lists of XML elements enable the representation of hierarchical structures of objects. References are
used to link objects into a general network of associations. The XML hyperlink mechanism is used to
reference objects defined internal to a transfer. An internal object is simply referenced by its transfer id.

An object reference is represented by the href attribute of the element tag:

<object_type_name href="#_123"/ >

The object reference indicates the type of the referred-to object; to learn the object type, you need not
navigate the object reference to the target object.

3.7 Extensibility

The Open Information Model can be extended with vendor-specific meta data types. New classes,
attributes, and associations are added using the UML representation of the OIM and should be grouped into
a vendor or tool-specific package. New elements may be either created from scratch or based on existing
OIM types using specialization (inheritance). A vendor may choose to publish the model extensions in
order to share the meta data with other vendors, or treat the extension as tool specific (private).

Using the OIM to XML mapping rules described in this document, an XML DTD for the model extension
can be created from its UML representation. However, the XML DTD does not provide enough
information for other vendors to interpret the model. This is a limitation of the current XML standard with
DTD as schema description language. DTDs do not capture type inheritance and other sophisticated
modeling structures. The W3C, as XML standard body, has an effort under way to standardize a new
schema definition language called XML Schema.

Until the XML Schema specification becomes available, the OIM XML encoding format will support the
use of the optional supertype attribute. This attribute is used to define which OIM type a new meta data
type specializes. In the case where multiple OIM types are specialized, it is responsibility of the exporting
tool to choose one of the types.

The following example shows an instance of a new meta data type extending the Table class in the
Database Schema Model:

<Ext:MyTable supertype=”DBM:Table” name=”xxx” size=”yyy” myVal=”123”/>

An importer can decode the element structure even if the new subtype is unknown. It simply uses the
schema of the known OIM type specified by the supertype attribute. Note that the attribute must contain a
fully qualified class name (including namespace). It is also necessary to resolve attribute name conflicts
using the same rules as described in the following sections.

Open Information Model Meta Data Coalition

XML Encoding 9

4 OIM to XML Mapping
This section provides a set of basic diagrams that show the mapping of the core concepts Class, Attribute,
and Association as well as class inheritance from OIM into XML. An UML diagram representing the OIM
concepts is provided with the XML encoding.

4.1 Classes and Attributes

The following example shows how the attributes of an OIM class are mapped into XML.

<Class Attribute1=”…” Attribute2=”…”>

…

</Class>

4.2 Classes and Single Inheritance

The following example shows how attributes and inherited attributes of a class are mapped into XML.

<Class2 Attribute1=”…” Attribute2=”…”>

 …

</Class2>

Class

Attribute1
Attribute2
….

Class1

Attribute1

…

Class2

Attribute2

…

Meta Data Coalition Open Information Model

10 XML Encoding

4.3 Classes and Multiple Inheritance

A class can inherit attributes from multiple other classes. The following example shows how such a class is
represented.

<class4 id=”_123”

Class4.Attribute1=”…”
 Class1.Attribute1=”…”

Attribute2=”…”

Attribute3=”…”>

 …

</class4>

Because there is a naming conflict between the two attributes
called Attribute1, the name of the class they are defined on is
added as prefix.

4.4 Associations

The next example shows how OIM associations are encoded in XML.

<class1 id=”_1” attrib1=”…”>
 <Class1OriginAssocEnd id=”_3> <!-- assoc starts -->
 <class2 id=”_2” seqno=”1” label=”A”
 name=”Alpha” attribute2=”…”/>
 <class2 id=”_3” seqno=”2” label=”B”
 name=”Beta” attribute2=”…”/>
 </Class1OriginAssocEnd> <!-- association ends -->
</class1>

If an association name is not specified, the name is generated using the following rule:

OriginClassName + OriginAssociationEndName

Given this rule, the association in the above example is named <Class1OriginAssocEnd>.

OriginAssocEnd

DestAssocEnd

Class1
attribute1

Class2
attribute2

Class3

Attribute3
…

Class4

Attribute1

Class2

Attribute2
…

Class1

Attribute1
…

Open Information Model Meta Data Coalition

XML Encoding 11

4.5 Object References

The following shows an association structure in which the destination object has already been defined and
therefore needs to be referenced.

<class2 id=”_2”>

 …

</class2>

<class1 id=”_1”>
<Class1OriginAssocEnd>

 <class2 href=”#_2”/>
 …
 </Class1OriginAssocEnd>
 …
</class1>

4.6 Association Classes (Many to Many)

The following shows how an association class is represented in XML:

<class1 id=”_2”>

 <class1OriginAssocEnd>

 <AssocClass attributeA=”…”>

 <AssocClassDestAssocEnd>

 <Class2 />

 </AssocClassDestAssocEnd >

 </AssocClass>

 </class1OriginAssocEnd>

</class1>

This effectively changes the association class into a junction class between the other two classes and uses
the association name generation rule to establish the two association names.

OriginAssocEnd

DestAssocEnd

Class1

Class2
…

OriginAssocEnd

DestAssocEnd

Class1
attribute1…

Class2
attribute2

AssocClass

attributeA

Meta Data Coalition Open Information Model

12 XML Encoding

4.7 Association Classes (One to Many or One to One)

The following shows how a one-to-many or one-to-one association class is represented in XML:

<class1 id=”_2” attribute1=”…”>

 <class1OriginAssocEnd>

 <class2 attributeA=”…”
 attribute2=”…”/>

 …

 </class1OriginAssocEnd>

</class1>

This mapping represents all the attributes of the association class as attributes on the destination class.

OriginAssocEnd

DestAssocEnd

Class1
Attribute1…

Class2
Attribute2

AssocClass

AttributeA

Open Information Model Meta Data Coalition

XML Encoding 13

Appendix A – Sample Encoding

<?xml version="1.0" ?>

 <oim:Transfer xmlns:oim="http://www.mdcinfo.com/oim/oim.dtd"
 xmlns:dbm="http://www.mdcinfo.com/oim/dbm.dtd">
 <dbm:Catalog id="_1" name="sales" comments="Sample catalog">
 <dbm:CatalogSchemas>

 <dbm:Schema id="_2" name="dbo">
 <dbm:SchemaTables>

 <dbm:Table id="_3" name="Customer">
 <dbm:ColumnSetColumns>

 <dbm:Column id="_6" name="CustomerID" IsNullable="0" />
 <dbm:Column id="_7" name="Name" IsNullable="0" />
 <dbm:Column id="_8" name="Address" IsNullable="1" />
 <dbm:Column id="_9" name="Phone" IsNullable="1" />
 </dbm:ColumnSetColumns>

 </dbm:Table>

 <dbm:Table id="_4" name="Order" EstimatedRows="10000">
 <dbm:ColumnSetColumns>

 <dbm:Column id="_10" name="CustomerID" IsNullable="0" />
 <dbm:Column id="_11" name="OrderID" IsNullable="0" />
 <dbm:Column id="_12" name="Date" IsNullable="1" />
 </dbm:ColumnSetColumns>

 </dbm:Table>

 <dbm:Table id="_5" name="OrderItem" EstimatedRows="100000">
 <dbm:ColumnSetColumns>

 <dbm:Column id="_13" name="CustomerID" IsNullable="0" />
 <dbm:Column id="_14" name="OrderID" IsNullable="0" />
 <dbm:Column id="_15" name="LineNo" IsNullable="0" />
 <dbm:Column id="_16" name="Description" IsNullable="1" />
 <dbm:Column id="_17" name="Quantity" IsNullable="0" />
 <dbm:Column id="_18" name="UnitPrice" IsNullable="0" />
 </dbm:ColumnSetColumns>

 <dbm:TableUniqueKeys>

 <dbm:UniqueKey id="_19" name="PK_OrderItem" IsPrimary="1" />
 <dbm:KeyColumns>

 <dbm:Column href="_14" />
 <dbm:Column href="_15" />
 </dbm:KeyColumns>

 </dbm:UniqueKey>

 </dbm:TableUniqueKeys>

 </dbm:Table>

 </dbm:SchemaTables>

 </dbm:Schema>

 </dbm:CatalogSchemas>

 </dbm:Catalog>

 </oim:Transfer>

Open Information Model Meta Data Coalition

XML Encoding 15

Appendix B – EBNF Representation
The following defines the grammar of the OIM XML encoding in EBNF:

xmlHdr ::= ‘<?xml version=”1.0”>’

oimDoc ::= xmlHdr S Transfer

Transfer ::= ’<oim:Transfer’ [S ‘version=”1.0”’] NameSpaceDecl ‘>’ S
 [TransferHeader]
 (Object | Transfer)*
 ‘</oim:Transfer>’

TransferHeader ::= ‘<oim:TransferHeader’
 [‘Exporter=”’ ExporterName ‘”’]
 [‘ExporterVersion=”’ ExporterVersion ‘”’]
 [‘TransferDateTime=”’ CurrentDate ‘”’]
 ‘/>’

oimNameSpace ::= ‘xmlns:oim=”http://www.mdcinfo.com/oim/oim.dtd”’

oimPrefix ::= ‘oim:’

NameSpaceDecl ::= oimNameSpace (S ModelSpaceDecl)*

ModelSpaceDecl ::= ‘xmlns:’ modelAbbr ‘=”http://www.mdcinfo.com/oim/’ nsPrefix ‘.dtd”'

nsPrefix ::= modelAbbr (of the sub-model that the class is defined in)

objTransID ::= ‘_’ uniquifier (where uniquifier is a running number)

objID ::= unique identifier for the element (repository dependent)

seqno ::= sequence number within an association

label ::= name of object within the association

object ::= ‘<’ nsPrefix ‘:’ elementName S
 ‘oim:id=”’ objTransID ‘”’
 [S ‘oim:objid=”’ objID ‘”’]
 [S ‘oim:seqno=”’ seqno ‘”’]
 [S ‘oim:label=”’ label ‘”’]
 [(S Attribute)*]
 ‘>’
 [(S Association)*]
 ‘</’ nsPrefix ‘:’ elementName ‘>’

Attribute ::= [[nsPrefix ‘:’] ClassName ‘.’] AttributeName S? ‘=”’ S?
 attributeValue S? ‘”’

Association ::= ‘<’ [nsPrefix ‘:’] AssociationName ‘>’ S?
 (Object S)*
 ‘</’ [nsPrefix ‘:’] AssociationName ‘>’

Open Information Model Meta Data Coalition

XML Encoding 17

Appendix C – Namespaces in the OIM
Using XML Namespaces, each sub-model of the OIM encoding defines a separate namespace for its XML
tags; i.e. each sub-model is described by an individual DTD. Sub-models depend on each other and form a
well-defined (acyclic) dependency graph. MDC OIM 1.0 has the following sub-models:

OIM Submodel Namespace Identifier

Analysis and Design Model
Unified Modeling Language uml
UML Extensions umx
Common Data Types dtm
Generic Elements gen

Object and Component Description Model
Component Descriptions cde

Database and Data Warehousing
Database Schema Elements dbm
Data Transformation Elements tfm
OLAP Schema Elements olp
Record Oriented Legacy Databases rec

Knowledge Management Model
Semantic Definition Elements sim

The XML namespaces respect the extensibility mechanism of OIM. Users are able to add sub-models with
new elements without causing name conflicts with existing sub-models or future extensions.

Open Information Model Meta Data Coalition

XML Encoding 19

Appendix D – DTD for the OIM Namespace

<!-- ___ -->
<!-- XML Encoding -->
<!-- for the Open Information Model -->
<!-- ___ -->

<!-- ___ -->
<!-- Transfer -->
<!-- ___ -->
<!-- A transfer is a unit of exchange in OIM. Transfers might be -->
<!-- nested. -->
<!ELEMENT Transfer (TransferHeader?, (ANY | Transfer)*) >
<!ATTLIST Transfer
 version CDATA #FIXED "1.0"
>
<!-- ___ -->
<!-- TransferHeader -->
<!-- ___ -->
<!-- A transfer header allows to specify all necessary information -->
<!-- to define the origin of a transfer in a structured way. -->
<!-- Exporter Name of software that generated the transfer -->
<!-- ExporterVersion Version of software that generated transfer -->
<!-- TransferDateTime Date and time that the transfer was created -->
<!ELEMENT TransferHeader (ANY)>
<!ATTLIST TransferHeader

 Exporter CDATA #IMPLIED
 ExporterVersion CDATA #IMPLIED
 TransferDateTime CDATA #IMPLIED
>
<!-- ___ -->
<!-- Classes -->
<!-- ___ -->
<!-- Classes are output as XML elements. They should all have id, -->
<!-- objid, href and sequence number as predefined XML attributes. -->
<!-- Unfortunately the DTD grammar is not capable to specify this -->
<!-- so these attributes are shown here as an example. The oim: -->
<!-- namespace qualifier for the predefined attribute is only -->
<!-- included when one of the predefined attribute has a naming -->
<!-- conflict with the attributes on the class -->
<!-- <!ATTLIST typename -->
<!-- [oim:]id ID #REQUIRED -->
<!-- [oim:]objid CDATA #IMPLIED -->
<!-- [oim:]href CDATA #IMPLIED -->
<!-- [oim:]seqno CDATA #IMPLIED -->
<!-- [oim:]label CDATA #IMPLIED -->
<!-- [oim:]supertype CDATA #IMPLIED -->
<!-- -->
<!-- End of DTD __ -->

