
The Music Encoding Initiative (MEI)

Perry Roland
Digital Library Research & Development Group

Alderman Library, P.O. Box 400149
University of Virginia

Charlottesville, VA 22903-4149 USA
+1 434 982 2702

pdr4h@virginia.edu

ABSTRACT
This paper draws parallels between the Text Encoding
Initiative (TEI) and the proposed Music Encoding Initiative
(MEI), reviews existing design principles for music
representations, and describes an eXtensible Markup
Language (XML) document type definition (DTD) for
modeling music notation which attempts to incorporate
those principles.

Keywords
Text Encoding Initiative (TEI), Music Encoding Initiative
(MEI), music notation, music representation, eXtensible
Markup Language (XML), Document Type Definition
(DTD) design

1 INTRODUCTION
The primary goal of the Text Encoding Initiative (TEI) was
the creation of a comprehensive yet extensible standard for
the encoding and transmission of textual documents in
electronic form. However, the project's goals went beyond
simple transcription. While not required to create a printed
version of the text, elements that allowed authors to encode
descriptive and interpretative information were seen as
essential for computer-assisted analysis of an encoded text.
The success of the TEI endeavor is demonstrated by the
large and varied body of texts which have been encoded,
many of which are available free of charge via the World
Wide Web.

The need for a comprehensive standard for music has long
been recognized. And now the possibility of a Music
Encoding Initiative (MEI) is tantalizingly close. Since the
beginning of TEI in 1987, SGML and its new incarnation
XML have grown in popularity. The development of

HTML has made the creation and rapid growth of the
World Wide Web possible. Domain-specific markup
languages for both text and data, such as ThML for
theological texts and Scalable Vector Graphics (SVG) for
images, have been created in abundance. Yet no clear
progress has been made in the encoding of music. Why is
this?

2 SCOPE OF THE MEI
The first difficulty with advancing toward a TEI-like
standard for music is identifying the proper scope of the
encoding scheme.

In attempting to deal with this problem, the Standard Music
Description Language (SMDL) chose to provide a markup
language for any music from any locale and of any time.
Despite achieving the status of an international standard,
SMDL has not gained widespread acceptance, however,
because it defines the term "music" much too broadly to
effect a practical solution.

At first glance the TEI appears to have an overly broad
scope as well. Text, just like music, has logical, visual,
aural, and analytical aspects. However, the scope of the
TEI is limited in a subtle yet significant way. The TEI was
not designed to be the "human expression encoding
initiative". Instead it is primarily concerned with the
markup of those expressions which are, or can be,
expressed as text; that is, those expressions which take a
written form. Furthermore, the TEI is mute regarding the
"proper" way to compose text. Even when texts are
initially created using the TEI DTD, they are still
essentially transcriptions of an ur-text.

Similarly, the MEI does not attempt to encode all musical
expression, but instead limits itself to the written form of
music, i.e. common music notation (CMN). Like the TEI,
the MEI must also remain unconcerned with how music is
created. It is not primarily an aid to musical composition
just as the TEI does not function as an aid in the creation of
text.

Some may see the adoption of CMN as the basis for
encoding as too limiting. Legitimate arguments could be
made for an entirely new form of music notation for the

2

purpose of electronic transcription. However, common
music notation is applicable to a wide range of
contemporary and, perhaps more importantly, historical
music. It has been eloquently described by Selfridge-Field
as "the cornerstone of all efforts to preserve a sense of the
musical present for other and later performers and
listeners" [9]. Given its expressiveness, extensibility,
nearly universal usage, and longevity, there seems to be
little reason not to adopt CMN as the starting point for the
MEI.

The fact that the MEI fundamentally conceives of music as
notation does not limit its usefulness for encoding
performance and analytical information. While it cannot
rival a human rendition, a basic performance suitable for
many purposes may be mechanically derived from the
notation. Of course, any additional information necessary
to complete this process may also be encoded. Likewise,
descriptive and critical information may be included to
assist bibliographic and analytical applications.

Ultimately, a limited scope makes the design of a
representation easier. For example, both the pitch and
rhythm models can be greatly simplified when non-CMN
requirements are not considered.

3 MEI DESIGN PRINCIPLES
The MEI relies upon basic design principles already
identified as important for music representations.

Comprehensive
Simple codes which represent only the information
necessary for a particular application seem to be more
efficient because they require less development effort and
less complex processing software; however, a
comprehensive code is better able to capture the
interdependency of the elements within a score. Also,
because the simple encoding method requires a new
encoding for each application, a comprehensive coding
scheme is "more conducive to the establishment of a
permanent data base of encoded musical scores, and to the
ultimate prevention of duplicated effort" [11].

Declarative
Declarative representations, i.e. those which state
knowledge about something, are preferred over procedural
ones, i.e. those which state how to do something.
Declarative knowledge can be examined and combined
while procedural knowledge tends to be inaccessible.
Declarative representations are more modular because they
limit interactions between separate entities. In addition,
knowledge can be added to a declarative representation
easily while procedural representations allow addition only
by modification followed by a required debugging process
[2].

Explicit
In so far as possible, all relations and knowledge should be
explicitly stated in the representation [2]. When a

representation is declarative and explicit, it is naturally
static. This is not to say that the representation cannot
change. Indeed, the encoding may be the end result of a
process, but the encoding does not represent the process,
only the result.

Interpreted
In order to encode something, one must first determine
what is to be represented by the encoding. The resulting
encoding is an interpretation of the thing to be encoded [4].
In other words, whenever an attempt to assign meaning is
made, interpretation occurs. A well-designed representation
acknowledges this truism and allows one to make
interpretations explicit.

Hierarchical
Many representation schemes have tended toward one of
two extremes: encoding scores as a collection of notes or as
a single entity without further division. However, there are
many musically important structures that fall between these
two extremes. The existence of multiple levels of structure
implies the need for hierarchical representation.

There are several benefits in representing musical notation
hierarchically. In a hierarchical representation, individual
components are isolated, making it possible to limit
interactions between components and to specify the scope
of operators that act on them. In addition, this kind of
structure allows any component of a score to be treated in
exactly the same manner as any other, regardless of its size
or position in the hierarchy. In other words, a hierarchical
data structure is object-oriented. However, unnecessary
complexity is not introduced by using a hierarchical
structure instead of the list structure commonly used to
represent music. A list structure can always be represented
hierarchically if desired, i.e. by a tree having only 1 level
[1].

Formal
A music representation should be as formal as possible.
That is, the ability to prove the correctness of the encoding
should not depend on knowledge outside the formal
definition [2]. While it cannot model semantics, at least a
DTD formally declares the syntax of the representation. A
representation based on a formal grammar like that
embodied in a DTD can describe a broad range of music.
In fact, any music that can be segmented can be described
by a grammar. Grammars are used extensively in a variety
of disciplines. Therefore, a great deal of software, including
parsers and compilers, has been developed around them [7].

Instead of attempting to accommodate archaic and incorrect
practice, the MEI should continue efforts to modernize and
standardize notational practices like those contained in
Read [6].

Flexible
While a music representation should have a standardizing
effect on the corpus for which it designed, it should not

3

strive to eliminate all variation. It must remain flexible
enough to accommodate minor variations in the source
material. In addition, much of the encoding should be
made optional so that the encoder is not required to mark
up things with which he is not concerned [4]. However,
increased flexibility must be carefully weighed against an
inevitable corresponding decrease in standardization.

Extensible
No representation can guarantee that it can be used for all
future artifacts or anticipate all of its own future uses,
especially if the representation is the result of a solitary
effort. Therefore, extensibility is required. In addition, it
may be necessary to extend the representation in order to
resolve ambiguity already latent in the scheme [4].

Other principles
Additional desirable qualities -- unique, mnemonic,
consistent, non-cryptic, non-context-dependent, and
idiomatic -- have been described [4]. However, most of
these qualities come for free with the adoption of XML as a
basis for the representation. Therefore, they will not be
discussed at length; however, these qualities will figure
prominently in the evaluation of the DTD once it is
completed.

4 DTD IMPLEMENTATION
It is not enough to simply identify desirable characteristics
without putting them into practice. This section describes
how the MEI DTD attempts to incorporate the design
principles enumerated above.

Why not use an XML schema?
The choice to create an XML DTD instead of a schema is
based on several factors. First, DTDs are a stable part of
XML technology and are widely supported in XML
software. Second, competing schema proposals make it
difficult to predict when schemas will achieve the same
widespread support. Third, and most importantly, because
it does not include support for external entities, a schema is
difficult to extend without completely rewriting it. The
lack of external entities makes a schema, as well as markup
instances, difficult to modularize. The sharing of markup
fragments has valuable potential, in the creation of an
album of musical compositions, for example. In short, the
usefulness and longevity of schema are severely limited.

Elements versus Attributes
The decision regarding when to use elements and when to
use attributes is more than a stylistic one. Each construct
has advantages [3]. Elements are more useful when the
encoded data requires structure, when it may have more
than one value at a time, or when the data should make
sense with the markup removed. Attributes, however, can
be constrained by type and value and their values may be
defaulted.

Rather than choosing to use one or the other exclusively, a
moderate approach that takes advantage of the strengths of

each is the best course. A mix of elements and attributes
can help to illuminate the distinction between data that is
structural, i.e. an object such as a note, and data that is a
property or characteristic of the object, i.e. the pitch of the
note. This kind of separation can prove valuable for later
processing, but cannot be achieved using an all-element
approach.

There are additional advantages to using attributes where
possible. Because attribute values can be defaulted, using
them instead of elements can eliminate unnecessary
redundancy in the data and reduce the size of the encoded
file, an important consideration in data transport.
Attributes also make it easier to enforce one-to-one
relationships, i.e. a single note can only have one pitch
designation. In addition, since attributes may be
constrained by value, their use encourages the creation of
standardized markup.

Furthermore, attributes offer several processing advantages.
Since attributes never contain structure, their use can make
it possible to have the same element hierarchy to some
arbitrary level in the hierarchy, leading to a tree that is
more balanced and, therefore, to more efficient processing
by down-stream applications such as parsers. Attributes
are also easier to access by XML applications because they
are immediately available within the context of the
element. Since accessing attributes does not require
iterative and recursive processing, unlike embedded
elements, using them may result in faster processing.

"Milestone" elements
Since music notation contains many examples of multiple
hierarchies, i.e. a beam that begins in one measure and ends
in the next, it is tempting to use processing instructions or
"milestone" elements with empty content models to
represent them:

<measure>
<note />
<?beambegin ?>
<note />

</measure>
<measure>

<note />
<?beamend ?>
<note />

</measure>
Example 1

There are significant disadvantages to this "pseudo-
container" approach, however [10]. First, XML
applications do not usually support processing instructions.
Even if processing instructions were supported, however, it
would be impossible to know exactly where the beam
begins and ends. Does it begin with the first or second note
in the first measure? We could assume that the beambegin

4

instruction precedes the first note lying under the beam, but
this is only an assumption. In other words, this approach
violates the principle that an encoding be explicit. Second,
both constructs contradict the efficient elements-for-objects
design described above. Last, the use of "milestone"
elements is prone to error. It would be very difficult for a
processing application to recover if the beamend construct
were mistakenly omitted.

As seen in the example below, an element with a required
participant list provides a better, that is, more XML-
idiomatic, solution.

<measure>
<note id="n1" />
<beam corresp="n2 n3" />
<note id="n2" />

</measure>
<measure>

<note id="n3" />
<note id="n4" />

</measure>
Example 2

Flexibility
For the purpose of this discussion flexibility is defined as
the ability to create restricted arrangements of the data to fit
a specific purpose.

The adoption of an exchange DTD which is large and
loosely structured does not preclude the creation of
customized DTD subsets which are smaller, more tightly
structured, and easier to learn and implement. In fact, for
the DTD to be effective it must actually encourage this kind
of use.

The MEI DTD attempts to achieve flexibility via several
techniques. First, sub-element order is not prescribed in
many element content models. Of course, attributes are
never ordered. Second, many attributes have implied
values, meaning they can be left out of an encoding when
not needed. Next, many elements may be classed via their
type attribute according to their role, effectively allowing
them to have user-defined semantics. In addition, both the
element's content model and attribute list may be restricted
via the m.[element name] and a.[element name] parameter
entities. Furthermore, an element may be "switched off"
through the use of a marked section. Finally, even the
name of the element may be changed via the n.[element
name] parameter entity.

<!ENTITY % n.beam "beam">
<!ENTITY %n.beam; "INCLUDE">
<![%beam;[
<!ENTITY % m.x.beam "">
<!ENTITY % a.x.beam "">
<!ENTITY % m.beam
"((%n.note;|%n.chord;|%n.pad;|%n.rest;)+

%m.x.beam;))">
<!ENTITY % a.beam
"%a.common;
meiform CDATA #FIXED "beam"
breaksec CDATA #IMPLIED
rend %beam.rend; #IMPLIED
with %beam.with; #IMPLIED
%a.x.beam;">
<!ELEMENT %n.beam; %m.beam;>
<!ATTLIST %n.beam; %a.beam;>
]]>

Example 3

Extensibility
As mentioned earlier, extensibility must be a primary
concern for any representation that hopes to have a shelf
life beyond the completion of the design phase. The MEI
DTD employs parameter entities that allow users to add
extensions. In addition to showing how an element can be
restricted, the DTD fragment above illustrates how an
element's content model and its attribute list may be
extended. The m.x.[element name] and a.x.[element name]
parameter entities may be used to add new sub-elements
and attributes. Attribute value lists may also be extended
with parameter entities.

Utilization of existing standards
Because progress toward an encoding standard for music
notation is much more feasible when not locked into
constant re-invention of past wheels, large parts of the
design of the MEI DTD are drawn from existing standards.

On the largest scale, the MEI is modeled upon the TEI. At
lower levels, the Acoustical Society of America (ASA)
system is used to record pitch information, performance-
specific data is encoded using elements which have similar
names and functions as those in the Musical Instrument
Digital Interface (MIDI) standard, most of the mark up for
text is designed to be familiar to users of HTML, and TEI
header and Dublin Core elements form the basis of the
meta-data components. Of course, the Unicode standard
underlies the character encoding model for XML, obviating
the need to re-invent special character encoding schemes.
Finally, while it is not a formal standard, a well-known,
authoritative source [6] has been used as the basis for the
grammar for music notation parts of the MEI.

5 FURTHER EVALUATION
Up to this point, the design of the MEI DTD has been a
solitary effort. Of course, much more evaluation, perhaps
against the DTD analysis principles identified by
Megginson [5], will be required before it can become an
industry standard.

The latest version of the DTD and accompanying markup
examples are publicly available [8]. Comments are
welcomed.

5

REFERENCES
1. Buxton, William, et al. The Use of Hierarchy and

Instance in a Data Structure for Computer Music in
Foundations of Computer Music. Curtis Roads and
John Strawn, eds. Cambridge, MA: MIT Press, 1985.

2. Desain, Peter and Henkjan Honing. Issues in the
Representation of Time and Structure in Music in
Music, Mind and Machine: Studies in Computer
Music, Music Cognition and Artificial Intelligence.
Amsterdam: Thesis Publishers, 1992.

3. Graves, Mark. Designing XML Databases. Upper
Saddle River, NJ: Prentice Hall PTR, 2002.

4. Huron, David. Design Principles in Computer-based
Music Representation in Computer Representations
and Models of Music. Alan Marsden and Anthony
Pople, eds. New York: Academic Press, 1992.

5. Megginson, David. Structuring XML Documents.
Upper Saddle River, NJ: Prentice Hall PTR, 1998.

6. Read, Gardner. Music Notation: A Manual of Modern
Practice. 2nd ed. New York: Taplinger, 1979.

7. Roads, Curtis. Grammars as Representations for Music
in Foundations of Computer Music. Curtis Roads and
John Stawn, eds. Cambridge, MA: MIT Press, 1985.

8. Roland, Perry. MEI WWW site:
http://www.people.virginia.edu/~pdr4h/mei.

9. Selfridge-Field, Eleanor. Beyond MIDI: The
Handbook of Musical Codes. Cambridge, MA: MIT
Press, 1997.

10. St. Laurent, Simon. XML Elements of Style. New
York: McGraw-Hill, 2000.

11. Wolff, Anthony B. Problems of Representation in
Musical Computing. Computers and the Humanities 11
(1977), 3-11.

6

