
Framework for a music markup language
Jacques Steyn

Consultant
PO Box 14097
Hatfield 0028
South Africa

+27 72 129 4740
jacques@musicmarkup.info

ABSTRACT

Objects and processes of music that would be marked with
a markup language need to be demarcated before a markup
language can be designed. This paper investigates issues to
be considered for the design of an XML-based general
music markup language. Most present efforts focus on
CWN (Common Western Notation), yet that system
addresses only a fraction of the domain of music. It is
argued that a general music markup language should
consider more than just CWN. A framework for such a
comprehensive general music markup language is
proposed. Such a general markup language should consist
of modules that could be appended to core modules on a
needs basis.

Keywords
Music Markup Language, music modules, music processes,
music objects, XML

1 INTRODUCTION
The use of markup languages exploded after the
introduction of the World Wide Web, particularly HTML,
which is a very simple application of SGML (Standard
General Markup Language). The latter is obviously much
more powerful than HTML in terms of power of
description, but it could be argued that, based on sheer
volume, HTML is more powerful in terms of its use in
practical applications. Similarly, markup languages for
music such as HyTime and SDML are very powerful and
for the purpose of comparison can be likened to SGML.
What is lacking is an HTML-like music markup language;
one that is as simple, yet powerful enough.

Creating such a language has become possible after the
introduction of XML, but there is as yet no widely accepted
language for music, and those that have been introduced
focus only on small and particular subsets of CWN
(Common Western Notation). Known attempts of XML-
based music markup languages are [13]: 4ML (Leo

Montgomery), FlowML (Bert Schiettecatte), MusicML
(Jeroen van Rotterdam), MusiXML (Gerd Castan), and
MusicXML (Michael Good), all of which focus on subsets
of CWN. ChordML (Gustavo Frederico) focuses on simple
lyrics and chords of music. MML (Jacques Steyn) is the
only known attempt to address music objects and events in
general.

In this paper I will investigate the possible scope of music
objects and processes that need to be considered for a
comprehensive or general music markup language that is
XML-based. To begin with, I propose the following basic
requirements for such a general music markup language.

2 REQUIREMENTS FOR A MUSIC MARKUP
LANGUAGE

A general music markup language should

�� conform to XML requirements as published by the
W3C

�� use common English music terminology for
element and attribute names

�� address intrinsic as well as extrinsic music objects
and events

�� be simple: a user with basic music knowledge
should be able to create applications using a text
editor

�� be modular: each distinguishable main component
of music should be addressed by its own module

�� address universal music (such as all possible
tuning systems or definitions of music)

3 MARKUP LANGUAGES
Markup languages such as HyTime and SDML, that
approach marking music in general, are not XML-based.
One possibility would be to translate HyTime and SDML
into an XML conforming format, and we would have an
XML-based general music markup language. Let us briefly
consider these languages.

1. HyTime
Hypermedia/Time-based Structuring Language [9].

HyTime and SMDL originated in July, 1986 on the
initiative of Charles F. Goldfarb, one of the fathers of
SGML. HyTime is an architecture for the description of
music structure and hypermedia. The draft document was
released on 19 June 1989, and finally proposed as a
standard in January 1991. HyTime became a standard on

 2

November 1, 1992 as ISO/IEC 10744. Although HyTime
was originally developed for music, its concepts proved to
be so powerful that it has been applied to many diverse
fields, first by the Association of American Publishers for
the representation of electronic documents. Braille devices
also make use of this standard.

HyTime is a very complex language and does not meet our
requirement of simplicity, and it obviously is not XML-
based. Despite its power it has never reached widespread
acceptance. In fact, the originators themselves chose to
develop a subset of HyTime to specifically focus on music.
That subset is known as SMDL. Following the HyTime
route would thus not result in a productive solution for our
purposes.

2. SMDL
Standard Music Description Language [15].

SMDL was proposed as a standard in January 1991. SMDL
is a HyTime application and conforms to ISO 8897, the
Standard Generalized Markup Language (SGML). SMDL
focuses on application-neutral archival storage of music
and has not really extended to other kinds of applications.
SMDL was created to be machine-readable and not really
human-friendly. It thus also does not meet our requirements
to be human-friendly, and its focus is on archiving, not
addressing real-time performance issues.

SDML is an abstract language that introduces a host of
technical terms used for tags which are unknown to the
average musically informed user. How many users,
including the more serious, would know the meaning of
terms such as cantus, gamut, nominal pitch, fictum
adjustment, music ficta gamut, and others? A new markup
language would by nature introduce new terms, but I
maintain that the highly abstract and technical nature of
SDML terminology prevents it from being widely
implemented for popular use. As mentioned at the outset,
we need a music markup language that is as relatively
simple as HTML, so SDML will also not do for our
purposes.

3. SMIL
Synchronized Multimedia Integration Language [17].
Presently the only standard XML-based language that
addresses non-notation aspects of music is SMIL, which
focuses on multimedia content. SMIL was designed to
mark multimedia objects in terms of time, layout and
hyperlinks within SMIL documents. It does not address the
intrinsic characteristics of music objects at all, and although
SMIL can be used to refer to music objects extrinsically, it
does not explicitly address issues such as a playlist. It
would be possible to hack SMIL to create a playlist by
marking several clips with switches, but that would not be a
very elegant solution.

So HyTime, SDML and SMIL do not provide a solution for

a general XML-based music markup language as envisaged
here, and existing XML-based markup systems focus only
on subsets of CWN.

* * *

Before a music markup language can be envisaged, the set
of objects which it will describe (or mark) need to be
defined and clarified. Answering the question: "Which
music objects must be marked?" will determine what the
strengths and weaknesses of a music markup language
would be. The object "music" thus needs to be defined.

A working definition for the purpose of this paper is that
music is technology based. This definition includes the
spectrum ranging from the instruments (i.e. musical
instruments) used to perform music, to the equipment used
to record or reproduce music. The only non-technology
music there is are the sounds of nature (including the
human voice). From this perspective instruments to
produce music sounds form the core of music production,
while equipment used to manipulate, record or reproduce
music are peripheral. To put it simply, instrument
technology is used to create performed music, while
production technology is used to manipulate that performed
music. The first level of music concerns the fundamental
focus of music in an abstract manner, and the second level
concerns that which manipulates performed music, the
distal aspects.

4 INTRINSIC FEATURES OF MUSIC
I distinguish between two aspects of the fundamental focus
(intrinsic features) of music: the core of music and
peripheral aspects of music.

1. Music core
The music core consists of those features without which
music sound is impossible. They are thus intrinsic music
objects and processes that concern, on an abstract level,
concepts such as notes, duration, intervals, frequency, pitch
and similar related aspects for which certain well-
established technical terms are used in musicology. These
intrinsic objects and processes would form the core
modules in a modular-based application.

No music could exist without these intrinsic objects and
processes. But the same intrinsic aspects can be
manipulated by peripheral aspects in various ways to
produce different results.

2. Peripheral aspects of music
The music core can be manipulated to achieve different
results. Peripheral aspects concern the "things" done to the
core objects and processes. Different textures (i.e.
peripheral matters) can be added to the core that will result
in different sounds. An abstract note can be executed on a
saxophone or piano, resulting in the paradoxical same but
different thing. For example, an abstract A note (which is
describable and markable in terms of frequency and time,

 3

i.e. the core) can be given different expressions by adding
either saxophone or piano textures to the core.

5 EXTRINSIC MUSIC OBJECTS AND
PROCESSES

The intrinsic aspects of music can be further manipulated
by additional technologies, which can be divided into two
broad categories: technologies used for recording music
and technologies used for performing music.

Performed music

The technologies I have in mind here are such as effects
units, or triggering devices such as MIDI-enabled pads and
mats. Certain control systems, such as mixers, are also
classified here.

Control systems have been addressed to a limited extent by
SMIL. The one limitation of SMIL in this respect is that it
is inward looking (an intra-systemic markup language); it
does not provide the possibility of marking the larger issues
such as creating playlists, or metadata (such as for CD
sleeves), which is addressed by MML to a limited extent.
SMIL also does not address macro control systems such as
mixers.

Recorded music

There are, very broadly speaking, two categories of
recorded music: graphic recording and sound recording.

a. Graphic recording

Intrinsic music objects can be expressed in some or other
writing or notation system, such as the piano roll format, or
the CWN format. A composer would use some or other
writing or notation system to pen a music score, the
function of which is to contain suggestions as to its
performance. Manuscripts are meant to be records and not
changed by general users, who use them as guidelines for
performance.

A music markup language used for marking such music
would need to describe notation systems faithfully. As
mentioned above, most XML-based attempts at a music
markup language focus on this aspect of music, and
specifically on CWN.

b. Sound recording

Expressed music can be recorded using electronic
recording techniques such as used in recording studios.
Graphic recording has been around for many centuries,
while sound recording has been in existence only for about
a century. In studio parlance, this category of music would
be "canned music". The resulting product cannot be
manipulated by general users, except for limited control
such as volume, or a bit of EQ-ing. In other words, no
intrinsic features of music can be manipulated after being
recorded. Results of recorded music are distributed on CDs,
DVDs and in various formats, such as MP3. A general

music markup language should enable an end-user to create
playlists and other methods of organization to select
specific songs from the multitude of available songs in any
format of choice. It should also be possible to select the
ambiance (such as playing the song in a small room or
large hall) as many popular home entertainment systems
now allow. Apart from some limited effort in MML, there
is no known attempt to address this aspect of music for
markup purposes.

6 NOTATIONAL MARKUP LANGUAGE
A notation markup language is twice removed from the
object of description. A notation system (once removed
from the music object) abstractly describes some music
micro-objects such as the relation between two frequencies.
Implied here are aspects such as the tuning system chosen,
the frequency chosen as fixed reference point (e.g. A440 or
A442), what the exact duration of a note value (e.g. a
quarter note) would be, and many more important features
not addressed by notation systems. These aspects are not
explicitly addressed in notation systems, but implicitly
present. Translating a notation system into a markup
system would thus be twice removed from the core. A first
level of description is lacking.

A music markup language that is based on notation would
be merely a system that translates the abstract notations
into the terminology and syntax of the particular music
markup language. This is easy to do: map symbols and
signs to markup element and attribute names. This is done
by creating a lookup table with notation terminology in one
column, and corresponding music markup language
terminology in the adjoining column. The only challenge
here for an XML-based music markup language would be
naming conventions, nesting issues and making decisions
about which objects would be elements, and which would
be attributes.

A music markup language focusing only on CWN cannot
do justice to a large section of music. Consider the use of a
score. A musician using typical CWN needs years of
training to read and perform the score, and then for the
purposes of a specific performance the conductor, music
director, or band leader decides on the finer nuances for
interpreting the score, either in an authoritarian manner or
negotiated. No notation system captures all the possible
information. A typical jazz score specifies the parameters
within which the musicians will play. Chance music, such
as AMM, explained by Prévost [19], reacts to incidents that
occur totally by chance. No traditional score can predict
what may happen. For such music, its notation can only be
used after the fact. It should be obvious that notation
systems do not address all these issues, consequently, a
music markup language that addresses only the traditional
score also will not address music comprehensively.

A system focusing only on notation has limited
functionality, especially in the world of computing. It

 4

focuses on the graphic record of music, typically used for
archival or reference purposes. Such a system was useful in
the days prior to sound recording technologies, but really
limited today. What is needed is a music markup language
that can be used to mark performed music, and
consequently the intrinsic music objects and events. I
maintain that such an approach must form the foundation of
any attempt at creating a music markup language. If done
successfully, it should be possible to attach any additional
music features on a needs basis by adding their respective
modules. The core should thus contain universal and
abstract features of music and not be biased toward CWN.
MML is an attempt to address this.

7 SOME COMPLEXITIES OF MUSIC
The kind of music markup language I have in mind will
have to address some of the complexities of music. Here I
take the following working definition of music: music is a
function of frequency and time.

Music cannot be regarded just in terms of sounding
frequencies. In an orchestra instruments may keep quiet for
stretches in the piece. By following Zen philosophy, John
Cage regarded silence, the absence of sound, as part of
musical expression. In the MIDI environment declaring
Note Off, implying a possible silence, is important. One
important structural aspect of music for a markup language
is then the presence or absence of sound. Such
characteristics are based on a time continuum. Music
perception also follows a timeline because of the
psychological arrow of time in which an individual
consciousness is entrenched. For a music markup language
a time element must consequently be considered essential.

But “time” has many different meanings that need to be
clarified. Apart from calendar time, which is metadata
about the piece of music, there is the duration of the
performed or recorded piece of music in which smaller
time elements can be found. With respect to the smaller
time units, the cyclical repetition of musical units can be
determined on many different levels, ranging from music
phrases, to smaller measures, traditionally called “bars”,
which in turn may be divided into yet smaller units. The
duration of the piece of music can be mapped to absolute
clock time in terms of hours, minutes, seconds and
milliseconds. The smaller time units are mapped onto this
“external” time. By extending or reducing external time,
the tempo of a song may be changed.

For synchronization purposes computers need to refer to
some or other clock. Linking music time to an external
clock would thus be important for any general music
markup language. But equally important are the
relationships between smaller time units that are relative in
the sense that they may be altered and result in different
moods for the same song. The funeral music of New
Orleans Jazz bands is often a slower version than their
much quicker march counterparts when measured against

external time. But so would be any band that plays a piece
very slowly. What makes this particular funeral music
unique is the changing of the smaller internal time
relationships: changing the march into a swing.

Apart from time, music must also be defined in terms of
frequency. A question that arises from this aspect is
whether all possible frequencies can be regarded as music.
The sounds of traffic noise, birds singing, hooters blowing,
footsteps, engines idling, a lawnmower and so on are
around us but do not become music unless focus is directed
to them as such by the performer. In a performance art
environment the lawnmower engine noise becomes a
statement and part of the production, and thus “music” (and
not recordable as music by CWN). The use of this sound is
planned. If it is a chance-based performance the exact
moment of the introduction of the lawn mower sound may
not be planned, and hence not possible to indicate in a time-
based notation system, yet the decision to include the sound
is planned, and may be marked. For such a score the only
aspect that can be marked is a description of the sound, and
perhaps a random parameter of time. After the performance
the sound can be fixed on a timeline. This suggests that
time is not a more basic concept than frequency. But of
course it would not be very useful to mark all the detail
frequencies of a lawnmower, just as it would be impractical
for most uses to mark all the physical frequency details of a
note played by a a saxophone. Here it may be wise to
follow the approach of CWN, which is a generic
abstraction from all the possible detail. In this sense a
music markup language could follow the concepts of
CWN, but that does not mean a music markup language
should be mapped to CWN or limited to that notation
system.

A general music markup language that can handle all the
mentioned complexities is needed. With MML I attempt to
address such a music markup system and propose the
following modules to handle such complexities in a
structured manner.

8 MODULES OF A GENERAL MUSIC MARKUP
LANGUAGE

The following modules are proposed for a general music
markup language. Each module contains a set of elements
and attributes. The core modules are the Frequency and
Time Modules, which will apply to most applications of
MML, but not always required. For example, in practice it
should be possible to use only the Lyrics Module without
reference to any music notes. The envisaged modules are:

1. Frequency module
2. Time module
3. Organization module
4. Texture module
5. Effects module
6. Performance module

 5

7. Control module
8. Notation module
9. Lyrics module
10. MIDI module
11. Synthesizer module
12. more...

In this proposed model, the Frequency and Time Modules
are the core modules as music could be conceptualized as a
function of time and frequency. All intrinsic music objects
and events are described in terms of these core modules.
Other modules are added on a needs basis. For example, the
specifics of CWN would be handled by the Notation
Module which also would, as envisaged, handle any other
of the available notation systems. Any music piece or song
that is described in terms of the core modules can be
processed in any number of directions, such as to be
visually displayed by some or other notation system and
which can be further manipulated by XSL or other
methods, translated to be used by a MIDI system, or sent
through an effects bank, and so forth.

The terms chosen for element and attribute names used in
the modules come mainly from CWN, which provides a
solid point of departure as these terms are commonly used
in the world of music. However, in MML these terms have
abstract meanings. In practice an MML note may be
expressed as a CWN note, but it may also be expressed or
executed in other ways. So CWN terms may map uni-
directionally to MML terms, but an MML term may map
multi-directionally to various expressions, one possibility
which may be CWN.

I will now turn to the components of the modules. Deciding
which objects or events should be elements or attributes
depends on whether time or frequency is taken as basis.
After trying out several options, I decided to take time
along an x-axis, and frequency on the y-axis, just as in
CWN. The implication of this is that some or other relative
time notion has to be the basis on which frequencies are
indicated. CWN provides a concept for this: the "bar". In
MML, a "bar" may, or may not map to the CWN "bar",
depending on the characteristics of a particular piece of
music. The MML "bar" would thus be an element, while
many of the frequency characteristics would be attributes
associated with this element.

1. Frequency Module
In the Frequency Module the following components are
distinguished: cent, note, scale and tuning.

The first two attributes (cent, note) concern aspects of the
traditional concept of "note". The scale element concerns
the small-scale relationships between notes, while tuning
refers to large-scale relationships between all the notes
within a particular system, as well as mapping that system
to a frequency table.

In order to meet the basic Requirements 2 and 4, the
terminology established by CWN is used. Although CWN
does not describe the totality of music, it is a very useful
system. However, in the model proposed here, the terms are
abstracted and are not restricted to visual representations.

The term "cent" is not commonly used among ordinary
musicians, but some term is required for finer frequency
distinctions than provided by "note". It is thus unfortunately
necessary to introduce this term.

In CWN the concept "note" is a graphic symbol on a score
that suggests to the musician or researcher both a relative
frequency and relative duration at the time of execution.
This is the sense in which the term "note" will be used in
the proposed model. The actual physical frequency value of
a note will depend on the selected tuning system. The
duration of the note is handled by the Time Module. By
defining a note in this manner, it can be easily mapped to
any notation system, or systems such as MIDI. In CWN all
this additional information is tacit, but a markup language
requires these aspects to be made explicit. A music markup
language would thus always require an explicit statement
about the tuning system used, and the mapping of notes
within the tuning system to absolute frequencies. In
practice there could be a default system so that only
deviating systems need to be stated explicitly.

The implication of this is that a note marked as "C" has no
meaning when decontextualized, yet it can be described in
the markup language. It only gets meaning by being
associated with a particular tuning system. When associated
with a tuning system such as equal temperament, it would
obviously map easily to CWN, but this abstract note may
also map to different tuning systems, which may perhaps
produce quite different results.

A noteset attribute is used for sets of notes that may recur
in different frequency bands. It thus contains the Western
tuning system concept of "octave", which is a recurring
noteset at 8-note intervals. The selected tuning system will
determine the meaning of the noteset used, so if noteset
must have the meaning "octave", the Western tuning
system must be selected. This general approach will thus
allow a note marked as "C" to be used with any possible
tuning system. To indicate the different recurring cycles in
MML the number of the cycle precedes the note name. So
when octaves are used, a "C" in octave 4 will be written as
"4C".

Rests (which are usually expressed in terms of time in
CWN) are merely the absence of frequency over a period of
time. In other words, where a frequency is expected, but
nothing is marked, the implication would be silence, and
consequently, in terms of CWN, a rest. In a markup
language rests can thus be handled in different ways.
Following CWN they can be marked with explicit time
values. Following a technology such as MIDI, note lengths

 6

may be assigned absolute length values (i.e. duration), and
whenever there is no duration, a rest is present by
implication.

From an XML point of view the choice between these
approaches is immaterial as an XML parser can in any case
only process the markup text. To do anything musically
useful with the markup, an additional programmatic layer is
required that would translate the markup either into music
notation, or MIDI code, or other technology. A decision
will need to be made whether to allow only one method of
marking either explicit or implicit rests, or both. If any
method can be used, the application will need to handle
both methods.

2. Time Module
In the time module the following components are
distinguished: tempo, note, bar, beat and tick. Concepts
such as length (i.e. duration) will be indicated either
relatively with abstract numbers attached to note names
(e.g. C:4 for a quarter C-note), or absolutely in terms of
standard hours:minutes:seconds:milliseconds measures.
Length values are always interpreted in terms of the tempo
values.

The tempo attribute refers to the duration of music
measures against absolute time. A note has both frequency
and time, so the note attribute must be contained in this
module as well. In descriptions it is possible to refer to a
note's time without reference to its frequency, and vice
versa.

The MML bar element is similar to the CWN "bar", but
not restricted to its music notation meaning. In MML it
concerns the rhythmic pattern of music measures. For most
popular music there would be a one-to-one correlation
between the CWN bar and the MML bar element. The
beat and tick attributes refer to smaller time components
within a bar.

At this point in the evolution of MML the above seem to be
sufficient to address all the basic requirements of the details
of possible core modules. All examples that have been
marked thus far with MML could be handled by these, but
it is possible that the core may need to be extended due to
practical demands.

The other modules are either peripheral modules or distal
modules.

3. Organization Module
The Organization Module concerns the generic extrinsic
aspects of music, used for the organization of music on a
larger scale. Components of this module include aspects
such as compiling an album that consists of songs, and
setting up a playlist that enables the user to select songs
from various albums and from various formats. In terms of
synthesized music control aspects such as selecting
programs (program element) and banks (bank element)

would also be contained in this module. Elements
contained in this module are: album, playlist, head (which
would have children such as title, link and meta) and song
(which would have children such as phrase, classes, div
and span).

4. General Module
The main function of this module is to contain general
markup requirements such as the comment and
commentary, but it would also contain elements relating to
marking repetitions in music.

Music, viewed in terms of a function of frequency and
time, could be defined more precisely as repetitive
frequency patterns over time. These repetitions may vary
from repeating a few notes to much larger themes (such as
the popular AAB pattern). It is possible to create element
handles that would mark repetitions. To mark all the minute
details of music explicitly results in huge markup
documents. Abbreviation methods are envisaged in this
module to serve as a kind of shorthand which an additional
processor should handle. XML parsers will not be able to
expand the collapsed markup. Abbreviated forms may be
economical, but would always require additional programs
to XML parsers. Nevertheless, as XML parsers in practice
will in any case require plug-ins to generate performed
music or to display notation graphically from the textual
markup, this may perhaps not be an issue as even
abbreviated forms remain well-formed and valid, and thus
meet the requirements of XML.

5. Texture Module
From a physics point of view there are at least two aspects
that have an effect on sound texture. Borrowing from the
terminology of the world of synthesized music, these
aspects are envelope (envelope element) and harmonics
(harmonics element). The amplitude intensity (i.e. volume)
also has an effect on the core sound, so it has to be included
in this module. For example, a note played softly or loudly
has different textures. The volume here concerns intrinsic
music aspects rather than the overall aspects that would be
handled by the volume of a control system. The intrinsic
volume will be called intensity, while the extrinsic volume
would go by the name volume, handled by the Control
Module.

6. Control Module
The Control Module would handle generic distal aspects of
music, most of which are presently addressed in the SMIL
2.0 specification. These are, among others, volume, and
on/off (when a song starts playing or stops playing and
handled by a status attribute). The position of the sound
source (i.e. elevation and azimuth) with reference to the
listener would also be addressed here, as well as patterns of
accent (i.e. relative loudness within bars of phrases).

 7

7. Effects module
Music is never "pure": the environment has a big influence
on exactly what a performed or played piece of music will
sound like. The core of music can also be synthetically
manipulated as is done in sound recording studios. It is thus
necessary to introduce an effects module that can be used to
manipulate the core sound to produce unique sounds.
Borrowing from synthesized music, the following aspects
are addressed in the effects module. For the sake of
categorization three sub-modules are identified based on
which aspect of music the effect is applied: time, frequency
and filters. The distinctions below reflect commonly used
terminology but needs more research as there is
considerable overlapping.
��Time Effects Module

��Elements: echo, delay, chorus, reverberation,
feedback, flanging

��Frequency Effects Module
��Elements: compression, feedback, equalization,

pitch-shift, expansion
��Filters Effects Module

��Elements: ringmod (ring modulation), resonance,
limiting, noisegate, noisereduction.

8. Performance Module
As presently envisaged this module does not concern the
performance aspects of SDML (such as baton) but rather
the control of synthetic music aspects such as foot, hand
and breath controls. The aspects handled in this module
thus relate more to MIDI than to SDML. At present the
identified features are handled by attributes (foot, pedal,
portamento, breath) of the control element.

9. Notation Module
Most XML attempts to create music markup languages
address notation which focus on simple music and not
complex music events. A comprehensive general music
markup language will have to address more, such as the
following.

Reference needs to be made of mapping to Unicode music
symbols [20] and how the details of a note should be
marked. In the proposed model the abstract note is marked
by using the Core Module elements. These are expressible
by attaching other modules to the core set, for example to
the MIDI module, or when a graphic record is required, to
the Notation Module. The proposed model of MML,
although utilizing the terms and concepts of CWN, should
thus not be confused with CWN. In the MML model a
notation system such as CWN is a subset of the Notation
Module, which contains the tools for describing and
marking all possible notation systems. When required, the
CWN part of the Notation Module is attached to the Core
Module elements.

The Notation Module thus contains markup for notation
specific elements which are irrelevant to other modes of
music. Some of these are: key, cleff, staff, bind, tie, slur,
rest, text (such as Andante). Other features, such as dotted
notes, and sharps and flats, and canceling them are handled
by reserved symbols used with textual content. The text
element handled one kind of music text. The language of
the lyrics text is handled by a lyrics module.

10. Lyrics Module
The lyrics module will handle the lyrical text associated
with music. There are several requirements that need to be
addressed such as mapping the language of the lyric text to
the music. Language also has repetitive patterns such as
syllables. There is not necessarily a one-to-one correlation
between language syllabic beats and music bar beats. Some
syllables stretch across notes, while some are shortened
(squash element), resulting in more than one mapping to a
single note. This is only true for notation, as a note would
sound on each syllable in performed music, no matter how
many syllables are squashed onto a single written note.
The other aspect that needs to be addressed in this module
would be mapping different verses to the same music sound
sequence, and other aspects such as coda.

A challenge that needs to be addressed is how to
synchronize the markup for music notes and the markup for
lyrics. It would obviously not be possible to handle this
with a typical XML processor, which will merely render
the markup in sequential order. If, for example, the music
notes markup is written first in the document, followed by
the lyrics markup, an XML parser would merely render all
the notes first, then the lyrics. It would be up to an
additional processor to match these layers in order to be
rendered together.

To enable matching, in MML it is proposed that such
matching should be made by referencing the barid attribute
of the bar element with a barref attribute of the lyric
element. This would imply that the entire markup should be
in memory, to be rendered according to some or other style
and media preference. It may be possible to follow the
DOM (Document Object Model) in this context [3,4].

11. Synthesizer Module
Sound cards of computers nowadays typically contain
synthesizer chips. A general music markup language should
also address this. As synthesizer chip makers have different
approaches in their architectural structuring of the music
components of chips, I propose an abstract Universal
Synthesizer which could be used to map lookup tables to
the idiosyncrasies of different manufacturers. That this
would be necessary can be testified by anyone who has had
to master the terminology used by different synthesizer
manufacturers. Terms such as sound set, banks,
instruments, parts and a host of others often refer to
confusingly different aspects of the same possible set of

 8

things. The terms proposed here are introduced based on
about 20 years of synthesizer experience and thus not
necessarily unbiased.

Some elements proposed for the Synthesizer Module are:
synth, prim (primitives), core, effects, soundset, texture,
instrument, band and adsr (or a more complex variation
of this).

Other aspects that perhaps should belong to a sub-module,
but needs further investigation, would refer to the circuitry
and specific music generation aspects of the synthesizer.
This would address the fact that some synthesizers allow
different paths to be taken (e.g. an effect could apply either
after a certain sound is generated, or somewhere in the
process of the sound being built). Envisaged components
are: circuit element with attributes such as input, output,
target and exclude.

12. MIDI module
The MIDI module would include element and attribute
names that map to MIDI Controllers and functions. It is
envisaged that this module could serve as a mode of
transport between not only MIDI-enabled devices, but any
device that can interpret the MML MIDI module. Several
MML modules would apply in a MIDI environment:
Frequency, Time, Effects, Control and Performance.

9 CONCLUSION
The proposed general music markup language, in this case
MML, is a work in progress and far from complete. It is
possible that further modules will be introduced, or that the
organization of modules change due to practical demands.
But even in its incomplete state it presently seems to be the
only XML-based attempt to describe a very large scope of
the domain of music. Other current attempts at marking
music focus on a subset of CWN, which is useful in the
early days of an XML-based markup language addressing
music issues, but which do not address important issues
such as performed music or playlists. Hopefully MML can
serve as a basis for future joint efforts to comprehensively
describe music using XML as basis.

10 REFERENCES

1. Campbell, D MML-to-MIDI Perl script
 http://www.musicmarkup.info/scripts/

2. CSS 2.0 (Cascading Style Sheets) 12 May 1998
http://www.w3.org/Style/CSS/

3. DOM 1 October 1998
http://www.w3.org/TR/1998/REC-DOM-Level-1-
19981001

4. DOM 2 WD October 2001
http://www.w3.org/TR/2001/WD-DOM-Level-2-
HTML-20011025

5. Grande, C. The Notation Interchange File Format in
Selfridge-Field, E. (ed): 1997, 491-512

6. Markup languages (W3C)
http://www.w3.org/MarkUp/

7. MIDI Manufacturer's Association
http://www.midi.org/

8. MML (Music Markup Language)
http://www.musicmarkup.info/

9. Newcomb, S.R., Kipp, N.A., Newcomb, V.T. HyTime
Communications of the ACM, November 1991, 67-83

10. Prévost, E. No sound is innocent
Wiltshire, UK: Anthony Rowe Ltd, 1995

11. Rastall, R. The Notation of Western Music, JM Dent &
Sons Ltd: London, 1983

12. Robin Cover’s HyTime http://www.oasis-
open.org/cover/hytime.html

13. Robin Cover The XML Cover Pages: XML and Music
(March 03, 2001)
http://xml.coverpages.org/xmlMusic.html

14. Selfridge-Field, E. (ed) Beyond MIDI: the Handbook
of Musical Codes, Cambridge, Mass: MIT Press, 1997

15. Sloan, D., Newcomb, S.R. HyTime and Standard
Music Description Language, in Selfridge-Field, E. (ed)
1997, 469-490

16. SMDL (Standard Music Description Language)
http://www.hightext.com/IHC96/ihc96271.htm#STAN
DARD-18

17. SMIL 1.0 (Synchronized Multimedia Integration
Language) 15 June 1998
SMIL 2.0 (Synchronized Multimedia Integration
Language) 07 August 2001
http://www.w3.org/TR/REC-smil/

18. Sundberg, J. The Science of Musical Sounds,
Academic Press, INC: New York, 1991

19. SVG (Scalable Vector Graphics) 19 July 2001
http://www.w3.org/Graphics/SVG/

20. Unicode Music Symbols
http://www.unicode.org/charts/PDF/U1D100.pdf

21. W3C (World Wide Web Consortium)
http://www.w3c.org/

22. XML 1.0 (Extensible Markup Language) 10 February
1998
http://www.w3.org/XML/

