
MAGE-ML: MicroArray Gene Expression Markup Language

Links:

- Full MAGE specification: http://cgi.omg.org/cgi-bin/doc?lifesci/01-10-01

- MAGE-ML Document Type Definition (DTD): http://cgi.omg.org/cgi-
bin/doc?lifesci/01-11-02

Microarray Gene Expression Markup Language (MAGE-ML) is a language designed to
describe and communicate information about microarray based experiments. MAGE-ML
is based on XML and can describe microarray designs, microarray manufacturing
information, microarray experiment setup and execution information, gene expression
data and data analysis results. This paper describes the basic MAGE-ML structure and its
main concepts. The structure of MAGE-ML is not simple, therefore we envisage that
typically MAGE-ML documents will not be created “by hand” (i.e., just using text
editors), but by user- friendly tools providing web form interface and the ability to link
external tab-delimited data, that are currently being developed. Therefore the purpose of
this paper is twofold:

1. For microarray laboratory scientists it may be describing all they need to know
about MAGE-ML;

2. For bioinformaticians that intend to develop tools for microarray data
management or to run such tools for microarray laboratories, this paper can serve
as the first introduction to MAGE-ML.

MAGE-ML has been automatically derived from Microarray Gene Expression Object
Model (MAGE-OM), which is developed and described using the Unified Modelling
Language (UML) – a standard language for describing object models. Descriptions using
UML have an advantage over direct XML document type definitions (DTDs), in many
respects. First they use graphical representation depicting the relationships between
different entities in a way which is much easier to follow than DTDs. Second, the UML
diagrams are primarily meant for humans, while DTDs are meant for computers.
Therefore MAGE-OM should be considered as the primary model, and we will explain
MAGE-ML by providing simplified fragments of MAGE-OM, rather then XML DTD or
XML Schema. For full details of MAGE-OM, mapping rules used to derive MAGE-ML
from MAGE-OM, as well as comprehensive glossary of terms see http://cgi.omg.org/cgi-
bin/doc?lifesci/01-10-01

MAGE-OM is expressed in UML, however, for the purposes of this preliminary
explanation knowledge of UML is not necessary. The main principle is that boxes
represent classes of some objects and lines represent various relationships between the
classes. Classes can represent various sets of entities: real-world physical objects (e.g.,
microarrays), real-world abstractions (e.g., microarray experiments), real-world actions
(e.g., hybridization events) or information objects (e.g., microarray data matrices). Here

we will not analyse what kinds of relationships there are in UML and how they are
represented on diagrams, for details, see, e.g., http://www.ajug.org/info/tech/uml/uml.html

MAGE-OM is a bit two large to be represented on a single diagram in a readable way. In
order to structure the model the UML notion of packages is used. Related classes are
grouped together into packages, and quite often represented on the same diagrams.
MAGE-OM will be explained package-by-package; a tool able to export MAGE-ML will
probably have separate modules and/or user interface sections for separate packages, e.g.,
you can enter information about array designs in one UI section and information about
steps of your microarray experiment using another UI section. On diagrams classes
belonging to the package under discussion are coloured yellow, while classes belonging
to other packages, therefore detailed elsewhere, but drawn on the current diagram for the
purposes of showing inter-package relationships, are coloured grey.

Experiment

This package is for describing a microarray experiment as a unit. Note two parallel
branches on the diagram. On the right-hand side we have experiment blueprint
information – experiment design and one or more experimental factors that are changed
in the course of the experiment to explore whether and how gene expression levels
change (e.g., time or drug concentration). On the left-hand side there is experiment
execution information. An experiment consists of one or more bioassays (experiment
steps), and each bioassay can test for gene expression with one or more experimental
factor values fixed (e.g., time = 30min, drug concentration = 15ug/ml).

BioAssay

A bioassay is a single step within a microarray experiment. There are 3 types of
bioassays. A physical bioassay correspond to wet- lab microarray experimental step. A

measured bioassays corresponds to a situation after feature extraction has been
performed. A derived bioassay corresponds to data processing experimental steps.

A physical bioassay is created by applying some amount of some biomaterial to a
microarray. Bioassay treatment events (e.g., wash, apply blocking agent etc.) transform
physical bioassays into new physical bioassays. A particular type of bioassay treatment is
image acquisition.

Measured bioassays can have corresponding MeasuredBioAssayData objects (raw data).
Derived bioassays are obtained by data transformations, they are linked by BioAssayMap
objects.

ArrayDesign

An array design consists of design element groups as well as information about element
zone layout. Physical array design has been made as a subclass of array design, to allow
“virtual” array designs with element groups but no zone layout information; such
“virtual” designs can be used, e.g., to define different reporter-composite sequence
mappings for the same physical array design. Zones can be grouped together to form
zone groups; zones within the same zone group would have the same spacing between
them, whereas zones from different zone groups can have different spacing. Zones/zone
groups sometimes are referred to as blocks/metablocks.

DesignElement

There are three types of design elements. A feature has a position on the array (within
some zone), it can be a control feature for other features or controlled by other features. A
reporter corresponds to the physical substance synthesized/printed on the array, it can be
characterized by one or more biosequence objects which in turn can be characterized by
database entries. There can be many features for the same reporter, and features can have
one or several mismatches compared to reporter’s reference sequence. The third, most
abstract kind of design element is a composite sequence. It can have more than one
reporter on the same array (e.g., different splice variants) and is characterized by
biological characteristics, which are actually again sequences with corresponding
database entries. The mapping between reporters and composite sequences is not shown
on this diagram, but this is similar to the model of feature-reporter mapping. Also,
composite sequences can be aggregated into more abstract composite sequences (also not
shown here), e.g., genes of the same functional group etc.

BioMaterial

BioMaterial is an abstraction of various states of biology-based materials used in various
stages of the microarray experiment. Biosource refers to the initial source of material
used in hybridization (e.g., cell line or tissue). Biosample is what is extracted from the
biosource, and labeled extract is the last state of the biomaterial before hybridization. A
biomaterial can be a result of a chain of treatments, each treatment involving one or more
biomaterials in some amounts. A special kind of treatment is treatment with some amount
of a compound. A simple way to model compounds consisting of other compounds is
provided.

BioAssayData

One of the central principles of MAGE is that data objects are regarded as 3-dimensional
matrices, where there are bioassays (experimental steps or conditions) along one
dimension, design elements (spots) along the other dimension and quantitation types
(e.g., signal intensity, background intensity) along the 3rd dimension. Bioassay data
objects can be represented in one of two ways: as a set of vectors in the form (value,
dimension1, dimension2, dimension3) (useful for small amounts of data), or as a 3-D
matrix (BioDataCube). Transformations (e.g., filtering, normalization) can be applied to
one or more bioassay data objects, resulting in derived data objects. A transformation
involves computing values of the resulting 3-D matrix from the values of source matrices,
and it also transforms dimensions. On this diagram just the mapping of quantitation types
into new quantitation types has been shown; DesignElementMapping and
BioAssayMapping are modeled similarly. A quantitation type mapping transforms a list
of quantitation types into another list of quantitation types, and it consists of maps that
deal with single target quantitation types.

QuantitationType

A quantitation type can be either a standard quantitation type (a list of these is provided
within MAGE) or a specialized quantitation type which should be described in detail. A
quantitation type may reference a channel (e.g., Cy3 green signal intensity).

Array

An array is a physical array which corresponds to some array design. There are three
types of information that can be captured about individual arrays and array production
process. An individual array can have deviations from the design, either zone defects
(e.g., a whole zone of spots is shifted) or individual feature defects. An array group can

consist of more than one array printed on the same slide, and fiducials (markings on the
surface of the slide that can be used to identify arrays’ origins) can be printed to facilitate
feature detection software accuracy. Array manufacture information also can refer to
more than one individual array (sometimes referred to as an array batch), and it can
contain protocol information (how the arrays were manufactured) as well as some limited
LIMS information (what was printed on the array, on a feature-by-feature basis).

BioEvent

This diagram is provided to summarize what kinds of events are possible to describe in
MAGE. Each event can have a sequence of protocol applications. On the left-hand side
there are pysical events (biomaterial treatment, bioassay creation as a generalization for
hybridization, and bioassay treatment and image acquisition as a special case), while on
the right-hand side there are information processing events (feature extraction, data
transformation, maps of data dimensions).

Protocol

There are two parts for this package. On the upper part there are Protocol, Hardware and
Software classes, representing abstract entities. All the “parameterizable” objects can
have parameters, a protocol can involve usage of specific hardware and software, specific
hardware might be needed to run some software, and software objects can be composed
of other software objects (modules). On the lower part there are classes representing
application of abstract entities at a given time point, with parameters filled in by some
parameter values.

AuditAndSecurity

A contact can be either an organization or a person. A person can work for an
organization, and an organization can consist of other sub-organizations.

Description

Many MAGE objects can be further chracterized by attaching Descriptions to them, if
there is some important information that cannot be recorded using provided attributes and
relations. A Description can consist of a piece of free text, references to database entries,
references to ontology entries (annotations) and one or more bibliographic references. A
generic NameValueType class also is provided, objects of which can be attached to every
MAGE object if even the Description functionality is not sufficient.

HigherLevelAnalysis

Experimental data (BioAssayData) can be clustered, obtaining one or more top level
clusters. Each cluster consists of nodes, where each node in turn can contain subnodes (in
the case of hierarchical clustering). A node can be characterized by its values (e.g., some
metric of cluster quality), and a node groups together design elements (e.g., spots, genes)
or bioassays (i.e., experimental conditions). BioAssayDimension is just an ordered list of
bioassays, and DesignElementDimension is an ordered list of design elements.

