
Migratable User Interface Descriptions in
Component-Based Development

Kris Luyten, Chris Vandervelpen, Karin Coninx
c©2002 Springer-Verlag

http://www.springer.de/comp/lncs/index.html

Expertise Centre for Digital Media
Limburgs Universitair Centrum

Wetenschapspark 2
B-3590 Diepenbeek-Belgium

{kris.luyten, chris.vandervelpen, karin.coninx}@luc.ac.be

Abstract. In this paper we describe how a component-based approach
can be combined with a user interface (UI) description language to get
more flexible and adaptable UIs for embedded systems and mobile com-
puting devices. We envision a new approach for building adaptable user
interfaces for embedded systems, which can migrate from one device to
another. Adaptability to the device constraints is especially important
for adding reusability and extensibility to UIs for embedded systems:
this way they are ready to keep pace with new technologies.

1 Introduction

The market of embedded systems and mobile computing devices is a fast evolving
market. New technologies are introduced at a very high rate. One of the con-
sequences of this evolution is the constant reinvention of user interfaces (UIs)
for these devices. They lack the adaptability and flexibility to be deployed for
new devices (possibly using new interaction techniques) without reprogramming
them. One of the results of the SEESCOA1 [13] project is a common software
platform, using components for embedded systems on a Java Virtual Machine.
Using this specific component-based approach for embedded systems, we can
develop a framework for UIs adapting to the environment and device specific
constraints as well as encourage reuse. The SEESCOA method is a component-
based development approach combined with ideas of contract-based specification
for software objects.

This paper presents our ongoing research on the possibility of creating a
framework that will allow for runtime migratable UIs, which are independent of
the target software platform, the target device and the interaction modalities.
These UIs are merely considered as a presentation of a single service or of more
1 Software Engineering for Embedded Systems using a Component-Oriented

Approach, http://www.cs.kuleuven.ac.be/cwis/research/distrinet/projects/
SEESCOA/



2. DESCRIBING USER INTERFACES FOR EMBEDDED SYSTEMS

functionally grouped services. We try to extend the work presented in [3, 14, 10]
which all focus on how to abstract a UI for a platform- and device-independent
usage. Like work presented in [9, 6, 2], we also use markup languages to describe
UIs. However, our work goes a step further by allowing runtime generation of
UIs using a markup language. These ideas are combined with a component-
based approach allowing the designer to design UIs for particular components,
which can be merged automatically at a later stage. This enables UI designers
to concentrate on what is important for multi-device UIs: how to present the UI
in a structured and logical manner. Unlike approaches like described in [10], we
try to develop a truly distributed component-based approach, without relying
on a client-server architecture.

Throughout the text we will use an example case study: a small camera
surveillance system using 4 cameras. Each camera will be represented by a com-
ponent. It will be possible to combine the four cameras by using a Mosaic com-
ponent. This should make it possible to observe four cameras at the same time.
Each camera has its own properties: some cameras can zoom in and out, other
also allow to change the framerate,. . .

The next section, section 2, takes a look at how UIs for embedded systems
or mobile computing devices can be described with a UI description language.
An overview of related work is provided. Continuing with section 3, we show
how these descriptions can be combined with software components in general,
and SEESCOA components in particular. The case-study is presented in more
detail to show the results of the approach proposed in this paper. In section
4, we consider how using markup languages and a component-based approach
contributes to flexibility, adaptability and migratability of UIs. In particular
attention is given to automatic layout management and multi-modal rendering
possibilities. Finally conclusions with regard to the current work and possible
extensions are formulated in section 6.

2 Describing User Interfaces For Embedded Systems

2.1 Abstracting the User Interface

When designing UIs for embedded systems, we should not take a widget-based
approach, but an interaction- or task-based approach. We should be interested
in how a user can interact with the offered service and how this can be instan-
tiated afterwards using a concrete widget set. This kind of approach is thor-
oughly examined in [11] and is important in particular for embedded devices.
Too much time is spent reinventing UIs for accessing the same services as tech-
nology evolves. One of the major enhancements we envision is the separation of
UI design and low-level programming. Until now, embedded systems program-
mers have a dual task: implementing the actual embedded system and designing
and implementing the UI for this system. The main reason for this way of work-
ing is the required technical knowledge and background of the system to provide
a UI for it. Therefore we use a markup language to describe the UI for embedded
systems and mobile computing devices.

c©2002 Springer-Verlag 2



2. DESCRIBING USER INTERFACES FOR EMBEDDED SYSTEMS

2.2 An XML-Based User Interface description

To describe a UI on a sufficiently abstract level the eXtensible Markup Language
(XML)[5] is used. Listing 1.1 provides an example of how a UI can be described
in XML. There are already several propositions and real world examples of the
usage of XML to describe UIs: [10, 1]. A list of advantages is given in [8]. One of
the major advantages is that XML does not force any level of abstraction, so this
level can be adapted to the requirements of the situation. Note that an XML
document can be presented as a tree which turns out to be a great advantage in
our approach. There are other approaches for describing User Interfaces, but we
believe that an XML-based description offers the best solution in our component-
based approach because of it heavily relies on hierarchical structures.

Listing 1.1. An example XML listing for a camera

<ui>

<title>Login</title>

<group name="videopanel">

<interactor>

<video name="video">

<text>Camera 2 video stream</text>

<mediasource>http://twiki.luc.ac.be/camera:8888</mediasource>

</video>

</interactor>

<interactor>

<range name="zoomrange">

<text>Zoom</text>

<min>-100</min>

<max>100</max>

<start>0</start>

<tick>25</tick>

<action>

<func service="Mosaic.camera2">setZoom</func>

<param name="zoomrange"/>

</action>

</range>

</interactor>

<interactor>

<range name="focusrange">

<text>Focus</text>

...

<action>

<func service="Mosaic.camera2">setFocus</func>

<param name="focusrange"/>

</action>

</range>

</interactor>

<interactor>

<button name="snapshot">

<text>Take snapshot</text>

c©2002 Springer-Verlag 3



2. DESCRIBING USER INTERFACES FOR EMBEDDED SYSTEMS

<action><func service="Mosaic.camera2">saveImage</func></action>

</button>

</interactor>

</group>

</ui>

The example listing (listing 1.1) is not simplified: the UI description is meant
to be human-readable and machine-processable at the same time. The descrip-
tion allows human users to specify the UI on a high level.

On the other hand, the structured and hierarchical approach by using XML
as a notational language to describe the UI allows machines to process and use
these descriptions without human intervention. Our notation uses a range of tags
that are easy to read and understand for humans. In the current stage, a stable
Document Type Definition or XML Schema is not available because we do not
consider our specification to be complete. Nevertheless care has been taken to in-
troduce no ambiguities in the specification and to enable easy migration to other
specification languages, in case a certain XML-based notation for describing UIs
will evolve into a standard.

The following interactors are currently supported by the system: range inter-
actors, single and multiple choice interactors, a text interactor, push interactors
(e.g. a button) and a canvas output interactor (e.g. a video stream). These can
be composed to represent a new interactor with combined functionality. The
available tags are still limited, but a lot of dialog-based UIs can already be im-
plemented using these widgets (e.g. all kinds of web forms). There are two tag
types which are of particular importance: group tags and action tags. The
group tags allow to group objects which have no meaning when they are sep-
arated. An example of this is a “date interactor”: the interactors involved for
filling in a date should not be separated (listing 1.2). Groups can be nested: they
can be hierarchically structured. This enables us to reuse groups of interactors,
and make new composed groups. The action tags allow a user to specify which
action to fire if the interactor (which is the parent node) is manipulated. The
action tag specifies the target (this can be a class name, a server,. . . ) and the
functionality that has to be invoked from this target. It is also possible to specify
parameters and use the names of the interactors or groups for these parameters.
Our system will automatically extract the current content out of the interactor
or group (to which these parameter identifiers point) and pass it to the invoked
functionality. There is no need to indicate the type for the UI designer, the type
checking will be done at runtime. This is advantageous for the level of abstrac-
tion, but demands a detailed exception handling algorithm, and allows little or
no compile-time or design-time checks. Further implementation may be required
to reveal more opportunities to check the validity of the description at design-
or compile-time.

Listing 1.2. A date group

<group name="date">

<interactor>

<range name="day">...</range>

</interactor>

c©2002 Springer-Verlag 4



3. USER INTERFACE DESCRIPTIONS AND COMPONENTS

<interactor>

<range name="month">...</range>

</interactor>

<interactor>

<range name="year">...</range>

</interactor>

</group>

3 User Interface Descriptions and Components

3.1 The SEESCOA Component Framework

Within the SEESCOA1 project a component framework for embedded systems
is being developed. One of our involvements for this project is merging UI de-
sign and component-based development for embedded systems. The component
system is asynchronous and uses the Java programming language as a common
platform. Components communicate by sending asynchronous messages to each
other, and not by using traditional synchronous message calls.

A traditional approach, making a static UI as a layer on a service or a data
layer, has proven to lack flexibility. We consider components as units that contain
logically grouped functionality and data, each living in their own memory space.
They should offer an abstract description of how the service or data offered can
be presented. Think about components as software units offering a particular
service through their interface: their interface is actually a description of their
functionality. It is a natural extension to also allow components to describe what
they want to offer to a human user.

Each component can provide a description expressed in XML of the function-
ality it offers. Alternatively, they also could express in which way they could be
interacted with. This is not true for all components of course (some just offer ba-
sic functionality on a lower level for other components), so only the components
directly interested in human interaction should provide an abstract UI descrip-
tion. When building applications out of components a UI is automatically built:
each component has its UI in the form of an XML description. These XML de-
scriptions can all be seen as subtrees of the final, composed UI description. I.e.
the UI will be automatically composed by connecting the UI descriptions of the
components in to a bigger UI description. Figure 3 shows how this works using
a small example: the Camera Mosaic component which is described in more de-
tail the next section (section 3.3). Each component can contain a description of
their UI: a description of a Camera can be found in 1.3 and of the Mosaic in 1.4.
Figure 3 presents how the descriptions can be combined at runtime to create the
UI out of the components.

Listing 1.3. UI description of a single camera component

<group name="camera2">

<interactor>

<videowidget name="video">...</videowidget>

</interactor>

c©2002 Springer-Verlag 5



3. USER INTERFACE DESCRIPTIONS AND COMPONENTS

<interactor>

<range name="zoomrange"><action>

<func service="Surveillance.Controls">setFocus</func>

<param name="camera2"/>

<param name="zoomrange"/>

</action></range>

</interactor>

<interactor><range name="focusrange">...</range></interactor>

<interactor>

<button name="camera1_onoff"><action>

<func service="Surveillance.Controls">switch</func>

<param name="camera2"/>

<param name="camera1_onoff"/>

</action></button>

</interactor>

</group>

Listing 1.4. UI description of a Mosaic component

<ui>

<title>Camera mosaic</title>

<group name="mosaic">

<group name="camera1">&CAMERA1</group>

<group name="camera2">&CAMERA2</group>

<group name="camera3">&CAMERA3</group>

<group name="camera4">&CAMERA4</group>

</group>

</ui>

Notice this approach allows components to migrate and offer their services
in other places. The UI integrates smoothly in the new system the component
is used on. The component-based approach supports a distributed view on as-
sembling applications out of components and generating their UI: parts of the
UI are allowed to migrate together with the functionality the components offer.
Finally, the UI description can be submitted to a “renderer” component in the
form of an XML document.

3.2 The Rendering Component

As we take a component-based approach for designing UIs for embedded sys-
tems, there is one “basic” component: the UI renderer component. This can be
compared to a web-browser: a description for an interface can be submitted to
the component and it will take care of rendering this description. Nevertheless,
there are some differences: the component can receive a description of a UI and
render it to different kinds of output devices and widget sets. The state of the
UI can be “serialised” back into XML and relocated, which makes the compo-
nent approach suitable for distributed systems or remote UIs. The SEESCOA

c©2002 Springer-Verlag 6



3. USER INTERFACE DESCRIPTIONS AND COMPONENTS

(a) In a browser (b) Java AWT

Fig. 1. Two different views on listing 1.2, both automatically generated

component system takes care of the communication and makes it network trans-
parent. Notice the rendering engine is also embedded in a component, so this
component can also have a UI description of its own functionality. To show its
UI the rendering component can send its UI description to itself.

There are several possible output formats and for each kind of output a differ-
ent rendering component can be supplied. For example: there could be rendering
components for a PDA (e.g. Palm, see figure 5), for Java Swing (suitable for use
on a desktop PC) and a rendering component for speech synthesis. The date
group presented in listing 1.2 is rendered using two different rendering compo-
nents in figure 1: a HTML rendering component and a Java AWT rendering
component. The rendering components are “self-contained”: they do not rely on
other components and are suitable to migrate individually to a particular system
or software platform. Their internal working relies on the same code nevertheless.

3.3 A Case Study: a Camera Surveillance system

To illustrate how components can deliver their own UI description, we developed
an example case study in the context of the SEESCOA project: a surveillance
system. The example surveillance system consists of 4 cameras, each camera is
represented by a component. The system also contains a Mosaic component,
combining the controls for each camera in a combined control. The Mosaic com-
ponent communicates with a rendering component which renders a UI to an
output device. The setup is presented in figure 2. Notice each camera compo-
nent has its own UI description (shown in listing 1.1) presented as an XML
notation. This is shown by the trees attached to the camera components in fig-
ure 2. Each camera may offer different possibilities so they can all have different
UI descriptions (The camera component is a component which abstracts the
hardware and presents a real surveillance camera).

Because of the possibility to specify hierarchical groups, the Mosaic compo-
nent can take the four individual controls and add them as subtrees in a new

c©2002 Springer-Verlag 7



3. USER INTERFACE DESCRIPTIONS AND COMPONENTS

Fig. 2. Component composition example: a simple camera surveillance system

tree. The Mosaic component only needs to add a new root with 4 groups as
the children of the root node. Each control can be attached to a group node
(figure 3, the group nodes are coloured gray). The UI description tree produced
by the Mosaic component is passed to the rendering component and rendered
according to the chosen back-end. This illustrates how combining components
to access their provided functionality in one application automatically results
in a combined UI of these components. Notice several hierarchies can be mixed
if desired: a subtree can be attached to an “open” node on another level in a
new tree. This should be done with care: the chances of illogical and unusable
generated UIs can increase by doing this. Our current system does not link the
several subtrees across hierarchies, so no further support for mixing hierarchies
is provided.

Fig. 3. The Mosaic component combining several UI descriptions

Depending on the target device the UI for the Mosaic component will be
different. Suppose for example we want to access the Mosaic component using
a traditional desktop computer: the rendering component for a desktop PC will
load the available Concrete Interaction Objects (CIOs)[14] and try to map the

c©2002 Springer-Verlag 8



3. USER INTERFACE DESCRIPTIONS AND COMPONENTS

Fig. 4. The Mosaic component on a desktop

Abstract Interaction Objects (AIOs) described in the Mosaic UI description on
a widget set suitable for a desktop machine: figure 4 shows this. If we want to
access the functionality of the Mosaic component using our PDA, the rendering
component for a PDA will do the same thing: load the available CIOs and trying
to map the AIOs on this set of CIOs. This time the rendering component knows
the PDA has limited possibilities, so it adapts the concrete UI to the screen
space constraints. Figure 5 shows the results using a PDA (Palm IIIc). The
focus of this work was not data communication but runtime UI migration, so we
did not spend time investigating effective data communication between devices.
The “videostream” for the PDA was actually implemented by sending separate
down-scaled images to the device over its infrared connection. Of course, this can
be done much more effective using other techniques or means of communication.

3.4 Extending the case study: decomposing tasks

The case study introduced in section 3.3 is a very simple “interaction session”
with a single dialog. We consider an interaction session as the interaction which
happens to complete a subtask, like “select camera” in figure 6 for example.
Most UIs have more than one interaction session: in a dialog-based UI several
dialogs are presented after each other. A design method to take this into account
is required at this stage. The design method should enable the designer to de-
compose tasks hierarchically, and link several interaction sessions to each other

c©2002 Springer-Verlag 9



3. USER INTERFACE DESCRIPTIONS AND COMPONENTS

(a) Pick a camera (b) Observe it

Fig. 5. The Mosaic component on a PDA

in order to achieve the postulated goal. This method should support a device
independent specification of the UI.

To solve this problem, we combine ConcurTaskTree (CTT) [11] with our
component-based description method. One of the advantages of the CTT nota-
tion is that we can extend it to model context-sensitive user tasks as described
in [12]. Characteristics that determine the context of use include the computing
platform, the available interaction devices, available screen space,... When one or
more of these characteristics change, a reconfiguration of the UI may be required
to adapt to the new context of use. [12] proposes a notation to model context-
sensitive user tasks. Their solution consists of a CTT task model with roughly
the following parts: a non-context-sensitive CTT part and context-sensitive parts
depending on some conditions.

The second advantage is the asynchronous nature of the SEESCOA compo-
nent system: CTT allows to describe temporal relations, and includes concurrent
tasks in its notations. A third advantage is the hierarchical structure it offers:
our approach also uses an hierarchical notation to describe the UI in a device
independent manner.

Now suppose a human guard has access to a security system using a regular
workstation or a PDA. Some tasks he can perform on the workstation are not
possible on the PDA. Suppose for example that it’s not possible to observe more
than 1 camera at the same time on the PDA due to the minor screenspace
provided by it. So it depends on the context of use (the device that’s being
used in this case) whether the operator can pick just one or multiple cameras
to observe at a time. Obviously we can say that this is a context-sensitive task.
There are also a couple of non-context-sensitive tasks in this case. The operator
must logon to the system before he can pick cameras. Also he can choose to
stop observing or pick other cameras to observe. While the guard is observing a

c©2002 Springer-Verlag 10



3. USER INTERFACE DESCRIPTIONS AND COMPONENTS

camera (or cameras depending on the context) the other cameras will continue
to record their video streams until the guard logs out again. The enhanced CTT
tree is shown in figure 6.

Fig. 6. ConcurTaskTree diagram: checking for burglars with the camera surveillance
system in a context-sensitive way

While being a good solution for modeling context-sensitive tasks there are two
minor drawbacks to it. The first one is that some subtrees may appear more than
once in the model. For example in figure 6 the subtree Observe Single Camera
appears in the two different contexts of use. [12] solves this by factoring out
these subtrees by placing them in the context-insensitive part of the model. The
second drawback is that we still have to model every possible context of use: for
each device different properties have to be taken into account. In our approach
we try to avoid this by using abstract UI descriptions for an interaction task. A
CTT description can be saved as an XML document, which allows us to attach
our own XML description at the leafs representing an interaction task. These
XML descriptions are actually the composed descriptions of the components
which are used at that moment. A CTT description becomes a way to describe
how we want to interact with a set of given components in a particular stage of
the usage of an application. We gain a model-based approach for designing the
UI, extending the component-based approach for modelling the software itself.
So, instead of using a context-sensitive description as shown in figure 6 we can
accomplish the same thing with a non context-sensitive description as shown in
figure 7. We recognise that these are just the first steps, and the method has not
been tested for a wider range of devices yet. When using totally different ways
of interaction (e.g. not dialog-based), we expect we need context-sensitive parts
as a consequence of particular other ways to complete the subtasks.

c©2002 Springer-Verlag 11



4. FLEXIBLE AND ADAPTABLE USER INTERFACES FOR EMBEDDED
SYSTEMS

Fig. 7. ConcurTaskTree diagram: checking for burglars with the camera surveillance
system

4 Flexible and Adaptable User Interfaces for Embedded
Systems

4.1 Realising a concrete UI

To transform the abstract UI description into a concrete one it has to pass several
stages of processing in our approach:

1. a mapping stage
2. a specialised layout management stage
3. the rendering stage

The UI description, presented as a tree in memory, is passed to a rendering
component, which will initiate the mapping stage: it tries to convert the AIOs
into CIOs [3]. For each available widget set, the mapping choices are implemented
ad hoc: the current implementation does not support user guidance. This is
one of the shortcomings in our approach: we tend to solve this problem in a
following iteration. The mapping stage will convert the abstract UI description
to a “platform specific” description for one or several specific modalities (using
XSLT2 or an agent component).

Once the system has built a concrete representation structure, the actual
screenspace needed for this presentation can be calculated. The mapping stage
already involves some calculations of the weighted values of the AIOs, and the
corresponding space they may require.

The final step is to show the actual UI: this is done by rendering the CIOs
on screen. The widget set used to do the mapping is provided by the target
platform and therefore it defines how to represent the CIOs visually.
2 eXtensible Stylesheet Language Transformations

c©2002 Springer-Verlag 12



5. SUMMARY OF OUR CURRENT RESULTS

4.2 System independent User Interfaces

Every time a new device is used as output device, the specific UI renderer com-
ponent will use the device profile, containing the device constraints and its ad
hoc knowledge of the target system. The renderer changes the UI presentation
according to the defined limitations.

One of the consequences of adapting the UI to new device constraints is the
need for an automatic layout algorithm when GUI rendering is used. When the
UI moves to a new output device, the UI should be laid out in a logical way. One
approach achieving this is by using layout algorithms found in diagram rendering
(like graphs and state-charts). Due to the hierarchical view on the UI, we try
to adopt weighting algorithms especially designed for presenting as hierarchical
data like presented in [4]. Every leaf is given a weight indicating its complexity
(primarily space needs). Recursively every group (i.e. every node that is no leaf)
will get the complexity of its children and is added up with a certain constant
value in complexity weight. This is a simple attempt to automate the layout
algorithm, without taking into account real usability issues which arise when
automating this process.

Our architecture allows each subtree of a UI description tree to use a different
layout algorithm. For example; we use a layout algorithm that allocates space
from left to right in a rectangular space for the first level of subtrees under
the root node. The space is allocated according to the weighted complexity of
each subtree. On the next level, a more complex layout algorithm is used (like a
GridBagLayout in the Java programming language) for each subtree. One of the
advantages of this approach is a better support for fragmented UI (several parts
of the UI are accessible from several devices), multi-modal UIs and dynamically
changing UIs. Currently we are integrating spatial constraints for 2D UI in our
system, so the UI designer can indicate how AIOs should be placed in relation
to each other [7].

5 Summary of our Current Results

Current results include a rendering component, to which an XML document de-
scribing an abstracted UI can be submitted. The renderer maps this description
to an actual widget set and tries to adapt the layout so the UI fits on screen.
When the screen size becomes too small, the renderer will try to split different
parts of the UI and put them behind each other. While doing this, logically
grouped elements will not be split up. These grouping operators are specified
in the abstract UI description: they group user interactions which logically de-
pend on each other. Examples of tested target widget sets are Java AWT, Swing,
kAWT and HTML (web pages).

The SEESCOA Components can be combined in order to make a fully func-
tional application and their UI description can be combined automatically. An
example of this was described using the Camera Mosaic application. This en-
ables User Interfaces to become migratable: first of all their description can be

c©2002 Springer-Verlag 13



6. CONCLUSIONS AND FUTURE WORK

rendered to other output devices and second the UI can accompany the compo-
nent it represents when it is sent to another system. We have only tested the
system with simple UIs, so no conclusions can be made concerning scalability.

6 Conclusions and Future Work

The new component-oriented approach suggested in this paper has several ad-
vantages for developers of embedded systems and mobile computing devices in
particular. It is

Flexible : changing the UI can be done by another renderer component or
letting components provide another UI description;

Reusable : providing a high level description of the UI related to the function-
ality a component offers, allows easier reusability of previously designed UIs
in contrast with hard-coded UIs;

Adaptable : by abstracting the UI, device constraints can be taken into account
when rendering the concrete UI.

Besides these advantages we showed how attaching abstract UI descriptions to
components helps to compose User Interfaces at runtime without intervention
from a programmer. This is especially important when a mobile computing de-
vice has to present a new service that it was not aware of. E.g. a PDA comes
near to a printer and should be able to present the accessible functionality of
this printer. All these advantages make the UIs migratable: they can be easily
transported from one device to another, adapting to new environments.

Future work includes adding alternative output rendering components other
then a 2D screen renderer like speech output and the implementation of context-
sensitive layout algorithms. We acknowledge there is a lack of support for artistic
and aesthetic influences in the creation of the UIs employing the approach we
presented in this paper. It is our intention to look at alternative interaction
methods besides traditional interaction methods. Due to the asynchronous na-
ture of the SEESCOA component system, it is interesting to take time-related
HCI patterns into account.

Although the focus is not on the usability of the UIs, introducing these pat-
terns can help us to ensure a minimal usability. For introducing design-time type
checks an appropriate editor for this is required. Some checks can be done if a
certain amount of information of the application logic is available (the editor
should know which arguments can be handled by what kind of functionality).
An editor for designing the UI descriptions is not available at this moment.

7 Acknowledgements

Our research is partly funded by the Flemish government and EFRO3. The
SEESCOA project IWT 980374 is directly funded by the IWT4. The Vrije Uni-
3 European Fund for Regional Development
4 Flemish subsidy organization

c©2002 Springer-Verlag 14



7. ACKNOWLEDGEMENTS

versiteit Brussel (Programming Lab) and Katholieke Universiteit Leuven (Dis-
trinet) have created the SEESCOA component system.

References

1. Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal, Stephen M.
Williams, and Jonathan E. Shuster. UIML: An Appliance-Independent XML
User Interface Language. World Wide Web, http://www8.org/w8-papers/

5b-hypertext-media/uiml/uiml.html, 1998.
2. Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal, Stephen M.

Williams, and Jonathan E. Shuster. UIML: An appliance-independent XML user
interface language. WWW8 / Computer Networks, 31(11-16):1695–1708, 1999.

3. Jacob Eisenstein, Jean Vanderdonckt, and Angel Puerta. Applying Model-Based
Techniques to the Development of UIs for Mobile Computers. In IUI 2001 Inter-
national Conference on Intelligent User Interfaces, pages 69–76, 2001.

4. David Harel and Gregory Yashchin. An Algorithm for Blob Hierarchy Layout.
In Proceedings of the Working Conference on Advanced Visual Interfaces, pages
29–40, May 2000.

5. Elliotte Rusty Harold. XML; Extensible Markup Language, Structuring Complex
Content for the Web. IDG Books Worldwide, 1998.

6. IBM Corporation. MoDAL (Mobile Document Application Language). World Wide
Web, http://www.almaden.ibm.com/cs/TSpaces/MoDAL/.

7. Simon Lok and Steven Feiner. A Survey of Automated Layout Techniques for
Information Presentations. In Proceedings of SmartGraphics 2001, March 2001.

8. Kris Luyten and Karin Coninx. An XML-based runtime user interface description
language for mobile computing devices. In Proceedings of the Eight Workshop of
Design, Specification and Verification of Interactive Systems, pages 17–29, June
2001.

9. Andreas Mülller, Peter Forbrig, and Clemens Cap. Model-Based User Interface
Design Using Markup Concepts. In Proceedings of the Eight Workshop of Design,
Specification and Verification of Interactive Systems, pages 30–39, June 2001.

10. Dan R. Olsen, Sean Jefferies, Travis Nielsen, William Moyes, and Paul Fredrickson.
Cross-modal interaction using XWeb. In Proceedings of the 13th Annual Sympo-
sium on User Interface Software and Technology (UIST-00), pages 191–200, N.Y.,
November 5–8 2000. ACM Press.

11. Fabio Paternò. Model-Based Design and Evaluation of Interactive Applications.
Springer, 2000.

12. Costin Pribeanu, Quentin Limbourg, and Jean Vanderdonckt. Task Modelling for
Context-Sensitive User Interfaces. In Proceedings of the Eight Workshop of Design,
Specification and Verification of Interactive Systems, pages 60–76, June 2001.

13. David Urting, Stefan Van Baelen, Tom Holvoet, and Yolande Berbers. Embedded
Software Development: Components and Contracts. In Proceedings of the IASTED
International Conference Parallel and Distributed Computing and Systems, pages
685–690, 2001.

14. J. Vanderdonckt and F. Bodart. Encapsulating knowledge for intelligent automatic
interaction objects selection. In ACM Conference on Human Aspects in Computing
Systems InterCHI’93, pages 424–429. Addison Wesley, 1993.

c©2002 Springer-Verlag 15


