
SPECIFYING USER INTERFACES FOR RUNTIME
MODAL INDEPENDENT MIGRATION

Kris Luyten, Tom Van Laerhoven, Karin Coninx, Frank Van Reeth
{kris.luyten, tom.vanlaerhoven, karin.coninx, frank.vanreeth}@luc.ac.be

Expertisecentrum Digitale Media
Limburgs Universitair Centrum
Wetenschapspark 2
B-3590 Diepenbeek-Belgium

Abstract The usage of computing systems has evolved dramatically over the last
years. Starting from a low level procedural usage, in which a process
for executing one or several tasks is carried out, computers now tend
to be used in a problem oriented way. Future computer usage will be
more centered around particular services, and will not be focused on
platforms or applications. These services should be independent of the
technology used to interact with them. In this paper an approach will
be presented which provides a uniform interface to such services, with-
out any dependence on modality, platform or programming language.
Through the usage of general user interface descriptions, presented in
XML, and converted using XSLT, a uniform framework is presented for
runtime migration of user interfaces. As a consequence, future services
will become easily extensible for all kinds of devices and modalities.
An implementation serving as a proof of concept, a runtime conversion
of a joystick in a 3D virtual environment into a 2D dialog-based user
interface, is developed.

1. Introduction
Nowadays new computing devices are introduced into the market at

a very high rate. A lot of these devices with their own properties and
constraints are capable of delivering specialized services. As the tech-
nology evolves, more devices will become available with a more general
purpose (e.g. Palm) and less constraints. This equipment is capable of
presenting different kinds of services which are available in their envi-
ronment. One possible service is the usage of a mobile computing device
as a remote control.

1

2

A transition from an application-oriented view on computing towards
a service-oriented view is expected. The last couple of years it has been
observed that this approach is not feasible without a reliable frame-
work to support it. This framework should be able to offer support for
device-independent migration of services and the user interfaces for these
services. It should enable us to create services in a device-independent
way, offering the supporting devices the choice of how to present these
services. Also, the framework should consider future extensions with
new kinds of interaction methods and new possibilities in network com-
munication, memory capacity, processing speed, etc.

This paper presents our ongoing research on the possibility of creating
such a framework that will allow for runtime migratable user interfaces,
which are independent of the target software platform, the target de-
vice and the interaction modalities. These user interfaces are merely
considered as a presentation of a single service or of more functionally
grouped services. We try to extend the work presented in [5, 18, 14]
which all focus on how to abstract a user interface for a platform- and
device-independent usage. At the same time we try to use the work
presented in [13, 7, 1] using markup languages to describe the user in-
terface with the significant difference with our approach that we want
the given markup language to describe the user interface to be generated
at runtime.

The next section takes a look at how a user interface can be serialized
in a user interface description language at runtime. Then we convert this
description in a high level description of the user interface, which com-
plies with some rules. In a following paragraph, we consider a possibility
for serializing the services and the context these services operate in. An
implementation serving as a proof of concept is presented, and finally
conclusions with regard to the current work and possible extensions are
formulated.

2. Runtime Generated Specification of the
Interface

The concept of a runtime generated user interface description has been
introduced in [10]. At runtime a user interface description is generated
by means of XML (eXtensible Markup Language) [2] as a description
language. The XML description provides an abstraction of the user
interface using Abstract Interaction Objects (AIO) which can be mapped
onto Concrete Interaction Objects (CIO) [18]. A more practical view
is shown in figure 1. Notice the similarities with Model-based design
[15, 16]; the most high-level abstraction of the user interface is a group

Specifying user interfaces for runtime modal independent migration 3

Figure 1. A migrating User Interface

of tasks. Our work does not aim to extract a Task-based description
of the User Interface but merely tries to abstract the “contents” of the
user interface, not the presentation. Although we acknowledge the idea
of splitting the interface model into a User-task model, a domain model,
a user model, a presentation model and a dialog model [16] for getting
a better mapping of AIO’s on CIO’s, we do not consider it to be useful
when focusing on runtime migration of existing user interfaces.

A working user interface is “serialized” into an XML description at
runtime and this description can be transported to another system using
for example the Internet or an infrared communication protocol. Once
arrived at the target system the XML document can be parsed and con-
verted in a working user interface (“deserialized”). An advantage of this
approach can be found in the abstraction of the original user interface
that the XML document provides. While parsing the XML document
that contains an abstraction of the user interface, the renderer of the
target platform is free to choose other ways to present the same func-
tionality in the user interface. Much current research is being conducted
on how XML is best structured and used to describe such interfaces.
More information about other approaches and techniques can be found
in [13, 11, 1, 4, 14]. The most advantageous properties of XML for
describing a user interface are enumerated in [10].

The feasibility of this approach depends on how easily an XML de-
scription can be generated for a user interface of a working service. For
example: when a user interface is written in the programming language
Java, it is fairly easy to generate an XML description for this user in-
terface at runtime, even if this possibility was not considered while pro-
gramming the user interface. Using the reflection mechanism, which
allows us to interrogate a Java program about its properties at runtime,
an XML description of this structure, and more specific of its user in-
terface, can be generated. Another advantage of this approach is the
reusability of existing Java user interfaces which can be incorporated in
new systems using new technologies. This should reduce the time-to-

4

market for new versions of systems and reduce the need for reinventing
the same user interface over and over again while making use of new
technologies.

Unfortunately it is hard or even impossible to add a description of
the context the user interface is working in at runtime (see section 4
for a more comprehensive explanation). A description of the services
it offers should be provided. Those programming languages which do
not support a reflection mechanism should provide a framework for the
serialization of the user interface in XML at runtime. Section 5.1 shows
such a framework currently under development for virtual environments.

3. Abstracting the User Interface Description
To allow the user interface to adapt to the constraints of the target

system it is important to provide an abstraction of the original user
interface. When the user interface description is generated at runtime by
the service it is likely to contain system specific elements. To make sure
the XML description is sufficiently general the user interface should be
abstracted so it becomes independent of how the interaction takes place
with the interface. This allows for changes in the interaction modality
without a large effort. A great deal of plasticity [17] is gained, allowing
us to use system specific data to adapt the user interface to the new
constraints.

As an abstraction of the user interface we have defined a DTD [2].
This DTD restricts the possible elements and ordering used in the XML
document. Our current DTD is inspired by [13] and enriched by a subset
of interactors like the ones presented in [18]. We are planning to replace
it with an equivalent XML Schema [3] as soon as there are more mature
tools available to use this. The DTD we use to describe the high level
user interface description can be found in figure 3. The transformation
of the original user interface description into a higher level description is
realized using the XSLT. Every system or user interface toolkit has to de-
fine a conversion providing the appropriate XSLT. Once the higher level
description is produced a system specific XML document for the target
system has to be produced. For every system a XSLT is defined which
maps the AIOs defined in the abstract user interface description to CIOs
for that particular system. An overview of this process is given in figure
2. Closely related work can be found in AUIML of IBM [12]. However
the following difference is to be noticed: in contrast with AUIML our
work is mainly focused on runtime migration and adaptation of the user
interfaces.

Specifying user interfaces for runtime modal independent migration 5

Figure 2. User interface migration

<?xml version="1.0"?>

<!ELEMENT interface (aio*)>

<!ELEMENT aio (aio | (input?,output?))+>

<!ATTLIST aio name CDATA #IMPLIED

type CDATA #REQUIRED>

<!ELEMENT input ((input_trigger | input_1-n |

input_string | input_date | ...), Icontext)>

<!ATTLIST input name CDATA #REQUIRED>

<!ELEMENT input_trigger (EMPTY)>

<!ATTLIST input_trigger service_name CDATA #REQUIRED>

<!ELEMENT input_1-n (EMPTY)>

<!ATTLIST input_1-n range_min CDATA #IMPLIED

range_max CDATA #IMPLIED

range_interval CDATA #IMPLIED

list_n CDATA #IMPLIED>

...

<!ELEMENT output ((output_1-n | output_string | ...), Ocontext)>

<!ATTLIST output name CDATA #REQUIRED>

Figure 3. The DTD for the abstract user interface description

6

4. Runtime Specification of the Services
In the previous sections we did not consider how a user interface

can be serialized at runtime, taking into account only the structure of
the user interface but not the services it represents. When serializing
a user interface at runtime for migration the services these interfaces
offer should be accessible through the migrated user interface. On a
lower level two different methods give access to the services. Allowing
the services (the actual functionality), which are accessed through the
interface, to migrate together with the user interface is a first possibility.
A second possibility is accessing the services remotely. In this context
the user interface actually serves as a remote control to interact with
the service it presents. The former can be a reliable approach if the
functionality of the service is limited or does not involve a large quantity
of data. The latter can be better if the service implies a large and
complex application. Another important aspect to take into account is
the possible delay, depending on the communication medium. Unlike
the user interface, which is entirely migrated, this is not always the case
with the services the user interface presents.

To make more reasonable decisions on how the user interface can be
represented on different systems we feel a need to include the context
the interface objects are working in. A context can be defined at several
levels: on the lowest level, where some interaction objects are grouped
together because they do not have a full meaning on their own. On
higher levels, where a context can be hierarchically composed of several
other contexts. The context can be divided roughly in two parts: a
context for retrieving input and a context for expressing output through
the user interface. This enables us to group several AIOs together which
have a specific task in common together. For example; consider a 2D
user interface for filling in the date composed out of three drop-down
boxes. One interactor for the day, another one for the month and one
for the year. These three interactors are only meaningful when used in
group, otherwise they can not accomplish their original goal: retrieving
a date from the operator. When dealing with runtime serialization of
the user interface it is very important to remember the context a group
of AIOs is working in, so they can be grouped in the same context when
they are deserialized. A part of the DTD for describing the context can
be found in figure 4.

Specifying user interfaces for runtime modal independent migration 7

...

<!ELEMENT Icontext (Icontext_value)+>

<!ATTLIST Icontext name CDATA #IMPLIED>

<!ELEMENT Ocontext (Ocontext_value)+>

<!ATTLIST Ocontext name CDATA #IMPLIED>

<!ELEMENT Icontext_value (#PCDATA | aio | Icontext_value+ | Ocontext)>

<!ELEMENT Ocontext_value (#PCDATA | aio | Ocontext_value+ | Icontext)>

...

Figure 4. DTD rules for describing a context

5. Transforming Modalities

5.1 Description of the Case Study
As a proof of concept we will show how the control for a surveillance

camera, presented by a joystick in a virtual environment, can be serial-
ized in XML, processed with XSLT [8], and then deserialized into a 2D
control using a Palm device. An operator can change the orientation of
the camera in two degrees of freedom: up/down and left/right. The op-
erator must confirm the new orientation with some kind of trigger so the
surveillance camera becomes locked in that orientation. This means the
input is a position in 2D space with on one axis the vertical orientation
and on the other axis the horizontal orientation.

5.2 Description of the Original System
A highly extensible framework for the creation of simulations in a 3D

environment has been developed by one of the authors. This framework
is used to create a virtual world containing a representation of a con-
trol to manipulate a surveillance camera. This control is modeled as a
virtual joystick with two buttons providing the user the ability to ma-
nipulate the camera. A representation of this joystick is given in figure
5. Objects in the environment consist of a collection of modules describ-
ing their properties such as shape, state and interactive abilities. The
implementation of each of these properties exists in separate modules,
which are plugged into the framework. The same modules also provide
XML serialization and deserialization.

The virtual joystick is divided into separate components which in
turn can be divided into other components describing its properties. In
this case, the lower button consists of a polygon mesh describing its
shape, a state module describing its position and orientation, and an
interaction module that ensures it the interactive ability to be triggered.
Communication between the modules is realised by means of commands,
which can also be serialized and deserialized. The button on top of the

8

Figure 5. A joystick in a virtual environ-
ment

Figure 6. 2D user interface on a Palm
device

joystick is modeled in the same way. The handle however requires a
different approach. It needs an interaction component that expresses
the fact that its container, the handle itself, can give two-dimensional
input.

Our framework can serialize this interface in accordance with the XGL
[6] specification, a file format designed to capture all 3D information from
a system that uses the SGI’s OpenGL rendering library. Unfortunately,
a DTD for this specification does not exist. The XGL specifications
describe their content models by mentioning which elements are required
and which are optional, leaving the sequence to the programmer’s choice.
Defining a content model allowing this kind of freedom, and at the same
time expressing the frequency of the elements, is not possible using a
DTD. Fortunately, the very few XGL generating applications available
seem to agree to some kind of sequence. This is the sequence found in
our DTD which is publicly available at http://lumumba.luc.ac.be/
tom/xgl/.

The resulting XML document that describes a joystick in a 3D world
is shown in figure 7. We have limited the example by only depicting the
interesting parts of this description.

5.3 Description of the Target System
Our target system is a 2D Java user interface for a Palm device. The

user interface operates as a remote control for changing the orientation
of a surveillance camera. The description consists of the hierarchy of
Java AWT objects which represent the user interface. A subset of Java
AWT is used because this Java user interface toolkit is supported by the

Specifying user interfaces for runtime modal independent migration 9

<component type="object" name="button">

<component type="shape" subtype="tripolymesh">

<mesh><!-- XGL specific code here --></mesh>

</component>

<component type="interaction" subtype="trigger"/>

<component type="state" subtype="rigidbody">

<transform><!-- XGL specific code here --></transform>

</component>

</component>

Figure 7. XML document describing part of the joystick

<Component CLASS="VideoControl">

<Properties>

<Property NAME="Apply">

<Component CLASS="java.awt.Button">

<Property NAME="label">Apply</Property>

...

</Component>

</Property>

<Property Name="HorizontalSlider">

...

</Component>

Figure 8. XML document describing a Java user interface for the Palm

Palm device. The XML document describing the user interface (figure
6) is presented in figure 8. This description is obtained by applying the
XSLT in figure 9 (only the interesting parts are shown). The XSLT
document knows about the constraints the Palm device is subject to,
and which the available interaction methods are. The parts of the user
interface that cannot be converted, or where too little information is
available, could be adapted by a platform specific agent which works on
the target XML document for further optimization of the presentation
of the AIOs.

5.4 A General View on the Migration Process
From the original serialized XML document (figure 7) an XML do-

cument compliant with the DTD in figure 3 should be generated. Each
system provides its own XSLT to initiate the conversion. The XSLT
document “generalizes” the concrete user interface which was described
in the XML document of the original user interface.

Once the high level user interface description is obtained the con-
version for the target platform can be initiated. Applying the XSLT
document on the high level XML document results in a platform spe-
cific user interface description. The XSLT makes sure the AIOs will be

10

...

<xsl:template match="interface">

<xsl:element name="component">

<xsl:attribute name="CLASS">java.awt.Frame</xsl:attribute>

<xsl:attribute name="NAME"><xsl:value-of select="@name"/></xsl:attribute>

<xsl:apply-templates/>

</xsl:element>

</xsl:template>

<xsl:template match="aio">

<xsl:choose>

<xsl:when test="@type=’group’">

<xsl:call-template name="grouppanel"/>

</xsl:when>

...

</xsl:choose>

</xsl:template>

<xsl:template name="push_interact">

<xsl:element name="Component">

<xsl:attribute name="CLASS">java.awt.Button</xsl:attribute>

<xsl:attribute name="NAME"><xsl:value-of select="@name"/></xsl:attribute>

<xsl:element name="Properties">

<xsl:element name="Property">

<xsl:attribute name="NAME">label</xsl:attribute>

<xsl:value-of select="@name"/>

...

Figure 9. XSLT document for obtaining a Palm user interface

mapped on platform specific CIOs, grouping them in a specific context
for interaction. Whether the services this user interface represents are
invoked remotely or locally is not taken into account here. This should
remain transparent for the user whenever possible.

6. Conclusions and Future Work
In this paper we presented the use of a runtime generated user in-

terface description for presenting services on different kind of systems.
The user interface description is expressed in XML and we use XSLT to
process these descriptions. In a first stage the user interface description
is abstracted while the second stage requires the high level user interface
to be mapped on a specific GUI toolkit.

We believe the ability to generate a high level user interface descrip-
tion of a service at runtime is a step closer to offering services indepen-
dent of the system which is used. When the user interface description
provides enough information and an abstraction of a sufficiently high
level, a user interface becomes almost modeless and switching between
modalities can be done automatically. Since a fully automatic conver-

Specifying user interfaces for runtime modal independent migration 11

sion of all kinds of user interfaces is unlikely to be successful, a semi-
automatic approach is preferred. In the case we have examined here we
have shown this approach is feasible and that it provides many oppor-
tunities to add extreme extensibility to future user interfaces. One of
the consequences is the possibility to adapt a user interface to the target
device’s constraints. This can be done without forcing the user interface
designer to make separate designs for each system. It is even possible to
make a user interface for a particular system without considering other,
alternative systems with other constraints. This user interface will still
be able to migrate to the other systems, adapting to the device’s con-
straints. The context description, explained in section 4, can contribute
to a partial solution to overcome this problem.

Future work includes a further generalization of the conversion mecha-
nisms and adding user profiling and device constraints to the conversion
process. Also, there is a lack of support to describe how several interactor
objects are grouped and need each others data to use certain function-
ality. A framework which enables the remote communication or even
the migration of services, represented by the migrated user interfaces, is
necessary. To make sure that the migrated user interface stays usable
when deserialized and that it has the same usability characteristics as
the original user interface usability testing would be recommended.

Acknowledgments
Our research is partly funded by the Flemish government and EFRO

(European Fund for Regional Development). The SEESCOA1 project
IWT 980374 is directly funded by the IWT (Flemish subsidy organiza-
tion).

Notes
1. Software Engineering for Embedded Systems using a Component-Oriented Approach,

http://www.cs.kuleven.ac.be/cwis/research/distrinet/projects/SEESCOA/

References

[1] Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal, Stephen M.
Williams, and Jonathan E. Shuster. UIML: An appliance-independent XML
user interface language. WWW8 / Computer Networks, 31(11-16):1695–1708,
1999.

[2] World Wide Web consortium. Extensible Markup Language (XML). World Wide
Web, http://www.w3.org/XML/, 2001.

[3] World Wide Web consortium. XML Schema. World Wide Web, http://www.
w3.org/XML/Schema, 2001.

12

[4] danm@netscape.com. Introduction to a XUL Document. World Wide Web,
http://www.mozilla.org/xpfe/index.html, october 1999.

[5] Jacob Eisenstein, Jean Vanderdonckt, and Angel Puerta. Applying Model-Based
Techniques to the Development of UIs for Mobile Computers. In IUI 2001
International Conference on Intelligent User Interfaces, pages 69–76, 2001.

[6] XGL Working Group. XGL File Format Specification. World Wide Web, http:
//www.xglspec.org/, 2001.

[7] IBM Corporation. MoDAL (Mobile Document Application Language). World
Wide Web, http://www.almaden.ibm.com/cs/TSpaces/MoDAL/.

[8] Michael Kay. XSLT Programmer’s Reference, 2nd Edition. Wrox Press, 2001.

[9] Thierry Kormann. The Koala User Interface Language. World Wide Web,
http://www-sop.inria.fr/koala/kuil/, 2000.

[10] Kris Luyten and Karin Coninx. An XML-based runtime user interface descrip-
tion language for mobile computing devices. In Chris Johnson, editor, DSV-IS,
volume 2220 of Lecture Notes in Computer Science, pages 1–15. Springer, June
2001.

[11] Kris Luyten, Karin Coninx, Jan Van den Bergh, and Jos Segers. Software engi-
neering for embedded systems using a component oriented approach; deliverable
4.2: Implementation of a component based user interface, seescoa confidential.
Technical report, Expertisecentrum Digitale Media; Limburgs Universitair Cen-
trum, 2001.

[12] Roland A. Merrick. Device Independent User Interfaces in XML. BelCHI Kick-
off meeting, 2001. http://www.belchi.be/event.htm.

[13] Andreas Mülller, Peter Forbrig, and Clemens Cap. Model-Based User Interface
Design Using Markup Concepts. In Proceedings of the Eight Workshop of Design,
Specification and Verification of Interactive Systems, pages 30–39, June 2001.

[14] Dan R. Olsen, Sean Jefferies, Travis Nielsen, William Moyes, and Paul Fredrick-
son. Cross-modal interaction using XWeb. In Proceedings of the 13th Annual
Symposium on User Interface Software and Technology (UIST-00), pages 191–
200, N.Y., November 5–8 2000. ACM Press.

[15] Fabio Paterno. Model-Based Design and Evaluation of Interactive Applications.
Springer, 2000.

[16] Angel Puerta and Jacob Eisenstein. Towards a general computational frame-
work for model-based interface development systems. In Mark Maybury, editor,
Proceedings of the 1999 International Conference on Intelligent User Interfaces
(IUI-99), pages 171–180, N.Y., January 5–8 1999. M Press.

[17] David Thevenin and Joelle Coutaz. Adaptation and Plasticity of User Interfaces.
In Workshop on Adaptive Design of Interactive Multimedia Presentations for
Mobile Users, 1999.

[18] J. Vanderdonckt and F. Bodart. Encapsulating knowledge for intelligent auto-
matic interaction objects selection. In ACM Conference on Human Aspects in
Computing Systems InterCHI’93, pages 424–429. Addison Wesley, 1993.

