NAC 2007 Spring Conference
OASIS XACML Update

Hal Lockhart
Office of the CTO
BEA Systems
hlockhart@bea.com
Hal Lockhart

- Senior Principal Technologist, OCTO
- Co-chair XACML TC, SAML TC
- Co-chair OASIS TAB
- Vice Chair WS-I Basic Security Profile
- Also Member:
 - Provisioning TC, Digital Signature Services TC, Web Services Secure Exchange (WS-SX), WS-I Reliable Secure Profile WG
- OASIS Coordinator for WSS Interop Demo, OASIS XACML Interop Demo
Topics

- Overview of Policy and Authorization
- XACML Overview
- XACML Concepts
- Policy Evaluation
- XACML Profiles
- XACML 3.0
- XACML Interop Demo
Information Security Definition

Technologies and procedures intended to implement organizational policy in spite of human efforts to the contrary.

- Suggested by Authorization
- Applies to all security services
- Protection against accidents is incidental
- Suggests four areas of attention
Information Security Areas

- Policy determination
 - Expression: code, permissions, ACLs, Language
 - Evaluation: semantics, architecture, performance

- Policy enforcement
 - Maintain integrity of Trusted Computing Base (TCB)
 - Enforce variable policy
Infrastructural Service

- Consistent enforcement of security policies
- Minimize user inconvenience
- Ensure seamless implementation
 - Coherent, interdependent services
 - Not just list of products
- Avoid reimplementation
- Simplify management and administration
Authorization Theory

- Credentials Collector
- Authentication Authority
- Attribute Authority
- Policy Decision Point

- System Entity
- Application Request
- Policy Enforcement Point

- Credentials
- Policy
- Credentials Assertion
- Authentication Assertion
- Policy
- Attribute Assertion
- Policy
- Authorization Decision Assertion

- Enforcement Point
- System Entity
- Application Request
- Policy Enforcement Point
Types of Authorization Info – 1

- **Attribute Assertion**
 - Properties of a system entity (typically a person)
 - Relatively abstract – business context
 - Same attribute used in multiple resource decisions
 - Examples: X.509 Attribute Certificate, SAML Attribute Statement, XrML PossessProperty

- **Authorization Policy**
 - Specifies all the conditions required for access
 - Specifies the detailed resources and actions (rights)
 - Can apply to multiple subjects, resources, times…
 - Examples: XACML Policy, XrML License, X.509 Policy Certificate
Types of Authorization Info – 2

- AuthZ Decision
 - Expresses the result of a policy decision
 - Specifies a particular access that is allowed
 - Intended for immediate use
 - Example: SAML AuthZ Decision Statement, IETF COPS
Implications of this Model

- **Benefits**
 - Improved scalability
 - Separation of concerns
 - Enables federation

- **Distinctions not absolute**
 - Attributes can seem like rights
 - A policy may apply to one principal, resource
 - Systems with a single construct tend to evolve to treating principal or resource as abstraction
OASIS XACML History

- First Meeting – 21 May 2001
- XACML 1.0 - OASIS Standard – 6 February 2003
- XACML 1.1 – Committee Specification – 7 August 2003
- XACML 2.0 – OASIS Standard – 1 February 2005
- XACML 2.0 – ITU/T Recommendation X.1142
Define a core XML schema for representing authorization and entitlement policies

Target - any object - referenced using XML

Fine grained control, characteristics - access requestor, protocol, classes of activities, and content introspection

Consistent with and building upon SAML
Policy Examples

- “Anyone can use web servers with the ‘spare’ property between 12:00 AM and 4:00 AM”
- “Salespeople can create orders, but if the total cost is greater that $1M, a supervisor must approve”
- “Anyone view their own 401K information, but nobody else’s”
- “The print formatting service can access printers and temporary storage on behalf of any user with the print attribute”
- “The primary physician can have any of her patients’ medical records sent to a specialist in the same practice.”
XACML Objectives

- Ability to locate policies in distributed environment
- Ability to federate administration of policies about the same resource
- Base decisions on wide range of inputs
 - Multiple subjects, resource properties
- Decision expressions of unlimited complexity
- Ability to do policy-based delegation
- Usable in many different environments
 - Types of Resources, Subjects, Actions
 - Policy location and combination
General Characteristics

- Expect it to be generated by programs
- Defined using XML Schema
- Strongly typed language
- Extensible in multiple dimensions
- Borrows from many other specifications
- Features requiring XPath are optional
- Obligation feature optional
- Language is very “wordy”
 - Many long URLs
- Complex enough that there is more than one way to do most things
Novel XACML Features

- Large Scale Environment
 - Subjects, Resources, Attributes, etc. not necessarily exist or be known at Policy Creation time
 - Multiple Administrators - potentially conflicting policy results
 - Combining algorithms

- Request centric
 - Use any information available at access request time
 - Zero, one or more Subjects
 - No invented concepts (privilege, role, etc.)

- Dynamically bound to request
 - Not limited to Resource binding
 - Only tell what policies apply in context of Request
 - Two stage evaluation
XACML Concepts

- Request and Response Contexts – Input and Output
- Policy & PolicySet – combining of applicable policies using CombiningAlgorithm
- Target – Rapidly index to find applicable Policies or Rules
- Conditions – Complex boolean expression with many operands, arithmetic & string functions
- Effect – “Permit” or “Deny”
- Obligations – Other required actions
- Bag – unordered list which may contain duplicates
XACML Concepts
Rules

- Smallest unit of administration, cannot be evaluated alone

- Elements
 - Description – documentation
 - Target – select applicable policies
 - Condition – boolean decision function
 - Effect – either “Permit” or “Deny”

- Results
 - If condition is true, return Effect value
 - If not, return NotApplicable
 - If error or missing data return Indeterminate
 - Plus status code
Target

- Designed to efficiently find the policies that apply to a request
- Enables dynamic binding
- Makes it feasible to have very complex Conditions
- Attributes of Subjects, Resources, Actions and Environments
- Matches against value, using match function
 - Regular expression
 - RFC822 (email) name
 - X.500 name
 - User defined
- Attributes specified by Id or XPath expression
- Normally use Subject or Resource, not both
Condition

- Boolean function to decide if Effect applies
- Inputs come from Request Context
- Values can be primitive, complex or bags
- Can be specified by id or XPath expression
- Fourteen primitive types
- Rich array of typed functions defined
- Functions for dealing with bags
- Order of evaluation unspecified
- Allowed to quit when result is known
- Side effects not permitted
Datatypes

- From XML Schema
 - String, boolean
 - Integer, double
 - Time, date
 - dateTime
 - anyURI
 - hexBinary
 - base64Binary

- From Xquery
 - dayTimeDuration
 - yearMonthDuration

- Unique to XACML
 - rfc822Name
 - x500Name
Functions

- Equality predicates
- Arithmetic functions
- String conversion functions
- Numeric type conversion functions
- Logical functions
- Arithmetic comparison functions
- Date and time arithmetic functions
- Non-numeric comparison functions
- Bag functions
- Set functions
- Higher-order bag functions
- Special match functions
- XPath-based functions
- Extension functions and primitive types
Policies and Policy Sets

- **Policy**
 - Smallest element PDP can evaluate
 - Contains: Description, Defaults, Target, Rules, Obligations, Rule Combining Algorithm

- **Policy Set**
 - Allows Policies and Policy Sets to be combined
 - Use not required
 - Contains: Description, Defaults, Target, Policies, Policy Sets, Policy References, Policy Set References, Obligations, Policy Combining Algorithm

- Combining Algorithms: Deny-overrides, Permit-overrides, First-applicable, Only-one-applicable
Request and Response Context

- Domain-specific inputs
- xacml Context/Request.xml
- PDP
- xacml Context/Response.xml
- Domain-specific outputs

xacml Policy.xml
XACML 2.0 Profiles

- Digital Signature
 - Integrity protection of Policies
- Hierarchical Resources
 - Using XACML to protect files, directory entries, web pages
- Privacy
 - Determine “purpose” of access
- RBAC
 - Support ANSI RBAC Profile with XACML
- SAML Integration
 - XACML-based decision request
 - Fetch applicable policies
 - Attribute alignment
XACML 2.0 Uses SAML Features
XACML Performance

- Some public comments based on ignorance
- Many optimization opportunities
 - Policy encoding
 - Request context
 - Partial evaluation
 - Decision Caching
 - Precomputed admin chaining
- Complex policies cost more to evaluate than simple
 - But is the difference more significant than other factors?
Current Work - XACML 3.0

- Administration/Delegation
- Schema generalization
- WS-XACML
- Obligation combining rules
- Policy provisioning
- Metadata/vocabulary advertisement
- Closely coupled PDP/PEP
Delegation with XACML 2.0

- Use of Intermediary Subject Category
 - Print Format Service can read any file a user wants printed, but not otherwise
 - Access Subject + Intermediary Subject
- Delegation by modifying attributes
 - User can enable family member’s access
 - Policy protects subject repository
- Policies protecting each policy repository
Administration/Delegation

- Two primary use cases
 - “HR-Admins can create policies concerning the Payroll servers”
 - “Jack can approve expenses while Mary is on vacation”
- Backward compatible
- Likely to define two compliance levels
- Policies can contain Issuer
- Policies can be Access or Admin
- Admin policies enable policy creation
Administration/Delegation

- Situation – all information values used as policy inputs
- If policy issued by trusted issuer – use
- If not, look for Admin policy for Issuer covering current Situation
- Chain back to Trusted Issuer
- Actual processing is complex, because of interplay with policy combining
Other 3.0 Work

- Schema generalization
 - Improve extensibility
- WS-XACML
 - Builds on WS-Security Policy – more fine grained
 - Good for privacy policies
- Obligation combining rules
 - XACML 2.0 accumulates all Obligations
 - Characterize Obligation types – enable different treatments
- Policy provisioning
 - From repository distribute distinct policy subsets
XACML Interop Demo

- Burton Catalyst Conference
 - San Francisco, June 25-29, 2007
- Tentative participants
 - BEA, IBM, Jericho Systems, Oracle, Redhat, Securent, Symlabs
- Approach under discussion
 - Two Usecases (Policy Exchange, Decision)
 - Four Stock Trading Scenarios
- Weekly concalls
Policy Exchange Scenario

PAP

Repository

PDP

Policy

Policy

Policy

Policy
Decision Request Scenario

PEP → PDP

← PDP → PEP
Interop Challenges

- Minimize extraneous components
- Agree on items unspecified by XACML
- Motivating business cases
- Present understandable demo
- Repeatable scenarios
- Human error
- Opportunity for ad hoc variants
Questions?