
AMF Format v0.8 7/16/2009
 Page 1 of 16

Attribute Manifest File, v0.8
July 16, 2009

Contributors
Hal Lockhart, Oracle Corporation
Anil Tappetla, Cisco

0.1 Hal Lockhart Initial Draft

0.2 Hal Lockhart Added <Field> element
Added various sections

0.5 Hal Lockhart Add Contributor list
Add <Scopes> element
Split <Key> into <KeyXACMLName> and
<KeyRepositoryName>
Allow multiple instances of Key
Add examples in section 4

0.8 Hal Lockhart Formatting for OASIS Contribution

AMF Format v0.8 7/16/2009
 Page 2 of 16

AMF Format v0.8 7/16/2009
 Page 3 of 16

1 Introduction

This document defines a format, called an Attribute manifest File (AMF), for communicating
metadata about information, in the form of attributes which may be used in making access control
policy decisions. It specifies an XML format for exchanging this data. It describes several
usecases in which this data might be consumed. It also suggests how the data might be
generated. However, it does not specify an specific processing algorithms or system architectures
for its generation or consumption.

Access control policy languages, such as [XACML] feature a policy language syntax and
processing rules for evaluation as well as a format for providing necessary input data and
referencing it from the policy language. The language syntax and processing rules are
encapsulated from all other components of the access control system and protected applications.
The actual policies evaluated by a given deployed system are also encapsulated from all other
components except for the tools used to construct them. And in fact, these systems may not even
have the ability to evaluate policies, merely to produce them from human input or alternative
policy representations.

This encapsulation has a number of benefits, discussed elsewhere, but it leads to a conundrum.
In order for policies to be evaluated and an access control decision made, the input data must be
provided. Rich, powerful languages are capable of making use of any sort of data available at the
time to control the decision. However this data must be provided at the time of the decision by
software components which are unaware of the policies currently in force or the rules for
evaluating them. Of course the PDP can make attribute requests to obtain the values referenced
by policies which are missing from the request, however this will increase decision latency and
usually reduce overall throughput of the PDP.

If there was no cost providing information or if the total range of inputs to policy decisions was
small, callers could simply provide all available information with each request. Many authorization
decision systems operate in this way today. This specification defines a data format which should
allow callers of a PDP to provide information more closely tailored to policy needs, while not
breaking the encapsulation of the PDP.

1.1 Namespaces
Prefix Namespace Specification(s)

amf {TBD} This specification

AMF Format v0.8 7/16/2009
 Page 4 of 16

1.2 Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119 [KEYWORDS].
When describing concrete XML schemas, this specification uses the notational convention of WS-
Security. Specifically, each member of an element’s [children] or [attributes] property is described
using an XPath-like notation (e.g., /x:MyHeader/x:SomeProperty/@value1). The use of {any}
indicates the presence of an element wildcard (<xs:any/>). The use of @{any} indicates the
presence of an attribute wildcard (<xs:anyAttribute/>).

1.3 Normative References

[WS-MEX] W3C First Public Working Draft, Web Services Metadata Exchange (WS-
MetadataExchange), 17 March 2009, http://www.w3.org/TR/2009/WD-ws-metadata-exchange-
20090317/

[WS-POLICY] W3C Recommendation “Web Services Policy 1.5 – Framework”,

04 September 2007 http://www.w3.org/TR/2007/REC-ws-policy-
20070904/

[WS-SP] OASIS Standard, "WS-SecurityPolicy 1.2", July 2007

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702

[XACML] T. Moses, ed., OASIS eXtensible Access Control Markup Language
(XACML) Version 2.0, OASIS Standard, 1 February 2005,
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-
spec-os.pdf.

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

AMF Format v0.8 7/16/2009
 Page 5 of 16

2 Usecases
There are several ways in which attribute information could be used by access control system
components other than a PDP.

2.1 Configuring a PIP
A Policy Information Point (PIP) is a system component which is responsible for obtaining
attribute information and making it available to a Context Handler for inclusion in a Request
Context. In a many environments, basic attribute information, such as Subject Identifier or
Resource Name. However, additional information such as the Subject’s Groups or Roles or other
Resource properties my have to be obtained from other sources.

A PIP needs to know what attributes it should provide. It also needs to know where this
information is located. It also needs to know how to retrieve the attributes, typically by using
previously provided attribute values as lookup keys. In a typical scenario, PIPs located at various
points in the system can be configured with AMFs which allow them to examine an existing
Request Context and add additional attributes from other sources. This is illustrated in figure 1.

AMF Format v0.8 7/16/2009
 Page 6 of 16

Figure 1 – Attribute Enhancement

2.2 Handling Missing attributes
One or more PIPs may also be configured to obtain attribute information only after the PDP has
determined it is needed for the current request. This can be done in two general ways. The
[XACML] standard specifies that if a PDP is unable to evaluate the policies relating to a request
because some necessary attribute information has not been supplied, it can return a result of
Indeterminate and specify what attributes are missing. Since the PDP will usually not know how
to obtain these attributes, the PIP can use the AMF to retrieve them and provide them to the
Context Handler so the decision request can be repeated with the missing attributes added. Note
that just like the previous use case, the PIP might be configured at various points in the
architecture. This is illustrated in figure 2.

LDAP
Application

PEP

PDP

AMF

AMF

AMF

P
I
P

P
I
P

P
I
P

ReqCtx

ReqCtx

ReqCtx

OVD

DB

SAML

AMF Format v0.8 7/16/2009
 Page 7 of 16

Figure 2 – Handling Missing Attributes

As an alternative a PDP may be implemented with an attributed request handler which can obtain
missing attributes while policy evaluation is occurring without the need to return an Indeterminate
with missing attributes result. This possibility is discussed in a non-normative section of [XACML],
but no specific formats, protocols or interfaces are defined to enable it. Nevertheless, a number of
XACML PDP implementations allow for it. Its advantages in reducing decision latency are
obvious. An internal attribute request handler could also make use of an AMF to determine how
to obtain the attribute information in question.

LDAP

Application

PEP

PDP

AMF

AMF

AMF

P
I
P

P
I
P

P
I
P

RespCtx

OVD

DB

SAML

RespCtx

RespCtx

AMF Format v0.8 7/16/2009
 Page 8 of 16

2.3 Vocabulary Advertisement
Another usecase for an AMF is as a mechanism for a PDP (or application service) to advertise
what attributes are used in policy decisions. In this case, the retrieval information associated with
the attributes might or might not be used. The AMF could be attached to a [WS-XACML] policy,
security policy [WS-SP] or other [WS-POLICY] based language. Alternative it could be
exchanged using [WS-MEX] or other mechanism.

2.4 Policy Management Tools
Tools for editing or analyzing XACML policies might also make use of AMFs. In most cases, only
the naming and type information would be used, not the retrieval information. For example, a
policy editor might use the list of attribute names and/or legal values or value ranges to populate
drop down menus. A policy analysis tool might use the information to step through a series of
policy decision variants in order report which requests would be allowed under various attributes
and their values.

2.5 AMF Creation
An AMF could be generated in a variety of ways.
• Manually using a text editor or XML tool
• Mechanically by scanning a set of policies for the attributes they reference
• Resource attributes might be obtained by scanning application program declarations
• Subject attributes might be obtained by scanning repositories such as directories and

databases of user information
The AMF is intended as an exchange format. Most likely individual attribute information will be
split apart or combined as PIP and other points of consumption are configured.

AMF Format v0.8 7/16/2009
 Page 9 of 16

3 Format
The AMF consists of the following syntax.

<amf:NeededAttributes>
<amf:NeededAttribute amf:Autoload=”true” >
 <amf:AttributeId> … </amf:AttributeId>
 <amf:Issuer> … </amf:Issuer>
 <amf:Category> … </amf:Category>
 <amf:Datatype> … </amf:Datatype>
 <amf:Scopes> … </amf:Scopes>
 <amf:EnumeratedValues> … </amf:EnumeratedValues>
 <amf:Range>
 <amf:Minimum> … </amf:Minimum>
 <amf:Maximum> … </amf:Maximum>
 <amf:/Range>
 <amf:RetrievalInfo>
 <amf:Location> … </amf:Location>
 <amf:Method> … </amf:Method>
 <amf:RetrievalURI> … </amf:RetrievalURI>
 <amf:Key>
 <amf:KeyXACMLName> … </amf:KeyXACMLName>
 <amf:KeyRepositoryName> … <amf:KeyRepositoryName>
 </amf:Key>
 <amf:Field … <amf:Field>
 <amf:/RetrevialInfo>
<amf:/NeededAttribute>
<amf:NeededAttribute>
 …
<amf:/NeededAttribute>
 …
<amf:/NeededAttributes>

The following defines the elements and attributes listed in the schema overview above.
/amf:NeededAttributes

This mandatory element contains one of more <NeededAttribute> element.
/amf:NeededAttributes/amf:NeededAttribute

This element contains the information about a single attribute that may be used as input to
an authorization policy decision. This element may appear any number of times.

/amf:NeededAttributes/amf:NeededAttribute/@Autoload
This optional Boolean attribute indicates whether a PIP should retrieve the attribute and put
it in the Request Context (assuming the necessary key is available) automatically or only
upon receiving a Missing Attributes error or other indication.

/amf:NeededAttributes/amf:NeededAttribute/amf:AttributeId
This mandatory element contains a URI indicating the XACML AttributeId of the XACML
Attribute. (Note that AttributeId is an XML Attribute in the XACML Schema.)

/amf:NeededAttributes/amf:NeededAttribute/amf:Issuer

AMF Format v0.8 7/16/2009
 Page 10 of 16

This optional element contains a string indicating the XACML Issuer of the XACML
Attribute. (Note that Issuer is an XML Attribute in the XACML Schema.)

/amf:NeededAttributes/amf:NeededAttribute/amf:Category
This optional element contains a URI indicating the XACML Category of the XACML
Attribute. Legal values are the eight values defined by XACML, plus **FIXME**
SameAsRetrievalKey, which indicates the Category should be set to the value of the
Category of the XACML Attribute used to retrieve this Attribute’s value. (Note that Category
is an XML Attribute in the XACML Schema.)

/amf:NeededAttributes/amf:NeededAttribute/amf:Datatype
This mandatory element contains a URI indicating the XACML datatype. Its value MUST
be one of the XACML defined dataypes. (Note that Datatype is an XML Attribute in the
XACML Schema.)

/amf:NeededAttributes/amf:NeededAttribute/amf:Scopes
This optional element contains a list of identifiers of Scopes that this Attribute is a member.
/amf:NeededAttributes/amf:NeededAttribute/amf:EnumeratedValues

This optional element contains a list of legal values for this XACML attribute separated by a
comma or new line character.

/amf:NeededAttributes/amf:NeededAttribute/amf:Range
This optional element indicates the minimum and/or maximum legal values of the XACML
attribute. The datatype of the attribute must be one for which minimum and maximum
values can be defined.

/amf:NeededAttributes/amf:NeededAttribute/amf:Range/amf:Minimum
This optional element indicates the minimum legal value of the XACML attribute. The type
must be the same as the datatype of the XACML attribute.

/amf:NeededAttributes/amf:NeededAttribute/amf:Range/amf:Maximum
This optional element indicates the maximum legal value of the XACML attribute. The type
must be the same as the datatype of the XACML attribute.

/amf:NeededAttributes/amf:NeededAttribute/amf:RetrievalInfo
This optional element contains information which may be used to retrieve the XACML
attribute value from where it is stored.

/amf:NeededAttributes/amf:NeededAttribute/amf:RetrievalInfo/amf:Location
This optional element of type string indicates the network location of the repository where
the XACML attribute value is stored.

/amf:NeededAttributes/amf:NeededAttribute/amf:RetrievalInfo/amf:Method
This optional element of type string indicates the protocol or access method to be used to
obtain the XACML attribute value.

/amf:NeededAttributes/amf:NeededAttribute/amf:RetrievalInfo/amf:RetrievalURI
This optional element contains a URI which may be dereferenced to obtain the XACML
attribute value. Depending on the type of URI and access method, it may be necessary to
insert the key value (below) into the URI at an appropriate point.

/amf:NeededAttributes/amf:NeededAttribute/amf:RetrievalInfo/amf:Key

AMF Format v0.8 7/16/2009
 Page 11 of 16

This optional element contains elements identifying an XACML attribute contained in the
current Request Context (or otherwise available to the PIP) the value of which may be
used as a key to retrieve the value of the needed attribute. For example, username might
be used as a key to obtain the group attribute. This element may occur any number of
times. Each key will be used in the order given.

/amf:NeededAttributes/amf:NeededAttribute/amf:RetrievalInfo/amf:Key/amf:KeyXACMLName
This element contains the AttributeId of the XACML attribute to be used as a key.

/amf:NeededAttributes/amf:NeededAttribute/amf:RetrievalInfo/amf:Key/amf:KeyRepositoryName
This element contains the name of the attribute as used by the Repository or Authority if
different from the XACML AttributeId.

/amf:NeededAttributes/amf:NeededAttribute/amf:RetrievalInfo/amf:Field
This optional element contains the name of the field in which the attribute value is stored in
the repository if it is different from the XACML AtttributeId.

AMF Format v0.8 7/16/2009
 Page 12 of 16

4 Examples
This section profiles the use of AMF in different contexts.

4.1 Type Information Only
This example shows an AMF with only type information. This would be suitable for use by a
Policy Editing tool.

<amf:NeededAttributes>
<amf:NeededAttribute>
 <amf:AttributeId> Username </amf:AttributeId>
 <amf:Category>
 urn:oasis:names:tc:xacml:1.0:subject-category:access-
subject
 </amf:Category>
 <amf:Datatype>
 http://www.w3.org/2001/XMLSchema#string
 </amf:Datatype>
<amf:/NeededAttribute>

<amf:NeededAttribute>
 <amf:AttributeId> Department </amf:AttributeId>
 <amf:Category> urn:oasis:names:tc:xacml:1.0:subject-
category:access-subject
 </amf:Category>
 <amf:Datatype> http://www.w3.org/2001/XMLSchema#string
 </amf:Datatype>
 <amf:EnumeratedValues>
 Manufacturing
 Research and Development
 Marketing and Sales
 Finance and Administration
 </amf:EnumeratedValues>
<amf:/NeededAttribute>

<amf:/NeededAttributes>

4.2 LDAP
This example shows how AMF would be used to retrieve an attribute from an LDAP directory.

<amf:NeededAttributes>
<amf:NeededAttribute>
 <amf:AttributeId> Department </amf:AttributeId>
 <amf:Category> urn:oasis:names:tc:xacml:1.0:subject-
category:access-subject

AMF Format v0.8 7/16/2009
 Page 13 of 16

 </amf:Category>
 <amf:Datatype> http://www.w3.org/2001/XMLSchema#string
 </amf:Datatype>
 <amf:RetrievalInfo>
 <amf:Location> ldap.example.com </amf:Location>
 <amf:Method> LDAP </amf:Method>
 <amf:Key>
 <amf:KeyXACMLName>
 urn:oasis:names:tc:xacml:1.0:subject:subject-id
 </amf:KeyXACMLName>
 <amf:KeyRepositoryName> CN <amf:KeyRepositoryName>
 </amf:Key>
 <amf:/RetrevialInfo>
<amf:/NeededAttribute>

<amf:/NeededAttributes>

The PIP retrieves the value of the user’s Department from the directory at ldap.example.com. The
value of the subject id in the request context is used as the CN. The attribute received in this case
is called Department in LDAP and in the Request Context.

4.3 SQL
This example shows how AMF would be used to retrieve an attribute using SQL.

<amf:NeededAttributes>
<amf:NeededAttribute amf:Autoload=”true” >
 <amf:AttributeId> Doctype </amf:AttributeId>
 <amf:Category>
 urn:oasis:names:tc:xacml:3.0:attribute-category:resource
 </amf:Category>
 <amf:Datatype>
 http://www.w3.org/2001/XMLSchema#string
 </amf:Datatype>
 <amf:RetrievalInfo>
 <amf:Location>
 dbserver.example.com/documentinfo
 </amf:Location>
 <amf:Method> SQL </amf:Method>
 <amf:Key>
 <amf:KeyXACMLName>
 urn:oasis:names:tc:xacml:1.0:resource:resource-id
 </amf:KeyXACMLName>
 <amf:KeyRepositoryName> Title <amf:KeyRepositoryName>
 </amf:Key>
 <amf:/RetrevialInfo>
<amf:/NeededAttribute>

<amf:/NeededAttributes>

AMF Format v0.8 7/16/2009
 Page 14 of 16

In this example the PIP will retrieve the value of the Doctype attribute from the database and add
it to the Request Context, because of the Autoload=”true” attribute. The value s found in the
database located at dbserver.example.com in the documentinfo table. The PIP loads the XACML
Resource ID from the Request Context into a variable called Resource. It then uses this SQL
statement to retrieve the correct record.

SELECT FROM documentinfo WHERE Title = Resource

It then puts the value of the Doctype field in the Request Context as a resource attribute of type
string.

4.4 SAML Attribute Authority
This example shows how AMF would be used to retrieve an attribute from a SAML Attribute
Authority using the SAML .

<amf:NeededAttributes>
<amf:NeededAttribute>
 <amf:AttributeId> Group </amf:AttributeId>
 <amf:Category> SameAsRetrievalKey </amf:Category>
 <amf:Datatype>
 http://www.w3.org/2001/XMLSchema#string
 </amf:Datatype>
 <amf:RetrievalInfo>
 <amf:Location> aa.example.com </amf:Location>
 <amf:Method> SAML </amf:Method>
 <amf:Key>
 <amf:KeyXACMLName>
 urn:oasis:names:tc:xacml:1.0:subject:subject-id
 </amf:KeyXACMLName>
 <amf:KeyRepositoryName>
 Subject/NameID
 <amf:KeyRepositoryName>
 </amf:Key>
 <amf:/RetrevialInfo>
<amf:/NeededAttribute>

<amf:/NeededAttributes>

The PIP examines the Request Context for attributes of type subject id. For each it does a SAML
Attribute Query to retrieve the Group attribute. The server is aa.example.com. The Subject Name
Id in the query is the value of the subject id from that subject category.

Each Group attribute is put in the Request Context with a type of string and a category of the
same type as the subject id used for that query.

AMF Format v0.8 7/16/2009
 Page 15 of 16

Appendix A. XACML Values

• XACML Category types

• Core Types
These are defined by XACML.

urn:oasis:names:tc:xacml:3.0:attribute-category:resource

urn:oasis:names:tc:xacml:3.0:attribute-category:action

urn:oasis:names:tc:xacml:3.0:attribute-category:environment

urn:oasis:names:tc:xacml:1.0:subject-category:access-subject

urn:oasis:names:tc:xacml:1.0:subject-category:recipient-subject

urn:oasis:names:tc:xacml:1.0:subject-category:intermediary-subject

urn:oasis:names:tc:xacml:1.0:subject-category:codebase

urn:oasis:names:tc:xacml:1.0:subject-category:requesting-machine

• AMF Types
This is used to indicate that the Category should be copied from the Key Attribute.

{TBD} SameAsRetrievalType

• XACML DataTypes

urn:oasis:names:tc:xacml:1.0:data-type:x500Name.

urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name

urn:oasis:names:tc:xacml:2.0:data-type:ipAddress

urn:oasis:names:tc:xacml:2.0:data-type:dnsName

urn:oasis:names:tc:xacml:3.0:data-type:xpathExpression

http://www.w3.org/2001/XMLSchema#string

http://www.w3.org/2001/XMLSchema#boolean

http://www.w3.org/2001/XMLSchema#integer

http://www.w3.org/2001/XMLSchema#double

AMF Format v0.8 7/16/2009
 Page 16 of 16

http://www.w3.org/2001/XMLSchema#time

http://www.w3.org/2001/XMLSchema#date

http://www.w3.org/2001/XMLSchema#dateTime

http://www.w3.org/2001/XMLSchema#anyURI

http://www.w3.org/2001/XMLSchema#hexBinary

http://www.w3.org/2001/XMLSchema#base64Binary

urn:oasis:names:tc:xacml:2.0:data-type:dayTimeDuration

urn:oasis:names:tc:xacml:2.0:data-type:yearMonthDuration

