On Querying Geospatial and Georeferenced Metadata Resources in G-Portal

Zehua Liu, Ee-Peng Lim, Wee-Keong Ng
Centre for Advanced Information Systems
School of Computer Engineering
Nanyang Technological University
Singapore, 639798
{aseplim, awkng, aszhliu} @ntu.edu.sg

Abstract

G-Portal is a web portal system providing a range of dig-
ital library services to access geospatial and georeferenced
resources on the Web. Among them are the storage and
query subsystems that provide a central repository of meta-
data resources organized under different projects. In G-
Portal, all metadata resources are represented in XML (Ex-
tensible Markup Language) and they are compliant to some
resource schemas defined by their creators. The resource
schemas are extended versions of a basic resource schema
making it easy to accommodate all kinds of metadata re-
sources while maintaining the portability of resource data.
To support queries over the geospatial and georeferenced
metadata resources, a XQuery-like query language known
as ROL (Resource Query Language) has been designed. In
this paper, we present the RQL language features and pro-
vide some experimental findings about the storage design
and query evaluation strategies for RQL queries.

1. Introduction
1.1. Overview of G-Portal

Integrated access to geospatial and georeferenced re-
sources on the Web and making them available for both
classroom learning and extramural research are important
challenges in digital libraries. G-Portal, a research project at
the Nanyang Technological University, attempts to address
these challenges by providing a web portal system that of-
fers a flexible approach to manage and access collections of
metadata resources constructed for geospatial and georefer-
enced web resources [7].

There are several digital library projects focusing
on geospatial and georeferenced information available
on the Web. Among them are Alexandria Digi-
tal Library (ADL), Alexandria Digital Earth ProtoType

Dion H. Goh
Division of Information Studies
School of Communication and Information
Nanyang Technological University
Singapore, 639798
ashlgoh@ntu.edu.sg

(ADEPT) [11, 12], Digital Library for Earth System Edu-
cation (DLESE) [13], Geospatial Knowledge Representa-
tion System (GKRS) [17] and GEOREP [10]. G-Portal is
quite distinct compared to these systems due to the follow-
ing novel features:

e It supports a storage subsystem for metadata resources
represented in XML. The resources are organized into
projects and they are compliant with some resource
schemas. The adoption of XML and schemas ensures
that G-Portal can support a wide variety of metadata
resources.

e G-Portal provides both map-based and classification-
based user interfaces to access the metadata resources.
The former are suitable for geospatial resources with
location information while the latter caters for all kinds
of resources with or without location information. The
two interfaces coexist and are synchronized. That is,
resources selected using the map-based interface will
also be highlighted in the classification-based inter-
face, and vice versa.

e G-Portal allows different classification hierarchies to
be defined for metadata resources according to the
needs of different digital library user communities.
This is a stark contrast to traditional digital libraries
adopting only a single classification hierarchy for cat-
aloging data.

e G-Portal provides user annotation facilities on the
metadata resources to support better knowledge shar-
ing. By treating annotations as a type of metadata re-
source, the annotations can be accessed in the same
way as other metadata resources [8].

As a digital library system, G-Portal has to provide ef-
ficient query processing services to its users. Compared
to ADL [11] and ADEPT [12] which assume a distributed
digital library architecture consisting of multiple collection

servers, G-Portal currently has a centralised storage sub-
system for its metadata resources represented in XML. To
query these resources, an XML-based query language is
required. Furthermore, there is a need to design a suit-
able query subsystem to support such queries. In GEO-
REP [10] and DLESE [16], resources are also maintained in
centralized storage systems. The two systems however use
standard structured database systems (relational or object-
oriented) to manage their resources. In other words, the
kind of resources that can be handled by GEOREP and
DLESE are highly structured and they must comply to some
pre-determined database schema. Lastly, the GKRS project
focuses on knowledge representation of text and multimedia
information instead of metadata resources [17].

XML has been well accepted as a more flexible way
to represent semistructured information. Due to its self-
describing nature, XML is ideal for representing meta-
data resources. In G-Portal, all metadata resources are
represented in XML and each resource must comply to
some resource schema defined using the XML Schema lan-
guage [15]. To ensure that all resources contain some essen-
tial elements required for identification and classification
purposes, all resource schemas must share some common
elements defined in a basic resource schema [7].

Several query languages have been proposed for XML.
Among them, XQuery offers very powerful query capabil-
ities and has been selected by the W3 Consortium XML
Query Working Group for further design and standardiza-
tion [2]. XQuery, nevertheless, does not provide much sup-
port for querying spatial elements in resources. It simply
treats spatial elements as numerical values and not all spa-
tial search criteria can be expressed as query predicates on
these individual spatial elements. Furthermore, the exist-
ing XML database systems are not able to process spatial
queries efficiently as will be shown in our experiments (see
Section 6).

1.2. Objectives and Contributions

In this paper, we will examine the query facilities pro-
vided by G-Portal. To this end, we examine the unique way
G-Portal represents and organizes its metadata resources,
derive the user query requirements, and design a XQuery-
based query language to query G-Portal resources. The new
query language known as RQL is small and easy-to-use.
While ROL has a strong XQuery flavor, it also introduces
features that cater to integrated queries on XML and spa-
tial information of metadata resources, project-centric or-
ganization of resources, and resource schema-compliant re-
sources.

We will also describe some experiments conducted on
integrated XML and spatial query processing on a real
dataset. In the experiments, we evaluate different XML-

spatial query processing strategies and determine their
strengths and shortcomings. The experience in these ex-
periments will guide us in the final design of the G-Portal
storage and query processing subsystems.

In the following, we summarize the specific contribu-
tions of this paper:

e A new query language, RQL, has been developed for
G-Portal resources. This new query language incor-
porates the concepts of projects and schemas into the
query syntax. It also supports geometry object rep-
resentation and spatial query predicates required for
querying geospatial information.

e We have designed the system architecture for G-
Portal’s storage and query subsystems. We chose the
Tamino XML database system to store resources, and
the Informix database system to store the spatial in-
formation of these resources. Several query evalua-
tion strategies have been developed, some appropriate
for queries involving non-spatial predicates only and
others are for queries involving both spatial and non-
spatial predicates.

e Experiments have been conducted to compare the stor-
age alternatives for G-Portal resources, and their query
processing strategies. The experiments show that for
queries that involve spatial predicates returning small
number of resources, it is better to explore the spa-
tial indexing method provided by Informix to first ob-
tain the resources qualifying the spatial predicates be-
fore evaluating the non-spatial predicates on the re-
sources in the Tamino database. Otherwise, we should
query both Tamino and Informix separately and obtain
the query results by finding the common resources re-
turned by the two queries.

1.3. Outline of Paper

The remaining sections of this paper are structured as
follows. Section 2 gives an overview of the related research.
Section 3 briefly describes the definition of resources in G-
Portal. Our proposed query language R QL is described in
Section 4. Section 5 presents some considerations of pro-
cessing RQL queries and the architecture of the G-Portal
storage and query subsystems. The experiments and results
are given in Section 6. Finally, we give our conclusion in
Section 7.

2. Related Work

Both XML and spatial information co-exist in G-Portal
resources. We therefore require an integrated approach to

formulate queries on resources. We first examine the ex-
tensions of the relational query language, SQL, to handle
spatial queries. As traditional relational databases only sup-
port simple data types, Open GIS Consortium has defined
an extension of SQL data model to represent and query ge-
ometry data [9]. This extension includes a set of spatial data
types and spatial predicate functions to simplify queries on
spatial columns. We borrow this idea in our query language
design.

The evaluation of spatial queries on relational databases
has been a very active area of research. Most research focus
on designing specialized indexing methods such as R-tree
and its variants to support efficient spatial searches [5, 3].
R-tree and other indexing methods are now supported
by several relational database products including the In-
formix database system used in our G-Portal implementa-
tion. However, due to the very flexible structure in XML
data, spatial indexing methods are generally not available in
XML database systems. Other than spatial indexing, there
have been also much research work on spatial join optimiza-
tion [4]. Since G-Portal only provides direct queries on re-
sources however, spatial joins are not involved.

Our XML and spatial query processing research is also
related to the SDSC and UCSD’s research on representing
remote spatial data sources in XML and employing XML-
based query languages to integrate them [1]. In the above
project, a query language XMAS was defined and the map-
ping from XMAS to relational queries is performed to re-
trieve XML-formatted results from the remote data sources.
XMAS is based on XML-Query, not XQuery. Unlike G-
Portal, there is no physical repository of metadata resources
in XML.

3. Definition of Resources

In G-Portal, metadata resources (or simply resources) are
descriptors about geospatial and georeference information
on the Web. Represented in XML, they serve as search-
able and browsable items in G-Portal as well as pointers to
the original sources. To give the flexibility to accommodate
different kinds of metadata resources, G-Portal requires ev-
ery metadata resource to be an instance of some resource
schema. Resource schemas define the internal structure of
resources and are used by G-Portal to interpret the content
of resources.

Consider the sample resource schema in Figure 1. It de-
fines the resource schema for County Census resources ex-
tracted from the U.S. Census Bureau [14]. Written in the
XML Schema language [15], the resource schema derives
its resource elements from the basic resource schema, Re-
source.xsd, and defines additional elements and attributes
relevant to county census resources.

The basic resource schema includes 6 basic resource el-

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified">
<xsd:redefine schemaLocation="Resource.xsd"/>
<xsd:complexType name="ContentType">
<xsd:sequence>
<xsd:element name="GeneralQuickFacts" type="GeneralQuickFactsType"/>
<xsd:element name="PeopleQuickFacts" type="PeopleQuickFactsType"/>
<xsd:element name="BusinessQuickFacts" type="BusinessQuickFactsType"/>
<xsd:element name="GeographyQuickFacts" type="GeographyQuickFactsType"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="GeneralQuickFactsType">
<xsd:sequence>
<xsd:element name="State" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="PeopleQuickFactsType">
<xsd:sequence>
<xsd:element name="Population" type="PopulationType"/>
<xsd:element name="HouseHold" type="HouseHoldType"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="PopulationType">
<xsd:sequence>
<xsd:element name="Year200lEstimate" type="xsd:int"/>
<xsd:element name="Year2000" type="xsd:int"/>

<xsd:element name="Distribution" type="DistributionType"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="DistributionType">
<xsd:sequence>
<xsd:element name="ByRace" type="ByRaceType"/>
</xsd:sequence>
<xsd:attribute name="Year" type="xsd:short" use="required"/>
</xsd:complexType>
<xsd:complexType name="ByRaceType">
<xsd:sequence>
<xsd:element name="Category" type="CategoryType" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Figure 1. QuickFacts County Census Re-
source Schema

ements common to all resources in G-Portal. They are
resource id, name, location, creator, source, and content.
Briefly, the resource id is used to uniquely identify a re-
source in G-Portal. Each resource is also given a name, lo-
cation (indicating the spatial information of the resource),
and creator information. The location information is repre-
sented by a 2-D geometry object. The source element refers
to the external link to the original web resource. The con-
tent element refers to the remaining bulk of the resource
information and can be customized for different types of
metadata resources. In this example, the content element
has been extended to capture the county census informa-
tion. The extended content element consists of the general,
people, business and geography components identified by
the GeneralQuickFacts, PeopleQuickFacts, BusinessQuick-
Facts, and GeographyQuickFacts respectively.

Based on the above sample resource schema, resources
can be created accordingly. Figure 2 depicts a sample cen-
sus resource about the Harris County in Georgia.

In G-Portal, resources are further organized into differ-
ent projects which define a logical set of resources pertinent
to a specific task and digital library application. While re-
sources with different schemas can be grouped into a single
project, the grouping is logical since the same resource may
be shared among different projects. This sharing mecha-

<?xml version="1.0" encoding="UTF-8"?>
<Resource xmlns:xsi="http://www.w3.0rg/2000/10/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CountyQuickFacts.xsd"
ShapeID="1">
<ID>CountyQuickFacts_1</ID>
<ResourceName><Name>Harris County</Name></ResourceName>
<Location Type="Geometry">
<Geometry>
<NumberOfParts>1</NumberOfParts>
<Part Type="Point">
<NumberOfPoints>1</NumberOfPoints>
<Point><X>-84.9060</X><Y>32.7407</Y></Point>
</Part>
</Geometry>
</Location>
<Creator> </Creator>
<Source><Link Type="External">
http://quickfacts.census.gov/qfd/states/13/13145.html
</Link></Source>
<Content>
<GeneralQuickFacts><State>Georgia</State></GeneralQuickFacts>
<PeopleQuickFacts>
<Population>
<Year200lEstimate>24548</Year2001Estimate>
<Year2000>23695</Year2000>
<Distribution Year="2000">
<ByRace>
<Category
<Category
<Category
<Category
<Category
0</Category>
<Category Desc="Others">0.3</Category>
</ByRace>
</Distribution>
</Population>

"White">78.4</Category>

"Black or African American"> 19.5 </Category>
"American Indian and Alaska Native"> 0.4 </Category>
ian">0.5</Category>

Native Hawaiian and Other Pacific Islander">

<MetropolitanArea>Columbus, GA-AL MSA</MetropolitanArea>
</GeographyQuickFacts>

</Content>
</Resource>

Figure 2. QuickFacts County Census Re-
source

nism is provided to prevent replication of resources in G-
Portal and to promote reusability among different projects.

4. (RQL) - A Resource Query Language

As XML quickly becomes the choice language for repre-
senting and exchanging information on the Web, there is on-
going work to standardize the languages for querying, trans-
forming, exchanging, and publishing XML data. Among
the query languages for XML, XQuery has gained accep-
tance by the W3 Consortium as the XML query language
standard [2]. While still evolving, XQuery has been imple-
mented in several database systems, e.g., Tamino, Oracle,
etc.. As XQuery is a powerful query language designed to
query and transform XML data which are semistructured
and nested, the optimized evaluation of queries in XQuery
remains a research topic. Moreover, there is little support
for spatial access and indexing in XQuery.

G-Portal essentially adopts an XQuery approach to
querying its metadata resources represented in XML for-
mat. Although XQuery is ideal for generic XML queries,
it has to be further customized due to the following salient
features of the query model used in G-Portal:

e Project and schema groupings of resources: As G-
Portal resources are grouped by both projects and re-
source schemas, it is important to be able to query
resources under some specified project and resource
schema(s).

o Selection-based retrieval queries: XQuery is an highly
expressive language that supports selection of XML
elements in an XML document, and transforming the
XML document into another representation. The trans-
formation aspect of XQuery primarily caters for infor-
mation exchange. Since information exchange is not
the target usage of G-Portal’s resources, the XQuery
syntax can be further simplified for use.

e Designated spatial attributes in resource schemas:
Spatial location is a core element in the basic resource
schema. This schema element allows us to display
resources on the map-based interface and to specify
queries with spatial predicates describing the selection
criteria based on the spatial location of resources. In-
stead of a verbose specification of such spatial query
predicates using XQuery syntax, we have chosen to
augment XQuery with spatial object representation
and a set of spatial predicates for specifying different
kinds of spatial conditions easily.

4.1. ROL Query Syntax

The ROL query model follows the XQuery syntax
closely. A query can be expressed as follows:

select <project>

for S$<res_var> in schema ((<res_sch>)+)/*/Resource
(<for_expression>|<let_expression>)*

where <filter_expression>

return $<res_var>

In the above query expression, the select clause indi-
cates the G-Portal project to be queried. The (res_sch)
token refers to a resource schema of the project. By
specifying the project and resource schema, the resources
to be queried can thus be identified. The expression
$(res_var) schema(((res_sch))+)/ «/Resource iterates the re-
sources with the specified schema under the project, and
binding the resources to $(res_var) one at a time. The
zero or more (for_expression) and (let_expression) allows
further iteration over the child (or descendant) elements of
$(res_var) and binding some specific child element (or de-
scendant) of $(res_var) with other variables. In both the for
and let expressions, additional variables could be defined to
bind different portions of the resource elements. Once this
is done, the where clause filters the unwanted resources by
specifying the filtering expression on the binding variables.
Finally, the return clause generates the resources for each
of these bindings fulfilling the filtering expression.

Compared to the original XQuery syntax, the above
query expression is restricted to the FLWR (pronounced as
“FLO-WER”) expression using the for expression to iterate
the resources in the XML resource file. Unlike XQuery, we
introduce the select clause to identify the project used in the
query. We also do not assume that all resources are stored
within a XML file (an assumption made in XQuery’s syn-
tax). Instead, we use the project and schema(s) to identify
the collection of resources to be queried. Only resources as-
sociated with the project and schema will be returned by the
query. We further simplify the return clause to include the
different bindings of resource variables satisfying the filter
expression.

4.2. Queries on Non-Spatial Elements Only

Using the example Census resource schema and assum-
ing that CountyProj is a project that includes some county
census resources, we formulate the following query exam-

ples using the modified XQuery language.
Q1: Find the census resources that are from the state of
Georgia.
select CountyProj
for $i in schema (censusDB)/*/Resource

where $i/Content/GeneralQuickfacts/State = "Georgia"
return $i

The expression $i/Content/GeneralQuickfacts/State in
the above query refers to the path leading to the state ele-
ment of each resource in the XML file using the slash (‘/’) as
the separator between a parent element and its child. Since
there is only one state element within a resource, the above
query can be simplified further using the double-slash sym-
bol (‘//’) which indicates stepping through multiple levels
of a hierarchy in each resource:

select CountyProj

for $i in schema (censusDB) /*/Resource
where $i//State = "Georgia"

return $i

Both existential and universal quantifiers are supported
by our query language. In the following query Q2, we use

an universal quantifier that is specified using the “every”

keyword.

Q2: Assuming that all non-white race categories are con-
sidered minorities, find the census resources from Georgia
that has all minority race categories exceeding 0.1%.

select CountyProj
for $i in schema (censusDB)/*/Resource
where every $i//ByRace/Category[@Desc!="White"]>0.1

and $i//State = "Georgia"
return $i

In a census resource, the race distribution is found in
the ByRace element and the race categories are captured
by the Desc attribute of the Category elements nested
within the ByRace elements. The predicate expression
[@Desc!=“White”] evaluates to a true value if the “White”

is not found in the Desc attribute of the Category element.
Q3: Find the census resources from Georgia that contain
at least one minority race category equal 0%.

select CountyProj

for $i in schema (censusDB)/*/Resource

where some $i//ByRace/Category[@Desc!="White"] = 0
and $i//State = "Georgia"

return $i

4.3. Queries on Resources with Spatial Information

Although not every G-Portal resource carries spatial lo-
cation information, the resource schema includes a location
element should the information be available. The location
element can be as simple as a point to as complex as a set
of polygons. G-Portal includes a map-based user interface
to both display resources on a map, and to use the map to
define spatial search criteria for querying the resources.

To facilitate queries involving the location element, the
ROL query syntax includes the following spatial predicates
to be used within the where clause.

e cqual(): The predicate returns true when the resource
has a location identical to a given geometry object.

e cover(): The predicate returns true when the resource
has a location containing a given geometry object,
false otherwise.

e coveredby(): The predicate returns true when the re-
source has a location completely enclosed by a given
geometry object, false otherwise.

e overlap(): The predicate returns true when the resource
has a location overlapping a given geometry object,
false otherwise.

e meet(): The predicate returns true when the resource
has a location adjacent to a given geometry object,
false otherwise.

e disjoint(): The predicate returns true when the resource
has a location disjoint with a given geometry object,
false otherwise.

Similar to the location element, each geometry object
used in the spatial predicates can range from a point to a
set of polygons. Due to space constraints, we will not elab-
orate how all types of location elements (or geometry ob-
jects) can be represented in our XML-based resources. In-
stead, we will use the point and rectangle data throughout
our examples.

Q4: Find the census resources that are within a given
bounding rectangle with (-95, 30) and (-70, 50) represent-
ing the latitude and longitude values of the left-bottom and
right-upper corners of the rectangle respectively.

select CountyProj

for $i in schema (censusDB) /*/Resource

where coveredby ($i,
Polygon((-95,30), (-95,50), (-70,50), (-=70,30)))

return $i

Q4 uses the Polygon keyword to define a rectangle ob-
ject using the four corner points given (in latitude and lon-
gitude). Other keywords including Point, Linestring, Multi-
point, Multilinestring, Multipolygon, etc., are used to con-
struct other types of geometry objects. To ease the specifica-
tion of complex geometry objects in a query, it is necessary
to allow end users to draw the objects using a user-friendly
query client. Q4 can be further extended with other non-
spatial query conditions as shown in QS5 (using the overlap
spatial predicate instead).

Q5: Find the census resources that overlap the above
given bounding rectangle and are from the state of “Geor-
gia”.

select CountyProj

for $i in schema (censusDB)/*/Resource

where overlap ($i,
Polygon ((-95,30), (-95,50), (-70,50), (=70,30)))
and $i//State = "Georgia"

return $i

4.4. Mixed Schema Queries

So far, our query examples have only involved a single
resource schema. As a project may include resources us-
ing different resource schemas, it is possible to formulate
queries on resources that are associated with different re-
source schemas. However, due to the schema discrepancies,
it is only possible for such queries to involve the common
elements in these resources.

Q6: Assume that the project CountyProj also consists of
another set of business pattern resources with another re-
source schema known as “BusPattern”. Find the census and
business pattern resources that are from the state of “Geor-

Lt}

gia”.

select CountyProj

for $i in schema (censusDB, busPatternDB) /*/Resource
where $i//State = "Georgia"

return $i

The above query can be treated as two separate queries
each involving a single resource schema, and the final result
is the union of the two subquery results. In other words,
each resource must fulfill the where condition in order to
be included in the query result. This is illustrated by the
following equivalent query expression.

select CountyProj

for $i in schema (censusDB) /*/Resource
where $i//State = "Georgia"

return $i

union

select CountyProj

for $i in schema (busPatternDB)/*/Resource
where $i//State = "Georgia"

return $i

=7
Query Client User
Subsystem (I)

Query
Translator

Query
Executor

Storage Subsystem

DB

Relational
LComponent

Figure 3. Architecture of the Data Storage and
Query Processing Subsystems

5. ROL Query Processing
5.1. Storage and Query Subsystems

ROL allows queries on both XML and spatial elements
in G-Portal resources. It therefore cannot be directly im-
plemented on existing XML database systems that usually
do not support spatial objects and spatial query predicates.
Instead of implementing a new XML database system from
scratch, we use the Tamino and Informix database systems
as our database backends to support both XML and spatial
data storage and query processing as shown in Figure 3.

As shown in the figure, G-Portal’s storage subsystem
consists of a relational component, an XML component,
and a collection of resource schema files. The relational
and XML components are implemented using Informix and
Tamino database systems respectively. The relational stor-
age component includes a resource location database and
a project database. The resource location database stores
the spatial elements of all resources together with the re-
source ids. The spatial elements are indexed using R-tree
to support efficient evaluation of spatial query predicates.
The project database stores the ids of resources belonging
to each project. As mentioned in Section 3, projects are
logical groupings of resources and the same resource can
be shared among different projects. By maintaining the
project database, any updates on the project membership of
resources can be easily done. The XML storage component
of G-Portal consists of a large resource database storing
all resources (including their spatial elements). Although
the spatial elements are also stored in the resource loca-
tion database, keeping the spatial elements in the resource

database makes it much simpler to retrieve resources. Oth-
erwise, we will have to obtain the spatial elements from
the resource location database and merge them into the re-
sources from the resource database.

G-Portal’s query subsystem consists of a guery client for
users to easily formulate their RQL queries. Each ROL
query is first translated by the query translator into sub-
queries on the various databases. In the query translation
process, a query evaluation strategy is adopted to ensure that
the sub-queries can be efficiently performed on the Tamino
and Informix database systems. The actual evaluation of
sub-queries is handled by the query executor which is also
responsible for combining the results from sub-queries (if
necessary).

5.2. Evaluation of ROL Queries

In this section, we explore some query evaluation strate-
gies that can be implemented for RQL queries. For sim-
plicity, we ignore the project grouping of resources speci-
fied by the R QL queries and focus on the query predicates
found in the where clause. We first broadly divide RQL
queries into the following 3 categories:

e Type I- Non-spatial queries: They involve only the
non-spatial elements of resources.

e Type 2- Spatial only queries: They involve only the
spatial elements of resources.

e Type 3- XML and spatial queries: They involve both
the non-spatial and spatial elements of resources.

For Type-1 queries, it is quite clear that the resource lo-
cation database is not required since the query predicates
only apply to the elements found in the resource database.
The spatial index provided by the former is also irrelevant
to such queries. In this case, the Tamino-Only query eval-
uation strategy is most appropriate where the non-spatial
queries are evaluated only on the resource database.

For Type-2 queries, we can apply the Tamino-Only
strategy or the Informix-First strategy depending on the
kind of spatial query predicates and the location data of re-
sources involved. The former is applicable only when the
spatial query predicates and location information involved
are simple and can be translated into simple comparison
predicates on individual parts of the location information
, e.g. latitude and longitude values of points, connected
by AND’s and OR’s. This is however not always possible
for complex spatial query predicates and location which in-
volve complex geometry objects, for example, checking if
a polygon overlaps with another polygon. The key feature
of the Tamino-Only strategy is that it uses only the XML
storage component. The Informix-First strategy uses the
spatial access methods provided by the Informix database

system to first retrieve the ids of resources meeting the spa-
tial query predicates. The ids are later used to construct a
disjunction of id comparison predicates in the another query
against the resource database.

For Type-3 queries, we can use the Tamino-First and
Naive strategies other than the Tamino-Only (only for
queries using simple spatial predicates) and the Informix-
First strategies. The Tamino-First strategy allows the non-
spatial query predicates to be first evaluated against the re-
source database. The ids of resources retrieved are later in-
corporated into the spatial sub-query sent to the resource
location database.

The Naive strategy simply divides a Type 3 query into
two sub-queries, one for the resource database and another
for the resource location database. The two sub-queries are
evaluated by both the Tamino and Informix database sys-
tems. Their resultant resource ids are later intersected be-
fore the final query result is obtained.

While the Tamino-Only strategy can be used in some
situations, we note that this strategy is quite restrictive for
Types 2 and 3 queries. In general cases, we need to employ
the Informix-First or Naive strategies to handle Types 2 and
3 queries.

6. Experimental Results

We have conducted experiments in order to evaluate the
storage alternatives and query evaluation strategies. There
are two distinct objectives for the experiments:

e To determine which of the two resource storage alter-

natives is better; and

e To determine the most suitable query evaluation strate-
gies.

The two resource storage alternatives are:

e DBI: storing resources only in an XML database

e DB2: storing resources in an XML database and re-
source location information in a database which sup-
ports efficient spatial access method

As described in previous sections, G-Portal adopts the
Tamino database as the repository of XML resources and
the Informix database for storing spatial attributes of these
resources. For both DB1 and DB2, the Tamino database
stores the complete resource information, including the lo-
cation element. The Informix database is used in DB2 to
store the resources’ spatial attributes (indexed by R-Tree)
together with the resource ids.

The four query evaluation strategies are: Tamino-Only
(TO), Informix-First (IF), Tamino-First (TF), and Naive
(NA). They have been elaborated in detail in Section 5.2.
We, nevertheless, want to re-emphasize that the Tamino-
Only strategy is only suitable for queries with simple spatial

predicates. For spatial queries involving complex polygons,
the evaluation of the spatial predicates have to be performed
at the application level, which is very inefficient.

6.1. Dataset

The dataset in our experiments is constructed using ac-
tual data from the U.S. Census Bureau [14]. The original
Website contains figures of population, business and geom-
etry information of all counties in the United States. The lat-
itude and longitude of the center of each county is also pro-
vided. To convert the data from HTML Webpages into an
XML format, we first derived a schema for these resources,
which is partially shown in Figure 1. The Webpages con-
taining the data were then downloaded from the Website
and the relevant figures were extracted from the pages and
stored in XML according to the schema. The latitude and
longitude of each county were also extracted and stored in
both the location element of the resources in the resource
(Tamino) database and in the resource location (Informix)
database.

After removing some counties with incomplete informa-
tion, there were a total of 3138 resources in the dataset.
Each resource contained 90 XML elements and 50 XML
attributes. The maximum nesting level was 7. The val-
ues of most of the elements were numbers (integer or dou-
ble); whereas attribute values were mostly short text strings.
Since we only had the latitude and longitude of the center
of each county, the spatial attribute of each resource was of
the type Point. To allow numerical predicates (e.g., greater
than, less than, etc..) to be evaluated efficiently on the XML
location element, indexes on the elements of latitude and
longitude were created using Tamino’s internal index.

6.2. Experiments

Although we have two different objectives in our exper-
iments, they can actually be achieved with a single set of
experiments. This is because the DB1 storage alternative
can only be queried with the Tamino-Only strategy. Com-
paring the efficiency of the Tamino-Only strategy against
the other three allows us to compare the two storage alter-
natives.

As discussed in Section 5.2, there are three categories
of queries. For Type-1 (non-spatial) queries, all four query
evaluation strategies are reduced to Tamino-Only. It is thus
not necessary to compare strategies for Type-1 queries. In
addition, for Type-2 (spatial only) queries, both Tamino-
First and Naive strategies will return all resources in the
XML database, due to the absence of XML constraints.
Obviously, the Tamino-Only approach will be faster than
these two. Therefore, in our experiments, we test Type-
2 queries only with the Tamino-Only and Informix-First

strategies and test Type-3 queries with all four strategies.

To ensure a fair comparison, we used only rectangles
in our spatial predicates to allow these predicates be eas-
ily transformed into XML queries on the location elements
so that no application level processing is required for the
Tamino-Only strategy.

Five queries were used in the experiments. The first
(query spatial) is a Type-2 spatial only query with the cov-
eredby() predicate. The other four are Type-3 queries with
coveredby() as the spatial predicate. coveredby() is the
only meaningful spatial predicate in this case because we
only have points in the resources and we had decided to use
only rectangles in the queries. The first two Type-3 queries
are Q2 and Q3 in Section 4.2 coupled with a coveredby()
spatial predicate, called query every and query some re-
spectively. These two are more restrictive and return fewer
than 100 resources even if the query rectangle covers all
counties. The last two queries are less restrictive and can
return a much larger amount of resources. The third query,
query business, has five conjunctions about the figures
concerning the business quickfacts of the counties in the
where clause and will return 785 resources without consid-
ering the spatial constraints. The last query, query popula-
tion, also contains two conjunctions of XML predicates but

can return up to 1458 resources.
Q7:(Query business)

select CountyProj
for $i in schema (censusDB) /*/Resource
where coveredby ($i, Polygon((x1l, yl), (x1,vy2),
(x2, y2),(x2,y1)))
and $i//RetailSales > 100000
and $i//RetailSalesPerCapita > 4000
and $i//FederalFundsAndGrants > 60000
and $i//WomenOwnedFirms > 5
and $i//MetropolitanArea ~= "*A*"
return $i

Q8:(Query population)

select CountyProj
for $i in schema (censusDB) /*/Resource
where coveredby ($i, Polygon((x1l, yl), (x1,y2),
(x2, y2), (x2,y1)))
and $i//Population/Year2000 > 10000
and $i/ByAge/Category[@Desc="65 and Above"] > 10
return $i

For each query, four types of spatial query rectangles
were generated: large area, median area, small area, and
random area (random side length). The first three were of
around 25%, 5% and 0.5% of the size of minimum bound-
ing box of all counties respectively. The positions of the
rectangles were randomly generated. For random area, both
the size and the position of the rectangle were randomized.
For each area size, we generated 120 rectangles at different
positions and the resulting queries were evaluated based on
the four strategies. The average time for performing each
query and the average number of resources returned by the
120 queries were recorded. In order to obtain a statistical
support for our comparisons, the time taken for different

strategies were compared using t-test statistics for testing
matched pairs’ mean difference [6] at 5% significance level.

The results are shown in Tables 1 to 4. Due to space con-
straints, only the details of the spatial query, query every
and query population are shown and only the comparison
of Informix-First against the other three strategies are pre-
sented. The column headers L, M, S, and R represent large
area, median area, small area, and random area respectively.
In Tables 1 to 3, the columns with (1) is the time in seconds
and those with (n) are the number of resources returned.
In Table 4, for each X vs Y entry, there is a null hypoth-
esis of “X is as good as Y”, and two alternate hypotheses
of “X is better than Y” (positive) and “X is worse than Y”
(negative). A Z indicates that we cannot reject the null hy-
pothesis, while an A means the null hypothesis is rejected
and the positive alternative hypothesis is accepted, whereas
R means the negative one is accepted.

Table 1. Results of Spatial Only Queries

L ()/(n) M (0/(n) S (©/(n) R (0/(n)
TO | 10.78/891.35 | 3.26/174.14 | 0.78/1495 | 3.44/431.65
IF | 8.76/891.35 | 1.26/174.14 | 0.15/14.95 | 2.16/431.65
Table 2. Results of query every
L (t)/(n) M (t)/(n) S (t)/(n) R (t)/(n)
TO | 4.42/1.47 | 1.85/0.38 | 0.73/0.00 | 2.18/0.61
TF | 3.55/1.47 | 0.56/0.38 | 0.11/0.00 | 2.00/0.61
NA | 5.20/1.47 | 2.97/038 | 1.27/0.00 | 3.95/0.61
TF | 5.16/1.47 | 5.00/0.38 | 4.99/0.00 | 5.80/0.61
Table 3. Results of query population
L (t)/(n) M (v/(n) S (t)/(n) R (t)/(n)
TO | 11.66/38543 | 2.25/8530 | 0.71/836 | 2.64/198.12
IF | 15.98/38543 | 1.50/8530 | 0.11/836 | 5.50/198.12
NA | 10.45/38543 | 4.50/18530 | 1.65/836 | 5.37/198.12
TF | 15.80/385.43 | 13.69/8530 | 12.73/836 | 13.70/198.12

6.3. Discussion

The results in Table 1 indicate that for spatial only
queries, the average query processing time for Informix-
First is consistently shorter than that of Tamino-Only. The
advantage of Informix-First is reaffirmed by the statisti-
cal test results in Table 4 (third row), where the positive
alternate hypothesis is always accepted. The reason for the
better performance of Informix-First is largely due to the
use of the efficient spatial access method (R-Tree) provided
by Informix database. Since we can only use numerical
comparisons to evaluate spatial predicates on the Tamino
database, Tamino-Only is much slower than the dedicated
spatial access method like R-Tree. From Table 1, we can see
that evaluating a disjunction of around 900 resource ids in

Table 4. Comparison of Storage Alternatives
and Evaluation Strategies

LO[M@®OI[SOH]R®
IF vs TO
spatial A A A A
every A A A V4
some Z A A zZ
business R A A R
population R A A R
IF vs NA
every A A A A
some Z A A A
business R A A zZ
population R A A zZ
IF vs TF
every A A A A
some Z A A A
business Z A A A
population Z A A A

an XML query is still faster than the numerical comparisons
for the coveredby() predicate.

In some extreme cases where the sub-query to Informix
returns O records, there is not even a need to query the
Tamino database. This happened quite frequently when the
queries involved small areas, making Informix-First an or-
der of magnitude faster than Tamino-Only when querying
with small areas. However, we did observe that when the
number of resources returned exceeds 1500, Tamino-Only
started to outperform Informix-First. Nevertheless, with
3138 resources in the entire dataset, it is unlikely that there
will be many queries returning more than half of the dataset.

Table 2 shows the results of different strategies for query
every. Due to the very restrictive XML query conditions,
the number of resources returned by this query is very small
(at most 7 for large areas). This means that when a small
number of resources are returned, ids disjunctions (aver-
aged 891 for large areas) plus the non-spatial conditions will
be evaluated faster than the evaluation of numerical com-
parisons (in place of spatial predicates) and the non-spatial
predicates on the Tamino database.

For query population (Table 3), we can see that in the
case of large and random area spatial queries, Tamino-Only
and Naive are faster than Informix-First. The statistical
test results in Table 4 also ascertains that Informix-First
performance worse in the two cases. However, for smaller
size query rectangles, Informix-First is still better than the
other three. The performance of Informix-First for query
some and query business (not shown here) are some-
where between that of query every and query population.
We noted that the number of results returned increased from
query every to query population. This suggests that the
smaller the size of the result, the faster Informix-First is
compared with the rest.

It can be seen from the Table 4 that most of the time
we are confident that the Informix-First strategy performs
better than the Tamino-Only strategry. In other words, we
are quite confident that the DB2 alternative is more efficient
than DB1, if the Informix-First strategy is used to evalu-
ate queries with DB2. Since points are the simplest forms of
geometry objects, it is obvious that when lines and polygons
are involved in the spatial predicates, DB1 will be slower or
even not applicable. Therefore, we conclude that DB2 is the
most suitable choice for implementing the storage subsys-
tem.

When comparing Informix-First with Tamino-First,
Table 4 shows that in most cases Informix-First performs
statistically better, with only two draws. Therefore, we can
also conclude that we should always prefer Informix-First
to Tamino-First.

However, when comparing Informix-First with
Tamino-Only and Naive, such conclusions cannot be
drawn so easily. We notice that Tamino-Only and Naive
outperformed Informix-First in some queries involving
large areas. This happened when the number of resources
returned by the non-spatial sub-query is large. In particular,
we observed that Informix-First is more sensitive to this
number than the other strategies. When the non-spatial
sub-query to Tamino returns more than 700 resources,
Informix-First starts to slow down. This occurred for
queries involving large and random areas which return
more than 25% of the records. The reason remains to be
investigated mainly due to insufficient knowledge about the
internal query processing methods used by Tamino.

Another observation of slower performance of
Informix-First occurs when the spatial sub-query re-
turns large numbers of records. This causes the sub-query
to Tamino to contain a large number of disjunctions of ids
to be tested. The reason is also not clear since it is not
known to us how disjunctions are evaluated in Tamino.
One possible explanation is that such long disjunctions
forces the internal query processing engine of Tamino
to perform a large number of random database accesses,
which is relatively slower than accessing by range index
(Tamino-Only) or simple non-spatial query (Naive).

Nevertheless, we anticipate that most queries will un-
likely cover large areas, thus only returning resources fewer
than those returned by queries with median areas. The
queries would also be relatively restrictive as compared with
the ones in query population and query business. For
queries with small to median areas, Informix-First consis-
tently performs better than the other three strategies. There-
fore, we consider it reasonable to adopt the DB2 alternative
and the Informix-First strategy.

7. Conclusion

In this paper, we describe the storage design and query
features of G-Portal, a digital library system. As G-Portal
maintains metadata resources about geospatial and georef-
erenced information on the Web, it uses different resource
schemas for interpreting different types of metadata re-
sources, and supports queries on resources carrying both
spatial and non-spatial elements. To handle the geome-
try object representation of location elements of resources,
we have proposed a new resource query language RQOL, a
variant of XQuery language adapted to G-Portal’s resource
model and spatial query requirements.

This paper also describes the design of G-Portal’s stor-
age and query subsystems and presents our experiments
on several proposed query evaluation strategies for RQOL
queries. The experiment results suggest that other than
spatial-only queries, the Informix-First strategy works well
for queries that consist of predicates that are more restric-
tive. Note that the results were obtained for relatively sim-
ple types of spatial predicates. For queries involving com-
plex spatial predicates, the Informix-First and Naive strate-
gies will be more appropriate.

At this point in time, we have implemented the G-Portal
storage subsystem. A preliminary version of the query
subsystem including the query client has also been imple-
mented in Java. Users are given a query window to formu-
late the spatial and non-spatial query predicates. So far, only
bounding rectangle objects can be specified using the map
interface as part of the spatial predicates. The query results
are displayed both on the map-based and classification-
based interfaces.

As part of our future work, we plan to conduct further
experiments on the storage and query subsystems for larger
datasets and more complex queries. A hybrid query evalua-
tion strategy could be explored to evaluate query predicates
of different selectivities. For sophisticated users, the cur-
rent ROL syntax may be too restrictive. For example, it
is currently not possible to relate resources from different
schemas in a ROL query. Such queries however may be
useful when detailed analysis is to be conducted on the re-
sources within a project. We will look into extending R QL
to support such queries and develop new query evaluation
strategies for them.

8. Acknowledgments

This work is funded by the SingAREN Project
M48020004.

We would also like to thank Linda Hill for her advice
during this research.

References

(1]

2

—

3

—

4

—_

[5

—

[6

—_

[7

—

(8]

(9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

C. Baru, V. Chu, A. Gupta, B. Ludaescher, R. Marciano,
Y. Papakonstantinou, and P. Velikhov. Xml-based infor-
mation mediation for digital libraries. In Proceedings of
the Fourth ACM conference on Digital Libraries (ACMDL
1999), pages 214-215, Berkeley, CA, USA, August 1999.
D. Chamberlin. XQuery: An XML Query Language. /BM
Systems Journal, 41(4):597-615, 2002.

V. Gaede and O. Gunther. Multidimensional Access Meth-
ods. ACM Computing Surveys, 30(2):170-231, 1998.

O. Gunther. Efficient computation of spatial joins. In Pro-
ceedings of the International Conference on Data Engineer-
ing (ICDE), pages 50-59, Vienna, Austria, April 1993.

A. Guttman. R-trees: A dynamic index structure for spatial
searching. In Proceedings of the ACM SIGMOD Confer-
ence, pages 47-57, Boston, MA, June 1984.

G. Keller, B. Warrack, and H. Bartel. Statistics for Man-
agement and Economics, pages 353-358. Duxbury Press,
1994.

E.-P. Lim, D. H.-L. Goh, Z. Liu, W.-K. Ng, C. S.-G. Khoo,
and S. E. Higgins. G-portal: A map-based digital library
for distributed geospatial and georeferenced resources. In
Proceedings of the Second ACM+IEEE Joint Conference
on Digital Libraries (JCDL 2002), Portland, Oregon, USA,
July 14-18 2002.

Z. Liu, E.-P. Lim, and D. H.-L. Goh. Resource annotation
framework in a georeferenced and geospatial digital library.
In Proceedings of the 5th International Conference On Asian
Digital Libraries (ICADL 2002), Singapore, December 11-
14 2002.

Open GIS Consortium. Open GIS Simple
Features Specification for SQL. Revision 1.1.
http://www.opengis.org/techno/specs/99-049.pdf.

M.-J. Proulx, Y. Bédard, F. Létourneau, and C. Martel.
GEOREP: A WWW customizable georeferenced digital li-
brary for spatial data. D-Lib Magazine, December 1996.

T. Smith. A digital library for geographically referenced
materials. IEEE Computer, 29(5):54-60, 1996.

T. Smith, G. Janee, J. Frew, and A. Coleman. The Alexan-
dria Digital Earth ProtoType system. In Proceedings of
the First ACM+IEEE Joint Conference on Digital Libraries
(JCDL 2001), pages 118-119, Roanoke, VA, USA, June
2001.

T. Sumner and M. Dawe. Looking at digital library usabil-
ity from a reuse perspective. In Proceedings of the First
ACM+IEEE Joint Conference on Digital Libraries (JCDL
2001), pages 416-425, Roanoke, VA, USA, June 2001.

U.S. Census Bureau. State and County QuickFacts.
http://quickfacts.census.gov/qfd/index.html.
W3 Consortium. XML
http://www.w3.org/xml/schema.

J. Weatherley and T. Weingart. Designing a sim-
ple resource search wuser interface for DLESE.
http://www.dlese.org/documents/bibliographies/ dis-
covery_sys_final.pdf, March 25 2002.

B. Zhu, M. Ramsey, H. Chen, R. Hauck, T. Ng, and
B. Schatz. Create a large-scale digital library for geo-
referenced information. In Proceedings of the Fourth ACM

Schema.

Conference on Digital Libraries (DL 1999), Berkeley, Cali-
fornia, USA, Auguest 1999.

