
Using Javadoc and XML to Produce API Reference
Documentation

Donald M. Leslie
Apache Software Foundation

XML Project
dleslie@apache.org

ABSTRACT
The creation of API reference documentation and its integration
into larger documentation sets present a number of challenges.
This paper explores a strategy for using Javadoc, the primary
mechanism for generating Java API documentation, in
conjunction with an XML infrastructure, to improve the quality of
API reference material and its integration into product
documentation sets.

Categories and Subject Descriptors
I.7.4 [Document and Text Processing]: Electronic Publishing.

General Terms
Management, Documentation, Design.

Keywords
API documentation, Javadoc, doclets, HTML, XML, XSLT, XSL
stylesheets, document transformation.

1. INTRODUCTION
A number of tools now exist for automating the production of API
documentation. One of the most widely used of these tools is
Javadoc [12]. For the core Java libraries and many Java product
libraries, Javadoc output, hereafter called Javadoc, represents the
most widely used form of documentation.

In many cases, Javadoc is the only documentation available to the
application developers who use those libraries.

Why is Javadoc so widely used? The answer is simple, I believe.
Almost no effort is required to produce Javadoc, and at its
minimum it includes a rich set of accurate and useful information.

Figure 1: Sample Javadoc instruction

The Java development platform, itself free, includes the Javadoc
tool. Issue the appropriate command-line instruction (as in Figure
1), and Javadoc uses the Java compiler to scan a set of Java source
files and generate HTML output.

Figure 2: Sample Javadoc output

If the developer or a technical writer has included explanatory
source comments before the class and member declarations in
these files, the Javadoc includes those comments. If no such
comments are present, Javadoc still generates output identifying
package structure, class inheritance, variable and parameter
datatypes, method signatures, and more.

A little browsing on the Internet quickly reveals that Javadoc is
often run with source files that contain no or extremely limited
explanatory comments. The output may be difficult to use, but it
is arguably a lot better than nothing. A little trial and error (or
perhaps a lot!) based on names, types, signatures, and inheritance
trees, and the tenacious application developer can start to figure
out what the documentation failed to include.

It would be a tedious process (with lots of room for error) for a
writer to manually collect from the source code all of the
information that comes for free with Javadoc. For example, a class
may extend another class and implement one or more interfaces.
The class it extends may in turn extend another class and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGDOC’02, October 20-23, 2002, Toronto, Ontario, Canada.
Copyright 2002 ACM 1-58113-543-2/02/0010…$5.00.

104

implement other interfaces. A Java class provides access to the
members that appear in the classes it directly or indirectly extends.
In other words, you may use this class to call methods and
perform operations that do not actually appear in the Java source
code for that class.

Using the compiler, the Javadoc tool makes this information
available in the document it produces for each class.

Javadoc also provides ready access to the interfaces a given class
implements. In many cases, developers use a “standard” interface
API rather than the “vendor-specific” implementation API. For
example, once you have learned the standard interfaces for
working with XML (SAX [15], DOM [7], and JAXP [11]), you
can use these interfaces to work with a variety of tools. You can
even switch from one set of tools to another without having to
recode your application.

To summarize, Javadoc is a marvelous tool, but most Javadoc
output falls far short of providing the information that would
make the Java libraries it documents easy to use.

2. Challenges
The situation described above clearly presents technical
communicators and others who are interested in producing high-
quality API documentation with some substantial challenges.

2.1 Who does what?
What role do technical writers and editors play in the creation of
Javadoc? In many cases, they appear to have been cut out of the
loop altogether. After all, in the “standard” product development
environment, developers manage .java source files; writers and
editors maintain separate documentation files. At best, perhaps an
editor marks up the Javadoc output, and gives the markup to the
developer. Based on appearances, even this minimal level of
involvement appears often not to be the case.

Certainly it is true that developers should continue to be
responsible for commenting their code, the orientation being on
providing information required to understand, maintain, and
update the code. But it is no less true that technical
communicators should take responsibility for providing the
documentation that users of the API require, including conceptual
overviews, procedures for completing standard tasks, and
reference materials.

The fact that this material is in or is mechanically derived from the
source files should be seen as an advantage, not as an
organizational problem to be solved by somehow segregating the
documentation source files from the .java source files. As
Frederick Brooks [3] pointed out, “A basic principle of data
processing teaches the folly of trying to maintain independent
files in synchronism.”

Rather than denying writers access to the source files, the control
system that is probably already in place just needs to be expanded
to include writers as well as developers. In fact, writers can use a
tool such as DocWiz [8], which provides access to the source files
and allows the creation or modification of the comments used by
Javadoc without permitting modifications to the code.

Javadoc incorporates comments beginning with /**, ending with
*/, and immediately preceding a class or class-member

declaration. Javadoc ignores comments beginning with // and
comments placed in the body of the code.

Comments for internal use should be entered such that Javadoc
will not pick them up. The developer may in fact also enter
comments that Javadoc will pick up, in which case the technical
writer can edit or supplement the comments, or move all or a
portion to a location where they will not appear in the Javadoc.

It is up to the program manager, or individual developers, writers,
and editors, to establish a working model for producing both
internal comments and Javadoc comments.

2.2 Integration
How is Javadoc material tied in with the rest of the
documentation? In many cases, there is no additional
documentation. Javadoc optionally incorporates text from an
overview text file and from a text file for each package. These
files may contain a certain amount of conceptual and procedural
information. Indeed developers or writers may embed such
information in the source-code comments.

This is a makeshift strategy that development groups are prone to
fall back on in an environment of severe time and resource
constraints, and using documentation procedures that disassociate
Javadoc output from other forms of documentation. We should,
however, keep in mind that Javadoc is essentially reference
material. To address the needs of application developers, a
conceptual overview should also be in place, along with
procedures for using the API to perform meaningful tasks. In most
cases, this information does not really belong in package-level or
class-level comments. No matter how well the API is organized,
packages and classes rarely map directly to procedures and
underlying concepts.

The tool for which the API exists may also provide a user
interface or involve the use of other resources. To use an XML
transformation engine, such as Xalan [1] or SAXON [16], for
example, the user needs information about XML syntax,
document type definitions, XML schemas, and XSL stylesheets,
information that clearly does not belong in the Javadoc.

3. Proposed Solution
Clearly a preliminary requirement is clarification of the role the
technical communicators play in the documentation of APIs. I
believe we can most effectively address this issue in the context of
developing adequate tools to enable technical communicators to
do their work and integrate Javadoc with other portions of a
comprehensive documentation set.

3.1 Clarify role of technical communicators
Make sure that writers and editors are in the Javadoc-production
loop. Ideally, technical communicators are also in the product/API
design loop, which means they have the opportunity and
responsibility to review the organization and naming conventions
used in the API.

However they interact with developers and incorporate developer
comments, technical writers with the appropriate training and
experience should be responsible for the comments that will be
picked up by Javadoc. Editors should mark up the Javadoc output,
and developers provide technical review. Writers can then input

105

the edits and technical revisions, just as they do for other forms of
documentation.

From the outset, technical communicators should be responsible
for creating the package-level and overview files that Javadoc
optionally incorporates in its output.

Most importantly, technical communicators should create,
implement, and maintain comprehensive documentation plans that
clearly delineate the relationships between Javadoc and other
documentation.

The rest of this paper addresses the use of a Javadoc XML doclet
and other XML tools to provide an infrastructure that makes it
possible to coordinate Javadoc output with other documentation.

3.2 Use a Javadoc doclet
Starting with the release of Java 1.2 in 1995, the Javadoc tool
includes a “doclet” interface (the com.sun.javadoc package) that
enables users to control Javadoc output. Along with this interface,
Javadoc provides a standard doclet that produces the HTML
output as illustrated in Figure 2.

In projects I have worked on, we have made minor modifications
to the standard doclet in order to control which API members are
included in the output (a commonly raised issue) and to visually
tag individual class and class members as experimental or for
internal use only.

But the doclet interface provides complete control over the
output, and a number of alternative doclets are now available for
performing a variety of custom tasks and publishing a variety of
formats, such as Postscript, PDF, RTF, LaTex, SGML and XML.
For more information, see “Doclets” in the Javadoc FAQ
(frequently asked questions) [12] and Doclet.Com[6].

3.2.1 Generating XML
If you are already producing documentation in an XML
framework, or contemplating a move to such a framework, one
very attractive alternative is to set up a doclet to generate XML.
Many companies (including IBM, for which I developed the
DITA XML doclet described in this paper) and public entities
(such as the Apache Software Foundation, the host of the Xalan
XSLT processor on which I work) are actively engaged in
engineering a large-scale shift to XML documentation.

With XML, you can combine and integrate documentation from a
variety of sources to provide as many doc sets as your user
community may require or desire, and you can publish online or
in print. For an introduction to XML, I recommend XML in a
Nutshell by Harold and Means [10].

You can either use an existing XML doclet or create your own. If
you want full control over the XML you are generating and over
how you manage source comments, create your own. Having
recently written an XML doclet to produce DITA XML [4], I am
pleased to verify that setting up an XML doclet is a relatively
straightforward process. The rapidly evolving XML infrastructure
that is just as freely available as Javadoc provides tools that
simplify that process of generating and validating XML.

3.2.2 DITA XML
The DITA specialization scheme makes DITA XML a particularly
attractive form of XML to generate. Procedures and stylesheets

that are established to transform DITA documents into HTML,
PDF, or whatever, will be able to handle the Javadoc XML
output, even if they are not aware of some of the specializations
that the Javadoc includes. As a result, the process of adjusting
publishing schemes originally designed to handle other kinds of
documentation (conceptual topics, task-oriented procedures, non-
API reference topics, etc.) will require minimal adjustment to
fully take advantage of the Java API reference specialization that
DITA Javadoc represents. For more on the subject, see Priestley
[14].

3.3 What the Javadoc tool does
To understand the basic role and structure of a Javadoc XML
doclet, it is useful to briefly review the Javadoc tool.

3.3.1 Javadoc compiler
Javadoc uses the Java compiler to scan a collection of .java source
files (usually the source files for a set of Java packages). The
compiler generates information for each class and class-member
declaration. The Javadoc tool assembles this information, along
with the comments into a tree structure of class objects, a structure
that maps directly to the XML tree structure. Whether you are
using the standard “HTML” doclet shipped with the Java
Development Kit, or a custom doclet, the underlying Javadoc tool
completes this parsing operation and provides the doclet access to
a RootDoc object.

The RootDoc provides access to a PackageDoc for each package
the tool has scanned, which in turn provides access to a series of
ClassDoc objects for the interfaces and classes that make up that
package. A ClassDoc object in turn provides access to a collection
of Member objects for each variable (field), constructor, and
method in that class.

Figure 3: Javadoc object tree

3.3.2 Mapping the Javadoc object tree to XML
Mapping this tree structure to the XML tree structure is quite
straightforward:

Figure 4: XML Javadoc tree

Of course you are free to use element names and to vary the
organization as required to generate XML that conforms to your

106

own particular needs. Rather than creating a single XML
document with the entire Javadoc output, you may want (as I did)
to produce a tree of XML documents, along the lines of the tree of
HTML documents the standard doclet produces.

Figure 5: Tree structure of Javadoc documents

3.3.3 Code (and other) comments
As already mentioned, Javadoc pulls in comments from the source
files. With two exceptions, Javadoc obtains all its information and
text from the .java source files. Both exceptions are optional: an
overview text file and a text file for each package.
You may indicate an overview text file when you issue the
Javadoc command, in which case it places the content of that file
in the RootDoc object.

If Javadoc encounters any package.html files in the source tree
(each subdirectory contains a package), it places the content of
that file in the appropriate PackageDoc object.

When you are working with the standard doclet, the overview
document and package documents are HTML documents. But the
overview document can contain any text, and it is easy enough to
get Javadoc to look for package.xml in place of package.html
files.

As we will see, the incorporation of comments is the most
problematic area that confronts an XML doclet.

4. Implementing an XML doclet
Take advantage of the tools that exist for generating,
manipulating, and validating XML. Rather than manually
assembling the elements that make up the XML documents, for
example, use the SAX TransformerHandler defined in the JAXP
1.1 interface (javax.xml.transform.sax.TransformerHandler), and
supplied with any of the standard XML transformer engines. For
each document, issue a startDocument statement, followed by a
set of nested startElement and endElement statements that define
the structure of the document. You close the document with an
endDocument. statement.

Figure 6 Using TransformerHandler to assemble a document

For the document statements, you define the location and file
name, and for the element statements, you define an element its
attributes, and its text content.

4.1 Handling source code comments
The only problem area that I encountered in the process of
composing a doclet is determining how to manage the source code
comments. Source code comments (including the text in overview
and package text files), present a couple of complications:

• Javadoc @tags

• Structural issues

4.1.1 Javadoc @tags
Comment text is intermixed with Javadoc @tags, special tags that
Javadoc recognizes. At least one of these tag types -- {@link} --
you need to convert in place to links or cross-references. The
Javadoc tool provides you direct access to others, such as the
@param tags that accompany a constructor or method.

You can instruct Javadoc to give you the comment text, without
these tags, and to give you these tags without the comments.
Accordingly, you set up a procedure in the doclet to convert some
tags in place and place the text associated with other tags into the
appropriate XML elements.

The following comment immediately precedes the DITA doclet
start() method (the entry point for a doclet). It contains an
{@link} tag and an @param tag.

Figure 7: Sample source comment with Javadoc @tags

In the XML output, the @link appears as an XML link element in
the body of the comment, and the text associated with the
@param tag has been placed along with information provided by
the compiler in a param XML element:

Figure 8: Handling Javadoc @tags in the output

107

4.1.2 Comment structure
Unless you have absolute control over what is put into the body of
the source comments, the structure (or lack thereof) presents a
more fundamental difficulty.

From the standpoint of the Javadoc tool, source comments may be
raw text (as in the preceding example), may include a certain
amount of HTML, or may in fact include XML tags. The text
includes whatever the developer or writer put there.

If your output files include any text that is not well-formed XML,
you cannot manipulate the text with a standard XML parser or
transformer, so this presents a potentially fatal drawback. A tool
to turn raw text into XML and to clean up HTML is needed.
Fortunately, such a tool exists and is freely available from the
W3C: JTidy [13].

The DITA doclet uses JTidy to place each comment it finds in an
XML-compliant HTML document (in memory). All that is
required is to set some JTidy flags to indicate what kind of output
is desired, then to instruct JTidy to parse the text and hand you the
“tidy” output. To transform this output into XML, simply apply a
stylesheet that transforms HTML into your target XML. The
DITA doclet includes a CommentManager, whose job it is to
manage this process of calling JTidy and applying a stylesheet to
the JTidy output.

4.2 Optional features
The DITA doclet includes some optional features that you might
want to incorporate:

• Validating your output against a DTD and/or XML schema.
XML schemas are still quite new. I still validate each output
file against a DTD, simply by parsing the file with an XML
parser (I use Xerces [2]) that has validation turned on, so that
it will report any errors it finds. This is very useful for
locating any structural problems that block the
transformation of source comments into valid XML.

• Generating XML overview and package files that authors can
use in the future, in which case you can use those files in
future runs in place of HTML overview and package files.

• Generating a map that encapsulates the structure of your
entire output. You can then use the map when you are
incorporating the API documentation in the larger doc set.

Figure 9. Sample Javadoc map

5. Looking forward
The proposal outlined in this paper clearly involves a certain
amount of setup: a doclet working in conjunction with an XML
transformer and parser, and a set of DTDs and/or schemas, and
stylesheets for transforming the XML to the desired presentation
formats. This paper has suggested some avenues to explore in
implementing such a setup. Substantial design work remains.

Work is underway at IBM to complete a DITA XML
infrastructure for authoring and publishing user documentation.
Similar endeavors as doubtless taking place elsewhere. To the
degree that Java API documentation comes into play, an XML
doclet is a critical tool in these efforts.

Design and coordination issues will doubtless arise during the
process of integrating Javadoc output into larger documentation
sets. The sooner documentation groups become actively engaged
in this endeavor, the sooner we can confront these issues. But we
can also look forward to establishing some very efficient
processes for creating easily customized documentation sets, and
to producing well-organized and comprehensive API
documentation that I am more than confident will elicit eager
attention and appreciation from a variety of sources.

A number of tools similar to Javadoc exist for other programming
languages. For example, I have used Doc++ [5] and Doxygen [9]
to generate C++ reference documentation, and other tools like
these certainly exist. The success we achieve in using Javadoc to
generate XML API documentation is bound to stimulate parallel
endeavors with these other tools and languages.

In short, technical communicators face interesting and challenging
work on a variety of fronts implementing some radically new and
improved systems for producing the high-quality API
documentation that application developers need.

6. ACKNOWLEDGMENTS
Xalan and Xerces are Copyright © 1999-2002, Apache Software
Foundation

7. REFERENCES
[1] Apache Software Foundation, Xalan Java.

http://xml.apache.org/xalan-j/index.html
[2] Apache Software Foundation, Xerces Java.Parser

http://xml.apache.org/xerces-j/index.html

[3] Brooks, F. The Mythical Man Month.. Addison-
Wesley, Boson, MA, 1995, 169.

[4] Day, D., Priestley, M. and Schell, D. Introduction to
the Darwin Information Typing Architecture: Toward
portable technical information. IBM DeveloperWorks,
2001-2002. http://www106.ibm.com/developerworks/
xml/library/x-dita1/

[5] Doc++
http://www.zib.de/Visual/software/doc++/

[6] Doclet.com, Zentech, Inc.
http://www.doclet.com/

108

[7] Document Object Model (DOM)
http://www.w3.org/DOM/

[8] DocWiz
http://www.mindspring.com/~chroma/docwiz/

[9] Doxygen
http://www.doxygen.org/

[10] Harold, E. R., and Means, W. S. XML in a Nutshell: A
Deskotp Quick Reference. O’Reilly and Associates, Inc.,
Sebastopol, CA, 2001.

[11] Java API for XML Processing (JAXP)
http://java.sun.com/xml/jaxp/index.html

[12] Javadoc Tool Home Page
http://java.sun.com/j2se/javadoc/

[13] JTidy HTML Parser and Pretty Printer in Java.
http://www.lempinen.net/sami/jtidy/.

[14] Priestley, M. Specializing topic types in DITA: Creating new
topic-based document types. IBM DevelperWorks 2001-
2002. http://www-106.ibm.com/developerworks/xml/
library/x-dita2/

[15] SAX (Simple API for XML)
http://www.saxproject.org/

[16] SAXON XSLT Processor
http://saxon.sourceforge.net/

109

