
Liberty Alliance Project: DRAFT Version: 1.2-08

Liberty ID-FF Bindings and Profiles
Specification
Version: 1.2-08

Editors:
John Kemp, IEEE-ISTO
Tom Wason, IEEE-ISTO

Contributors:
Robert Aarts, Nokia
Scott Cantor, OSU/Internet2
Slava Kavsan, RSA Security
John Kemp, IEEE-ISTO

Abstract:

Specification of the Liberty Alliance Project core profiles and bindings.

Copyright © 2003 Liberty Alliance Project

Liberty Alliance Project

1

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

Notice1

Copyright © 2002, 2003 ActivCard; American Express Travel Related Services; America Online, Inc.; Bank of2

America; Bell Canada; Catavault; Cingular Wireless; Cisco Systems, Inc.; Citigroup; Communicator, Inc.; Consignia;3

Cyberun Corporation; Deloitte & Touche LLP; Earthlink, Inc.; Electronic Data Systems, Inc.; Entrust, Inc.; Ericsson;4

Fidelity Investments; France Telecom; Gemplus; General Motors; Hewlett-Packard Company; i2 Technologies, Inc.;5

Internet2; Intuit Inc.; MasterCard International; NEC Corporation; Netegrity; NeuStar; Nextel Communications;6

Nippon Telegraph and Telephone Company; Nokia Corporation; Novell, Inc.; NTT DoCoMo, Inc.; OneName7

Corporation; Openwave Systems Inc.; Phaos Technology; PricewaterhouseCoopers LLP; Register.com; RSA Security8

Inc; Sabre Holdings Corporation; SAP AG; SchlumbergerSema; SK Telecom; Sony Corporation; Sun Microsystems,9

Inc.; Trustgenix; United Airlines; VeriSign, Inc.; Visa International; Vodafone Group Plc; Wave Systems;. All rights10

reserved.11

This specification document has been prepared by Sponsors of the Liberty Alliance. Permission is hereby granted to12

use the document solely for the purpose of implementing the Specification. No rights are granted to prepare derivative13

works of this Specification. Entities seeking permission to reproduce portions of this document for other uses must14

contact the Liberty Alliance to determine whether an appropriate license for such use is available.15

Implementation of certain elements of this Specification may require licenses under third party intellectual property16

rights, including without limitation, patent rights. The Sponsors of and any other contributors to the Specification are17

not, and shall not be held responsible in any manner, for identifying or failing to identify any or all such third party18

intellectual property rights.This Specification is provided "AS IS", and no participant in the Liberty Alliance19

makes any warranty of any kind, express or implied, including any implied warranties of merchantability,20

non-infringement of third party intellectual property rights, and fitness for a particular purpose. Implementors21

of this Specification are advised to review the Liberty Alliance Project’s website (http://www.projectliberty.org/) for22

information concerning any Necessary Claims Disclosure Notices that have been received by the Liberty Alliance23

Management Board.24

25

Liberty Alliance Project26

Licensing Administrator27

c/o IEEE-ISTO28

445 Hoes Lane29

Piscataway, NJ 08855-1331, USA30

info@projectliberty.org31

Liberty Alliance Project

2

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

Revision History32

Revision: 04 Date: 14 Mar 200333

Definition of Name Identifier Mapping Profile; Modifications to Browser Artifact SSO to allow WML.34

Revision: 05 Date: 21 Mar 200335

Added IntroductionNotification, ProviderRelationshipTermination profiles.36

Revision: 06 Date: 28 Mar 200337

Various editorial edits.38

Revision: 07 Date: 04 Apr 200339

Added ProviderRelationshipTermination diagram; editorial/formatting changes40

Revision: 08 Date: 11 Apr 200341

New legal notice, marked WML POST profile for deprecation42

Liberty Alliance Project

3

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

Contents43

1. Introduction .544

1.1. Notation .545

2. Protocol Bindings .546

2.1. SOAP Binding for Liberty. .647

2.2. Example of Message Exchange Using SOAP over HTTP. .648

3. Profiles .849

3.1. Common Requirements. .950

3.2. Single Sign-On and Federation Profiles. .1651

3.3. Register Name Identifier Profiles. .3552

3.4. Identity Federation Termination Notification Profiles. .4253

3.5. Single Logout Profiles. .4854

3.6. Identity Provider Introduction. .5955

3.7. Name Identifier Mapping Profile. .6056

3.8. Introduction Notification Profile. .6257

3.9. Provider Relationship Termination Profile. .6458

4. Security Considerations. .6559

4.1. Introduction .6660

4.2. General Requirements. .6661

4.3. Threat Scenarios and Countermeasures. .6662

4.4. Threat Scenarios and Countermeasures. .6863

Bibliography .7264

Liberty Alliance Project

4

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

1. Introduction65

This specification defines the bindings and profiles of the Liberty protocols and messages to HTTP-based communica-66

tion frameworks. This specification relies on the SAML core framework in [SAMLCore] and makes use of adaptations67

of the SAML profiles in [SAMLBind]. A separate specification, [LibertyProtSchema], is used to define the Liberty68

protocols and messages used within the profiles. Definitions for Liberty-specific terms can be found in [LibertyGloss].69

1.1. Notation70

The key words "MUST," "MUST NOT," "REQUIRED," "SHALL," "SHALL NOT," "SHOULD," "SHOULD NOT,"71

"RECOMMENDED," "MAY," and "OPTIONAL" in this specification are to be interpreted as described in [RFC2119]:72

"they MUST only be used where it is actually required for interoperation or to limit behavior which has potential for73

causing harm (e.g., limiting retransmissions)."74

These keywords are thus capitalized when used to unambiguously specify requirements over protocol and application75

features and behavior that affect the interoperability and security of implementations. When these words are not76

capitalized, they are meant in their natural-language sense.77

Listings of productions or other normative code appear like this.78

Example code listings appear like this.79

Note:80

Non-normative notes and explanations appear like this.81

Conventional XML namespace prefixes are used throughout this specification to stand for their respective namespaces82

as follows, regardless of whether a namespace declaration is present in the example:83

XML Namespace Conventions84

• The prefixlib: stands for the Liberty namespaceurn:liberty:iff:1.285

• The prefixsaml: stands for the SAML assertion namespace (see [SAMLCore]).86

• The prefixsamlp: stands for the SAML request-response protocol namespace (see [SAMLCore]).87

• The prefixds: stands for the W3C XML signature namespace,http://www.w3.org/2000/09/xmldsig# (see88

[XMLSig]).89

• The prefixSOAP-ENV: stands for the SOAP 1.1 namespace,http://schemas.xmlsoap.org/soap/envelope90

(see [SOAP1.1]).91

Terminology from [RFC2396] is used to describe components of an HTTP URL. An HTTP URL has the following92

form:93

<scheme>://<authority><path>?<query>94

Sections in this document specify certain portions of the<query> component of the URL. Ellipses (...) are used to95

indicate additional, but unspecified, portions of the<query> component.96

Liberty Alliance Project

5

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

2. Protocol Bindings97

The Liberty protocol bindings are defined in this section.98

2.1. SOAP Binding for Liberty99

Because the Liberty protocols are an extension of the SAML protocol (see [SAMLCore]) and a SOAP protocol binding100

for SAML has been defined, the SOAP binding for Liberty MUST adhere to the processing rules for the "SOAP binding101

for SAML" as specified in [SAMLBind] unless otherwise noted. Just like SAML, the SOAP binding for Liberty uses102

HTTP as the transport mechanism.103

2.2. Example of Message Exchange Using SOAP over HTTP104

The following is an example of the SOAP exchange for the single sign-on browser artifact profile requesting an105

authentication assertion (the left margin whitespace added for legibility invalidates the signature).106

POST /authn HTTP/1.1107

Host: idp.example.com108

Content-type: text/xml109

Content-length: nnnn110

<soap-env:Envelope111

xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">112

<soap-env:Header/>113

<soap-env:Body>114

<samlp:Request xmlns="urn:oasis:names:tc:SAML:1.0:protocol"115

xmlns:lib="http://projectliberty.org/schemas/core/2002/12"116

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"117

xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"118

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"119

IssueInstant="2002-12-12T10:08:56Z"120

MajorVersion="1"121

MinorVersion="0"122

RequestID="e4d71c43-c89a-426b-853e-a2b0c14a5ed8"123

id="ericssonb6dc3636-f2ad-42d1-9427-220f2cf70ec1"124

xsi:type="lib:SignedSAMLRequestType">125

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">126

<ds:SignedInfo>127

<ds:CanonicalizationMethod128

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">129

</ds:CanonicalizationMethod>130

<ds:SignatureMethod131

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1">132

</ds:SignatureMethod>133

<ds:Reference URI="#ericssonb6dc3636-f2ad-42d1-9427-220f2cf70ec1">134

<ds:Transforms>135

<ds:Transform136

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature">137

</ds:Transform>138

<ds:Transform139

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">140

</ds:Transform>141

</ds:Transforms>142

<ds:DigestMethod143

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1">144

</ds:DigestMethod>145

<ds:DigestValue>+k6TnolGkIPKZlpUQVyok8dwkuE=</ds:DigestValue>146

</ds:Reference>147

</ds:SignedInfo>148

<ds:SignatureValue>149

wXJMVoPO1V1jFnWJPyOWqP5Gqm8A1+/2b5gNzF4L4LMu4yEcRtttLdPPT3bvhwkwHXjL9NuOFumQ150

5YEyiVzlNcjAxX0LfgwutvEdJb748IU4L+8obXPXfqTZLiBK1RbHCRmRvjlPIu22oGCV6EwuiWRv151

OD6Ox9svtSgFJ+iXkZQ152

</ds:SignatureValue>153

<ds:KeyInfo>154

<ds:X509Data>155

<ds:X509Certificate>156

MIIDMTCCApqgAwIBAgIBHDANBgkqhkiG9w0BAQQFADCBlTELMAkGA1UEBhMCVVMxCzAJBgNVBAcT157

AlNGMRkwFwYDVQQKExBMaWJlcnR5IEFsbGlhbmNlMRQwEgYDVQQLEwtJT1AgVGVzdGVyczEiMCAG158

A1UEAxMZTGliZXJ0eSBUZXN0ZXJzIENlcnRpZmllcjEkMCIGCSqGSIb3DQEJARYVcnJvZHJpZ3Vl159

ekBuZW9zb2wubmV0MB4XDTAyMTIwNDE1NTg0NFoXDTEyMTIwMTE1NTg0NFowgasxCzAJBgNVBAYT160

AlVTMQswCQYDVQQHEwJTRjEkMCIGA1UEChMbTGliZXJ0eSBBbGxpYW5jZSBlcmljc3Nvbi1hMSYw161

Liberty Alliance Project

6

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

JAYDVQQLEx1JT1AgVGVzdGVycyBlcmljc3Nvbi1hIHNpZ25lcjEXMBUGA1UEAxMOZXJpY3Nzb24t162

YS5pb3AxKDAmBgkqhkiG9w0BCQEWGXJyb2RyaWd1ZXpAZXJpY3Nzb24tYS5pb3AwgZ8wDQYJKoZI163

hvcNAQEBBQADgY0AMIGJAoGBAPUoGYvJxQc5jzDnJ14TV6TaTbB3fH95ju24Z0y6HQxm6gXdJSAo164

Wh7/AIes4UcV09DC2kKS6Vow2YoXt2LIyH9HWH2tEUt1jS/PUeBHEWcW3tFezM6jh5GG5rCuVPZa165

W9eoGUbFPSzOPFKUAwdHUXSDWufY1KZ93IxhOBeZgg6VAgMBAAGjeTB3MEoGCWCGSAGG+EIBDQQ9166

FjtUaGlzIHNpZ25pbmcgY2VydCB3YXMgY3JlYXRlZCBmb3IgdGVzdGluZy4gRG8gbm90IHRydXN0167

IGl0LjAJBgNVHRMEAjAAMBEGCWCGSAGG+EIBAQQEAwIEMDALBgNVHQ8EBAMCBsAwDQYJKoZIhvcN168

AQEEBQADgYEAR/HSgBpAprQwQVyWDE9pCaiduKv4/W/+hrdpXlVKSr6TIlg4ouDCQJNos7tNuG9Z169

AbfWtHvCss51N2cfAzfns/DKqxRqcsxzL5ZUBksPpmsDoboopUv6Xm8RFsi7yB9AGaVuqObeY/+m170

70nOu03O+FlMN3U1k2E3rOKXlU1noC0</ds:X509Certificate>171

</ds:X509Data>172

</ds:KeyInfo>173

</ds:Signature>174

<samlp:AssertionArtifact>175

AAM1uXw6+f+jyA/4XuFHqPl7QDvc/LIQL9+t7YQtG1Gwk9bph0Adl+o+176

</samlp:AssertionArtifact>177

</samlp:Request>178

</soap-env:Body>179

</soap-env:Envelope>180

The following is an example of a response, which supplies an assertion containing an authentication statement.181

HTTP/1.1 200 OK182

Content-Type: text/xml183

Content-Length: nnnn184

<soap-env:Envelope185

xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">186

<soap-env:Header/>187

<soap-env:Body>188

<samlp:Response189

xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"190

InResponseTo="RPCUk2ll+GVz+t1lLURp51oFvJXk"191

IssueInstant="2002-10-31T21:42:13Z" MajorVersion="1" MinorVersion="0"192

Recipient="http://localhost:8080/sp"193

ResponseID="LANWfL2xLybnc+BCwgY+p1/vIVAj">194

<samlp:Status>195

<samlp:StatusCode196

xmlns:qns="urn:oasis:names:tc:SAML:1.0:protocol"197

Value="qns:Success">198

</samlp:StatusCode>199

</samlp:Status>200

<saml:Assertion201

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"202

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"203

xmlns:lib="http://projectliberty.org/schemas/core/2002/12"204

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"205

AssertionID="SqMC8Hs2vJ7Z+t4UiLSmhKOSUO0U"206

InResponseTo="RPCUk2ll+GVz+t1lLURp51oFvJXk"207

IssueInstant="2002-10-31T21:42:13Z" Issuer="http://localhost:8080/idp"208

MajorVersion="1" MinorVersion="0"209

xsi:type="lib:AssertionType">210

<saml:Conditions211

NotBefore="2002-10-31T21:42:12Z"212

NotOnOrAfter="2002-10-31T21:42:43Z">213

<saml:AudienceRestrictionCondition>214

<saml:Audience>http://localhost:8080/sp</saml:Audience>215

</saml:AudienceRestrictionCondition>216

</saml:Conditions>217

<saml:AuthenticationStatement218

AuthenticationInstant="2002-10-31T21:42:13Z"219

AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"220

xsi:type="lib:AuthenticationStatementType">221

<saml:Subject xsi:type="lib:SubjectType">222

<saml:NameIdentifier>C9FfGouQdBJ7bpkismYgd8ygeVb3PlWK</saml:NameIdentifier>223

<saml:SubjectConfirmation>224

<saml:ConfirmationMethod>225

urn:oasis:names:tc:SAML:1.0:cm:artifact-01226

</saml:ConfirmationMethod>227

</saml:SubjectConfirmation>228

<lib:IDPProvidedNameIdentifier>229

C9FfGouQdBJ7bpkismYgd8ygeVb3PlWK230

</lib:IDPProvidedNameIdentifier>231

</saml:Subject>232

</saml:AuthenticationStatement>233

<ds:Signature>234

<ds:SignedInfo>235

Liberty Alliance Project

7

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

<ds:CanonicalizationMethod236

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">237

</ds:CanonicalizationMethod>238

<ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1">239

</ds:SignatureMethod>240

<ds:Reference URI="">241

<ds:Transforms>242

<ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature">243

</ds:Transform>244

<ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">245

</ds:Transform>246

</ds:Transforms>247

<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1">248

</ds:DigestMethod>249

<ds:DigestValue>ZbscbqHTX9H8bBftRIWlG4Epv1A=</ds:DigestValue>250

</ds:Reference>251

</ds:SignedInfo>252

<ds:SignatureValue>253

H+q3nC3jUalj1uKUVkcC4iTFClxeZQIFF0nvHqPS5oZhtkBaDb9qITA7gIkotaB584wXqTXwsfsu254

IrwT5uL3r85Rj7IF6NeCeiy3K0+z3uewxyeZPz8wna449VNm0qNHYkgNak9ViNCp0/ks5MAttoPo255

2iLOfaKu3wWG6d1G+DM=256

</ds:SignatureValue>257

</ds:Signature>258

</saml:Assertion>259

</samlp:Response>260

</soap-env:Body>261

</soap-env:Envelope>262

Liberty Alliance Project

8

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

3. Profiles263

This section defines the Liberty profiles for the use of request and response messages defined in [LibertyProtSchema]264

and [SAMLCore. The combination of message content specification and message transport mechanisms for a single265

client type (that is, user agent) is termed aLiberty profile. The profiles have been grouped into categories, according266

to the protocol message intent.267

The following profile categories are defined in this document:268

• Single Sign-On and Federation: The profiles by which a service provider obtains an authentication assertion269

from an identity provider facilitating single sign-on and identity federation.270

• Name Registration:The profiles by which service providers and identity providers specify the name identifier to271

be used when communicating with each other about the Principal.272

• Identity Termination Notification: The profiles by which service providers and identity providers are notified of273

federation termination.274

• Single Logout: The profiles by which service providers and identity providers are notified of authenticated275

session termination.276

• Identity Provider Introduction: The profile by which a service provider discovers which identity providers a277

Principal may be using.278

• Name Identifier Mapping: The profiles by which a service provider may obtain a NameIdentifier with which to279

refer to a Principal at a SAML Authority.280

• Provider Introduction Notification: The profile by which an identity provider notifies a second identity provider281

that it is federating a Principal as result of its introduction.282

• Provider Relationship Termination: The profile by which an identity provider notifies a service provider that it283

is severing a relationship with an identity provider to which it introduced the service provider.284

3.1. Common Requirements285

The following rules apply to all profiles in this specification, unless otherwise noted by the individual profile.286

1.All HTTP requests and responses MUST be drawn from either HTTP 1.1 (see [RFC2616]) or HTTP 1.0 (see287

[RFC1945]). When an HTTP redirect is specified, the HTTP response MUST have a status code of "302."288

According to HTTP 1.1 and HTTP 1.0, the use of status code 302 is recommended to indicate "the requested289

resource resides temporarily under a different URI." The response may also include additional headers and an290

optional message.291

2.Whenhttps is specified as the<scheme> for a URL, the HTTP connection MUST be made over either SSL292

3.0 (see [SSLv3]) or TLS 1.0 (see [RFC2246]) or any subsequent protocols that are backwards compatible with293

SSL 3.0 and/or TLS 1.0. Other security protocols MAY be used as long as they implement equivalent security294

measures.295

3.Messages between providers MUST have their integrity protected, confidentiality MUST be ensured and the296

recipient MUST authenticate the sender.297

Liberty Alliance Project

9

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

4.Providers MUST use secure transport (https) to achieve confidentiality and integrity protection. The initiator of298

the secure connection MUST authenticate the server using server-side X.509 certificates.299

5.The authenticated identity of an identity provider MUST be securely available to a Principal before the Principal300

presents his/her personal authentication data to that identity provider.301

6.For signing and verification of protocol messages, identity and service providers SHOULD use certificates and302

private keys that are distinct from the certificates and private keys applied for SSL or TLS channel protection.303

Certificates and private keys MUST be suitable for long-term signatures. See [LibertyProtSchema] for guidelines304

on signature verification.305

7. In transactions between service providers and identity providers, requests MUST be protected against replay, and306

received responses MUST be checked for correct correspondence with issued requests. (Note: Other steps may307

intervene between the issuance of a request and its eventual response within a multistep transaction involving308

redirections.) Additionally, time-based assurance of freshness MAY be provided.309

8.Each service provider within a circle of trust MUST be configured to enable identification of the identity providers310

whose authentications it will accept, and each identity provider MUST be configured to enable identification of311

the service providers it intends to serve.312

Note: The format of this configuration is a local matter and could, for example, be represented as lists of names313

or as sets of X.509 certificates of other circle of trust members).314

9.Circle of trust bilateral agreements on selecting certificate authorities, obtaining X.509 credentials, establishing315

and managing trusted public keys, and tracking lifecycles of corresponding credentials are assumed and not in316

scope for this specification.317

10.The<scheme> of the URL for SOAP endpoints MUST behttps .318

11.All SOAP message exchanges MUST adhere to the SOAP protocol binding for Liberty (see 2.1).319

3.1.1. User Agent320

A user agent, unless otherwise noted in the specific profile, MUST support the following features to be interoperable321

with the protocols in [LibertyProtSchema] and Liberty profiles in this document:322

• HTTP 1.0 (see [RFC1945]) or HTTP 1.1 (see [RFC2616]).323

• SSL 3.0 (see [SSLv3]) or TLS 1.0 (see [RFC2246]) or any subsequent protocols which are backwards compatible324

with SSL 3.0 and/or TLS 1.0 either directly or via a proxy (for example, a WAP gateway).325

• Minimum maximum URL length of 256 bytes. See [LibertyGloss] for definition.326

• A WAP browser user agent MUST support WML 1.0,1.1, 1.2 or 1.3 in addition to the above requirements.327

Liberty Alliance Project

10

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

Additionally, to support the optional identity provider introduction profile, either the user agent or a proxy must support328

session cookies (see [RFC2109]). Support for persistent cookies will yield a more seamless user experience.329

3.1.2. Formatting and Encoding of Protocol Messages330

All protocol messages that are indicated by the profile as being communicated in the<query> component of the URL331

MUST adhere to the formatting and encoding rules in 3.1.2.1.332

3.1.2.1. Encoding URL-embedded Messages333

URL-embedded messages are encoded using theapplication/x-www-form-urlencoded MIME type as if they334

were generated from HTML forms with method of GET as defined in [HTML4].335

The original XML protocol message MUST be encoded as follows:336

• The<query> component parameter value MUST be the value of the XML protocol message element or attribute337

value.338

• When the original message element has multiple values, the value of the<query> ; component parameter MUST339

be a space-delimited list.340

• Some of the referenced protocol message elements and attributes are optional. If an optional element or attribute341

does not appear in the original XML protocol message, then the corresponding data item MUST be omitted from342

the URL encoded message.343

• URLs appearing in the URL-encoded message SHOULD NOT exceed 80 bytes in length (including %-escaping344

overhead). Likewise, the<lib:RelayState> data value SHOULD NOT exceed 80 bytes in length.345

• The URL-encoding of status codes in the responsesRegisterNameIdentifierResponse and LogoutRe-346

sponse may be taken from several sources. The top level codes MUST be from SAML. Other codes (including347

Liberty-defined values) MAY be used at the second or lower levels. The URL parameter value should be inter-348

preted as a QName with the "lib ", "saml ", and "samlp " namespaces pre-defined to their respective namespace349

URIs. Query parameters with the name "xmlns:prefix " can be used to map additional namespace prefixes350

for the purpose of QName resolution, so long as thexmlns:prefix URL parameter appears before the URL351

parameter containing the QName which needs the prefix definition.352

As <samlp:StatusCode> elements may be nested hierarchically (see [SAMLCore]), there may exist multiple353

values for<samlp:StatusCode> in the response messages. These multiple values MUST be encoded by354

producing a URL-encoded space-separated string as the value of this query parameter. An example is shown355

below:356

357

Value=samlp%3AResponder%20lib%3AFederationDoesNotExist358

359

• Certain XML protocol messages support extensibility via an<Extension> element. Messages that are to be360

URL-encoded MUST adhere to the following restrictions when including extension content:361

362

• Only attribute values and elements with simple content models are permitted.363

• All attributes and elements MUST have an empty namespace and MUST have unique local names.364

• Each value included SHOULD NOT exceed 80 bytes in length (including encoding overhead).365

Liberty Alliance Project

11

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

XML digital signatures are not directly URL-encoded due to space concerns. If the Liberty XML protocol message is366

signed with an XML signature, the encoded URL form of the message MUST be signed as follows:367

• Include the signature algorithm identifier as a new<query> component parameter named SigAlg, but omitting the368

signature.369

• Sign the string containing the URL-encoded message. The string to be signed MUST include only the<query>370

part of the URL (that is, everything after? and before&Signature=). Any required URL-escaping MUST be371

done before signing.372

• Encode the signature using base64 (see [RFC2045]).373

• Add the base64-encoded signature to the encoded message as a new data item namedSignature .374

Note that some characters in the base64-encoded signature value may require URL escaping before insertion into the375

URL <query> part, as is the case for any other data item value.376

Any items added after theSignature <query> component parameter are implicitly unsigned.377

The service URL provided by the provider (the URL to which<query> parameters are added) MUST NOT contain378

any pre-existing<query> parameter values.379

The following signature algorithms (i.e.,DSAwithSHA1, RSAwithSHA1) and their identifiers (the URIs) MUST be380

supported:381

• DSAwithSHA1 - http://www.w3.org/2000/09/xmldsig#dsa-sha1382

• RSAwithSHA1 - http://www.w3.org/2000/09/xmldsig#rsa-sha1383

3.1.2.1.1. Size Limitations384

When the request initiator detects that the user agent cannot process the full URL-encoded message in the URL due385

to size considerations, the requestor MAY send the Liberty XML protocol message using a form POST. The form386

MUST be constructed with contents that contain the fieldLAREQor LARESwith the respective value being the Liberty387

XML protocol request or response message (e.g.,<lib:AuthnRequest> or <lib:AuthnResponse>) as defined in388

[LibertyProtSchema]. The Liberty XML protocol message MUST be encoded by applying a base64 transformation389

(refer to [RFC2045]) to the XML message and all its elements.390

3.1.2.1.2. URL-encoded <lib:AuthnRequest>391

The original<lib:AuthnRequest> message:392

<lib:AuthnRequest RequestID="[RequestID]"393

MajorVersion="[MajorVersion]"394

MinorVersion="[MinorVersion]"395

IssueInstant="[IssueInstant]">396

<lib:ProviderID>[ProviderID]</lib:ProviderID>397

<lib:AffiliationID>[AffiliationID]</lib:AffiliationID>398

<lib:ForceAuthn>[ForceAuthn]</lib:ForceAuthn>399

<lib:IsPassive>[IsPassive]</lib:IsPassive>400

<lib:NameIDPolicy>[NameIDPolicy]</lib:NameIDPolicy>401

<lib:ProtocolProfile>[ProtocolProfile]</lib:ProtocolProfile>402

<lib:AssertionConsumerServiceID>[AssertionConsumerServiceID]</lib:AssertionConsumerServiceID>403

<lib:AuthnContext>404

<lib:AuthnContextStatementRef>[AuthnContextStatementRef]</lib:AuthnContextStatementRef>405

</lib:AuthnContext>406

<lib:RelayState>[RelayState]</lib:RelayState>407

<lib:AuthnContextComparison>[AuthnContextComparison]</lib:AuthnContextComparison>408

<lib:ProxyCount>[ProxyCount]</lib:ProxyCount>409

Liberty Alliance Project

12

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

<lib:IntroductionArtifact>[IntroductionArtifact]</lib:IntroductionArtifact>410

</lib:AuthnRequest>411

• Data elements that MUST be included in the encoded data with their values as indicated in brackets above if412

present in the original message:413

414

RequestID, MajorVersion, MinorVersion, IssueInstant, ProviderID, AffiliationID, ForceAuthn,415

IsPassive, NameIDPolicy, ProtocolProfile, AuthnContextStatementRef, AuthnContextClassRef,416

AuthnContextComparison, RelayState, ProxyCount, IntroductionArtifact.417

• Maximum size: 748 [TODO: update this value] bytes + 81 * number ofAuthnContextClassRef or AuthnCon-418

textStatementRefs419

• Example of<lib:AuthnRequest> message URL-encoded and signed (781 bytes):420

421

http://idp.example.com/authn?RequestID=RMvY34pg%2FV9aGJ5yw0HL0AcjcqQF422

&MajorVersion=1&MinorVersion=0&IssueInstant=2002-05 15T00%3A58%3A19423

&ProviderID=http%3A%2F%2Fsp.example.com%2Fliberty%2F&ForceAuthn=true424

&IsPassive=false&NameIDPolicy=federated&ProtocolProfile=http%3A%2F%2Fprojectliberty.org%2Fprofiles%2Fbrws-425

post426

&AuthnContextClassRef=http%3A%2F%2Fprojectliberty.org%2Fauthnctx%2Fprofiles%2FPassword-over-HTTP427

&RelayState=03mhakSms5tMQ0WRDCEzpF7BNcywZa75FwIcSSEPvbkoFxaQHCuNnc5yChId428

DlWc7JBV9Xbw3avRBK7VFsPl2X429

&SigAlg=http%3A%2F%2Fwww.w3.org%2F2000%2F09%2Fxmldsig%23rsa-sha1430

&Signature=EoD8bNr2jEOe%2Fumon6oU%2FZGIIF7gbJAe4MLUUMrD%2BPP7P8Yf3gfdZG2qPJdNAJkzVHGfO8W8DzpQ431

%0D%0AsDTTd5VP9MLPcvxbFQoF0CJJmvL26cPsuc54q7ourcH0jJ%2F2UkDq4DAlYlZ5kPIg%2BtrykgLz0U%2BS%0D%0ANqpNHkjh6W3YkGv7RBs%3D432

3.1.2.1.3. URL-Encoded <lib:FederationTerminationNotification>433

The original<lib:FederationTerminationNotification> message:434

435

<lib:FederationTerminationNotification ...436

RequestID="[RequestID]"437

MajorVersion="[MajorVersion]"438

MinorVersion="[MinorVersion]"439

IssueInstant="[IssueInstant]">440

<lib:ProviderID>[ProviderID]</lib:ProviderID>441

<saml:NameIdentifier442

NameQualifier="[NameQualifier]"443

Format="[NameFormat]">[NameIdentifier]</saml:NameIdentifier>444

<lib:AffiliationID>[AffiliationID]</lib:AffiliationID>445

</lib:FederationTerminationNotification>446

447

• Data elements that MUST be included in the encoded data with their values as indicated in brackets above if448

present in the original message:449

450

RequestID, MajorVersion, MinorVersion, IssueInstant, ProviderID, NameQualifier, NameFormat,451

NameIdentifier, AffiliationID.452

Liberty Alliance Project

13

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

3.1.2.1.4. URL-Encoded <lib:LogoutRequest>453

The original<lib:LogoutRequest> message:454

455

<lib:LogoutRequest ...456

RequestID="[RequestID]"457

MajorVersion="[MajorVersion]"458

MinorVersion="[MinorVersion]"459

IssueInstant="[IssueInstant]">460

<lib:ProviderID>[ProviderID]</lib:ProviderID>461

<saml:NameIdentifier462

NameQualifier="[NameQualifier]"463

Format="[NameFormat]">464

[NameIdentifier]465

</saml:NameIdentifier>466

<lib:SessionIndex>[SessionIndex]</lib:SessionIndex>467

<lib:RelayState>[RelayState]</lib:RelayState>468

<lib:AffiliationID>[AffiliationID]</lib:AffiliationID>469

</lib:LogoutRequest>470

• Data elements that MUST be included in the encoded data with their values as indicated in brackets above if471

present in the original message:472

473

RequestID, MajorVersion, MinorVersion, IssueInstant,474

ProviderID, NameQualifier, NameFormat, NameIdentifier,475

SessionIndex, RelayState, AffiliationID.476

3.1.2.1.5. URL-Encoded <lib:LogoutResponse>477

The<lib:LogoutResponse> response message:478

479

<lib:LogoutResponse480

ResponseID="[ResponseID]"481

InResponseTo="[InResponseTo]"482

MajorVersion="[MajorVersion]"483

MinorVersion="[MinorVersion]"484

IssueInstant="[IssueInstant]"485

Recipient="[Recipient]">486

<lib:ProviderID>[ProviderID]</lib:ProviderID>487

<samlp:Status>488

<samlp:StatusCode Value="[Value]"/>489

</samlp:Status>490

<lib:RelayState>[RelayState]</lib:RelayState>491

</lib:LogoutResponse>492

• Data elements that MUST be included in the encoded data with their values as indicated in brackets above if493

present in the original message:494

495

ResponseID, InResponseTo, MajorVersion, MinorVersion, IssueInstant, Recipient, ProviderID, Value, RelayState.496

• The<lib:LogoutResponse> message may contain nested status code information. Multiple values MUST be497

URL-encoded by creating a space-separated list (see general requirements at top of section 3.1.2.1.5).498

Liberty Alliance Project

14

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

3.1.2.1.6. URL-Encoded <lib:RegisterNameIdentifierRequest>499

The original<libRegisterNameIdentifierRequest> message:500

501

<lib:RegisterNameIdentifierRequest502

RequestID="[RequestID]"503

MajorVersion="[MajorVersion]"504

MinorVersion="[MinorVersion]"505

IssueInstant="[IssueInstant]">506

<lib:ProviderID>[ProviderID]</lib:ProviderID>507

<lib:IDPProvidedNameIdentifier508

NameQualifier="[IDPNameQualifier]"509

Format="[IDPNameFormat]">[IDPProvidedNameIdentifier]510

</lib:IDPProvidedNameIdentifier>511

<lib:SPProvidedNameIdentifier512

NameQualifier="[SPNameQualifier]"513

Format="[SPNameFormat]">[SPProvidedNameNameIdentifier]514

</lib:SPProvidedNameIdentifier>515

<lib:OldProvidedNameIdentifier516

NameQualifier="[OldNameQualifier]"517

Format="[OldNameFormat]">[OldProvidedNameIdentifier]518

</lib:OldProvidedNameIdentifier>519

<lib:RelayState>[RelayState]</lib:RelayState>520

<lib:AffiliationID>[AffiliationID]</lib:AffiliationID>521

</lib:RegisterNameIdentifierRequest>522

523

• Data elements that MUST be included in the encoded data with their values as indicated in brackets above if524

present in the original message:525

526

RequestID, MajorVersion, MinorVersion, IssueInstant,527

ProviderID, IDPNameQualifier, IDPNameFormat, IDPProvidedNameIdentifier,528

SPNameQualifier, SPNameFormat, SPProvidedNameIdentifier,529

OldNameQualifier, OldNameFormat, OldProvidedNameIdentifier,530

RelayState, AffiliationID531

3.1.2.1.7. URL-Encoded <lib:RegisterNameIdentifierResponse>532

The<lib:RegisterNameIdentifierResponse> response message:533

534

<lib:RegisterNameIdentifierResponse535

ResponseID="[ResponseID]"536

InResponseTo="[InResponseTo]"537

MajorVersion="[MajorVersion]"538

MinorVersion="[MinorVersion]"539

IssueInstant="[IssueInstant]"540

Recipient="[Recipient]">541

<lib:ProviderID>[ProviderID]</lib:ProviderID>542

<samlp:Status>543

<samlp:StatusCode Value="[Value]"/>544

</samlp:Status>545

<lib:RelayState>[RelayState]</lib:RelayState>546

</lib:RegisterNameIdentifierResponse>547

548

• Data elements that MUST be included in the encoded data with their values as indicated in brackets above if549

present in the original message:550

551

ResponseID, InResponseTo, MajorVersion, MinorVersion,552

IssueInstant, Recipient, ProviderID, Value, RelayState553

554

• The<lib:RegisterNameIdentifierResponse> message may contain nested status code information. Mul-555

tiple values MUST be URL-encoded by creating a space-separated list (see general requirements at top of section556

3.1.2.1).557

Liberty Alliance Project

15

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

3.1.3. Provider Metadata558

The majority of the Liberty profiles defined in this document rely on metadata that specify the policies that govern559

the behavior of the service provider or identity provider. These provider metadata may be shared out of band between560

an identity provider and a service provider prior to the exchange of Liberty protocol messages or with the protocols561

described in [LibertyMetadata]. The provider metadata relevant to each profile are listed in this document at the562

beginning of the profile category. Refer to [LibertyMetadata] for a complete enumeration of the Liberty provider563

metadata elements and their associated schema.564

3.2. Single Sign-On and Federation Profiles565

This section defines the profiles by which a service provider obtains an authentication assertion of a user agent from566

an identity provider to facilitate single sign-on. Additionally, the single sign-on profiles can be used as a means of567

federating an identity from a service provider to an identity provider through the use of the<NameIDPolicy> element568

in the<lib:AuthnRequest> protocol message as specified in [LibertyProtSchema].569

The single sign-on profiles make use of the following metadata elements, as defined in [LibertyProtSchema].570

• ProviderID Used to uniquely identify the service provider to the identity provider and is documented in these571

profiles as "service provider ID."572

• AffiliationID Used to uniquely identify an affiliation group to the identity provider and is documented in573

these profiles as "affiliation ID."574

• SingleSignOnServiceURL The URL at the identity provider that the service provider should use when sending575

single sign-on and federation requests. It is documented in these profiles as "single sign-on service URL."576

• AssertionConsumerServiceURL The URL(s) at the service provider that an identity provider should use when577

sending single sign-on or federation responses. It is documented in these profiles as "assertion consumer service578

URL."579

• SOAPEndpoint The SOAP endpoint location at the service provider or identity provider to which Liberty SOAP580

messages are sent.581

3.2.1. Common Interactions and Processing Rules582

This section defines the set of interactions and process rules that are common to all single sign-on profiles.583

All single sign-on profiles can be described by one interaction diagram, provided that different messages are optional584

in different profiles and that the actual content of the messages may differ slightly. Where interactions and messages585

differ or are optional, they are called out and detailed within the specific single sign-on profiles. Figure 1 represents586

the basic template of interactions for achieving single sign-on and should be used as the baseline for all single sign-on587

profiles.588

Liberty Alliance Project

16

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

Figure 1. Basic single sign-on profile.589

590

Identity Provider
Service Provider
User Agent

3. HTTP Response with AuthnRequest()

4. HTTP Request with AuthnRequest()

6. HTTP Response with AuthnResponse or Artifact()

7. HTTP Request with AuthnResponse or Artifact()

8. HTTP Request with Artifact()

9. HTTP Response with Assertion()

11. HTTP Response()

1. HTTP Request()

5. Process

AuthnRequest

2. Obtain IDP

10. Process Assertion

591

3.2.1.1. Step 1: HTTP Request592

In step 1, the user agent accesses the intersite transfer service at the service provider with information about the desired593

target attached to the URL. Typically, access to the intersite transfer service occurs via a redirection by the service594

provider in response to a user agent request for a restricted resource.595

It is RECOMMENDED that the HTTP Request URI contain a<query> component at its end596

where597

<query>=...RelayState=<return URL>...598

The <query> component can be used to convey information about the originally requested resource at the service599

provider. It is RECOMMENDED that the<query> parameter be namedRelayState and its value be the URL600

originally requested by the user agent.601

It is RECOMMENDED that the HTTP request be made over either SSL 3.0 (see [SSLv3]) or TLS 1.0 (see [RFC2246])602

to maintain confidentiality and message integrity in step 1.603

3.2.1.2. Step 2: Obtain Identity Provider604

In step 2, the service provider obtains the address of the appropriate identity provider to redirect the user agent to605

in step 3. The means by which the identity provider address is obtained is implementation-dependent and up to the606

service provider. The service provider MAY use the Liberty identity provider introduction profile in this step.607

Liberty Alliance Project

17

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

3.2.1.3. Step 3: HTTP Response with <AuthnRequest>608

In step 3, the service provider’s intersite transfer service responds and sends the user agent to the single sign-on service609

URL at the identity provider.610

3.2.1.4. Step 4: HTTP Request with <AuthnRequest>611

In step 4, the user agent accesses the identity provider’s single sign-on service URL with the<lib:AuthnRequest>612

information.613

3.2.1.5. Step 5: Processing <AuthnRequest>614

In step 5, the identity provider MUST process the<lib:AuthnRequest> message according to the rules specified in615

[LibertyProtSchema].616

If the Principal has not yet been authenticated with the identity provider, authentication at the identity provider MAY617

occur in this step. The identity provider MAY obtain consent from the Principal for federation, or otherwise consult618

the Principal. To this end the identify provider MAY return to the HTTP request any HTTP response; including but619

not limited to HTTP Authentication, HTTP redirect, or content. The identity provider SHOULD respect the HTTP620

User-Agent and Accept headers and SHOULD avoid responding with content-types that the User-Agent may not be621

able to accept. Authentication of the Principal by the identity provider is dependent upon the<lib:AuthnRequest>622

message content.623

In case the identity provider responds to the user agent with a form, it is RECOMMENDED that the<input>624

parameters of the form be named according to [RFC3106] whenever possible.625

As part of the authentication process, the identity provider MAY use the profile described in section 3.X to retrieve626

an introduction assertion vouching for the requesting provider. This profile does not require interaction with the627

User-Agent and will not be visible to the Principal. Alternatively, the identity provider MAY decide to redirect628

the User-Agent to a second Liberty identity provider or a non-Liberty service for authentication, as described in629

[LibertyProtSchema]. When redirecting to a Liberty identity provider, the SSO flow MUST be exactly as described630

in this document, with the original identity provider acting as a service provider. When redirecting to a non-Liberty631

service, the SSO flow is service-dependent. The Liberty interactions MUST eventually resume with step 6 below.632

3.2.1.6. Step 6: HTTP Response with <AthnResponse> Artifact633

In step 6, the identity provider MUST respond to the user agent with a<lib:AuthnResponse> , a SAML artifact, or634

an error.635

The form and contents of the HTTP response in this step are profile-dependent.636

3.2.1.7. Step 7: HTTP Request with <AuthnResponse> or Artifact637

In step 7, the user agent accesses the assertion consumer service URL at the service provider with a638

<lib:AuthnResponse> or a SAML artifact.639

The form and contents of the HTTP request in this step are profile-dependent.640

3.2.1.8. Step 8: HTTP Request with Artifact641

Step 8 is required only for single sign-on profiles that use a SAML artifact.642

In this step the service provider, in effect, dereferences the single SAML artifact in its possession to acquire the643

authentication assertion that corresponds to the artifact.644

Liberty Alliance Project

18

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

The service provider MUST send a<samlp:Request> SOAP message to the identity provider’s SOAP endpoint,645

requesting the assertion by supplying the SAML assertion artifact in the<samlp:AssertionArtifact> element as646

specified in [SAMLBind].647

The<samlp:Request> MUST be digitally signed by the service provider. The<samlp:Request> MUST be signed648

in accordance with Liberty signing guidelines (Sections 3.1.3 and 3.1.5 in [LibertyProtSchema]). An id attribute may649

be added to the<samlp:Request> by declaring an alternate type,<lib:SignedSAMLRequestType> . This id650

attribute may be used for signing. The use of the alternate type is as follows:651

652

<soap-env:Envelope653

xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">654

<soap-env:Header/>655

<soap-env:Body>656

<samlp:Request657

xsi:type="lib:SignedSAMLRequestType"658

id="x"659

xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"660

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"661

IssueInstant="2002-10-31T21:42:14Z"662

MajorVersion="1"663

MinorVersion="0"664

RequestID="2H+PRhYSFYXozOD6r6PZ4YqyKfft">665

...666

</samlp:Request>667

</soap-env:Body>668

</soap-env:Envelope>669

670

3.2.1.9. Step 9: HTTP Response with Assertion671

Step 9 is required only for single sign-on profiles that use a SAML artifact.672

In this step if the identity provider is able to find or construct the requested assertion, it responds with a673

<samlp:Response> SOAP message with the requested<saml:Assertion> . Otherwise, it returns an appropri-674

ate status code, as defined within the "SOAP binding for SAML" (see [SAMLBind]) and the [LibertyProtSchema].675

The <samlp:Response> message MAY be digitally signed. The<saml:Assertion> contained in the message676

MUST be digitally signed by the identity provider.677

The <AuthenticationStatement> elements contained within the<samlp:Response> message returned by678

the identity provider MUST include a<saml:NameIdentifier> element. If the<AuthnRequest> asks for679

anonymity, then a one-time identifier will be used. If the service provider has registered a name identifier, i.e., the680

SPProvidedNameIdentifier, that value will be used. If the service provider has not registered a name identifier, the681

name identifier provided by the identity provider will be used. When the identity provider returns multiple assertions682

within <samlp:Response> , it MUST return exactly one<saml:Assertion> for each SAML artifact found in the683

corresponding<samlp:Request> element. The case where fewer or greater number of assertions is returned within684

the <samlp:Response> element MUST be treated as an error state by the service provider. The identity provider685

MUST return a response with zero assertions if a<samlp:Request> is received from any service provider other than686

the service provider for which the SAML artifact was originally issued.687

The <saml:ConfirmationMethod> element of the assertion MUST be set to the value specified in [SAMLCore]688

for "SAML Artifact," and the<saml:SubjectConfirmationData> element MUST be present with its value being689

the SAML artifact supplied to obtain the assertion.690

3.2.1.10. Step 10: Process Assertion691

In step 10, the service provider processes the<saml:Assertion> returned in the<samlp:Response> or692

<lib:AuthnResponse> protocol message to determine its validity and how to respond to the Principal’s original693

request. The signature on the<saml:Assertion> must be verified.694

Liberty Alliance Project

19

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

The service provider processing of the assertion MUST adhere to the rules defined in [SAMLCore] for things such as695

assertion<saml:Conditions> and<saml:Advice> .696

The service provider MAY obtain authentication context information for the Principal’s current session from697

the <lib:AuthnContext> element contained in the<saml:advice> . Similarly, the information in the698

<lib:RelayState> element MAY be obtained and used in further processing by the service provider.699

3.2.1.11. Step 11: HTTP Response700

In step 11, the user agent is sent an HTTP response that either allows or denies access to the originally requested701

resource.702

3.2.2. Liberty Artifact Profile703

The Liberty artifact profile relies on a reference to the needed assertion traveling in a SAML artifact, which the service704

provider must dereference from the identity provider to determine whether the Principal is authenticated. This profile705

is an adaptation of the "Browser/artifact profile" for SAML as documented in [SAMLBind]. See Figure 3.706

The following URI-based identifier MUST be used when referencing this specific profile (for707

example,<lib:ProtocolProfile> element of the<lib:AuthnRequest> message):708

URI: http://projectliberty.org/profiles/brws-art709

The Liberty artifact profile consists of a single interaction among three parties: a user agent, an identity provider, and710

a service provider, with a nested subinteraction between the identity provider and the service provider.711

3.2.2.1. Interactions712

Figure 2 illustrates the Liberty artifact profile for single sign-on.713

Liberty Alliance Project

20

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

Figure 2. Liberty artifact profile for single sign-on714

715

Identity Provider
Service Provider
User Agent

3: Redirect; Location: <IDP Single Sign-On Service >?<AuthnRequest>

4: GET <IDP Single Sign-On Service >?<AuthnRequest>()

6: Redirect; Location: <SP Assertion Consumer URL>?LRURL=<resource URL>&SAMLart=<...>

7: GET <SP Assertion Consumer URL>?LRURL=<resource URL>&SAMLart=<...>()

8. SOAP POST: <samlp:Request>()

9: 200 OK SOAP: <samlp:Response>()

11: 200 OK: <resource URL>()

1. GET <inter-site transfer service host name and path>?LRURL=<resource URL>()

2. Obtain IdP

10. Process Assertion

5. Process

AuthnRequest

716

This profile description assumes that the user agent has already authenticated at the identity provider prior to step 1.717

Thus, a valid session exists for the user agent at the identity provider.718

When implementing this profile, all processing rules defined in 3.2.1 for the single sign-on profiles MUST be followed.719

Additionally, the following rules MUST be observed as they relate to steps 3, 6 and 7:720

3.2.2.1.1. Step 3: Single sign on Service with <AuthnRequest>721

In step 3, the service provider’s intersite transfer service responds and instructs the user agent to access the single722

sign-on service URL at the identity provider.723

This step may take place via an HTTP 302 redirect, a WML redirect deck or any other method that results in the user724

agent being instructed to make an HTTP GET or POST request to the identity provider’s single signon service.725

This response MUST adhere to the following rules:726

• The response MUST contain the identity provider’s single sign-on service URL (for example, as the Location727

header of an HTTP 302 redirect, or thehref attribute of a<go> element in a WML redirect deck.).728

• The identity provider’s single sign-on service URL MUST specifyhttps as the URL scheme.729

Note: Future protocols may be adopted and enabled to work within this framework. Therefore, implementers are730

encouraged to not hardcode a reliance onhttps .731

Liberty Alliance Project

21

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

• The response MUST include one of the following:732

733

• A <query> component containing the<lib:AuthnRequest> protocol message as defined in [Liber-734

tyProtSchema] with formatting as specified in 3.1.2.735

Note: The <lib:RelayState> element of the<lib:AuthnRequest> message can be used by the736

service provider to help maintain state information during the single sign-on and federation process.737

For example, the originally requested resource (that is, RelayState in step 1) could be stored as the738

value for the<lib:RelayState> element, which would then be returned to the service provider in the739

<lib:AuthnResponse> in step 7. The service provider could then use this information to know how to740

formulate the HTTP response to the user agent in step 11.741

• An HTTP form containing the field LAREQ with the value of the<lib:AuthnRequest> protocol message742

as defined in [LibertyProtSchema]. The<lib:AuthnRequest> MUST be encoded by applying a base64743

transformation (see [RFC2045].744

Implementation examples:745

• HTTP 302 Redirect746

747

748

<HTTP-Version> 302 <Reason Phrase>749

<other headers>750

Location: https://<Identity Provider Single Sign-On Service host name and path>?<query>751

<other HTTP 1.0 or 1.1 components>752

753

754

• WML Redirect with POST755

756

...757

<wml>758

<card id="redirect" title="Log In">759

<onenterforward>760

<go method="post" href="<Identity Provider Single Sign-On service host name and path>" >761

<postfield name="LAREQ" Value="<base64-encoded AuthnRequest>" />762

</go>763

</onenterforward>764

<onenterbackward>765

<prev/>766

</onenterbackward>767

<p>768

Contacting IdP. Please wait...769

</p>770

...771

</card>772

...773

</wml>774

775

776

Liberty Alliance Project

22

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

• WML Redirect with GET777

778

...779

<wml>780

<card id="redirect" title="Log In">781

<onenterforward>782

<go href="<Identity Provider Single Sign-On service host name and path>?<query>" />783

</onenterforward>784

<onenterbackward>785

<prev/>786

</onenterbackward>787

<p>788

Contacting IdP. Please wait...789

</p>790

...791

</card>792

...793

</wml>794

795

796

where797

<Identity Provider Single Sign-On service host name and path>798

This element provides the host name, port number, and path components of the single sign-on service URL at the799

identity provider.800

<query>= ...<URL-encoded AuthnRequest> ...801

A <query> component MUST contain a single authentication request.802

<base64-encoded AuthnRequest>803

A <query> component MUST contain a single authentication request.804

3.2.2.1.2. Step 6: Redirecting to the Service Provider805

In step 6, the identity provider instructs the user agent to access the the service provider’s assertion consumer service806

URL, and provides a SAML artifact for de-refencing by the service provider.807

This step may take place via an HTTP 302 redirect, a WML redirect deck or any other method that results in the user808

agent being instructed to make an HTTP GET or POST request to the service provider’s assertion consumer service.809

This response MUST adhere to the following rules:810

• The response MUST contain the service provider’s assertion consumer service URL (for example, as the Location811

header of an HTTP 302 redirect, or thehref attribute of a<go> element in a WML redirect deck.).812

• The service provider’s assertion consumer service URL MUST specifyhttps as the URL scheme.813

Note: Future protocols may be adopted and enabled to work within this framework. Therefore, implementers are814

encouraged to not hardcode a reliance onhttps .815

• The response MUST include one of the following:816

817

Liberty Alliance Project

23

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

• A <query> component containing a parameter SAMLart, the value of which is the SAML artifact on success818

or on failure. In the case of failure, the status will be conveyed in the <saml:Response> returned in Step 9.819

Additionally, if the <lib:AuthnRequest> processed in Step 5 included a value for the <lib:RelayState> element,820

then a parameter named RelayState with a value set to that of the <lib:RelayState> element MUST be included821

in the <query> component.822

• An HTTP form containing the field LARES with the value of the SAML Artifact as defined in Section 3.2.2.2.823

If a value for <RelayState> was supplied in the<lib:AuthnRequest> , then the form MUST contain a field824

RelayState, with a value obtained from that element in the <lib:AuthnRequest>.825

• All SAML artifacts returned MUST contain the same identity provider ID.826

Implementation examples:827

• HTTP 302 Redirect828

829

830

<HTTP-Version> 302 <Reason Phrase>831

<other headers>832

Location: https://<Service Provider Assertion Consumer Service host name and path>?<query>833

<other HTTP 1.0 or 1.1 components>834

835

836

• WML Redirect with POST837

838

...839

<wml>840

<card id="redirect" title="Artifact">841

<onenterforward>842

<go method="post" href="<Service Provider Assertion Consumer Service host name and path>" >843

<postfield name="LARES" Value="<SAML Artifact>" />844

<postfield name="RelayState" Value="<RelayState>" />845

</go>846

</onenterforward>847

<onenterbackward>848

<prev/>849

</onenterbackward>850

<p>851

Contacting IdP. Please wait...852

</p>853

...854

</card>855

...856

</wml>857

858

859

• WML Redirect with GET860

861

...862

<wml>863

<card id="redirect" title="Artifact">864

<onenterforward>865

<go href="<Service Provider Assertion Consumer Service host name and path>?<query>" />866

</onenterforward>867

<onenterbackward>868

<prev/>869

</onenterbackward>870

<p>871

Contacting IdP. Please wait...872

</p>873

...874

</card>875

...876

</wml>877

878

879

Liberty Alliance Project

24

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

where880

<Service Provider Assertion Consumer Service host name and path>881

This element provides the host name, port number, and path components of the assertion consumer service URL at the882

service provider.883

<query>= ...SAMLArt=<SAML Artifact> ...RelayState=<resource URL>884

A <query> component MUST contain at least one SAML Artifact. A single RelayState MUST be included if a value885

for the <RelayState> was provided in the <lib:AuthnRequest>. All SAML Artifacts included MUST contain the same886

identity provider ID (see Section 3.2.2.2).887

<SAML Artifact>888

A <SAML Artifact> component MUST contain at least one SAML Artifact.889

<RelayState>890

A form field named RelayState, with the value of that element from the <lib:AuthnRequest> MUST be included if a891

value for the <RelayState> was provided in the <lib:AuthnRequest> and the HTTP request is made using a POST.892

3.2.2.1.3. Step 7: Accessing the Assertion Consumer Service893

In step 7, the user agent accesses the assertion consumer service URL at the service provider, with a SAML artifact894

representing the Principal’s authentication information attached to the URL. 3895

3.2.2.2. Artifact Format896

The artifact format includes a mandatory two-byte artifact type code, as follows:897

898

899

SAML_artifact := B64(TypeCode RemainingArtifact)900

TypeCode := Byte1Byte2901

902

903

The notationB64(TypeCode RemainingArtifact) stands for the application of the base64 transformation to the904

catenation of theTypeCode andRemainingArtifact . This profile defines an artifact type of type code0x0003 ,905

which is REQUIRED (mandatory to implement) for any implementation of the Liberty browser artifact profile. This906

artifact type is defined as follows:907

908

909

TypeCode := 0x0003910

RemainingArtifact := IdentityProviderSuccinctID AssertionHandle911

IdentityProviderSuccinctID:= 20-byte_sequence912

AssertionHandle := 20-byte_sequence913

914

915

IdentityProviderSuccinctID is a 20-byte sequence used by the service provider to determine identity provider916

identity and location. It is assumed that the service provider will maintain a table ofIdentityProviderSuccinctID917

values as well as the URL (or address) for the corresponding SAML responder at the identity provider. This918

information is communicated between the identity provider and service provider out of band. On receiving the SAML919

artifact, the service provider determines whether theIdentityProviderSuccinctID belongs to a known identity920

provider and, if so, obtains the location before sending a SAML request.921

Any two identity providers with a common service provider MUST use distinctIdentityProviderSuccinctID922

values. Construction ofAssertionHandle values is governed by the principles that the values SHOULD have no923

Liberty Alliance Project

25

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

predictable relationship to the contents of the referenced assertion at the identity provider and that constructing or924

guessing the value of a valid, outstanding assertion handle MUST be infeasible.925

The following rules MUST be followed for the creation of SAML artifacts at identity providers:926

• Each identity provider selects a single identification URL, corresponding to the provider metadata element927

ProviderID specified in [LibertyMetadata].928

• The identity provider constructs theIdentityProviderSuccinctID component of the artifact by taking the929

SHA-1 hash of the identification URL as a 20-byte binary value. Note that theIdentityProviderSuccinctID930

value, used to construct the artifact, is not encoded in hexadecimal.TheAssertionHandle value is constructed931

from a cryptographically strong random or pseudo-random number sequence (see [RFC1750]) generated by the932

identity provider. The sequence consists of values of at least eight bytes in size. These values should be padded to933

a total length of 20 bytes.934

3.2.3. Liberty Browser POST Profile935

The Liberty browser POST profile allows authentication information to be supplied to an identity provider without the936

use of an artifact. Figure 3 diagrams the interactions between parties in the Liberty POST profile. This profile is an937

adaptation of the "Browser/post profile" for SAML as documented in [SAMLBind].938

The following URI-based identifier MUST be used when referencing this specific profile (for example,939

<lib:ProtocolProfile> element of the<lib:AuthnRequest> message)940

URI: http://projectliberty.org/profiles/brws-post941

The Liberty POST profile consists of a series of two interactions, the first between a user agent and an identity provider,942

and the second directly between the user agent and the service provider.943

Liberty Alliance Project

26

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

Figure 3. Liberty browser POST profile for single sign-on944

945

Identity Provider
Service Provider
User Agent

()

4: GET <IDP Single Sign-On Service >?<AuthnRequest>()

()

()

8. SOAP POST: <samlp:Request>()

9: 200 OK SOAP: <samlp:Response>()

11: 200 OK: <resource URL>()

1. GET <inter-site transfer service host name and path>?RelayState=<resource URL>

2. Obtain IdP

10. Process Assertion

5. Process

AuthnRequest

7. POST <SP assertion consumer URL.; LARES=<AuthnResponse>

3: 302; Location: <IDP Single Sign-On Service ><AuthnRequest>

6. HTTP 200; FORM; METHOD=POST; ACTION=<SP assertion consumer URL.; LARES=<AuthnResponse>

946

This profile description assumes that the user agent has already authenticated at the identity provider prior to step 1.947

Thus, a valid session exists for the user agent at the identity provider.948

When implementing this profile, all processing rules defined in 3.2.1 for single sign-on profiles MUST be followed949

with the exception that steps 8 and 9 MUST be omitted. Additionally, the following rules MUST be observed as they950

relate to steps 3, 6 and 7:951

3.2.3.1.952

In step 3, the service provider’s intersite transfer service responds and sends the user agent to the single sign-on service953

URL at the identity provider.954

The redirection MUST adhere to the following rules:955

• The Location HTTP header MUST be set to the identity provider’s single sign-on service URL.956

• The identity provider’s single sign-on service URL MUST specifyhttps as the URL scheme; if another scheme957

is specified, the service provider MUST NOT redirect to the identity provider.958

Note: Future protocols may be adopted and enabled to work within this framework. Therefore, implementers are959

encouraged to not hardcode a reliance onhttps .960

Liberty Alliance Project

27

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

• The Location HTTP header MUST include a<query> component containing the<lib:AuthnRequest> proto-961

col message as defined in [LibertyProtSchema] with formatting as specified in 3.1.2.962

Note: The <lib:RelayState> element of the<lib:AuthnRequest> message can be used by the963

service provider to help maintain state information during the single sign-on and federation process.964

For example, the originally requested resource (that is, RelayState in step 1) could be stored as the965

value for the<lib:RelayState> element, which would then be returned to the service provider in the966

<lib:AuthnResponse> in step 7. The service provider could then use this information to know how to967

formulate the HTTP response to the user agent in step 11.968

The HTTP response MUST take the following form:969

970

971

<HTTP-Version> 302 <Reason Phrase>972

<other headers>973

Location: https://<Identity Provider Single Sign-On Service host name and path>?<query>974

<other HTTP 1.0 or 1.1 components>975

976

977

where978

<Identity Provider Single Sign-On service host name and path>979

This element provides the host name, port number, and path components of the single sign-on service URL at the980

identity provider.981

<query>= ...<URL-encoded AuthnRequest> ...982

A <query> component MUST contain a single authentication request.983

3.2.3.2. Step: Generating and Supplying the <AuthnResponse>984

In step 6, the identity provider generates an HTML form containing an authentication assertion that MUST be sent in985

an HTTP 200 response to the user agent.986

The form MUST be constructed so that it requests a POST to the service provider’s assertion consumer URL with form987

contents that contain the field LARES with the value being the<lib:AuthnResponse> protocol message as defined988

in [LibertyProtSchema]. The<lib:AuthnResponse> MUST be encoded by applying a base64 transformation (refer989

to [RFC2045]) to the<lib:AuthnResponse> and all its elements. The service provider’s assertion consumer service990

URL used as the target of the form POST MUST specifyhttps as the URL scheme; if another scheme is specified, it991

MUST be treated as an error by the identity provider.992

Multiple <saml:Assertion> elements MAY be included in the response. The identity provider MUST digitally sign993

each of the assertions included in the response.994

The <saml:ConfirmationMethod> element of the assertion MUST be set to the value specified in [SAMLCore]995

for "Assertion Bearer."996

3.2.3.3. Step 7: Posting the Form Containing the <AuthnResponse>997

In step 7, the user agent issues the HTTP POST request containing the<lib:AuthnResponse> to the service998

provider.999

3.2.4. Liberty WML POST Profile [FOR DEPRECATION IN 1.2 ID-FF]1000

The Liberty WML POST profile relies on the use of WML events to instruct a WML browser to submit a HTTP form.1001

This profile is an adaptation of the "Browser/form post profile" for SAML as documented in [SAMLBind]. See Figure1002

41003

Liberty Alliance Project

28

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

The following URI-based identifier MUST be used when referencing this specific profile (for example,1004

<lib:ProtocolProfile> element of the<lib:AuthnRequest> message):1005

URI: http://projectliberty.org/profiles/wml-post1006

WML browsers are typical on mobile handsets. The browsers on such handsets communicate via a dedicated proxy, a1007

WAP gateway. This proxy converts the Wireless Session Protocol of the handset into HTTP.1008

Note:1009

The service provider and identity provider will be contacted using only HTTP.1010

The WML profile described in this section allows for the transportation of signed Liberty messages that are up to1011

approximately 1100 bytes; the length is limited by the overall size of the WML deck. Many WAP browsers do not1012

accept WML decks that are larger than 1300 bytes (after WML tokenizing).1013

A user agent for this profile, typically a standard WAP browser on a mobile handset, MUST support WAP WML 1.0,1014

1.1, 1.2, or 1.3 (see [WML1.3]) in addition to the features listed in 3.1.1015

Figure 4. Liberty WML POST profile for single sign-on1016

1017

Identity Provider
Service Provider
User Agent

()

4: POST <IDP Single Sign-On Service >?LAREQ=<AuthnRequest>()

()

()

8. SOAP POST: <samlp:Request>()

9: 200 OK SOAP: <samlp:Response>()

11: 200 OK: <resource URL>()

1. GET <inter-site transfer service host name and path>?RelayState=<resource URL>

2. Obtain IdP

10. Process Assertion

5. Process

AuthnRequest

7. POST <SP assertion consumer URL.; LARES=<AuthnRespnse>

3: 200 OK: with WML POST <IDP Single Sign-On Service;LAREQ=<AuthnRequest>

6: 200 OK: with WML POST <SP assertion consumer URL.; LARES=<AuthnResponse>

1018

Liberty Alliance Project

29

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

This profile description assumes that the user agent has already authenticated at the identity provider prior to step 1.1019

Thus, a valid session exists for the user agent at the identity provider.1020

When implementing this profile, all processing rules defined in 3.2.1 for single sign-on profiles MUST be followed1021

with the exception that steps 8 and 9 MUST be omitted. Additionally, the following rules MUST be observed as they1022

relate to steps 3, 4, 6, and 7:1023

3.2.4.1. Step 3: HTTP Response with <AuthnRequest>1024

In step 3, the service provider’s intersite transfer service responds and instructs the user agent to POST an1025

<lib:AuthnRequest> to the single sign-on service URL at the identity provider.1026

The form contents MUST contain the field LAREQ with the value of the<lib:AuthnRequest> protocol message as1027

defined in [LibertyProtSchema]. The<lib:AuthnRequest> MUST be encoded by applying a base64 transformation1028

(refer to [RFC2045]) to the<lib:AuthnRequest> and all its elements. The identity provider’s single sign-on service1029

URL used as the target of the form POST MUST specifyhttps as the URL scheme; if another scheme is specified,1030

the service provider MUST NOT issue the POST of the<lib:AuthnRequest> to the identity provider.1031

Note:1032

One method for seamlessly instructing the user agent to POST the<lib:AuthnRequest> is to include a1033

WML deck (see Chapter 17 in [???HTML4]) within the HTTP 200 response. The following is an example of1034

how the WML code could be structured:1035

1036

...1037

<wml>1038

<card id="redirect" title="Log In">1039

<onenterforward>1040

<go method="post" href="<Identity Provider Single Sign-On service URL>" >1041

<postfield name="LAREQ" Value="(<lib:AuthnRequest>)" />1042

</go>1043

</onenterforward>1044

<onenterbackward>1045

<prev/>1046

</onenterbackward>1047

<p>1048

Contacting IdP. Please wait...1049

</p>1050

...1051

</card>1052

...1053

</wml>1054

1055

1056

Note:1057

It is recommended that the<go> element be contained within a<onenterforward> element of the first1058

<card> in the WML deck. The<go> element will ensure that the browser will post the authentication request1059

as soon as the WML code is processed. In addition it is recommended to add an<onenterbackward>1060

element to ensure that a Principal will not be presented with the redirect card when navigating backwards.1061

3.2.4.2. Step 4: HTTP Request with <AuthnRequest>1062

In step 4, the user agent issues the HTTP POST request containing the<lib:AuthnRequest> to the identity provider.1063

3.2.4.3. Step 6: HTTP Response with <AuthnResponse>1064

In step 6, the identity provider’s single sign-on service instructs the user agent to POST a<lib:AuthnResponse> to1065

the assertion consumer service URL at the service provider.1066

Liberty Alliance Project

30

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

The form MUST be constructed so that it requests a POST to the service provider’s assertion consumer service URL1067

with the form contents that contain the field LARES with the value being the<lib:AuthnResponse> protocol1068

message as defined in [LibertyProtSchema]. The<lib:AuthnResponse> MUST be encoded by applying a base641069

transformation (refer to [RFC2045]) to the<lib:AuthnResponse> and all its elements. Multiple SAML assertions1070

MAY be included in the response. The identity provider MUST digitally sign each of the assertions included in the1071

response. The service provider’s assertion consumer service URL used as the target of the form POST MUST specify1072

https as the URL scheme; if another scheme is specified, it MUST be treated as an error by the identity provider.1073

The <saml:ConfirmationMethod> element of the assertion MUST be set to the value specified in [SAMLCore]1074

for "Assertion Bearer."1075

Note:1076

As in step 3, one way of achieving this step is to use a WML deck.1077

3.2.4.4. Step 7: HTTP POST with <AuthnResponse>1078

In step 7, the user agent issues the HTTP POST request containing the<lib:AuthnResponse> to the service1079

provider.1080

3.2.5. Liberty-Enabled Client and Proxy Profile1081

The Liberty-enabled client and proxy profile specifies interactions between Liberty-enabled clients and/or proxies,1082

service providers, and identity providers. See Figure 5. A Liberty-enabled client is a client that has, or knows how to1083

obtain, knowledge about the identity provider that the Principal wishes to use with the service provider. In addition a1084

Liberty-enabled client receives and sends Liberty messages in the body of HTTP requests and responses. Therefore,1085

Liberty-enabled clients have no restrictions on the size of the Liberty protocol messages.1086

A Liberty-enabled proxy is a HTTP proxy (typically a WAP gateway) that emulates a Liberty-enabled client. Unless1087

stated otherwise, all statements referring to LECP are to be understood as statements about both Liberty-enabled1088

clients as well as Liberty-enabled proxies.1089

The following URI-based identifier must be used when referencing this specific profile (for example,1090

<lib:ProtocolProfile> element of the<lib:AuthnRequest> message)1091

URI: http://projectliberty.org/profiles/lecp1092

All LECPs, in addition to meeting the common requirements for profiles in 3.1, MUST indicate that it is a LECP1093

by including a Liberty-Enabled header or entry in the value of the HTTP User-Agent header for each HTTP request1094

they make. The preferred method is the Liberty-Enabled header. The formats of the Liberty-Enabled header and1095

User-Agent header entry are defined 3.2.5.1.1096

3.2.5.1. Liberty-Enabled Indications1097

A LECP SHOULD add the Liberty-Enabled header to each HTTP request. The Liberty-Enabled header MUST be1098

namedLiberty-Enabled and be defined as using Augmented BNF as specified in section 2 of [RFC 2616].1099

1100

Liberty-Enabled = "Liberty-Enabled" ":" LIB_Version ["," 1#Extension]1101

LIB_Version = "LIBV" "=" 1*absoluteURI1102

; any spaces or commas in the absoluteURI MUST be escaped as defined in section 2.4 of [RFC 2396]1103

Extension = ExtName "=" ExtValue1104

ExtName = (["." host] | <any field-value but ".", "," or "=">) <any field-value but "=" or ",">1105

ExtValue = <any field-value but ",">)1106

1107

1108

The comment, field-value, and product productions are defined in [RFC 2616].LIB_Version identifies the versions1109

of the Liberty specifications that are supported by this LECP. Each version is identified by a URI. Service providers or1110

Liberty Alliance Project

31

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

identity providers receiving a Liberty-Enabled header MUST ignore any URIs listed in theLIB_Version production1111

that they do not recognize. All LECPs compliant with this specification MUST send out, at minimum, the URI1112

http://projectliberty.org/specs/v1 as a value in theLIB_Version production. It SHOULD precede this1113

with the URI urn:liberty:iff:1.2 if it supports version 1.2 requests and knows that the identity providers1114

available to it also support version 1.2 requests and responses. It MUST NOT include this URI if it knows that the1115

identity providers available to it cannot process version 1.2 messages. The ordering of the URIs in theLIB_Version1116

header is meaningful; therefore, service providers and identity providers are encouraged to use the first version in1117

the list that they support. Supported Liberty versions are not negotiated between the LECP and the service provider.1118

The LECP simply advertises what version it does support, and the service provider MUST return the response for the1119

corresponding version as defined in step 3 below.1120

Optional extensions MAY be added to the Liberty-Enabled header to indicate new information. The value of the1121

ExtName production MUST use the "host " " ; " prefixed form if the new extension name has not been standardized1122

and registered with Liberty or its designated registration authorities. The value of the host production MUST be an IP1123

or DNS address that is owned by the issuer of the new name. By using the DNS/IP prefix, namespace collisions can1124

be effectively prevented without having to introduce yet another centralized registration agency.1125

LECPs MAY include the Liberty-Agent header in their requests. This header provides information about the software1126

implementing the LECP functionality and is similar to the User-Agent and Server headers in HTTP.1127

1128

Liberty-Agent = "Liberty-Agent" ":" 1*(product | comment)1129

1130

Note:1131

The reason for introducing the new header (that is, Liberty-Enabled) rather than just using User-Agent is that1132

LECP may be a Liberty-enabled proxy. In that case the information about the Liberty-enabled proxy would1133

not be in the User-Agent header. In theory the information could be in the VIA header. However, for security1134

reasons, values in the VIA header can be collapsed, and comments (where software information would be1135

recorded) can always be removed. As such, the VIA header is not suitable. Using the User-Agent header1136

for a Liberty-enabled client and the Liberty-Agent header for a Liberty-enabled proxy was also discussed.1137

However, this approach seemed too complex.1138

Originally the Liberty-Agent header was going to be part of the Liberty-Enabled header. However, header1139

lengths in HTTP implementations are limited; therefore, putting this information in its own header was1140

considered the preferred approach.1141

A LECP MAY add a Liberty-Enabled entry in the HTTP User-Agent request header. The HTTP User-Agent header is1142

specified in [RFC2616]. A LECP MAY include in the value of this header theLiberty-Enabled string as defined1143

above for the Liberty-Enabled header.1144

Note:1145

The reason for adding information to the User-Agent header is to allow for Liberty-enabled client products1146

that must rely on a platform that cannot be instructed to insert new headers in each HTTP request.1147

The User-Agent header is often overloaded; therefore, the Liberty-Enabled header should be the first choice1148

for any implementation of a LECP. The entry in the User-Agent header then remains as a last resort.1149

3.2.5.2. Interactions1150

Figure 5 illustrates the Liberty-enabled client and proxy profile for single sign-on.1151

Liberty Alliance Project

32

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

Figure 5. Liberty-enabled client and proxy profile for single sign-on1152

1153

Identity Provider
Service Provider
User Agent

()

4: SOAP POST: <AuthnRequest>; Liberty-Enabled Header()

6: 200 OK SOAP: <AuthnResponseEnvelope>; Liberty-Enabled Header()

()

11. HTTP Response ; Liberty-Enabled Header()

1. HTTP Request ; Liberty-Enabled Header()

8. SOAP POST: <samlp:Request>()

9: 200 OK SOAP: <samlp:Response>()

2. Obtain IdP

10. Process Assertion

5. Process

AuthnRequest

7: POST <SP Assertion Consumer URL; LRES=<AuthnResponse>; Liberty-Enabled Header

3: 200 OK <AuthnRequestEnvelope>; Liberty-Enabled Header

1154

This profile description assumes that the user agent has already authenticated at the identity provider prior to step 1.1155

Thus, a valid session exists for the user agent at the identity provider.1156

The LECP receives authentication requests from the service provider in the body of the HTTP response. The1157

LECP submits this authentication request as a SOAP request to the identity provider. Because this SOAP re-1158

quest is between the LECP and the identity provider, TLS authentication cannot be performed between service1159

provider and identity provider; therefore, service providers and identity providers MUST rely on the signature of1160

the<lib:AuthnRequest> and the returned<saml:Assertion> , respectively, for mutual authentication.1161

When implementing this profile, processing rules for steps 5, 10, and 11 defined in 3.2.1 for single sign-on profiles1162

MUST be followed, while steps 2, 8, and 9 MUST be omitted. Additionally, the following rules MUST be observed1163

as they relate to steps 1, 3, 4, 6, and 7:1164

3.2.5.2.1. Step 1: Accessing the Service Provider1165

In step 1, the user agent accesses the service provider with the Liberty-Enabled header (or with the Liberty-Enabled1166

entry in the User-Agent header) included in the HTTP request.1167

The HTTP request MUST contain only one Liberty-Enabled header. Hence if a proxy receives a HTTP request1168

that contains a Liberty-Enabled header, it MUST NOT add another Liberty-Enabled header. However, a proxy1169

MAY replace the Liberty-Enabled header. A proxy that replaces or adds a Liberty-Enabled header MUST process1170

<lib:AuthnRequest> messages as defined in steps 3 and 4 as well as<lib:AuthnResponse> messages as1171

specified in steps 6 and 7.1172

Liberty Alliance Project

33

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

It is RECOMMENDED that a LECP add "application/vnd.liberty-request+xml " as one of its supported1173

content types to the Accept header.1174

3.2.5.2.2. Step 3: HTTP Response with <AuthnRequest>1175

In step 3, the service provider’s intersite transfer service issues an HTTP 200 OK response to the user agent. The re-1176

sponse MUST contain a single<lib:AuthnRequestEnvelope> with content as defined in [LibertyProtSchema]. If1177

a service provider receives a Liberty-Enabled header, or a User-Agent header with the Liberty-Enabled entry, the ser-1178

vice provider MUST respond according to the Liberty-enabled client and proxy profile and include a Liberty_Enabled1179

header in its response. Hence service providers MUST support the Liberty-enabled client and proxy profile.1180

The processing rules and default values for the Liberty-Enabled indications are as defined in 3.2.5.1. The service1181

provider MAY advertise any Liberty version supported in this header, not only the version used for the specific1182

response.1183

The HTTP response MUST contain a Content-Type header with the valueapplication/vnd.liberty-1184

request+xml unless the LECP and service provider have negotiated a different format.1185

A service provider MAY provide a list of identity providers it recognizes by including the<lib:IDPList> element1186

in the<lib:AuthnRequestEnvelope> . The format and processing rules for the identity provider list MUST be as1187

defined in [LibertyProtSchema].1188

Note:1189

In cases where a value for the<lib:GetComplete> element is provided within<lib:IDPList> , the URI1190

value for this element MUST specifyhttps as the URL<scheme>.1191

The service provider MUST specify a URL for receiving<AuthnResponse> elements, locally gener-1192

ated by the intermediary, by including the<lib:AssertionConsumerServiceURL> element in the1193

<lib:AuthnRequestEnvelope> .1194

The following example demonstrates the usage of the<lib:AuthnRequestEnvelope> :1195

1196

<?xml version="1.0" ?>1197

<lib:AuthnRequestEnvelope xmlns:lib="urn:liberty:iff:1.2">1198

<lib:AuthnRequest >1199

. . . AuthnRequest goes here . . .1200

</lib:AuthnRequest>1201

<lib:AssertionConsumerServiceURL>1202

https://service-provider.com/LibertyLogin1203

</lib:AssertionConsumerServiceURL>1204

<lib:IDPList >1205

. . . IdP list goes here . . .1206

</lib:IDPList>1207

</lib:AuthnRequestEnvelope>1208

1209

If the service provider does not support the LECP-advertised Liberty version, the service provider MUST return to the1210

LECP an HTTP 501 response with the reason phrase "Unsupported Liberty Version."1211

The responses in step 3 and step 6 SHOULD NOT be cached. To this end service providers and identity providers1212

SHOULD place both "Cache-Control: no-cache " and "Pragma: no-cache " on their responses to ensure that1213

the LECP and any intervening proxies will not cache the response.1214

3.2.5.2.3. Step 4: HTTP Request with <AuthnRequest>1215

In step 4, the LECP determines the appropriate identity provider to use and then issues an HTTP POST of the1216

<lib:AuthnRequest> in the body of a SOAP message to the identity provider’s single sign-on service URL. The1217

request MUST contain the same<lib:AuthnRequest> as was received in the<lib:AuthnRequestEnvelope>1218

from the service provider in step 3.1219

Liberty Alliance Project

34

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

Note:1220

The identity provider list can be used by the LECP to create a user identifier to be presented to the Principal.1221

For example, the LECP could compare the list of the Principal’s known identities (and the identities of the1222

identity provider that provides those identities) against the list provided by the service provider and then only1223

display the intersection.1224

If the LECP discovers a syntax error due to the service provider or cannot proceed any further for other reasons (for1225

example, cannot resolve identity provider, cannot reach the identity provider, etc), the LECP MUST return to the1226

service provider a<lib:AuthnResponse with a <samlp:Status> indicating the desired error element as defined1227

in [LibertyProtSchema]. The<lib:AuthnResponse> containing the error status MUST be sent using a POST to the1228

service provider’s assertion consumer service URL obtained from the<lib:AssertionConsumerServiceURL>1229

element of the<lib:AuthnRequestEnvelope> . The POST MUST be a form that contains the field LARES with1230

the value being the<lib:AuthnResponse> protocol message as defined in [LibertyProtSchema], containing the1231

<samlp:Status> . The<lib:AuthnResponse> MUST be encoded by applying a base64 transformation (refer to1232

[RFC2045]) to the<lib:AuthnResponse> and all its elements.1233

3.2.5.2.4. Step 6: HTTP Response with <AuthnResponse>1234

In step 6, the identity provider responds to the<lib:AuthnRequest> by issuing an HTTP 200 OK response. The1235

response MUST contain a single<lib:AuthnResponseEnvelope> in the body of a SOAP message with content as1236

defined in [LibertyProtSchema].1237

In step 6, the identity provider responds to the<lib:AuthnRequest> by issuing an HTTP 200 OK response. The1238

response MUST contain a single<lib:AuthnResponseEnvelope> in the body of a SOAP message with content as1239

defined in [LibertyProtSchema].1240

The identity provider MUST include the Liberty-Enabled HTTP header following the same processing rules as defined1241

in 3.2.5.1.1242

The Content-Type MUST be set to application/vnd.liberty-response+xml.1243

If the identity provider discovers a syntax error due to the service provider or LECP or cannot proceed any further1244

for other reasons (for example, unsupported Liberty version), the identity provider MUST return to the LECP a1245

<lib:AuthnResponseEnvelope> containing a<lib:AuthnResponse> with a <samlp:Status> indicating the1246

desired error element as defined in [LibertyProtSchema].1247

3.2.5.2.5. Step 7: Posting the Form Containing the <AuthnResponse>1248

In step 7, the LECP issues an HTTP POST of the<lib:AuthnResponse> that was received in the1249

<lib:AuthnResonseEnvelope> SOAP response in step 6. The<lib:AuthnResponse> MUST1250

be sent using a POST to the service provider’s assertion consumer service URL identified by the1251

<lib:AssertionConsumerServiceURL> element within the <lib:AuthnResponseEnvelope> obtained1252

from the identity provider in step 6. The POST MUST be a form that contains the fieldLARESwith the value being1253

the <lib:AuthnResponse> protocol message as defined in [LibertyProtSchema]. The<lib:AuthnResponse>1254

MUST be encoded by applying a base64 transformation (refer to [RFC2045]) to the<lib:AuthnResponse> and1255

all its elements. The service provider’s assertion consumer service URL used as the target of the form POST MUST1256

specifyhttps as the URL scheme; if another scheme is specified, it MUST be treated as an error by the identity1257

provider.1258

If the LECP discovers an error (for example, syntax error in identity provider response), the LECP MUST return to1259

the service provider a<lib:AuthnResponse> with a <samlp:Status> indicating the appropriate error element1260

as defined in [LibertyProtSchema]. The<lib:AuthnResponse> containing the error status MUST be sent using a1261

POST to the service provider’s assertion consumer service URL. The POST MUST be a form that contains the field1262

named LARES with its value being the<lib:AuthnResponse> protocol message as defined in [LibertyProtSchema]1263

Liberty Alliance Project

35

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

with formatting as specified 3.1.2. Any<lib:AuthnResponse> messages created by the identity provider MUST1264

not be sent to the service provider.1265

3.3. Register Name Identifier Profiles1266

This section defines the profiles by which a provider may register or change a name identifier for a Principal. This1267

message exchange is optional. During federation, the identity provider supplies an opaque handle identifying the1268

Principle. This is the<lib:IDPProvidedNameIdentifier> . If neither provider involved in the federation opts1269

to register any other name identifier, then this initial<lib:IDPProvidedNameIdentifier> is to be used by both1270

providers.1271

An identity provider may choose to register a new<lib:IDPProvidedNameIdentifier> at any time1272

subsequent to federation, using this protocol. Additionally, a service provider may choose to register1273

an <lib:SPProvidedNameIdentifier> , which it expects the identity provider to use (instead of the1274

<lib:IDPProvidedNameIdentifier>) when communicating with it about the Principal.1275

Two profiles are specified: HTTP-Redirect-Based and SOAP/HTTP-based.1276

Either the identity or service provider may initiate the register name identifier protocol. The available profiles are1277

defined in 3.3.1 and 3.3.2, and vary slightly based on whether the protocol was initiated by the identity or service1278

provider:1279

• Register Name Identifier Initiated at Identity Provider1280

1281

• HTTP-Redirect-Based: Relies on a HTTP 302 redirect to communicate between the identity provider and the1282

service provider.1283

• SOAP/HTTP-Based: Relies on a SOAP call from the identity provider to the service provider.1284

• Register Name Identifier Initiated at Service Provider1285

1286

• HTTP-Redirect-Based: Relies on a HTTP 302 redirect to communicate between the service provider and the1287

identity provider.1288

• SOAP/HTTP-Based: Relies on a SOAP call from the service provider to the identity provider.1289

The interactions and processing rules for the SOAP/HTTP-based and HTTP-redirect-based profiles are essentially the1290

same regardless of whether the profile was initiated at the service provider or at the identity provider, but the message1291

flow directions are reversed.1292

The register name identifier profiles make use of the following metadata elements, as defined in [LibertyMetadata]:1293

• RegisterNameIdentifierProtocolProfile : The service provider’s preferred register name identifier pro-1294

file, which should be used by the identity provider when registering a new identifier. This would specify the URI1295

based identifier for one of the IDP Initiated register name identifier profiles.1296

• RegisterNameIdentifierServiceURL : The URL used for user-agent-based Register Name Identifier Protocol1297

profiles.1298

Liberty Alliance Project

36

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

• RegisterNameIdentifierServiceReturnURL : The provider’s redirecting URL for use after HTTP name1299

registration has taken place.1300

• SOAPEndpoint : The SOAP endpoint location at the service provider or identity provider to which Liberty SOAP1301

messages are sent.1302

3.3.1. Register Name Identifier Initiated at Identity Provider1303

An identity provider MAY change the<lib:IDPProvidedNameIdentifier> it has assigned a Principal and1304

transmit that information to a service provider. The<lib:IDPProvidedNameIdentifier> MAY be changed1305

without changing any federations. The reasons an identity provider may wish to change the name identifier1306

for a Principal are implementation dependent, and thus outside the scope of this specification. Changing the1307

<lib:IDPProvidedNameIdentifier> MAY be accomplished in either an HTTP-Redirect-Based or SOAP/HTTP1308

mode.1309

3.3.1.1. HTTP-Redirect-Based Profile1310

A HTTP-redirect-based register name identifier profile cannot be self-initiated by an identity provider, but must be a1311

triggered by a message, such as an<lib:AuthnRequest> . We note that we do not normatively specify when and1312

how the identity provider can initiate this profile—that is left to the discretion of the identity provider. As an example,1313

it may be triggered by a message, such as an<lib:AuthnRequest> . When the identity provider decides to initiate1314

the profile in this case, it will insert this profile between theAuthnRequest/AuthnResponse transactions.1315

The HTTP-redirect-based profile relies on using HTTP 302 redirects to communicate register name identifier messages1316

from the identity provider to the service provider. The HTTP-Redirect Register Name Identifier Profile (Figure 6)1317

illustrates this transaction.1318

The following URI-based identifier MUST be used when referencing this specific profile:1319

URI: http://projectliberty.org/profiles/rni-idp-http1320

This URI identifier MUST be specified in the service provider metadata elementRegisterNameIdentifierProto-1321

colProfile when the service provider intends to indicate to the identity provider a preference for receiving register1322

name identifier messages via a HTTP 302 redirect.1323

Liberty Alliance Project

37

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

Figure 6. Register Name Identifier Profile.1324

1325

Identity Provider
Service Provider
User Agent

()

()

()

4. Process

Request

()

3. GET: <Register Name Identifier service at SP>? <RegisterNameIdentifierRequest>

2. 302; Location: <Register Name Identifier service at SP>? <RegisterNameIdentiferRequest>

1. Initiate Profile

5. 302; Location: <Return URL at Identity Provider>?<RegisterNameIdentifierResponse>

6. GET: <Return URL at Identity Provider>?<RegisterNameIdentifierResponse>

7. Complete Profile

1326

In an example scenario, the service provider makes an<lib:AuthnRequest> to the identity provider for authentica-1327

tion of the Principal’s User Agent (step 1). The identity provider effects an<lib:IDPProvidedNameIdentifier>1328

change in the service provider via a URL redirection. The profile is as follows:1329

3.3.1.1.1. Step 1: Initiate Profile1330

This interaction is not normatively specified as part of the profile, but shown for illustrative purposes.1331

3.3.1.1.2. Step 2: Redirecting to the Service Provider Register Name Identifier Service1332

In step 2, the identity provider redirects the user agent to the register name identifier service at the service provider.1333

The redirection MUST adhere to the following rules:1334

• The Location HTTP header MUST be set to the service provider’s register name identifier service URL.1335

• The service provider’s register name identifier service URL MUST specifyhttps as the URL scheme; if another1336

scheme is specified, the identity provider MUST NOT redirect to the service provider.1337

• The Location HTTP header MUST include a<query> component containing the<lib:RegisterNameIdentifierRequest>1338

protocol message as defined in [LibertyProtSchema] with formatting as specified in 3.1.2.1339

Liberty Alliance Project

38

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

The HTTP response MUST take the following form:1340

1341

1342

<HTTP-Version> 302 <Reason Phrase>1343

<other headers>1344

Location : https://<Service Provider Register Name Identifier service URL>?<query>1345

<other HTTP 1.0 or 1.1 components>1346

1347

where1348

<Service Provider Register Name Identifier service URL>1349

This element provides the host name, port number, and path components of the register name identifier service URL1350

at the service provider.1351

<query>= ...<URL-encoded RegisterNameIdentifierRequest>...1352

The <query> component MUST contain a single register name identifier request.1353

3.3.1.1.3. Step 3: Accessing the Service Provider Register Name Identifier Service1354

In step 3, the user agent accesses the service provider’s register name identifier service URL with the1355

<lib:RegisterNameIdentifierRequest> information attached to the URL fulfilling the redirect request.1356

3.3.1.1.4. Step 4: Processing the Register Name Identifier Request1357

In step 4, the service provider MUST process the<lib:RegisterNameIdentifierRequest> according to the1358

rules defined in [LibertyProtSchema].1359

The service provider MAY remove the old name identifier after registering the new name identifier.1360

3.3.1.1.5. Step 5: Redirecting to the Identity Provider return URL with the Register Name Identifier1361

Response1362

In step 5, the service provider’s register name identifier service responds and redirects the user agent back to identity1363

provider using a return URL location specified in the RegisterNameIdentifierServiceReturnURL metadata element. If1364

the URL-encoded<lib: RegisterNameIdentifierRequest> message received in step 3 contains a parameter1365

named RelayState, then the service provider MUST include a<query> component containing the same RelayState1366

parameter and its value in its response to the identity provider.1367

The redirection MUST adhere to the following rules:1368

• The Location HTTP header MUST be set to the identity providers return URL specified in the RegisterNameIden-1369

tifierServiceReturnURL metadata element.1370

• The identity provider’s return URL MUST specifyhttps as the URL scheme; if another scheme is specified, the1371

service provider MUST NOT redirect to the identity provider.1372

• The Location HTTP header MUST include a<query> component containing the<lib:RegisterNameIdentifierResponse>1373

protocol message as defined in [LibertyProtSchema] with formatting as specified in 3.1.2.1374

Liberty Alliance Project

39

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

The HTTP response MUST take the following form:1375

1376

1377

<HTTP-Version> 302 <Reason Phrase>1378

<other headers>1379

Location : https://<Identity Provider Service Return URL >?<query>1380

<other HTTP 1.0 or 1.1 components>1381

1382

where:1383

<Identity Provider Service Return URL>1384

This element provides the host name, port number, and path components of the return URL at the identity provider.1385

<query>= ...<URL-encoded RegisterNameIdentifierResponse>...1386

The <query> component MUST contain a single register name identifier response. The<URL-encoded Regis-1387

terNameIdentifierResponse> component MUST contain the identical RelayState parameter and its value that1388

was received in the URL-encoded register name identifier message obtained in step 3. If no RelayState parameter1389

was provided in the step 3 message, then a RelayState parameter MUST NOT be specified in the<URL-encoded1390

RegisterNameIdentifierResponse> .1391

3.3.1.1.6. Step 6: Accessing the Identity Provider return URL with the Register Name Identifier1392

Response1393

In step 6, the user agent accesses the identity provider’s return URL location fulfilling the redirect request.1394

3.3.1.1.7. Step 7: Complete profile1395

This concludes the initial sequence, which triggered the initiation of this profile.1396

3.3.1.2. SOAP/HTTP-Based Profile1397

The following URI-based identifier MUST be used when referencing this specific profile:1398

URI: http://projectliberty.org/profiles/rni-idp-soap1399

This URI identifier MUST be specified in the service provider metadata element RegisterNameIdentifierProtocolPro-1400

file when the service provider intends to indicate to the identity provider a preference for receiving register name1401

identifier messages via SOAP over HTTP.1402

The steps involved in the SOAP/HTTP-based profile MUST utilize the SOAP binding for Liberty as defined in 2.1.1403

See Figure 7.1404

Liberty Alliance Project

40

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

Figure 7. SOAP/HTTP-based profile for registering name identifiers1405

Identity Provider
Service Provider

1. SOAP POST: <lib:RegisterNameIdentifierRequest>()

2. Process

Request

3: SOAP 200 OK: <lib:RegisterNameIdentiferResponse>()

1406

3.3.1.2.1. Step 11407

In step 1, the identity provider sends a<lib:RegisterNameIdentifierRequest> protocol mes-1408

sage to the service provider’s SOAP endpoint specifying<lib:SPProvidedNameIdentifier> ,1409

<lib:IDPProvidedNameIdentifier> , and <lib:OldProvidedNameIdentifier> as defined in [Liber-1410

tyProtSchema]. The<lib:SPProvidedNameIdentifier> will only contain a value if the service provider has1411

previously used the register name identifier profile.1412

3.3.1.2.2. Step 2: Process Request1413

Service provider records new<lib:IDPProvidedNameIdentifier> .1414

3.3.1.2.3. Step 3: Response to Register Name Identifier1415

The service provider, after successfully registering the new<lib:IDPProvidedNameIdentifier> provided by the1416

identity provider, MUST respond with a<lib:RegisterNameIdentifierResponse> according to the processing1417

rules defined in [LibertyProtSchema].1418

3.3.2. Register Name Identifier Initiated at ServiceProvider1419

A service provider may register, or change a<lib:SPProvidedNameIdentifier> which is a name iden-1420

tifier it expects the identity provider to use when communicating with it about the Principal. Until it1421

registers a <lib:SPProvidedNameIdentifier> , an identity provider will continue to use the current1422

<lib:IDPProvidedNameIdentifier> when referring to the Principal.1423

3.3.2.1. HTTP-Redirect-Based Profile1424

The HTTP-redirect-based profile relies on the use of a HTTP 302 redirect to communicate a register name identifier1425

message from the service provider to the identity provider.1426

The following URI-based identifier MUST be used when referencing this specific profile:1427

URI: http://projectliberty.org/profiles/rni-sp-http1428

A HTTP-redirect-based register name identifier profile can be self-initiated by a service provider to change the1429

<lib:SPProvidedNameIdentifier;> . We note that we do not normatively specify when and how the service1430

provider can initiate this profile that is left to the discretion of the service provider. The HTTP-redirect-based profile1431

relies on using HTTP 302 redirects to communicate register name identifier messages from the service provider to1432

the identity provider. The service provider effects a<lib:SPProvidedNameIdentifier> change in the identity1433

Liberty Alliance Project

41

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

provider via a URL redirection. For a discussion of the interactions and processing steps, refer to 3.3.1.1. When1434

reviewing that profile, interchange all references to service provider and identity provider in the interaction diagram1435

and processing steps 3-7.1436

3.3.2.2. SOAP/HTTP-Based Profile1437

The SOAP/HTTP-based profile relies on using SOAP over HTTP to communicate register name identifier messages1438

from the service provider to the identity provider. For a discussion of the interactions and processing steps, refer1439

to 3.3.1.2. When reviewing that profile, interchange all references to service provider and identity provider in the1440

interaction diagram and processing steps.1441

The following URI-based identifier MUST be used when referencing this specific profile:1442

URI: http://projectliberty.org/profiles/rni-sp-soap1443

3.4. Identity Federation Termination Notification Profiles1444

The Liberty identity federation termination notification profiles specify how service providers and identity providers1445

are notified of federation termination (also known as defederation).1446

Note:1447

Other means of federation termination are possible, such as federation expiration and termination of business1448

agreements between service providers and identity providers. These means of federation termination are1449

outside the scope of this specification.1450

Identity federation termination can be initiated at either the identity provider or the service provider. The Principal1451

SHOULD have been authenticated by the provider at which identity federation termination is being initiated. The1452

available profiles are defined in 3.4.1 and 3.4.2, depending on whether the identity federation termination notification1453

process was initiated at the identity provider or service provider:1454

• Federation Termination Notification Initiated at Identity Provider1455

1456

• HTTP-Redirect-Based: Relies on a HTTP 302 redirect to communicate between the identity provider and the1457

service provider.1458

• SOAP/HTTP-Based: Relies on a SOAP call from the identity provider to the service provider.1459

• Federation Termination Notification Initiated at Service Provider1460

1461

• HTTP-Redirect-Based: Relies on a HTTP 302 redirect to communicate between the service provider and the1462

identity provider.1463

• SOAP/HTTP-Based: Relies on a SOAP call from the service provider to the identity provider.1464

Liberty Alliance Project

42

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

The interactions and processing rules for the SOAP/HTTP-based and HTTP-redirect-based profiles are essentially the1465

same regardless of whether federation termination notification was initiated at the service provider or at the identity1466

provider.1467

The identity federation termination notification profiles make use of the following metadata elements, as defined in1468

[LibertyProtSchema]:1469

• FederationTerminationServiceURL - The URL at the service provider or identity provider to which identity1470

federation termination notifications are sent. It is documented in these profiles as "federation termination service1471

URL."1472

• FederationTerminationServiceReturnURL - The URL used by the service provider or identity provider1473

when redirecting the user agent at the end of the federation termination notification profile process.1474

• FederationTerminationNotificationProtocolProfile - Used by the identity provider to determine1475

which federation termination notification profile MUST be used when communicating with the service provider.1476

• SOAPEndpoint - The SOAP endpoint location at the service provider or identity provider to which Liberty SOAP1477

messages are sent.1478

3.4.1. Federation Termination Notification Initiated at Identity Provider1479

The profiles in 3.4.1.1 and 3.4.1.2 are specific to identity federation termination when initiated at the identity provider.1480

Effectively, when using these profiles, the identity provider is stating to the service provider that it will no longer1481

provide the Principal’s identity information to the service provider and that the identity provider will no longer respond1482

to any requests by the service provider on behalf of the Principal.1483

3.4.1.1. HTTP-Redirect-Based Profile1484

The HTTP-redirect-based profile relies on using HTTP 302 redirect to communicate federation termination notification1485

messages from the identity provider to the service provider. See Figure 8.1486

The following URI-based identifier MUST be used when referencing this specific profile:1487

URI: http://projectliberty.org/profiles/fedterm-idp-http1488

This URI identifier MUST be specified in the service provider metadata element FederationTerminationNotification-1489

ProtocolProfile when the service provider intends to indicate to the identity provider a preference for receiving feder-1490

ation termination notifications via a HTTP 302 redirect.1491

Liberty Alliance Project

43

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

Figure 8. HTTP-redirect-based profile for federation termination1492

1493

Identity Provider
Service Provider
User Agent

()

()

5. 302; Location: <Return URL at Identity Provider>()

1. HTTP Request()

4. Process

Request

6. GET: <Return URL at Identity Provider>()

7: 200 OK: <Confirmation Message>()

3. GET: <Federation Termination service at SP>? <FederationTerminationNotification>

2. 302; Location: <Federation Termination service at SP>? <FederationTerminationNotification>

1494

This profile description assumes the following preconditions:1495

• The Principal’s identity at the service provider is federated with his/her identity at the identity provider.1496

• The Principal has requested to the identity provider that the federation be terminated.1497

• The Principal has authenticated with the identity provider.1498

3.4.1.1.1. Step 1: Accessing the Federation Termination Service1499

In step 1, the user agent accesses the identity federation termination service URL at the identity provider specifying1500

the service provider with which identity federation termination should occur. How the service provider is specified is1501

implementation-dependent and, as such, is out of the scope of this specification.1502

3.4.1.1.2. Step 2: Redirecting to the Service Provider1503

In step 2, the identity provider’s federation termination service URL responds and redirects the user agent to the1504

federation termination service at the service provider.1505

The redirection MUST adhere to the following rules:1506

• The Location HTTP header MUST be set to the service provider’s federation termination service URL.1507

• The service provider’s federation termination service URL MUST specify https as the URL scheme; if another1508

scheme is specified, the identity provider MUST NOT redirect to the service provider.1509

• The Location HTTP header MUST include a<query> component containing the<lib:FederationTerminationNotification>1510

protocol message as defined in [LibertyProtSchema] with formatting as specified in 3.1.2.1511

Liberty Alliance Project

44

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

The HTTP response MUST take the following form:1512

1513

1514

<HTTP-Version> 302 <Reason Phrase>1515

<other headers>1516

Location : https://<Service Provider Federation Termination service URL>?<query>1517

<other HTTP 1.0 or 1.1 components>1518

1519

where1520

<Service Provider Federation Termination service URL>1521

This element provides the host name, port number, and path components of the federation termination service URL at1522

the service provider.1523

<query>= ...<URL-encoded FederationTerminationNotification>...1524

The<query> component MUST contain a single terminate federation request.1525

3.4.1.1.3. Step 3: Accessing the Service Provider Federation Termination Service1526

In step 3, the user agent accesses the service provider’s federation termination service URL with the1527

<lib:FederationTerminationNotification> information attached to the URL fulfilling the redirect re-1528

quest.1529

3.4.1.1.4. Step 4: Processing the Notification1530

In step 4, the service provider MUST process the<lib:FederationTerminationNotification> according to1531

the rules defined in [LibertyProtSchema].1532

The service provider MAY remove any locally stored references to the name identifier it received from the identity1533

provider in the<lib:FederationTerminationNotification> .1534

3.4.1.1.5. Step 5: Redirecting to the Identity Provider Return URL1535

In step 5, the service provider’s federation termination service responds and redirects the user agent back to identity1536

provider using a return URL location specified in the FederationTerminationServiceReturnURL metadata element.1537

If the URL-encoded<lib:FederationTerminationNotification> message received in step 3 contains a1538

parameter named RelayState, then the service provider MUST include a<query> component containing the same1539

RelayState parameter and its value in its response to the identity provider.1540

No success or failure message should be conveyed in this HTTP redirect. The sole purpose of this redirect is to return1541

the user agent to the identity provider where the federation termination process began.1542

The HTTP response MUST take the following form:1543

1544

<HTTP-Version> 302 <Reason Phrase>1545

<other headers>1546

Location : https://<Identity Provider Service Return URL >?<query>1547

<other HTTP 1.0 or 1.1 components>1548

1549

1550

where1551

<Identity Provider Service Return URL>1552

This element provides the components of the return URL at the identity provider.1553

Liberty Alliance Project

45

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

<query>= . . .RelayState=<. . .>1554

The <query> component MUST contain the identical RelayState parameter and its value that was received in the1555

URL-encoded federation termination message obtained in step 3. If no RelayState parameter was provided in the step1556

3 message, then a RelayState parameter MUST NOT be specified in the<query> component.1557

3.4.1.1.6. Step 6: Accessing the Identity Provider Return URL1558

In step 6, the user agent accesses the identity provider’s return URL location fulfilling the redirect request.1559

3.4.1.1.7. Step 7: Confirmation1560

In step 7, the user agent is sent an HTTP response that confirms the requested action of identity federation termination1561

with the specific service provider.1562

3.4.1.2. SOAP/HTTP-Based Profile1563

The SOAP/HTTP-based profile relies on using asynchronous SOAP over HTTP to communicate federation termination1564

notification messages from the identity provider to the service provider. See Figure 9.1565

The following URI-based identifier MUST be used when referencing this specific profile:1566

URI: http://projectliberty.org/profiles/fedterm-idp-soap1567

This URI identifier MUST be specified in the service provider metadata element FederationTerminationNotification-1568

ProtocolProfile when the service provider intends to indicate to the identity provider a preference for receiving feder-1569

ation termination notifications via SOAP over HTTP.1570

Figure 9. SOAP/HTTP-based profile for federation termination1571

1572

Identity Provider
Service Provider
User Agent

2. SOAP POST: <lib:FederationTerminationNotification>()

5: 200 OK: <Confirmation Message>()

1. GET <Federation Termination service host name and path>()

3. Process

Request

4: 204 OK:()

1573

This profile description assumes the following preconditions:1574

• The Principal’s identity at the service provider is federated with his/her identity at the identity provider.1575

• The Principal’s identity at the service provider is federated with his/her identity at the identity provider.1576

• The Principal has authenticated with the identity provider.1577

Liberty Alliance Project

46

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

3.4.1.2.1. Step 1: Accessing the Federation Termination Service1578

In step 1, the user agent accesses the identity federation termination service URL at the identity provider specifying1579

the service provider for with which identity federation termination should occur. How the service provider is specified1580

is implementation-dependent and, as such, is out of the scope of this specification.1581

3.4.1.2.2. Step 2: Notification of Federation Termination1582

In step 2, the identity provider sends an asynchronous SOAP over HTTP notification message to the service provider’s1583

SOAP endpoint. The SOAP message MUST contain exactly one<lib:FederationTerminationNotification>1584

element in the SOAP body and adhere to the construction rules defined in [LibertyProtSchema].1585

If a SOAP fault occurs, the identity provider SHOULD employ best effort to resolve the fault condition and resend the1586

federation termination notification message to the service provider.1587

3.4.1.2.3. Step 3: Processing the Notification1588

In step 3, the service provider MUST process the<lib:FederationTerminationNotification> according to1589

the rules defined in [LibertyProtSchema].1590

The service provider MAY remove any locally stored references to the name identifier it received from the identity1591

provider in the<lib:FederationTerminationNotification> .1592

3.4.1.2.4. Step 4: Responding to the Notification1593

In step 4, the service provider MUST respond to the<lib:FederationTerminationNotification> with a HTTP1594

204 OK response.1595

3.4.1.2.5. Step 5: Confirmation1596

In step 5, the user agent is sent an HTTP response that confirms the requested action of identity federation termination1597

with the specific service provider.1598

3.4.2. Federation Termination Notification Initiated at Service Provider1599

The profiles in 3.4.2.1 and 3.4.2.2 are specific to identity federation termination notification when initiated by a1600

Principal at the service provider. Effectively, when using this profile, the service provider is stating to the identity1601

provider that the Principal has requested that the identity provider no longer provide the Principal’s identity information1602

to the service provider and that service provider will no longer ask the identity provider to do anything on the behalf1603

of the Principal.1604

It is RECOMMENDED that the service provider, after initiating or receiving a federation termination notification,1605

invalidate the local session for the Principal that was authenticated at the identity provider with which federation has1606

been terminated. If the Principal was locally authenticated at the service provider, the service provider MAY continue1607

to maintain a local session for the Principal. If the Principal wants to engage in a single sign-on session with identity1608

provider again, the service provider MUST first federate with identity provider the given Principal.1609

3.4.2.1. HTTP-Redirect-Based Profile1610

The HTTP-redirect-based profile relies on the use of a HTTP 302 redirect to communicate a federation termination1611

notification message from the service provider to the identity provider. For a discussion of the interactions and1612

processing steps, refer to 3.4.1.1. When reviewing that profile, interchange all references to service provider and1613

identity provider in the interaction diagram and processing steps.1614

The following URI-based identifier MUST be used when referencing this specific profile:1615

URI: http://projectliberty.org/profiles/fedterm-sp-http1616

Liberty Alliance Project

47

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

This URI identifier is really only meant for service provider consumption and as such is not needed in any provider1617

metadata.1618

3.4.2.2. SOAP/HTTP-Based Profile1619

The SOAP/HTTP-based profile relies on using asynchronous SOAP over HTTP to communicate federation termination1620

notification messages from the service provider to the identity provider. For a discussion of the interactions and1621

processing steps, refer to 3.4.1.2. When reviewing that profile, interchange all references to service provider and1622

identity provider in the interaction diagram and processing steps.1623

The following URI-based identifier MUST be used when referencing this specific profile:1624

URI: http://projectliberty.org/profiles/fedterm-sp-soap1625

This URI identifier is really only meant for service provider consumption and as such is not needed in any provider1626

metadata.1627

3.5. Single Logout Profiles1628

The single logout profiles synchronize session logout functionality across all sessions that were authenticated by a1629

particular identity provider. The single logout can be initiated at either the identity provider or the service provider.1630

In either case, the identity provider will then communicate a logout request to each service provider with which it1631

has established a session for the Principal. The negotiation of which single logout profile the identity provider uses1632

to communicate with each service provider is based upon the SingleLogoutProtocolProfile provider metadata element1633

defined in [LibertyProtSchema].1634

The available profiles are defined in 3.5.1 and 3.5.2, depending on whether the single logout is initiated at the identity1635

provider or service provider:1636

• Single Logout Initiated at Identity Provider1637

1638

• HTTP-Based: Relies on using either HTTP 302 redirects or HTTP GET requests to communicate logout1639

requests from an identity provider to the service providers.1640

• SOAP/HTTP-Based: Relies on SOAP over HTTP messaging to communicate logout requests from an identity1641

provider to the service providers.1642

• Single Logout Initiated at Service Provider1643

1644

• HTTP-Redirect-Based: Relies on a HTTP 302 redirect to communicate a logout request with the identity1645

provider.1646

• SOAP/HTTP-Based: Relies on SOAP over HTTP messaging to communicate a logout request from a service1647

provider to an identity provider.1648

• SingleLogoutServiceURL — The URL at the service provider or identity provider to which single logout1649

requests are sent. It is described in these profiles as "single logout service URL."1650

Liberty Alliance Project

48

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

• SingleLogoutServiceReturnURL — The URL used by the service provider when redirecting the user agent to1651

the identity provider at the end of the single logout profile process.1652

• SingleLogoutProtocolProfile — Used by the identity provider to determine which single logout request1653

profile MUST be used when communicating with the service provider.1654

• SOAPEndpoint — The SOAP endpoint location at the service provider or identity provider to which Liberty1655

SOAP messages are sent.1656

3.5.1. Single Logout Initiated at Identity Provider1657

The profiles in 3.5.1.1 through 3.5.1.2 are specific to a single logout when initiated by a user agent at the identity1658

provider.1659

3.5.1.1. HTTP-Based Profile1660

The HTTP-based profile defines two possible implementations that an identity provider may use. The first1661

implementation relies on using HTTP 302 redirects, while the second uses HTTP GET requests. The choice of1662

implementation is entirely dependent upon the type of user experience the identity provider provides.1663

The following URI-based identifier MUST be used when referencing either implementation for this specific profile:1664

URI: http://projectliberty.org/profiles/slo-idp-http1665

This URI identifier MUST be specified in the service provider metadata element SingleLogOutProtocolProfile when1666

the service provider intends to indicate to the identity provider a preference for receiving logout requests via either a1667

HTTP redirect or a HTTP GET.1668

3.5.1.1.1. HTTP-Redirect Implementation1669

The HTTP-Redirect implementation uses HTTP 302 redirects to communicate a logout request to each service provider1670

for which the identity provider has provided authentication assertions during the Principal’s current session if the1671

service provider indicated a preference to receive logout requests via the HTTP based profile. See Figure 10.1672

Figure 10. HTTP-Redirect implementation for single logout initiated at identity provider1673

1674

Identity Provider
Service Provider
User Agent

2. 302; Location: <Single Log-Out service at SP>?<LogoutRequest>()

()

5. 302; Location: <Return URL at Identity Provider>?<LogoutResponse>()

1. GET <Single Log-Out service at IDP>()

4. Process

Request

6. GET: <Return URL at Identity Provider>?<LogoutResponse>()

7: 200 OK: <Confirmation Message>()

3. GET: <Single Log-Out service at SP>?<LogoutRequest>

1675

Liberty Alliance Project

49

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

Note:1676

Steps 2 through 6 may be an iterative process for requesting logouts by each service provider that has been1677

issued authentication assertions during the Principal’s current session and has indicated a preference to receive1678

logout requests via the HTTP based profile.1679

Note:1680

[RFC 2616] indicates a client should detect infinite redirection loops because such loops generate network1681

traffic for each redirection. This requirement was introduced because previous versions of the specification1682

recommended a maximum of five redirections. Content developers should be aware that some clients might1683

implement such a fixed limitation.1684

3.5.1.1.1.1. Step 1: Accessing the Single Logout Service at the Identity Provider1685

In step 1, the user agent accesses the single logout service URL at the identity provider indicating that all service1686

providers for which this identity provider has provided authentication assertions during the Principal’s current session1687

must be notified of session termination.1688

3.5.1.1.1.2. Step 2: Redirecting to the Single Logout Service at the Service Provider1689

In step 2, the identity provider’s single logout service responds and redirects the user agent to the single logout service1690

URL at each service provider for which the identity provider has provided an authentication assertion during the1691

Principal’s current session with the identity provider.1692

The redirections MUST adhere to the following rules:1693

• The Location HTTP header MUST be set to the service provider’s single logout service URL.1694

• The service provider’s single logout service URL MUST specify https as the URL scheme; if another scheme is1695

specified, the identity provider MUST NOT redirect to the service provider.1696

• The Location HTTP header MUST include a<query> component containing the<lib:LogoutRequest>1697

protocol message as defined in [LibertyProtSchema] with formatting as specified in 3.1.2.1698

The HTTP response MUST take the following form:1699

1700

<HTTP-Version> 302 <Reason Phrase>1701

<other headers>1702

Location : https://<Service Provider Single Log-Out service URL>?<query>1703

<other HTTP 1.0 or 1.1 components>1704

1705

1706

where1707

<Service Provider Single Log-Out service URL>1708

This element provides the host name, port number, and path components of the single logout service URL at the1709

service provider.1710

<query>= ...<URL-encoded LogoutRequest>...1711

The< query> MUST contain a single logout request.1712

3.5.1.1.1.3. Step 3: Accessing the Service Provider Single Logout Service1713

Liberty Alliance Project

50

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

In step 3, the user agent accesses the service provider’s single logout service URL with the<lib:LogoutRequest>1714

information attached to the URL fulfilling the redirect request.1715

3.5.1.1.1.4. Step 4: Processing the Request1716

In step 4, the service provider MUST process the<lib:LogoutRequest> according to the rules defined in1717

[LibertyProtSchema].1718

The service provider MUST invalidate the session(s) of the Principal referred to in the name identifier it received from1719

the identity provider in the<lib:LogoutRequest> .1720

3.5.1.1.1.5. Step 5: Redirecting to the Identity Provider Return URL1721

In step 5, the service provider’s single logout service responds and redirects the user agent back to the identity provider1722

using the return URL location obtained from the SingleLogoutServiceReturnURL metadata element. If the URL-1723

encoded<lib:LogoutRequest> message received in step 3 contains a parameter named RelayState, then the service1724

provider MUST include a<query> component containing the same RelayState parameter and its value in its response1725

to the identity provider.1726

The purpose of this redirect is to return the user agent to the identity provider so that the single logout process may1727

continue in the same fashion with other service providers.1728

The HTTP response MUST take the following form:1729

1730

<HTTP-Version> 302 <Reason Phrase>1731

<other headers>1732

Location : https://<Identity Provider Service Return URL>?<query>1733

<other HTTP 1.0 or 1.1 components>1734

1735

where1736

<Identity Provider Service Return URL>1737

This element provides the host name, port number, and path components of the return URL at the identity provider.1738

<query>= ...<URL-encoded LogoutResponse>1739

The<query> component MUST contain a single logout response. The<URL-encoded LogoutResponse> MUST1740

contain the identical RelayState parameter and its value that was received in the URL-encoded logout request message1741

obtained in step 3. If no RelayState parameter was provided in the step 3 message, then a RelayState parameter MUST1742

NOT be specified in the<URL-encoded LogoutResponse> .1743

3.5.1.1.1.6. Step 6: Accessing the Identity Provider Return URL1744

In step 6, the user agent accesses the identity provider’s return URL location fulfilling the redirect request.1745

3.5.1.1.1.7. Step 7: Confirmation1746

In step 7, the user agent is sent an HTTP response that confirms the requested action of a single logout has been1747

completed.1748

3.5.1.1.2. HTTP-GET Implementation1749

The HTTP-GET implementation uses HTTP GET requests to communicate logout requests to each service provider1750

for which the identity provider has provided authentication during the Principal’s current session if the service provider1751

indicated a preference to receive logout requests via the HTTP based profile. See Figure 11.1752

Liberty Alliance Project

51

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

Figure 11. HTTP-GET implementation for single logout initiated at identity provider1753

1754

Identity Provider
Service Provider
User Agent

2. 200 OK; with image tags like IMG SRC=<Single Log-Out service at SP>?<LogoutRequest>()

()

5. 302; Location: <Identity Provider Logout Completion URL>?<LogoutResponse>()

1. GET <Single Log-Out service at IDP>()

4. Process

Request

6. GET: <Identity Provider Logout Completion URL>?<LogoutResponse>()

7: 200 OK: <Confirmation Message>()

3. GET: <Single Log-Out service at SP>?<LogoutRequest>

1755

Note:1756

Steps 3 through 7 may be an iterative process for requesting logout of each service provider that has been1757

issued authentication assertions during the Principal’s current session and has indicated a preference to receive1758

logout requests via the HTTP based profile.1759

3.5.1.1.2.1. Step 1: Accessing the Single Logout Service at the Identity Provider1760

In step 1, the user agent accesses the single logout service URL at the identity provider indicating that all service1761

providers for which this identity provider has provided authentication assertions during the Principal’s current session1762

must be notified of session termination and requested to logout the Principal.1763

3.5.1.1.2.2. Step 2: HTML Page Returned to User Agent with Image Tags1764

In step 2, the identity provider’s single logout service responds with an HTML page that includes image tags1765

referencing the logout service URL for each of the service providers for which the identity provider has provided1766

an authentication assertion during the Principal’s current session. The list of image tags MUST be sent in a standard1767

HTTP 200 response to the user agent.1768

The image tag loads on the HTML page MUST adhere to the following rules:1769

• The SRC attribute MUST be set to the specific service provider’s single logout service URL.1770

• The service provider’s single logout service URL MUST specify https as the URL scheme.1771

• The service provider’s single logout service URL MUST include a<query> component containing the1772

<lib:LogoutRequest> protocol message as defined in [LibertyProtSchema] with formatting as specified in1773

3.1.2.1774

Liberty Alliance Project

52

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

3.5.1.1.2.3. Step 3: Accessing the Service Provider Single Logout Service1775

In step 3, the user agent, as a result of each image load, accesses the service provider’s single logout service URL with1776

<lib:LogoutRequest> information attached to the URL. This step may occur multiple times if the HTTP response1777

includes multiple image tag statements (one for each service provider that has been issued authentication assertions1778

during the Principal’s current session).1779

3.5.1.1.2.4. Step 4: Processing the Request1780

In step 4, the service provider MUST process the<lib:LogoutRequest> according to the rules defined in1781

[LibertyProtSchema].1782

The service provider MUST invalidate the session of the Principal referred to in the name identifier it received from1783

the identity provider in the<lib:LogoutRequest> .1784

3.5.1.1.2.5. Step 5: Redirecting to the Identity Provider Logout Completion URL1785

In step 5, the service provider’s single logout service responds and redirects the image load back to the identity1786

provider’s logout completion URL. This location will typically point to an image that will be loaded by the user agent1787

to indicate that the logout is complete (for example, a checkmark).1788

The logout completion URL is obtained from the SingleLogoutServiceReturnURL metadata element.1789

The HTTP response MUST take the following form:1790

1791

<HTTP-Version> 302 <Reason Phrase>1792

<other headers>1793

Location : https://<Identity Provider Logout Completion URL>?<query>1794

<other HTTP 1.0 or 1.1 components>1795

1796

where1797

<Identity Provider Logout Completion URL>1798

This element provides the host name, port number, and path components of the identity provider logout completion1799

URL at the identity provider.1800

<query>=...<URL-encoded LogoutResponse>1801

The <query> component MUST contain a single logout response. The<URL-encoded LogoutResponse>1802

component MUST contain the identical RelayState parameter and its value that was received in the URL-encoded1803

logout request message obtained in step 3. If no RelayState parameter was provided in step 3 then a RelayState1804

message MUST NOT be specified in the<URL-encoded LogoutResponse> .1805

3.5.1.1.2.6. Step 6: Accessing the Identity Provider Logout Completion URL1806

In step 6, the user agent accesses the identity provider’s logout completion URL fulfilling the redirect request.1807

3.5.1.1.2.7. Step 7: Confirmation1808

In step 7, the user agent is sent an HTTP response that confirms the requested action of a single logout has been1809

completed.1810

Note:1811

One method for seamlessly returning the user agent back to the identity provider is for the HTML page1812

generated in step 2 to include a script that runs when the page is completely loaded (all logouts completed)1813

that will initiate the redirect to the identity provider.1814

Liberty Alliance Project

53

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

3.5.1.2. SOAP/HTTP-Based Profile1815

The SOAP/HTTP-based profile uses SOAP over HTTP messaging to communicate a logout request to each service1816

provider for which the identity provider has provided authentication assertions during the Principal’s current session1817

if the service provider indicated a preference to receive logout request via the SOAP/HTTP-based profile. See Figure1818

12.1819

The following URI-based identifier MUST be used when referencing this specific profile:1820

URI: http://projectliberty.org/profiles/slo-idp-soap1821

This URI identifier MUST be specified in the service provider metadata element SingleLogOutProtocolProfile when1822

the service provider intends to indicate to the identity provider a preference for receiving logout requests via SOAP1823

over HTTP.1824

Figure 12. SOAP/HTTP-based profile for single logout initiated at identity provider1825

1826

Identity Provider
Service Provider
User Agent

2. SOAP POST: <lib:LogoutRequest>()

1. HTTP Request()

3. Process

Request

5: 200 OK: <Confirmation Message>()

4: SOAP 200 OK <lib:LogoutResponse>()

1827

Note:1828

Steps 2 through 4 may be an iterative process for each service provider that has been issued authentication1829

assertions during the Principal’s current session and has indicated a preference to receive logout requests via1830

the SOAP/HTTP message profile.1831

3.5.1.2.1. Step 1: Accessing the Single Logout Service1832

In step 1, the user agent accesses the single logout service URL at the identity provider via an HTTP request.1833

3.5.1.2.2. Step 2: Logout Request1834

In step 2, the identity provider sends a SOAP over HTTP request to the SOAP endpoint of each service provider1835

for which it provided authentication assertions during the Principal’s current session. The SOAP message MUST1836

contain exactly one<lib:LogoutRequest> element in the SOAP body and adhere to the construction rules defined1837

in [LibertyProtSchema].1838

If a SOAP fault occurs, the identity provider SHOULD employ best efforts to resolve the fault condition and resend1839

the single logout request to the service provider.1840

3.5.1.2.3. Step 3: Processing the Logout Request1841

Liberty Alliance Project

54

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

In step 3, the service provider MUST process the<lib:LogoutRequest> according to the rules defined in1842

[LibertyProtSchema].1843

The service provider MUST invalidate the session for the Principal specified by the name identifier provided by the1844

identity provider in the<lib:LogoutRequest> .1845

3.5.1.2.4. Step 4: Responding to the Request1846

In step 4, the service provider MUST respond to the<lib:LogoutRequest> with a SOAP 200 OK1847

<lib:LogoutResponse> message.1848

3.5.1.2.5. Step 5: Confirmation1849

In step 5, the user agent is sent an HTTP response that confirms the requested action of single logout has completed.1850

3.5.2. Single Logout Initiated at Service Provider1851

The profiles in 3.5.2.1 and 3.5.2.2 are specific to the Principal’ initiation of the single logout request process at the1852

service provider.1853

3.5.2.1. HTTP-Based Profile1854

The HTTP-redirect-based profile relies on using a HTTP 302 redirect to communicate a logout request with the identity1855

provider. The identity provider will then communicate a logout request to each service provider with which it has1856

established a session for the Principal using the service provider’ preferred profile for logout request from the identity1857

provider (see 3.5.1). See Figure 13.1858

The following URI-based identifier MUST be used when referencing this specific profile:1859

URI: http://projectliberty.org/profiles/slo-sp-http1860

This URI identifier is intended for service provider consumption and is not needed in provider metadata.1861

Figure 13. HTTP-redirect-based profile for single logout initiated at service provider1862

1863

Identity Provider
Service Provider
User Agent

()

3. GET: <Single Log-Out service at IDP>?<LogoutRequest>

5. 302; Location: <Return URL at Service Provider>?<LogoutResponse>()

1. HTTP Request()

4. Process

Request

6. GET: <Return URL at Service Provider>?<LogoutResponse>()

7: 200 OK: <Confirmation Message>()

2. 302; Location: <Single Log-Out service at IDP>?<LogoutRequest>()

1864

Liberty Alliance Project

55

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

Note:1865

Step 4 may involve an iterative process by the identity provider to implement the preferred profile for logout1866

requests for each service provider that has been issued authentication assertions during the Principal’s current1867

session.1868

3.5.2.1.1. Step 1: Accessing the Single Logout Service at the Service Provider1869

In step 1, the user agent accesses the single logout service URL at the service provider indicating that session logout1870

is desired at the associated identity provider and all service providers for which this identity provider has provided1871

authentication assertions during the Principal’s current session. If a current session exists for the Principal at the1872

service provider, it is RECOMMENDED that the service provider terminate that session prior to step 2.1873

3.5.2.1.2. Step 2: Redirecting to the Single Logout Service at the Identity Provider1874

In step 2, the service provider’s single logout service responds and redirects the user agent to the single logout service1875

URL at the identity provider.1876

The redirection MUST adhere to the following rules:1877

• The Location HTTP header MUST be set to the identity provider’s single logout service URL.1878

• The identity provider’s single logout service URL MUST specify https as the URL scheme; if another scheme is1879

specified, the service provider MUST NOT redirect to the identity provider.1880

• The Location HTTP header MUST include a<query> component containing the<lib:LogoutRequest>1881

protocol message as defined in [LibertyProtSchema] with formatting as specified in 3.1.2.1882

The HTTP response MUST take the following form:1883

1884

<HTTP-Version> 302 <Reason Phrase>1885

<other headers>1886

Location : https://<Identity Provider single log-out service URL>?<query>1887

<other HTTP 1.0 or 1.1 components>1888

1889

1890

where1891

<Identity Provider single log-out service URL>1892

This element provides the host name, port number, and path components of the single logout service URL at the1893

identity provider.1894

<query>= ...<URL-encoded LogoutRequest>...1895

The<query> MUST contain a single logout request.1896

3.5.2.1.3. Step 3: Accessing the Identity Provider Single Logout Service1897

In step 3, the user agent accesses the identity provider’s single logout service URL with the<lib:LogoutRequest>1898

information attached to the URL fulfilling the redirect request.1899

3.5.2.1.4. Step 4: Processing the Request1900

In step 4, the identity provider MUST process the<lib:LogoutRequest> according to the rules defined in1901

[LibertyProtSchema].1902

Liberty Alliance Project

56

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

Each service provider for which the identity provider has provided authentication assertions during the Principal’s1903

current session MUST be notified via the service provider’s preferred profile for logout request from the identity1904

provider (see 3.5.1).1905

The identity provider’s current session with the Principal MUST be terminated, and no more authentication assertions1906

for the Principal are to be given to service providers.1907

3.5.2.1.5. Step 5: Redirecting to the Service Provider Return URL1908

In step 5, the identity provider’s single logout service responds and redirects the user agent back to service provider1909

using the return URL location obtained from the SingleLogoutServiceReturnURL metadata element. If the URL-1910

encoded<lib:LogoutRequest> message received in step 3 contains a parameter named RelayState, then the identity1911

provider MUST include a<query> component containing the same RelayState parameter and its value in its response1912

to the service provider.1913

The purpose of this redirect is to return the user agent to the service provider.1914

The HTTP response MUST take the following form:1915

1916

<HTTP-Version> 302 <Reason Phrase>1917

<other headers>1918

Location : https://<Service Provider Return Service URL>?<query>1919

<other HTTP 1.0 or 1.1 components>1920

1921

1922

where1923

<Service Provider Service Return URL>1924

This element provides the host name, port number, and path components of the return URL location at the service1925

provider.1926

<query>= ...<URL-encoded LogoutResponse>1927

The <query> component MUST contain a single logout response. The<URL-encoded LogoutResponse> com-1928

ponent MUST contain the identical RelayState parameter and its value that was received in the URL-encoded logout1929

request message obtained in step 3. If no RelayState parameter was provided in the step 3 message, then a RelayState1930

parameter MUST NOT be specified in the<URL-encoded LogoutResponse> .1931

3.5.2.1.6. Step 6: Accessing the Service Provider Return URL1932

In step 6, the user agent accesses the service provider’s return URL location fulfilling the redirect request.1933

3.5.2.1.7. Step 7: Confirmation1934

In step 7, the user agent is sent an HTTP response that confirms the requested action of a single logout has been1935

completed.1936

3.5.2.2. SOAP/HTTP-Based Profile1937

The SOAP/HTTP-based profile relies on using SOAP over HTTP messages to communicate a logout request to1938

the identity provider. The identity provider will then communicate a logout request to each service provider it has1939

established a session with for the Principal via the service provider’ preferred profile for logout requests from the1940

identity provider (see 3.5.1). See Figure 14.1941

The following URI-based identifier MUST be used when referencing this specific profile:1942

URI: http://projectliberty.org/profiles/slo-sp-soap1943

Liberty Alliance Project

57

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

This URI identifier is intended for service provider consumption and is not needed in provider metadata.1944

Figure 14. SOAP/HTTP-based profile for single logout initiated at service provider1945

1946

Identity Provider
Service Provider
User Agent

2. SOAP POST: <lib:LogoutRequest>()

1. HTTP Request()

3. Process

Request

5: 200 OK: <Confirmation Message>()

4: SOAP 200 OK <lib:LogoutResponse>()

1947

Note:1948

Step 3 may involve an iterative process by the identity provider to implement the preferred profile for logout1949

requests for each service provider that has been issued authentication assertions during the Principal’s current1950

session.1951

3.5.2.2.1. Step 1: Accessing Single Logout Service1952

In step 1, the user agent accesses the single logout service URL at the service provider via an HTTP request.1953

3.5.2.2.2. Step 2: Logout Request1954

In step 2, the service provider sends a SOAP over HTTP request to the identity provider’s SOAP endpoint. The1955

SOAP message MUST contain exactly one<lib:LogoutRequest> element in the SOAP body and adhere to the1956

construction rules as defined in [LibertyProtSchema].1957

If a SOAP fault occurs, the service provider SHOULD employ best efforts to resolve the fault condition and resend1958

the single logout request to the identity provider.1959

3.5.2.2.3. Step 3: Processing the Logout Request1960

In step 3, the identity provider MUST process the<lib:LogoutRequest> according to the rules defined in1961

[LibertyProtSchema].1962

Each service provider for which the identity provider has provided authentication assertions during the Principal’s1963

current session MUST be requested to logout the Principal via the service provider’s preferred profile for logout1964

requests from the identity provider. If the identity provider determines that one or more of service providers to which1965

it has provided assertions regarding this Principal do not support the SOAP profiles for the single logout, the identity1966

provider MUST return a<lib:LogoutResponse> containing a status code of<lib:UnsupportedProfile> . The1967

service provider MUST then re-submit its LogoutRequest via the HTTP profile described above.1968

Liberty Alliance Project

58

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

The identity provider’s current session with the Principal MUST be terminated, and no more authentication assertions1969

for the Principal are to be given to service providers.1970

3.5.2.2.4. Step 4: Responding to the Logout Request1971

In step 4, the identity provider MUST respond to the<lib:LogoutRequest> with a SOAP 200 OK1972

<lib:LogoutResponse> message.1973

3.5.2.2.5. Step 5: Confirmation1974

In step 5, the user agent is sent an HTTP response that confirms the requested action of single logout was completed.1975

3.6. Identity Provider Introduction1976

This section defines the profiles by which a service provider discovers which identity providers a Principal is using.1977

In identity federation networks having more than one identity provider, service providers need a means to discover1978

which identity providers a Principal uses. The introduction profile relies on a cookie that is written in a domain that1979

is common between identity providers and service providers in an identity federation network. The domain that the1980

identity federation network predetermines for a deployment is known as the common domain in this specification, and1981

the cookie containing the list of identity providers is known as the common domain cookie.1982

Implementation of this profile is OPTIONAL. Whether identity providers and service providers implement this profile1983

is a policy and deployment issue outside the scope of this specification. Also, which entities host web servers in the1984

common domain is a deployment issue and is outside the scope of this specification.1985

3.6.1. Common Domain Cookie1986

The name of the cookie MUST be _liberty_idp. The format of the cookie content MUST be a list of base64-encoded1987

(see [RFC2045]) identity provider succinct IDs separated by a single white space character. The identity provider IDs1988

MUST adhere to the creation rules as defined in 3.2.2.2. The identity provider ID is a metadata element, as described1989

in 0 and defined in [LibertyProtSchema].1990

The common domain cookie writing service SHOULD append the identity provider ID to the list. If the identity1991

provider ID is already present in the list, it MAY remove and append it when authentication of the Principal occurs.1992

The intent is that the most recently established identity provider session is the last one in the list.1993

The cookie MUST be set with no Path prefix or a Path prefix of "/". The Domain MUST be set to ".[common-domain]"1994

where [common-domain] is the common domain established within the identity federation network for use with the1995

introduction protocol. The cookie MUST be marked as Secure.1996

The cookies MAY be either session or persistent (see [RFC2109]), the implementation of which is a policy and1997

deployment issue of the identity federation network.1998

3.6.2. Setting the Common Domain Cookie1999

After the identity provider authenticates a Principal, it MAY set the common domain cookie. The means by which2000

the identity provider sets the cookie are implementation-specific so long as the cookie is successfully set with the2001

parameters given above. One possible implementation strategy follows and should be considered non-normative. The2002

identity provider may:2003

• Have previously established a DNS and IP alias for itself in the common domain2004

Liberty Alliance Project

59

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

• Redirect the user agent to itself using the DNS alias using a URL specifying"https" as the URL scheme. The2005

structure of the URL is private to the implementation and may include session information needed to identify the2006

user-agent.2007

• Redirect the user agent to itself using the DNS alias using a URL specifying"https" as the URL scheme. The2008

structure of the URL is private to the implementation and may include session information needed to identify the2009

user-agent.2010

• Redirect the user agent back to itself, or, if appropriate, to the service provider.2011

3.6.3. Obtaining the Common Domain Cookie2012

When a service provider needs to discover which identity providers the Principal uses, it invokes a protocol exchange2013

designed to present the common domain cookie to the service provider after it is read by an HTTP server in the2014

common domain.2015

If the HTTP server in the common domain is operated by the service provider, the service provider MAY redirect the2016

user agent to an identity provider’s intersite transfer service for an optimized single sign-on process.2017

The specific means by which the service provider reads the cookie are implementation-specific so long as it is able2018

to cause the user agent to present cookies that have been set with the parameters given in section 3.6.1. One possible2019

implementation strategy is described as follows and should be considered non-normative. Additionally, it may be2020

sub-optimal for some applications.2021

• Have previously established a DNS and IP alias for itself in the common domain2022

• Redirect the user agent to itself using the DNS alias using a URL specifying"https" as the URL scheme. The2023

structure of the URL is private to the implementation and may include session information needed to identify the2024

user-agent.2025

• Set the cookie on the redirected user agent using the parameters specified above2026

• Redirect the user agent back to itself, or, if appropriate, to the service provider.2027

3.7. Name Identifier Mapping Profile2028

The name identifier mapping profile specifies how the SAML AttributeQuery Request/Response protocol [SAML-2029

Core] may be used between Liberty providers (who may also offer SAML authority functions) to retrieve an appro-2030

priate NameIdentifier for a Principal, which may be used to obtain additional information about a Principal from a2031

SAML authority.2032

The identity federation termination notification profiles make use of the following metadata elements, as defined in2033

[LibertyMetadata]:2034

• NameIdentifierMappingBinding - The SAML authority binding at the identity provider to which identifier2035

mapping queries can be sent.2036

Liberty Alliance Project

60

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

3.7.1. SOAP-based NameIdentifier Mapping2037

The SOAP-based profile relies on a pair of SOAP requests and responses to query and return a SAML attribute2038

containing the NameIdentifier. A requesting service provider issues a SOAP request to an identity provider, requesting2039

a NameIdentifier for a Principal, supplying the AttributeNamespace within which the NameIdentifier should be2040

returned. This NameIdentifier may then be used to query another Liberty provider offering SAML services for2041

additional information about the named Principal.2042

The following URI-based identifier MUST be used when referencing this specific profile:2043

URI: http://projectliberty.org/profiles/nim-sp-http2044

Figure 15. SOAP-based profile for name identifier mapping2045

2046

Identity Provider
Service Provider 2 (Attribute

Provider)

Service Provider 1

2. SOAP 200 OK: <saml:AttributeResponse>()

1. SOAP POST:<saml:AttributeQuery>()

4. SOAP 200 OK: <saml:AttributeResponse>()

3. SOAP POST: <saml:AttributeQuery>()

2047

3.7.1.1. Step 1: Issuance of a SAML AttributeQuery by the Servce provider2048

The requesting service provider makes a SOAP POST to the identity provider, indicating that they are querying2049

a NameIdentifier. The SOAP message consists of a<samlp:Request> containing an<saml:AttributeQuery>2050

containing a single<saml:AttributeDesignator> containing:2051

• AttributeNamespace - set to the<lib:ProviderID> value which is the target provider namespace for the2052

requested NameIdentifier.2053

• AttributeName - set tourn:liberty:iff:nameid:federated2054

Liberty Alliance Project

61

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

3.7.1.2. Step 2: Returning a <saml:AttributeStatement> with the mapped NameIdentifier2055

When an identity provider receives a NameIdentifier mapping request it can fulfill, it will respond with a2056

<saml:Assertion> containing an<saml:AttributeStatement> containing the single requested attribute, the2057

value of which is the string value for the NameIdentifier. The<saml:AttributeStatement> MUST include a2058

<saml:Attribute> with the following information, as specified below:2059

• AttributeNamespace - set to the responder’s<lib:ProviderID> value, the target attribute provider names-2060

pace for the requested NameIdentifier.2061

• AttributeName - set tourn:liberty:iff:nameid:federated2062

• AttributeValue - contains the string value of the Principal’s NameIdentifier.2063

3.7.1.3. Step 3: Requesting SAML attributes using a mapped NameIdentifier2064

Note: This step is not normatively specified by Liberty, and is shown only for illustrative purposes. The requesting2065

service provider may use the mapped NameIdentifier of the Principal to issue a<saml:AttributeQuery> . This2066

MUST adhere to the rules specified in [SAMLCore]2067

3.7.1.4. Step 4: Returning a <saml:AttributeStatement>2068

Note: This step is not normatively specified by Liberty, and is shown only for illustrative purposes. A service provider2069

receiving a<saml:AttributeQuery> may return a<saml:AttributeStatement> . This action MUST conform2070

to the rules specified in [SAMLCore].2071

3.7.1.5. Security Considerations2072

In addition to the usual considerations relating to SAML protocols (see [SAMLREF]), an identity provider may wish2073

to encrypt or otherwise obfuscate the NameIdentifier returned to the requesting service provider, so that it is opaque2074

and of time-limited use to the requester. A way of accomplishing this is described in [Ref to Resource/NameID2075

obfuscation]2076

3.8. Introduction Notification Profile2077

The Liberty introduction notification profile allows an identity provider that has been introduced to a service provider2078

through the mediation of a second identity provider to notify that identity provider when it federates a Principal with2079

the service provider.2080

Introduction notification is performed by the "introduced" identity provider and relies on a SOAP/HTTP message from2081

the introduced identity provider to the introducing identity provider.2082

The introduction notification profiles make use of the following metadata elements, as defined in [LibertyMetadata]:2083

• IntroductionNotificationProtocolProfile - A URI indicating the profile of this protocol supported by2084

the identity provider.2085

• SOAPEndpoint - The SOAP endpoint location at the identity provider to which Liberty SOAP messages are sent.2086

Liberty Alliance Project

62

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

3.8.1. Introduction Notification SOAP-Based Profile2087

The SOAP-based notification profile is a best effort attempt by an identity provider to notify another identity provider2088

that it has relied on an introduction assertion from it when federating a Principal.2089

The SOAP/HTTP-based profile relies on using asynchronous SOAP over HTTP to communicate introduction notifi-2090

cation messages from the introduced identity provider to the introducing identity provider. See Figure 16.2091

The following URI-based identifier MUST be used when referencing this specific profile:2092

URI: http://projectliberty.org/profiles/intro-notify-soap2093

This URI identifier MUST be specified in the identity provider metadata element IntroductionNotificationProtocol-2094

Profile when the identity provider intends to indicate a preference for receiving introduction notifications via SOAP2095

over HTTP.2096

Figure 16. SOAP/HTTP-based profile for introduction notification2097

Identity Provider 2
Identity Provider 1

1. SOAP POST: <lib:IntroductionNotification>

2. Process

Request

3: 204 OK:

2098

This profile description assumes the following preconditions:2099

• The notifying provider has possession of an Introduction Assertion issued by the identity provider to be notified.2100

• The notifying provider has federated a specific Principal.2101

3.8.1.1. Step 1: Notification of Introduction2102

In step 1, the introduced identity provider sends an asynchronous SOAP over HTTP notification message2103

to the introducing identity provider’s SOAP endpoint. The SOAP message MUST contain exactly one2104

<lib:IntroductionNotification> element in the SOAP body and adhere to the construction rules defined in2105

[LibertyProtSchema].2106

If a SOAP fault occurs, the sending identity provider SHOULD employ best effort to resolve the fault condition and2107

resend the introduction notification message to the other identity provider.2108

3.8.1.2. Step 2: Processing the Notification2109

In step 2, the receiving identity provider MUST process the<lib:IntroductionNotification> according to the2110

rules defined in [LibertyProtSchema].2111

The identity provider MAY keep a record of introduced providers and associated principal name identifiers it receives2112

in the<lib:IntroductionNotification> .2113

Liberty Alliance Project

63

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

3.8.1.3. Step 3: Responding to the Notification2114

In step 3, the receiving identity provider MUST respond to the<lib:IntroductionNotification> with a HTTP2115

204 OK response.2116

3.9. Provider Relationship Termination Profile2117

The provider relationship termination profile informs a service provider that was introduced to an identity provider2118

that the identity provider which introduced it has terminated its relationship with that provider. The service provider2119

is free to take whatever action it wishes in response, but MUST acknowledge the receipt of the notification.2120

The provider relationship termination profile makes use of the following metadata elements, as defined in2121

[LibertyMetadata]:2122

• RelationshipTerminationProtocolProfile - A URI indicating the profile of this protocol supported by the2123

identity provider.2124

• SOAPEndpoint - The SOAP endpoint location at the identity provider to which Liberty SOAP messages are sent.2125

3.9.1. SOAP/HTTP-Based Profile2126

The SOAP/HTTP-based profile uses SOAP over HTTP messaging to communicate a relationship termination to2127

a service provider that was introduced by the identity provider to the provider with whom it is terminating its2128

relationship. See Figure 17.2129

The following URI-based identifier MUST be used when referencing this specific profile:2130

URI: http://projectliberty.org/profiles/rel-term-soap2131

This URI identifier MUST be specified in the service provider metadata element RelationshipTerminationProtocolPro-2132

file when the service provider intends to indicate to the identity provider a preference for receiving such notifications2133

via SOAP over HTTP.2134

Figure 17. SOAP/HTTP-based profile for relationship termination2135

2136

Identity Provider Service Provider

1. SOAP POST: <lib:ProviderRelationshipTerminationRequest>()

3. SOAP 200 OK <lib:ProviderRelationshipTerminationResponse>()

2. Process Request

2137

Liberty Alliance Project

64

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

3.9.1.1. Step 1: Relationship Termination Request2138

In step 1, the identity provider sends a SOAP over HTTP request to the SOAP endpoint of the service provider it2139

introduced to the identity provider with whom it is terminating a relationship. The SOAP message MUST contain2140

exactly one<lib:ProviderRelationshipTerminationRequest> element in the SOAP body and adhere to the2141

construction rules defined in [LibertyProtSchema].2142

If a SOAP fault occurs, the identity provider SHOULD employ best efforts to resolve the fault condition and resend2143

the request to the service provider.2144

3.9.1.2. Step 2: Processing the Request2145

In step 2, the service provider MUST process the<lib:ProviderRelationshipTerminationRequest> accord-2146

ing to the rules defined in [LibertyProtSchema].2147

The service provider is NOT required to invalidate its own relationship or its federations with the identity provider in2148

the<lib:ProviderRelationshipTerminationRequest> .2149

3.9.1.3. Step 3: Responding to the Request2150

In step 3, the service provider MUST respond to the<lib:ProviderRelationshipTerminationRequest> with2151

a SOAP 200 OK<lib:ProviderRelationshipTerminationResponse > message.2152

Liberty Alliance Project

65

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

4. Security Considerations2153

4.1. Introduction2154

This section describes security considerations associated with Liberty protocols for identity federation, single sign-on,2155

federation termination, and single logout.2156

Liberty protocols, schemas, bindings, and profiles inherit and use extensivelythe SAML protocols. Therefore,2157

the security considerations published along with the SAML specification have direct relevance (see [SAMLCore],2158

[SAMLBind], and [SAMLSec]). Throughout this section if, for any reason, a specific consideration or countermeasure2159

does not apply or differs, notice of this fact is made; and a description of alternatives is supplied, where possible.2160

4.2. General Requirements2161

4.2.1. Security of SSL and TLS2162

SSL and TLS utilize a suite of possible cipher suites. The security of the SSL or TLS session depends on the chosen2163

cipher suite. An entity (that is, a user agent, service provider, or identity provider) that terminates an SSL or TLS2164

connection needs to offer (or accept) suitable cipher suites during the handshake. The following list of TLS 1.0 cipher2165

suites (or their SSL 3.0 equivalent) is recommended.2166

• TLS_RSA_WITH_RC4_128_SHA2167

• TLS_RSA_WITH_3DES_EDE_CBC_SHA2168

• TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA2169

The above list is not exhaustive. The recommended cipher suites are among the most commonly used. Note: New2170

cipher suites are added as they are standardized and should be considered for inclusion if they have sufficiently strong2171

security properties. For example, it is anticipated that the AES-based cipher suites being standardized in the IETF will2172

be widely adopted and deployed.2173

4.2.2. Security Implementation2174

The suitable implementation of security protocols is necessary to maintain the security of a system, including2175

• Secure random or pseudo-random number generation2176

• Secure storage2177

Liberty Alliance Project

66

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

4.3. Threat Scenarios and Countermeasures2178

4.3.1. Threat Model2179

For an analysis of threat classifications, an Internet threat model has been used. In other words, the threat model2180

assumes that intermediary and end-systems participating in Liberty protocol exchanges have not been compromised.2181

However, where possible, the consequences and containment properties of a compromised system entity are described2182

and countermeasures are suggested to bolster the security posture so that the exposure from a security breach is2183

minimized.2184

Given the nature of the Internet, the assumption is made that deployment is across the global Internet and, therefore,2185

crosses multiple administrative boundaries. Thus, an assumption is also made that the adversary has the capacity to2186

engage in both passive and active attacks (see 4.3.3).2187

4.3.2. Rogue and Spurious Entities2188

Attackers may be classified based on their capabilities and the roles that they play in launching attacks on a Liberty2189

system as follows:2190

• Rogue Entities: Entities that misuse their privileges. The rogue actors may be Principals, user agents, service2191

providers, or identity providers. A rogue Principal is a legitimate participant who attempts to escalate its privileges2192

or masquerade as another system Principal. A rogue user agent may, for instance, misuse the relationships between2193

its associated Principals and an identity provider to launch certain attacks. Similarly, a rogue service provider may2194

be able to exploit the relationship that it has either with a Principal or with an identity provider to launch certain2195

attacks.2196

• Spurious Entities: Entities that masquerade as a legitimate entity or are completely unknown to the system. The2197

spurious actors include Principals, user agents (i.e., user agents without associated legitimate Liberty Principals),2198

service providers, or identity providers. A spurious service provider may, for instance, pretend to be a service2199

provider that has a legitimate relationship with an identity provider. Similarly, a spurious Principal may be one2200

that pretends to be a legitimate Principal that has a relationship with either a service provider or an identity provider.2201

4.3.3. Active and Passive Attackers2202

Both rogue and spurious entities may launch active or passive attacks on the system. In a passive attack the attacker2203

does not inject traffic or modify traffic in any way. Such an attacker usually passively monitors the traffic flow, and the2204

information that is obtained in that flow may be used at a later time. An active attacker, on the other hand, is capable2205

of modifying existing traffic as well as injecting new traffic into the system.2206

4.3.4. Scenarios2207

The following scenarios describe possible attacks:2208

• Collusion: The secret cooperation between two or more Liberty entities to launch an attack, for example,2209

2210

• Collusion between Principal and service provider2211

• Collusion between Principal and identity provider2212

• Collusion between identity provider and service provider2213

Liberty Alliance Project

67

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

• Collusion among two or more Principals2214

• Collusion between two or more service providers2215

• Collusion between two or more identity providers2216

• Denial-of-Service Attacks:The prevention of authorized access to a system resource or the delaying of system2217

operations and functions.2218

• Man-in-the-Middle Attacks: A form of active wiretapping attack in which the attacker intercepts and selectively2219

modifies communicated data to masquerade as one or more of the entities involved in a communication association.2220

• Replay Attacks: An attack in which a valid data transmission is maliciously or fraudulently repeated, either by the2221

originator or by an adversary who intercepts the data and retransmits it, possibly as part of a masquerade attack.2222

• Session Hijacking:A form of active wiretapping in which the attacker seizes control of a previously established2223

communication association.2224

4.4. Threat Scenarios and Countermeasures2225

In this section, threats that may apply to all the Liberty profiles are considered first. Threats that are specific to2226

individual profiles are then considered. In each discussion the threat is described as well as the countermeasures that2227

exist in the profile or the additional countermeasures that may be implemented to mitigate the threat.2228

4.4.1. Common Threats for All Profiles2229

Threat: Request messages sent in cleartext2230

Description: Most profile protocol exchanges do not mandate that all exchanges commence over a secure communi-2231

cation channel. This lack of transport security potentially exposes requests and responses to both passive and active2232

attacks.2233

One obvious manifestation is when the initial contact is not over a secure transport and the Liberty profile begins to2234

exchange messages by carrying the request message back to the user agent in the location header of a redirect.2235

Another such manifestation could be a request or response message which carries a URI that may be resolved on a2236

subsequent exchange, for instance lib:AuthnContextClassRef. If this URI were to specify a less or insecure transport,2237

then the exchange may be vulnerable to the types of attacks described above.2238

Countermeasure:Ensure that points of entry to Liberty protocol exchanges utilize the https URL<scheme> and that2239

all interactions for that profile consistently exchange messages overhttps .2240

Threat: Malicious redirects into identity or service provider targets2241

Description: A spurious entity could issue a redirect to a user agent so that the user agent would access a resource2242

that disrupts single sign-on. For example, an attacker could redirect the user agent to a logout resource of a service2243

provider causing the Principal to be logged out of all existing authentication sessions.2244

Countermeasure:Access to resources that produce side effects could be specified with a transient qualifier that must2245

correspond to the current authentication session. Alternatively, a confirmation dialog could be interposed that relies2246

on a transient qualifier with similar semantics.2247

Threat: Relay state tampering or fabrication2248

Liberty Alliance Project

68

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

Description: Some of the messages may carry a<lib:RelayState> element, which is recommended to be integrity-2249

protected by the producer and optionally confidentiality-protected. If these practices are not followed, an adversary2250

could trigger unwanted side effects. In addition, by not confidentiality-protecting the value of this element, a legitimate2251

system entity could inadvertently expose information to the identity provider or a passive attacker.2252

Countermeasure:Follow the recommended practice of confidentiality- and integrity-protecting the2253

<lib:RelayState> data. Note: Because the value of this element is both produced and consumed by the2254

same system entity, symmetric cryptographic primitives could be utilized.2255

4.4.2. Single Sign-On and Federation2256

4.4.2.1. Common Interactions for All Single Sign-On and Federation Profiles2257

Threat: <lib:AuthnRequest> sent over insecure channel2258

Description: It is recommended that the initial exchange to access the intersite transfer service be conducted over2259

a TLS-secured transport. Not following this recommendation can expose the exchange to both passive and active2260

attacks.2261

Countermeasure:Deploy the intersite transfer service under an https scheme.2262

Threat: Unsigned<lib:AuthnRequest> message2263

Description: The signature element of an<lib:AuthnRequest> is optional and thus the absence of the signature2264

could pose a threat to the identity provider or even the targeted service provider. For example, a spurious system entity2265

could generate an unsigned<lib:AuthnRequest> and redirect the user agent to the identity provider. The identity2266

provider must then consume resources.2267

Countermeasure:Sign the<lib:AuthnRequest> . The IDP can also verify the identity of the Principal in the2268

absence of a signed request.2269

Threat: Replay of an authentication assertion2270

Description: After obtaining a valid assertion from an identity provider, either legitimately or surreptitiously, the2271

entity replays the assertion to the Service at a later time. A digital signature must cover the entire assertion, thus2272

elements within the assertion cannot be corrupted without detection during the mandatory verification step. However,2273

it is possible to fabricate an<lib:AuthnResponse> with the valid assertion.2274

Countermeasure:The issuer should sign<lib:AuthnResponse> messages. Signing binds the2275

<samlp:IssueInstant> of the response message to the assertion it contains. This binding accords the rely-2276

ing party the opportunity to temporally judge the response. Additionally, a valid signature over the response2277

binds the<samlp:InResponseTo> element to the corresponding<lib:AuthnRequest> . (Specifying a short2278

period that the authentication assertion can be relied upon will minimize, but not mitigate this threat. Binding the2279

<lib:AssertionId> to the request/<samlp:InResponseTo> element may also be handy.)2280

Threat: Fabricated<lib:AuthnResponse> denial of service2281

Description: An attacker captures the<samlp:RequestID> sent in an<lib:AuthnRequest> message by a service2282

provider to an identity provider, and sends several spurious<lib:AuthnResponse> messages to the service provider2283

with the same<samlp:InResponseTo> . Because the<samlp:InResponseTo> matches a<samlp:RequestID>2284

that the service provider had used, the service provider goes through the process of validating the signature in the2285

message. Thus, it is subject to a denial of service attack.2286

Countermeasure:A secure communication channel should be established before transferring requests and responses.2287

Threat: Collusion between two Principals2288

Liberty Alliance Project

69

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

Description: After getting an artifact or<lib:AuthnResponse> in step 6 (see 3.2.1), a legitimate Principal A could2289

pass this artifact or<lib:AuthnResponse> on to another Principal, B. Principal B is now able to use the artifact or2290

<lib:AuthnResponse> , while the actual authentication happened via Principal A.2291

Countermeasure:Implementations where this threat is a concern MUST use the<saml:AuthenticationLocality>2292

in the authentication statement. The IP address that Principal B uses would be different from the IP address within the2293

<saml:AuthenticationLocality> . This countermeasure may not suffice when the user agent is behind a firewall2294

or proxy server. IP spoofing may also circumvent this countermeasure.2295

Threat: Stolen artifact and subsequent Principal impersonation2296

Description: See Section 4.1.1.9.1 in [SAMLBind]2297

Countermeasure:Identity providers MUST enforce a policy of one-time retrieval of the assertion corresponding to an2298

artifact so that a stolen artifact can be used only once. Implementations where this threat is a concern MUST use the2299

<saml:AuthenticationLocality> in the authentication statement. The IP address of a spurious user agent that at-2300

tempts to use the stolen artifact would be different from IP address within the<saml:AuthenticationLocality> .2301

The service provider may then be able to detect that the IP addresses differ. This countermeasure may not suffice when2302

the user agent is behind a firewall or proxy server. IP address spoofing may also circumvent this countermeasure.2303

Threat: Stolen assertion and subsequent Principal impersonation2304

Description: See Section 4.1.1.9.1 in [SAMLBind]2305

Countermeasure:Refer to the previous threat for requirements.2306

Threat: Rogue service provider uses artifact or assertion to impersonate Principal at a different service provider2307

Description: Because the<lib:AuthnResponse> contains the<lib:ProviderID> , this threat is not possible.2308

Countermeasure:None2309

Threat: Rogue identity provider impersonates Principal at a service provider2310

Description: Because the Principal trusts the identity provider, it is assumed that the identity provider does not misuse2311

the Principal’s trust.2312

Countermeasure:None2313

Threat: Rogue user attempts to impersonate currently logged-in legitimate Principal and thereby gain access to2314

protected resources.2315

Description: Once a Principal is successfully logged into an identity provider, subsequent<AuthnRequest>2316

messages from different service providers concerning that Principal will not necessarily cause the Principal to be2317

reauthenticated. Principals must, however, be authenticated unless the identity provider can determine that an2318

<AuthnRequest> is associated not only with the Principal’s identity, but also with a validly authenticated identity2319

provider session for that Principal.2320

Countermeasure:In implementations where this threat is a concern, identity providers MUST maintain state informa-2321

tion concerning active sessions, and MUST validate the correspondence between an<AuthnRequest> and an active2322

session before issuing an<AuthnResponse> without first authenticating the Principal. Cookies posted by identity2323

providers MAY be used to support this validation process, though Liberty does not mandate a cookie-based approach.2324

4.4.2.2. Liberty-Enabled Client and Proxy Profile2325

Threat: Intercepted<lib:AuthnRequestEnvelope> and<lib:AuthnResponse> and subsequent Principal im-2326

personation.2327

Liberty Alliance Project

70

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

Description: A spurious system entity can interject itself as a man-in-the-middle (MITM) between the user agent2328

(LECP) and a legitimate serviceprovider, where it acts in the service provider role in interactions with the (LECP),2329

and in the user agent role in interactions with the legitimate service provider. In this way, as a first step,2330

the MITM is able to intercept the service provider’s<lib:AuthnRequestEnvelope> (step 3 of section 3.2.5)2331

and substitute any URL of its choosing for the<lib:AssertionConsumerServiceURL> value before forward-2332

ing the <lib:AuthnRequestEnvelope> on to the LECP. Typically, the MITM will insert a URL value that2333

points back to itself. Then, if the LECP subsequently receives a<lib:AuthnResponseEnvelope> from the2334

identity provider (step 6 in section 3.2.5) and subsequently sends the contained<lib:AuthnResponse> to the2335

<lib:AssertionConsumerServiceURL> received from the MITM, the MITM will be able to masquerade as the2336

Principal at the legitimate service provider.2337

Countermeasure:The identity provider specifies to the LECP the address to which the LECP2338

must send the <lib:AuthnResponse> . The <lib:AssertionConsumerServiceURL> in the2339

<lib:AuthnResponseEnvelope> element is for this purpose. This URL value is among the metadata that2340

identity and service providers must exchange in the process of establishing their operational relationship (see sections2341

3.1 and 3.1.3).2342

4.4.2.3. Federation2343

Threat: Collusion among service providers can violate privacy of the Principal2344

Description: When a group of service providers collude to share the<lib:IDPProvidedNameIdentifier> of a2345

Principal, they can track and in general compromise the privacy of the principal. More generally, this threat exists for2346

any common data (e.g. phone number) shared by rogue system entities.2347

Countermeasure:The<lib:IDPProvidedNameIdentifier> is required to be unique for each identity provider to2348

service provider relationship. However, this requirement does not eliminate the threat when there are rogue participants2349

under the Principal’s identity federation. The only protection is for Principals to be cautious when they choose service2350

providers and understand their privacy policies.2351

Threat: Poorly generated name identifiers may compromise privacy2352

Description: The federation protocol mandates that the<lib:NameIdentifier> elements be unique within a2353

Principal’s federated identities. The name identifiers exchanged are pseudonyms and, to maintain the privacy of2354

the Principal, should be resistant to guessing or derivation attacks.2355

Countermeasure:Name identifiers should be constructed using pseudo-random values that have no discernable2356

correspondence with the Principal’s identifier (or name) used by the entity that generates the name identifier.2357

4.4.3. Name Registration2358

No known threats.2359

4.4.4. Federation Termination: HTTP-Redirect-Based Profile2360

Threat: Attacker can monitor and disrupt termination2361

Description: During the initial steps, a passive attacker can collect the<lib:FederationTerminationNotification>2362

information when it is issued in the redirect. This threat is possible because the first and second steps are not required2363

to use https as the URL scheme. An active attacker may be able to intercept and modify the message conveyed in2364

step 2 because the digital signature only covers a portion of the message. This initial exchange also exposes the name2365

identifier. Exposing these data poses a privacy threat.2366

Countermeasure:All exchanges should be conducted over a secure transport such as SSL or TLS.2367

Liberty Alliance Project

71

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

4.4.5. Single Logout: HTTP-Redirect-Based Profile2368

Threat: Passive attacker can collect a Principal’s name identifier2369

Description: During the initial steps, a passive attacker can collect the<lib:LogoutRequest> information when it2370

is issued in the redirect. Exposing these data poses a privacy threat.2371

Countermeasure:All exchanges should be conducted over a secure transport such as SSL or TLS.2372

Threat: Unsigned<lib:LogoutRequest> message2373

Description: An Unsigned<lib:LogoutRequest> could be injected by a spurious system entity thus denying2374

service to the Principal. Assuming that the NameIdentifier can be deduced or derived then it is conceivable that the2375

user agent could be directed to deliver a fabricated<lib:LogoutRequest> message.2376

Countermeasure:Sign the<lib:LogoutRequest> message. The identity provider can also verify the identity of a2377

Principal in the absence of a signed request.2378

4.4.6. Identity Provider Introduction2379

No known threats.2380

Liberty Alliance Project

72

Liberty Alliance Project: DRAFT Version: 1.2-08
Liberty ID-FF Bindings and Profiles Specification

Bibliography2381

[LibertyArchImpl] Kannappan, L., Lachance, M., Kemp, J., eds. (December 2002). "Liberty
Architecture Implementation Guidelines," Version 1.1, Liberty Alliance Project
http://www.projectliberty.org/specs/

[LibertyArchOverview] Hodges, J., Wason, T., eds. (December 2002). "Liberty Architecture Overview,"
Version 1.1, Liberty Alliance Projecthttp://www.projectliberty.org/specs/

[LibertyAuthnContext] Madsen, P., Kemp, J., eds. (December 2002). "Liberty Authenti-
cation Context Specification," Version 1.1, Liberty Alliance Project
http://www.projectliberty.org/specs/

[LibertyBindProf] Roualt, J., Wason, T., eds. (December 2002). "Liberty Bind-
ings and Profiles Specification," Version 1.1, Liberty Alliance Project
http://www.projectliberty.org/specs/

[LibertyGloss] Mauldin, H., Wason, T., eds. (December 2002). "Liberty Architecture Glossary,"
Version 1.1, Liberty Alliance Projecthttp://www.projectliberty.org/specs/

[LibertyProtSchema] Beatty, J., Kemp, J., eds. (December 2002). "Liberty Protocols
and Schema Specification," Version 1.1, Liberty Alliance Project
http://www.projectliberty.org/specs/

[LibertyMetadata] Davis, P., eds. (March 2003). "Liberty Metadata Description and Discovery Proto-
cols," Version 1.0, Liberty Alliance Projecthttp://www.projectliberty.org/specs/

[Schema1] Thompson, H.S., Beech, D., Maloney, M., Mendleshon, N., eds. (May 2002).
"XML Schema Part 1: Structures," Recommendation, World Wide Web Consor-
tium http://www.w3.org/TR/xmlschema-1/

[SAMLCore] Hallam-Baker, P., Maler, E., eds. (05 November 2002). "Assertions and Protocol
for the OASIS Security Assertion Markup Language (SAML)," Version 1.0, OA-
SIS Standard, Organization for the Advancement of Structured Information Stan-
dards http://www.oasis-open.org/committees/security/#documents

[SAMLBind] Mishra, P., eds. (05 November 2002). "Bindings and Profiles for the OASIS Secu-
rity Assertion Markup Language (SAML)," Version 1.0, OASIS Standard, Organi-
zation for the Advancement of Structured Information Standardshttp://www.oasis-
open.org/committees/security/#documents

[SAMLGloss] Hodges, J., Maler, E., eds. (05 November 2002). "Glossary for the OASIS Security
Assertion Markup Language (SAML)," Version 1.0, OASIS Standard, Organiza-
tion for the Advancement of Structured Information Standardshttp://www.oasis-
open.org/committees/security/#documents

[SAMLReqs] Platt, D., Prodromou, E., eds. (05 November 2002). "SAML Require-
ments and Use Cases," Version 1.0, OASIS Standard, Organization for
the Advancement of Structured Information Standardshttp://www.oasis-
open.org/committees/security/#documents

[SAMLSec] McClaren, C., eds. (05 November 2002). "Security Considerations for the OA-
SIS Security Assertion Markup Language (SAML)," Version 1.0, OASIS Stan-
dard, Organization for the Advancement of Structured Information Standards
http://www.oasis-open.org/committees/security/#documents

Liberty Alliance Project

73

