
Information Modelling using RDF

Information Modelling using RDF
Constructs for Modular Description of Complex Systems

Graham Klyne
BGaltimore Technologies, Content Security Group

1220 Parkview, Arlington Business Park, Theale, RG7 4SA, UK.
Graham.Klyne@Baltimore.com

Abstract

This paper describes some experimental work for modelling complex systems with

RDF. Basic RDF represents information at a very fine level of granularity. The

thrust of this work is to build higher-level constructs in RDF that allow complex

systems to be modelled incrementally, without necessarily having full knowledge of

the detailed ontological structure of the complete system description.

The constructs used draw on two central ideas: statement sets as contexts (based in

part on ideas of McCarthy and Guha[1,2]) to stand for a composition of individual

RDF statements that can be used in certain circumstances as a statement, and a

system of "proper naming" that allows entity prototypes to be described in a frame-

like fashion, but over a wider scope than is afforded by class- and instance- based

mechanisms.

Keywords: RDF, metadata, information modelling, semantic web

—— 1 ——

Information Modelling using RDF

Table of Contents
1. Introduction..2

1.1 Terminology 3
1.2 Descriptive conventions and notation 3

2. Motivation and background...5
2.1 Resource Description Framework (RDF) 5
2.2 Describing complex systems 6
2.3 Descriptions based on generic entities 7
2.4 Relationship to other semantic web activities 9

3. Statement sets...9
3.1 A general container for sets of resources 9
3.2 Containers for statement sets 10
3.3 Statement set notation 10

4. Contexts...11
4.1 Representation of contexts in RDF 12

4.1.1 Asserting statements in different contexts 13
4.2 Using contexts: logical constructs 14

4.2.1 Contexts as containers 14
4.2.2 Contexts as statements 15
4.2.3 Contexts as resources 16

5. Generic entities..18
5.1 URIs and Proper Names 18
5.2 Proper names in RDF 19
5.3 Using proper names in generic descriptions 20

6. Conclusions and further work..21
7. Acknowledgements..22
8. References..22

1. Introduction
This paper suggests some ways of modelling complex systems with RDF[3]. Basic RDF represents

information at a very fine level of granularity, and the RDF description of a system of significant

complexity can be very difficult to design and construct. The thrust of this work is to build higher-level

constructs in RDF that allow complex systems to be modelled incrementally, without necessarily having full

knowledge of the detailed ontological structure of the complete system description.

These ideas are being used in experimental projects to describe and analyse systems consisting of complex

interacting components, such as networked computer systems and software packages[19]. One could imagine

these techniques being used to describe complex machines like cars, or social processes and interactions.

We also plan to use some of these ideas to perform trust modelling.

The constructs used draw on two central ideas:

• statement sets as contexts, based in part on ideas of McCarthy[1] and Guha[2], to stand for compositions of

individual RDF statements that can be used or referenced as a single entities, and

—— 2 ——

Information Modelling using RDF

• a system of “proper naming”, loosely derived from some ideas by Pat Hayes[13], that allows an entity to

be referenced using a locally assigned identifier rather than a global URI. This is used to create

prototype descriptions in which the assigned name can reference a characteristic of more than one entity.

The goal is to use these constructs to introduce modularity into complex system descriptions. One might

view RDF as an “assembly language” for metadata representation; this work builds higher level descriptive

constructs on the RDF base, analogous to the use of functions and subroutines in mathematics and

programming languages.

This work overlaps semantic web ontological developments such as OIL and DAML–O, but has an

emphasis on more easily assembled constructs for expressivity in RDF rather than semantic web inference

and proof.

Comments are welcome, and may be directed to the RDF-interest email distribution list[14].

1.1 Terminology

Statement set: a collection of reified statements, whose container is an RDF resource.

Context: a statement set, with additional properties capturing certain structural and logical properties

associated with contexts, described in this document.

Lifting rule: any rule that allows us to deduce that truth of some statement in a context from the truth of

another statement in a related context.

Ontology is unhelpfully defined by my dictionary as “the branch of metaphysics dealing with the nature of

being”. As a computer systems engineer I find it more helpful to think of ontology as the application of data

typing mechanisms to arbitrary objects and concepts.

Ontological structure is the set of classes or types used in a description of some concept, and the

relationship between them. RDF uses classes to indicate categories of objects of concepts. Classes may be

related through multiple inheritance, and an RDF resource may be an instance of any number of classes.

1.2 Descriptive conventions and notation

This paper is about structures in RDF. It focuses entirely on the graph syntax of RDF, described in section

5 of the RDF Model and Syntax specification[3], and does not make any assumption about the particular

RDF serialization format used.

This note was originally drafted before N3 (Notation 3) [25] was widely known. Future versions may use N3

in place of the notation described here.

—— 3 ——

Information Modelling using RDF

In describing RDF statements, square brackets are used to denote RDF resources, containing a name for the

resource, or quoted strings to describe literal object values. RDF properties are shown as labelled arrows

from subject to object:

[SubjectName] --propertyName--> [ObjectName]

[SubjectName] --propertyName--> “Literal-string”

RDF classes are given names starting with an upper case letter, RDF properties with lower case.

Specific resource identifiers may be replaced by the expected rdf:Type of the resource in angle brackets.

Thus, a general RDF statement might be described as:

[<rdfs:Resource>] --<rdf:Property>--> [<rdfs:Resource>]

To give a name to the reification of a statement, the following notation is used:

Statement-id: [SubjectName] --propertyName--> [ObjectName]

which can be interpreted as introducing a resource identified as Statement-id, and the following

additional triples, corresponding to a reification of the statement:

[Statement-id] --rdf:type-------> [rdf:Statement]
[Statement-id] --rdf:predicate--> [propertyName]
[Statement-id] --rdf:subject----> [SubjectName]
[Statement-id] --rdf:object-----> [ObjectName]

To apply a property to the reification of each of a set of statements, the statements are enclosed in braces:

[Resource] --property-->
 {
 Statement-set
 }

This shows that the reification of each member of Statement-set appears as the object of an RDF

statement of the form:

[Resource] --property--> [Statement]

The namespace prefix ‘rdfc:’ is used for RDF classes and properties introduced by this paper to represent

container and context information. The namespace prefix ‘rdfn:’ is used for RDF elements introduced to

represent naming information. Prefixes rdf: and rdfs: are used for namespaces defined in the RDF

Model and Syntax[3] and RDF Schema Specification[4]. RDF resources and properties without prefixes are

used in hyothetical examples with no defined relationship to any specific namespace.

—— 4 ——

Information Modelling using RDF

2. Motivation and background
The main goals addressed by this work are to define RDF mechanisms that:

• create information models using higher level elements composed from basic RDF statements, and

• describe frame-like generic models that can be used as prototypes to simplify the description of more

specific entities.

These are required to be usable in an incremental, top-down fashion, where higher level descriptions and

usage do not need to be aware of the details of lower level ontological structures.

2.1 Resource Description Framework (RDF)

Resource Description Framework (RDF)[3] is a W3C recommendation for a standard representation of

metadata, based on ideas with roots in knowledge representation research conducted over the past 30 years

or so. The specification defines an abstract directed labelled graph model for RDF, and an XML-based

serialization (there is some discussion about defining other serialization formats for various purposes). The

nodes of this graph are RDF resources, and the arcs are RDF properties. A companion RDF Schema

specification[4] describes how RDF may itself be used to define a type system based on RDF classes, and

constraints on the ways in which RDF classes and properties may be combined in a description.

The importance of RDF is not that it is demonstrably better than any other form of knowledge

representation, but that it has a reasonable chance of becoming a widely used Internet standard, and that it is

designed for use in an open web environment. To exchange information (as opposed to raw data) between

computer systems or applications requires agreement about its representation. To this end, I build upon,

rather than extend or modify, the core concepts of RDF, and the resulting framework is fully expressible

within the graph structure of basic RDF. This adherence to basic RDF structure does not constrain the

internal wortkings of implementations; for example, reified RDF statements may be represented in ways

that are far more efficient than that suggested by basic RDF. The relationship to basic RDF structure is

needed when exchanging information between applications.

The RDF specification is felt by some to be confusing as an ab initio guide to RDF, and there are several

papers on the web that provide a gentler introduction. One such introduction that may be particularly

helpful is by Pierre-Antoine Champin[23], which starts by explaining the RDF graph model that is the

underlying basis for the constructs described here. A topic that often causes particular confusion about

RDF, and which is quite fundamental to this paper, is “reification”: this is the construct that allows us to

make statements about statements, by constructing an RDF resource to stand for any given RDF statement.

—— 5 ——

Information Modelling using RDF

Thus, we can have a resource identifier that stands for an RDF statement, and using that identifier we can

make statements about that statement.

2.2 Describing complex systems

The structures described here evolved from an attempt to describe complex system components in RDF,

from which it was required to draw inferences about the compatibility of various combinations of

component. Originally, we tried to construct meaningful descriptions using the basic RDF property-subject-

object constructs, but found it was very difficult to predict the required graph structure without first

assembling all of the information to be described. As new factors came into play, we were finding that

existing structures had to be redesigned. Later, we approached the same problem using an informal high-

level abstraction to stand for a component description consisting of arbitrary RDF statements. In this way,

we found that high-level interactions between components could be captured, and subsequently refined with

more detailed information.

Suppose I wish to describe the kind of fuel needed to operate my car. A statement like this might be used:

[MyCar] --fuelType--> “Diesel”

meaning that my car runs on diesel fuel. This is just fine for determining which pump I need to stop at

when refuelling. But for an engineer dealing with the car as a piece of machinery, more detailed

information is needed, and the fuelType might be considered a property of of the car’s engine, rather than

of the car as a whole. The engine might be replaced with one using a different kind of fuel. At this level of

detail, the model suggested above is not adequate, and a different structure is needed; e.g.

[MyCar] --hasEngine--> [MyCarEngine] --fuelType--> “Diesel”

This simple example shows how simple RDF model ontological structures may need to be adjusted to take

account of new levels of detail. If, however, we treat the description of my car as a collection of statements,

then their relationship to the overall entity that is my car may be more flexible:

[MyCar] --description-->
 {
 :
 [FuelUsed] --fuelType--> “Diesel”
 :
 }

—— 6 ——

Information Modelling using RDF

On more detailed examination, this might turn out to be structured as:

[MyCar] --description-->
 {
 :
 [Engine] --description-->
 {
 :
 [FuelUsed] --fuelType--> “Diesel”
 :
 }
 :
 }

2.3 Descriptions based on generic entities

Another recurring idea is that entities are often variations on a generic theme. A car can be broadly

classified in terms of a make and model, with variations of body colour, engine type, equipment levels and

optional accessories. On a manufacturing level, what is outwardly the same vehicle type may be produced

in a number of subtlely different forms as product improvements or economies are devised.

To effectively manage descriptions of such generic components, it is important to be able to refer to a

common description, and then describe local variations from the base description. This idea is fundamental

to CC/PP[5], one of the first protocols to be based on RDF, which uses standard descriptions and local

variations to describe web client capabilities and characteristics.

In classic AI and knowledge representation research, one way this effect is achieved uses “frames”.

Minsky[6] describes a frame as a “remembered framework to be adapted to fit reality by changing details as

necessary”. More recently, building on the basic framework of RDF schemas[4], ontological work with

RDF[8,9] has implemented similar structures by associating “slots” and “slot constraints” with RDF classes.

Thus, an instance of an RDF class is presumed to have an associated default value for each of the defined

slots. Where a specific value is not specified for a given instance, a value may be supplied by the slot

description in the class definition. CC/PP[5] adopts an ad-hoc approach using a specific RDF property

(‘default’) that exploits the regular structure of CC/PP profiles.

A drawback with this approach is that it presumes a well defined relationship between the “frame” and the

“slots”. If it is not known that an given property is attached to a specific type of resource (c.f. The

fuelType example from the previous section), then there is no clear rule to state where the default value

may be found. If the ontological structure is revised, the location of the slot value may change, which

works against the goal of incremental modelling without full knowledge of the ontologies involved.

The framework described later allows more flexible linkage between a slot value and a prototype. Rather

than depending on a fixed ontological relationship between a slot value and its corresponding definition,

—— 7 ——

Information Modelling using RDF

arbitrary linkage is allowed through the use of a framework of “proper names”, based loosely on some ideas

put forward by Pat Hayes[13]. These names are used to link slot definitions to slot values.

Additional structures are used here because RDF has no concept of a local name: all properties and

resources are names using URIs, which are, by design, a global namespace. There is no mechanism for a

URI to denote one thing in one part of an RDF model, and to denote soemthing else in another part.

Returning to the example of [MyCar]: Many of the details about my car may be deduced with a reasonable

degree of reliability by knowing the make and model:

[MyCar] --isa--> [FordEscort]

A description of [FordEscort] might include the following information:

[FordEscort] --description-->
 {
 :
 [Engine] --description-->
 {
 :
 [FuelUsed] --fuelType--> “Petrol”
 :
 }
 :
 }

From the above statements, it might be inferred that my car runs on petrol. But what if my car is atypical,

and has a diesel engine?

According to RDF, [FuelUsed] is a specific resource with a given, globally unique URI. There is no way

to allow the resource name [FuelUsed] to mean different things in the context of different instances of

[FordEscort]. Therefore, I cannot just say:

[MyCar] --isa--> [FordEscort]
[] --description-->
 {
 :
 [Engine] --description-->
 {
 :
 [FuelUsed] --fuelType--> “Diesel”
 :
 }
 :
 }

because, using RDF, the resource named [FuelUsed] here is necessarily the same as the resource named

[FuelUsed] in the description of [FordEscort], it cannot be used to indicate that the fuel type for my

car is different from the normal fuel type for a [FordEscort].

—— 8 ——

Information Modelling using RDF

2.4 Relationship to other semantic web activities

This work overlaps semantic web ontological developments such as OIL[8] and DAML-O[9], in that it defines

RDF structures with inference properties, but has an emphasis on defining constructs for expressivity in

RDF rather than semantic web inference and proofs. The proposals here do not depend on a full framework

of first order logic.

It is not a goal of this work to provide logical capabilities beyond those provided by the ontological work:

any information using the structures described here should be expressible using the ontological frameworks

being developed by other groups. In due course, mechanical mapping processes should be devised.

That it is possible to write any program in low-level machine code doesn’t make it a desirable or useful way

to construct large programs. Similarly, this work aims to provide higher level constructs than basic RDF

statements for assembling RDF models of complex systems.

As care has been taken to ensure that the entire framework is grounded in the standard RDF[3] and RDF

schema[4] specifications, it should be usable with any of the generic RDF handling tools being developed. It

is agnostic with respect to API, operating environment and RDF serialization format.

3. Statement sets
RDF defines a way to represent collections of statements which suffers from some practical difficulties:

• The rdf:Bag container class and associated containment properties make it diffcult to add new

statements to a collection without knowing all of the statements already belonging to that collection.

• It is not possible to use subproperties to represent different containment relations for a single container,

because each member has a different containment relation property (rdf:_1, rdf:_2, etc.).

• The standard container classes have no way to represent distributive referents within an RDF graph. The

construct rdf:aboutEach is an XML serialization form that must be expanded in the corresponding

RDF graph model.

3.1 A general container for sets of resources

A container class and property are defined, overcoming the above problems when used for statement sets:

• rdfc:Set is a class that may be a container for an arbitrary set of resources.

• rdfc:member is a property whose domain is an rdfc:Set, and whose range is any RDF resource

type. It is used to indicate that its object is a member of its subject container.

—— 9 ——

Information Modelling using RDF

Thus, we have:

[Container] -–rdf:type-----> [rdfc:Set]
[] --rdfc:member--> [SomeResource]
[] --rdfc:member--> [AnotherResource]
[] :
 etc.

Note that, unlike the standard RDF container classes, this structure does not permit repeated instances of the

same resource or value in an rdfc:Set container.

To maximize compatibility with RDF schema[4]:

• rdfc:Set is defined to be a subclass of rdfs:Container, and

• rdfc:member is defined to be an instance of rdfs:ContainerMembershipProperty.

3.2 Containers for statement sets

Building on the generic set container described above, a statement set and membership thereof are

represented by:

• rdfc:StatementSet is a subclass of rdfc:Set, and is a collection of reified RDF statements.

• rdfc:quotes is defined to be a sub-property of rdfc:member, used to indicate a reified statement that

is a member of a statement set. Its domain is restricted to rdfc:StatementSet, and its range is

rdf:Statement.

Thus, we have:

[SS] -–rdf:type-----> [rdfc:StatementSet]
[] --rdfc:quotes--> [SomeStatement]
[] --rdfc:quotes--> [AnotherStatement]
[] :
 etc.

3.3 Statement set notation

The brace notation, used in this paper for the purposes of exposition, avoids the need to invent an explicit

reified statement identifier for describing statement sets, so we can write the following:

[StatementSet] --rdfc:quotes-->
 {
 [Sub1] --prop1--> [Obj1]
 [Sub2] --prop2--> [Obj2]
 :
 (etc.)
 }

—— 10 ——

Information Modelling using RDF

The corresponding RDF must still use reified statement identifiers, but these are assumed to be

automatically generated and not interesting for the purposes of constructing higher level information

models.

4. Contexts
The idea of contexts was proposed by McCarthy[1,10], and some more detailed theory and applications were

developed by R. V. Guha in his PhD thesis[2]. A context is characterized by the fundamental relationship ‘is

true in’, or ‘ist’, where:

[Statement] --ist--> [Context]

means that [Statement] is true in [Context]. A context may be taken to be an environment within

which some statements are held to be true. Thus, to use a statement in some chain of reasoning, one must

determine (or assume) that a context in which the statement ‘is true in’ applies to the circumstances of that

reasoning.

Guha describes a context as ‘defining its own language’, in the sense that it establishes a framework of

meaningful expressions based on first order logic. For the purposes of modelling with RDF, the first order

logic is replaced by the structure of basic RDF assertions, possibly taken together with some specified RDF

properties and associated set of rules that define a language and deductive framework for that context. Tim

Berners-Lee describes in The Semantic Toolbox[12] one possible form of RDF properties and associated rules

to describe first order logic. It seems useful to allow that the applicable RDF logic rules may be associated

with a context.

Thus, RDF provides the basic vocabulary and grammar for representing assertions associated with contexts,

and RDF schema may be used to describe ways the vocabulary is used, but rules of logical deduction

associated with a context (beyond the minimal rules defined by RDF) need to be established by external

means.

Another key feature of contexts is the idea of ‘lifting rules’ or ‘lifting axioms’: rules to deduce the truth of

statements in one context from the truth of statements in some other context. In the absence of applicable

lifting axioms, such deductions are not typically valid. I envisage that the topic of lifting between RDF

contexts can be approached gradually, through the introduction of specific types of relationship between

contexts, rather than by adopting a fully generalized theory of lifting.

McCarthy describes a context as an ‘abstract object’. This suggests that one can make assertions about

contexts as well as within contexts. He also describes a context as “a generalization of a collection of

assumptions”. These assumptions may concern the vocabulary and language used as well as any facts

—— 11 ——

Information Modelling using RDF

assumed; not all assumptions may be explicitly known. McCarthy also points out that, in order to work

within a framework of first order logic, statements must be reified to associate them with contexts. RDF

provides a mechanism for reification of statements, but it tends to be cumbersome. For the purpose of

discourse the needed reification of RDF statements is implicit in the notation used.

4.1 Representation of contexts in RDF

A context represented in RDF has the following characteristics:

• It is a collection of reified statements.

• The collection and the reified statements are RDF resources.

• The statement resources are explicitly related to the collection resource by RDF properties.

• Different properties may be used to indicate different relationships between collection and statements.

• Contexts may have properties that tell us something about the statements they contain.

• Contexts may be related to other contexts in various ways.

These characteristics are expressed by describing a Context as a statement set with some additional

structural and logical properties:

• rdfc:Context is a subclass of rdfc:StatementSet, and represents a context. By inheritance this

consists of a set of reified statements.

• rdfc:asserts is a sub-property of rdfc:quotes, indicating a reified statement that is a member of a

context, and which is also asserted to be true in that context. Thus, it corresponds to the ‘ist’ (i.e. ‘is true

in’) relation described by McCarthy and Guha. It has a domain of rdfc:Context, and a range of

rdf:Statement.

Thus, we have:

[SomeContext] -–rdf:type------> [rdfc:Context]
[] --rdfc:asserts--> [SomeStatement]
[] --rdfc:asserts--> [AnotherStatement]
[] :
 etc.

The rdfc:quotes property may be used with an rdfc:Context to mean that the indicated statement is

included in the context, but is not asserted by the context to be true. This is needed if the context makes

statements about other statements that are not themselves held to be true; e.g. “Graham says ‘the sheep is

pink’” might be represented as:

—— 12 ——

Information Modelling using RDF

[Context] -–rdf:type------> [rdfc:Context]
[]
[] --rdfc:asserts-->
[] {
[] [Graham] --says--> [SheepIsPink]
[] }
[]
[] --rdfc:quotes-->
[] {
[] SheepIsPink: [The sheep] --colour--> “pink”
[] }

NOTE: it might be questioned whether non-asserted statements actually belong in a

context. One of the motivations for this work is to have a way to collect together related

parts of an RDF graph, so this has been adopted as a helpful idea. Also, given the way that

contexts are constructed from statement sets, it is a natural and easy structure to adopt.

4.1.1 Asserting statements in different contexts

Statements may be associated with multiple contexts, with their various assertions conveying different kinds

of information. Suppose that I make the following statements:

[MyCar] --fuelEconomy-----> “40mpg”
[MyCar] --engineCapacity--> “1600cc”

The first statement may be something that I believe. The second statement may also be something that I

must assure for the purposes of obtaining insurance. Contexts corresponding to statements I believe and

statements I assure can be constructed thus:

[MyBeliefs] --rdfc:asserts-->
 {
 [MyCar] --fuelEconomy-----> “40mpg”
 [MyCar] --engineCapacity--> “1600cc”
 :
 }

and

[MyAssurances] --rdfc:asserts-->
 {
 [MyCar] --engineCapacity--> “1600cc”
 :
 }

Note that a statement may be true in any number of different contexts. Thus, the rdfc:asserts property

may be applied any number of times using a given statement. (Naturally, any number of statements may be

asserted by a given context: this grouping of statements into larger units is one of the motivations for these

proposals.)

—— 13 ——

Information Modelling using RDF

4.2 Using contexts: logical constructs

4.2.1 Contexts as containers

An obvious use of a context is as a container for some collection of statements. An RDF document may

contain a number of statements. Assertions applied to the document might be taken to apply to each of the

statements contained in the document.

For example, a signature applied to a document creates some kind of assurance about the content of that

document. This assurance would reasonably be considered to apply to each of the statements within the

document. To apply such assurances individually to each statement seems cumbersome, especially given

the fine-grained nature of individual RDF statements. Thus, we have one application for contexts that is to

facilitate making assertions about collections of statements.

A simple approach that has been suggested would be to allow statements about a collection to be applied

automatically to its members. This allows no way to distinguish statements about the collection itself from

statements about its members. Suppose I use a context [MyWebSite] to contain a set of statements about

my web site, and attach a property that says that certain people are authorized to make changes. Does this

property apply to the collection of statements about the web site, or does it apply individually to each of the

contained statements?

I propose a level of indirection that makes explicit the distribution of assertions over contained statements.

It follows the idea of ‘interpretation properties’ described by Tim Berners-Lee[12]. In this case, the proposed

‘interpretation property’ is one that explicitly applies assertions to all of the contained statements:

[CarInsurance] --rdfc:asserts----->
[] {
[] [Car] --registration----> “ABC123X”
[] [Car] --engineCapacity--> “1600cc”
[] :
[] }
[] --rdfc:applyToAll--> [_stmt]

[_stmt] --assuredBy--> [Car owner]
[_stmt] --assuredBy--> [Car registration]

Here, rdfc:applyToAll indicates quantification over statements within the context, and [_stmt] is a

place-holder for such statements. For each statement contained within the context, and for each statement

involving the place-holder resource [_stmt], a corresponding statement is asserted. In the above example,

the statements of assurance by both the car owner and the car registration document are applied to the

statements about registration mark and engine capacity that are contained within the context:

—— 14 ——

Information Modelling using RDF

S1: [Car] --registration----> “ABC123X”
S2: [Car] --engineCapacity--> “1600cc”
 :

 [S1] --assuredBy--> [Car owner]
 [S1] --assuredBy--> [Car registration]
 [S2] --assuredBy--> [Car owner]
 [S2] --assuredBy--> [Car registration]
 :

Thus, rdfc:applyToAll indicates that all properties applied to the object resource are to be applied

individually to each statement that holds in the subject context. The resource [_stmt] is a local place-

holder of implied type rdf:Statement, identified by an arbitrary URI-reference.

NOTE: rdfc:applyToAll is presented here as a one-off case for use with contexts. The

idea can be generalized to apply to an arbitrary container class and member type[20].

NOTE: This is an alternative way to model statements about sets of statements than that

described in the RDF Model and Syntax[3], section 4.2. A significant difference is that this

approach represents the distributed referent structure within the RDF graph, and therefore

can be applied to contextual information possibly not otherwise available when the RDF is

de-serialized.

4.2.2 Contexts as statements

A motivation for this work has been to find ways of combining basic RDF statements into higher-level

statements that can be treated as basic statements. A context can be treated as such a composite statement.

The reification of a statement is a structure that stands irrespective of whether the statement is true, and a

statement set is a collection of reified statements that does not consider the truth of them. A reified

statement is asserted in a context if it is considered to be true in that context. Similarly a context contains

statements that are true under some circumstance, irrespective of whether that cirumstance applies. A

context may be asserted in some other context, meaning that statements true that context are also regarded

as true in the surrounding context.

In this respect, a context may assume some of the attributes of a statement: it may be regarded as true or

false (or unknown) in the sense that the statements that it embodies are all true, or otherwise. Its truth (or

otherwise) may depend upon the truth of some other context. The kinds of metalogical operations that can

be applied to statements (conjunction, implication, negation, etc.) could be usefully applied to contexts,

treating a context as a kind of composite statement. It can even make sense to combine statements and

contexts in metalogical expressions.

—— 15 ——

Information Modelling using RDF

These ideas for interchangeability of contexts and RDF statements can be expressed by creating a unifying

superclass for them. Defining one as a subclass of the other is not satisfactory because each has properties

not shared by the other. (A statement has a very specific structure and relationship to the RDF model; a

context can be used in ways not applicable to a statement.) The class rdfc:Assertable is defined to be a

superclass of both rdf:Statement and rdfc:Context, e.g. with RDF scheme statements of the form:

[rdfc:Assertable] ---rdf:type---------> [rdfs:Class]
[rdf:Statement] -----rdfs:subClassOf--> [rdfc:Assertable]
[rdf:StatementSet] --rdfs:subClassOf--> [rdfc:Assertable]
[rdfc:Context] ------rdfs:subClassOf--> [rdfc:Assertable]

Where a statement, statement set or a context may be used as the domain or range of some property, this can

be expressed in a schema by the rdfc:Assertable class. Thus, the ranges of rdfc:quotes and

rdfc:asserts are revised, relaxing the initially specified object type of rdfc:Statement to allow

statements of the form:

[<rdfc:Context>] --rdfc:quotes---> [<rdfc:Assertable>]
[<rdfc:Context>] --rdfc:asserts--> [<rdfc:Assertable>]

where rdfc:Assertable can be a statement, statement set or context.

4.2.3 Contexts as resources

One of the difficulties I have observed in trying to use RDF to model real world situations is that it is very

difficult to construct a model of meaningful complexity without becoming overwhelmed by the details of

the RDF graph. The idea of contexts as containers leads quite naturally to a treatment of contexts as first

class resources in their own right, representing the collection of statements describing some physical-world

object. Further, the use of contexts as statements allows the statements contained within a context

themselves to be contexts.

Using these ideas, and the extra RDF properties described above, one can construct models in terms of high-

level resource and property concepts. The validity or consequences of these high-level relationships is

discovered by looking inside the corresponding contexts to find the component parts and the local

interactions between them. Thus, one of the goals of this work is realized, allowing high-level models of

complex systems to be constructed without knowledge of the more detailed structures involved. Consider

the description of a car:

—— 16 ——

Information Modelling using RDF

[MyCar] --manufacturer--> [Ford]
[] --model---------> [Escort]
[] --rdfc:asserts-->
 {
 [Engine] --model--> [CVH]
 [] --rdfc:asserts-->
 {
 [Fuel] --fuelType--> “petrol”
 [Spec] --capacity--> “1600cc”
 :
 }
 [Body] --style--> “Hatchback”
 [] --rdfc:asserts-->
 {
 [Shell] --material--> “steel”
 [] --weight----> “200Kg”
 [Doors] --count-----> “5”
 :
 }
 :
 }

This example illustrates how a description of a complex object or system can be built up component-wise

from contexts describing the various components. At each level, a context is used as a resource that stands

for the entity being described. Statements that are clearly about the resource as a whole can be attached to

the resource directly (e.g. manufacturer above), while statements about properties of component parts

can be associated with the appropriate part in a way that is not invalidated if the internal structure needs to

change. For example, consider fuelType, which is associated above with the engine type. Suppose the

engine description is restructured to consist of mechanical, fuel and electrical subsystems:

[Engine] --model--> [CVH]
[] --rdfc:asserts-->
 {
 [MechSubSystem] --rdfc:asserts-->
 {
 [Cylinders] --count-----> “4”
 [] --capacity--> “400cc”
 [Valves] -----count-----> “8”
 [CamShaft] ---location--> “Overhead”
 [] ---drive-----> “Toothed belt”
 :
 }
 [FuelSubSystem] --rdfc:asserts-->
 {
 [Fuel] --fuelType----> “petrol”
 [] --systemType--> “injection”
 :
 }
 [ElecSubSystem] --rdfc:asserts-->
 {
 [Ignition] --systemType--> “electronic”
 :
 }
 :
 }

—— 17 ——

Information Modelling using RDF

For the purposes of refuelling, the assertion ‘[Fuel] --fuelType--> “petrol”’ is sufficient. This

statement can be inferred in exactly that form, even though the internal structure of the description of the

car has been changed. I believe that this ability to describe and infer certain facts independently of the

detailed ontological structure is crucially important to the practical construction of models describing

complex systems. Some initial exercises have suggested that using contexts in this way very greatly

improves our ability to design models of real world objects.

5. Generic entities
Section 2.3 has introduced the motivation for generic entities, and the difficulties of using ontologically

based frame descriptions. Here, I describe a system of “proper naming” for RDF that is loosely based on

some ideas put forward by Pat Hayes[13] on the RDF logic mailing list[14], and illustrate its use to construct

generic models.

5.1 URIs and Proper Names

RDF uses URIs and URI-references, defined by RFC 2396[16], to name resources. URIs are generally

defined to be globally unique: a URI that appears in different places is always expected to indicate the same

“resource” (which does not necessarily mean the same data, but that is not pertinent to the present

discussion). URI references have a relative form, but RFC2396 is quite clear that this is a lexical

convention and that the relative form should map to an absolute (globally unique) form depending on the

lexical environment in which it occurs. Typically, the URI of a containing document is used to construct

the global URI corresponding to a relative URI.

Pat Hayes observes[13] that much human discourse does not depend on global names to identify the topics

being discussed; rather, proper names are used that have accepted meaning within some context of

discourse. For example, in a discussion that alludes to American geography, “Boston” is typically

understood to be a city in the US state of Massachusetts, but in other contexts it might mean something else.

Here, the meaning of “Boston” is understood through a binding indicated by social context.

In logic, mathematics and computer programming, “local names” are often used to stand for a concept

within some defined environment. The fact that the local name is not bound to some global meaning gives

rise to its expressive power. Formal parameters of functions and procedures are responsible for much of the

expressive power of notations used in logic, mathematics and computer programming. There has been

discussion about how to introduce quantification into RDF to extend its expressive power (e.g. Tim

Berners-Lee’s “Semantic toolbox”[11], and many others); there is no question that some such mechanism is

required.

—— 18 ——

Information Modelling using RDF

Using the social concept of proper names for local variables may seem strange; I suggest that this is an

appropriate unifying of mechanisms, allowing a continuum of locally bound names (in expressing purely

logical constructs) to socially bound names (in descriptions of ideas with social scope). Specifically, ideas

that start out as being socially defined may be carried into contexts where the definition is logically bound.

For example, the name “Boston” may be introduced in a social context with purely social binding, but may

be carried over into a context of air transport where it is ultimately bound into a mathematical framework of

spatial coordinates that ultimately define where an airplane must land.

5.2 Proper names in RDF

This section proposes an experimental mechanism for expressing proper names within standard RDF. A

proper name may be an arbitrary string of characters. International proper names, required to support social

naming conventions, are accommodated by allowing characters from the UCS-4 (Unicode)[22] repertoire.

One or more proper names may be associated with any RDF resource by the rdfn:properName property.

The domain of rdfn:properName is any RDF resource, and its range is a literal string containing the

proper name value:

[MyCar] --rdfn:properName--> “my car”
[] --rdfn:properName--> “ABC123X
[] --rdfn:properName--> “Emily

These three properName properties indicate different names by which [MyCar] may be referenced: in

informal conversation, I talk about “my car”, in formal communications (e.g. insurance application) I may

refer to it by a registration mark “ABC123X”, and my wife might refer to it in an anthropomorphic style as

“Emily”. Clearly, someone else might use the name “my car” to refer to a completely different vehicle. In

general, a proper name string is not bound to unique entity outside of a given context of usage.

A particular context in which a proper name applies may be indicated by including the rdfn:propername

statement in that context.

NOTE: the resource [MyCar] above is an RDF resource that is generally assumed to have a

globally unique identifier in the form of a URI-reference. It may be that the URI-reference

is a generated value like a uuid: or cid: URI with no obvious relationship to any specific

entity. There has also been some discussion in the W3C RDF interest group[15] about

anonymous resources (without names, or having names that are explicitly not globally

unique URIs). This is a matter for continuing debate. In any case, the rdfn:properName

property associates the indicated name string with an RDF resource, however identified.

—— 19 ——

Information Modelling using RDF

An inference rule associated with rdfn:properName tells us that two resources with the same proper

name value are equivalent. That is, any property true of one such resource may be taken to be true of the

other. Thus, proper names provide a logical framework for asserting the equivalence of two resources.

NOTE: this description skirts an issue of the relationship between resources and resource

identifiers. One school of thought asserts that the relationship between resources and

identifiers is 1:1-onto; i.e. each resource identifier indicates exactly one resource, and each

resource has exactly one resource identifier. Another view allows multiple resource

identifiers to indicate the same resource. This debate is avoided by talking about

equivalence of resources while remaining agnostic on the issue of sameness.

5.3 Using proper names in generic descriptions

Suppose my car is a Ford Escort. From this assertion, one can immediately infer a range of facts about my

car as “Ford Escort” is an established kind of car. Proper names allow us to construct RDF descriptions that

capture this kind of prototype-based inference.

[FordEscort] --rdfc:asserts-->
 {
 [FordEscortBody] --rdfn:properName--> “Ford Escort body”
 [] --rdfc:asserts-->
 {
 (details about car body)
 }
 [FordEscortEngine] --rdfn:properName--> “Ford Escort engine”
 [] --rdfc:asserts-->
 {
 (details about car engine)
 }
 :
 }

[MyCar] --rdfc:asserts--> [FordEscort]
 {
 [MyCarBody] --rdfn:properName--> “Ford Escort body”
 [] --rdfc:asserts-->
 {
 [BodyPaint] --colour--> “Red”
 :
 }
 :
 }

The above examples show a context [FordEscort] that describes a generic Ford Escort car, and another

context that describes my car as a kind of Ford Escort. The generic Ford Escort is defined in terms of

specific RDF resources ([FordEscortBody], [FordEscortEngine], etc.) that stand for components of

—— 20 ——

Information Modelling using RDF

the generic car type. Thus, of itself, the resource [FordEscortBody] does not stand for a specific car

body, but expresses properties common to all Ford Escort car bodies.

The description of [MyCar] asserts all of the statements that are true of a generic Ford Escort. It also

asserts that [MyCarBody] has a proper name the same as [FordEscortBody]. The inference rules

associated with rdfn:properName then allow us to deduce that, in the context of [MyCar], all statements

about [FordEscortBody] are also applicable to [MyCarBody]. Additional statements about

[MyCarBody], such as it having red paint, also apply in this context.

6. Conclusions and further work
RDF mechanisms based on statement sets and contexts have been described that allow descriptions of

complex systems to be constructed without necessarily having detailed knowledge of the ontological

structure of the system components used. I believe this is a key enabler for the practical construction of

complex system models in RDF.

An additional RDF mechanism has been described, based on the idea of a “proper name”, that allows

descriptions to be based on prototypes, in a fashion similar to the frame based descriptions proposed by AI

researchers, but not depending on detailed knowledge of the ontological structures involved.

Articulated visions for the Semantic Web require that anyone must be able to say anything about

anything[21]. It is unreasonable to expect everyone to adopt exactly the same ontological structure for

making statements about an entity; apart from political and perceptual differences, that approach cannot

scale. This leads to my assertion that practical modelling of complex systems requires statements that can

stand independently of finer ontological details. This is not a dismissal of ontological structures; work on

onological frameworks such as OIL[8] and DAML-O[9] is needed to underpin verification of web-based

information. In due course, I would expect a theory to emerge that relates descriptions based on incomplete

ontologies to more rigorously complete frameworks. I view basic RDF as a kind of “assembly language”

for information modelling, and see this use of contexts and proper naming as a parallel to procedures and

formal parameters in programming languages, used to aid the construction of complex object descriptions

without adding new formal capabilities.

The constructs presented here are being used in the following ongoing experimental developments:

• A graphical tool for RDF modelling[18].

• An experimental RDF-driven expert shell[19].

—— 21 ——

Information Modelling using RDF

We also aim to develop mechanisms for trust modelling and inference; modelling social trust structures and

overcoming the brittleness of purely cryptographically based approaches to trust in e-commerce, etc.

Another area for investigation is the design of mechanisms for managing non monoticic reasoning, and

other logical extensions of contexts [20].

In messages to the RDF interest group, Dan Brickley has proposed[17] an alternative approach to labelling

anonymous RDF resources; i.e. resources whose formal URI or URI reference is unknown. The outcome

of these discussions may affect the exact form of naming preferred.

7. Acknowledgements
This note is based in part on an earlier document[20], for which I received valuable feedback from Brian

McBride, Dan Brickley, Jan Grant and others from HP Labs and ILRT in Bristol, UK. The ideas have also

benefited from ongoing discussions in the W3C RDF interest group email discussion list[15] and RDF logic

email discussion list[14], and particularly from thoughts offered by Jonathan Borden, Sergey Melnik, Seth

Russell and Wolfram Conen. I extend my thanks to these, and everyone else who has been so generous with

their thoughts in the RDF discussion forums.

8. References

[1] John McCarthy,
Notes on Formalizing Context,
Computer Science Department, Stanford University.
<http://www-formal.stanford.edu/>

[2] Ramanathan V. Guha,
Contexts: A Formalization and Some Applications,
Stanford PhD Thesis, 1991.
<http://www-formal.stanford.edu/>

[3] Ora Lassila, Ralph R Swick,
Resource Description Framework (RDF) Model and Syntax Specification,
W3C Recommendation, 22 February 1999.
<http://www.w3.org/TR/REC-rdf-syntax>

[4] Dan Brickley, R. V. Guha,
Resource Description Framework (RDF) Schema Specification 1.0,
W3C Candidate Recommendation, 27 March 2000.
<http://www.w3.org/TR/rdf-schema>

[5] CC/PP Working Group
<http://www.w3.org/Mobile/CCPP/>

—— 22 ——

Information Modelling using RDF

[6] Marvin Minsky,
A Framework for Representing Knowledge,
1975.
(This paper contained in [7]).

[7] Ronald J. Brachman and Hector J Levesque,
Readings in Knowledge Representation,
Morgan Kaufman Publishers, Inc., 1985.
ISBN 0-934613-01-X.

[8] Ontology Inference Layer (OIL)
<http://www.ontoknowledge.org/oil/>

[9] DARPA Agent Markup Language Ontology (DAML-ONT)
<http://www.daml.org/2000/10/daml-ont.html>

[10] John McCarthy,
Generality in Artificial Intelligence,
Communications of the ACM, Vol 30, December 1987.

[11] Tim Berners-Lee,
The Semantic Toolbox,
Personal note, 24 May 1999.
<http://www.w3.org/DesignIssues/Toolbox.html>

[12] Tim Berners-Lee,
Interpretation properties,
Personal note, 29 Feb 2000.
<http://www.w3.org/DesignIssues/InterpretationProperties.html>

[13] Pat Hayes,
names, URIs and ontologies
<http://lists.w3.org/Archives/Public/www-rdf-logic/2000Oct/0112.html>
(Thoughts about names in RDF, posted to RDF-logic mailing list[14])

[14] <www-rdf-logic@w3.org> Mail Archives
<http://lists.w3.org/Archives/Public/www-rdf-logic/>
(RDF logic discussion email distribution list)

[15] <www-rdf-interest@w3.org> Mail Archives
<http://lists.w3.org/Archives/Public/www-rdf-interest/>
(Discussion archive for the RDF Interest Group)

[16] T. Berners-Lee, R. Fielding, L. Masinter,
Uniform Resource Identifiers (URI): Generic Syntax,
Internet Engineering Task Force, RFC 2396, August 1998.

—— 23 ——

Information Modelling using RDF

[17] Dan Brickley,
Anonymous resource names -versus- variables,
<http://lists.w3.org/Archives/Public/www-rdf-interest/2000May/0032.html>
(Thoughts about resources with unknown URI.)

[18] Craig Pugsley
A graphical modeller for RDF
[[[Software to be published as open source on web]]]

[19] Craig Pugsley, Graham Klyne,
An RDF-Driven, Web-informed Expert System for Task Planning,
[[[Work in progress, November 2000]]]

[20] Graham Klyne,
Contexts for RDF Information Modelling,
Discussion document, in progress, 18 October 2000.

[21] Tim Berners-Lee,
What the Semantic Web can represent,
Personal note, 17 Sept 1998.
<http://www.w3.org/DesignIssues/RDFnot.html>
(See section: The Semantic Web and Entity-Relationship models)

[22] The Unicode Consortium,
The Unicode Standard, version 2.0,
Addison Wesley, 1998.
ISBN 0-201-48345-9

[23] Pierre-Antoine Champin,
RDF Tutorial,
28 June 2000.
<http://www710.univ-lyon1.fr/~champin/rdf-tutorial/>

[24] Dan Brickley,
RDF Interest Group - Issue Tracking
<http://www.w3.org/2000/03/rdf-tracking/>

[25] Tim Berners-Lee,
Notation 3 - Ideas about Web architecture
<http://www.w3.org/DesignIssues/Notation3.html>

—— 24 ——

