
XML 2002, Baltimore Baltimore, MD USA
December 8-13, 2002

Using XSL Formatting Objects for
Production-Quality Document Printing
Kimber W. Eliot
ISOGEN International, LLC
eliot@isogen.com

Copyright © 2002, ISOGEN International, LLC

Abstract
The XSL Formatting Objects specification has been a published
recommendation for over a year. During that time a number of commercial
XSL-FO implementations have become available that make it possible to use
XSL-FO for true production-quality creation of printed documents. While there
are functionality limitations in XSL 1.0 that limit the types of page layouts that
can be created, the page layouts that are supported are sufficient for most
technical documentation, such as user manuals, maintenance manuals, and
so on.

This paper evaluates the XSL 1.0 specification and the currently-available
implementations against the print requirements typical of a variety of
document types, including technical documents, magazines, and newspapers.
We then report our experience in using XSL-FO with commercial tools to
produce hardware user manuals for a line of consumer computer peripherals.
We discuss the XSLT and XSL issues, as well as XSL-FO extensions that
may be required to satisfy typical print production requirements. Finally, we
provide a set of recommendations, based on the current state of the XSL
specification and the current state of tools, as to when the use of XSL-FO is
appropriate and which XSL-FO implementations are best suited to which tasks
or disallowed by certain sets of requirements.

mailto:eliot@isogen.com

Using XSL Formatting Objects for
Production-Quality Document Printing

§ Introduction
The purpose of this paper is to answer the question “can XSL Formatting Objects
(XSL-FO) be used to produce production-quality printed and online documents?”
The short answer is “yes, within some reasonable limits.” That's a good and
useful answer, but just saying “yes you can” fails to convey just how important
that “yes” is. The fact of the suitability of XSL-FO[XSL-FO] for production-quality
print production is the realization of a dream more 20 years in the making, a
dream that a great many people have shared and that a great many dedicated
people have worked very hard to realize.

In an attempt to convey what this “yes” really means, I start with a short
history lesson, then follow with a discussion of XSL-FO as a technology, its
general suitability to various publishing tasks, and the current state of XSL-FO
implementation. This paper is not a tutorial on how to create XSL-FO style
sheets.

XSL-FO, The Dream and the Reality or How I Came to Write This Paper
The precursor to SGML, GML, was an application of IBM's Data Composition
Facility (DCF), a full-function page composition system that IBM had developed
to do document and bill publishing. GML came out of the box with high-quality
page composition features (although somewhat limited stylistic choices unless
you wanted to write a lot of DCF code to implement your own presentation
styles). For its internal use (and later as a product), IBM developed BookMaster,
a GML application that directly supported all of the print (and online) publication
requirements for IBM technical manuals, both hardware and software.
BookMaster was also a DCF application. It provided more stylistic choices and an
easier way to define new styles, but it was still essentially a giant DCF macro
package. When we started defining IBM's SGML replacement for BookMaster in
the very early 1990's, we quickly realized that doing the same high-quality page
composition from SGML instead of from GML was going to be a challenge at
best. This was because SGML, being completely generic and implementation
independent, did not have a built-in page composition system.

The whole point of SGML was that you could do many different things with the
same documents. But that also meant that to do any one thing you would have to
buy or build it, in addition to whatever you did to create and manage the SGML
itself. At IBM we had the advantage that we could still use BookMaster and DCF
to compose from SGML simply by writing a relatively simple SGML-to-
BookMaster transform. DCF was a mainframe-only product (DCF itself is largely
implemented in IBM 370 assembler, if I understand correctly). This was at a time
when mainframes as work support systems were being replaced by PCs. It was
clear that using BookMaster to compose SGML documents was not a viable
long-term solution. It was about this time that I left IBM to become a consultant
for a small company. IBM went on to use Xyvision XPP and Omnimark to build a

XML 2002 Copyright © 2002, ISOGEN International, LLC p. 2

very sophisticated SGML-based publishing system for its technical documents,
but at great cost (this was 1994-1995 and IBM's requirements were quite large,
as you might imagine). There were simply no other viable technical solutions that
would satisfy IBM's technical documentation requirements.

The original developers of the SGML standard had realized that publishing
from SGML would present this sort of challenge and recognized that what was
needed was a standardized, implementation-independent way to compose SGML
documents for print and online use. Soon after the publication of the SGML
standard in 1986 they started development of the DSSSL standard (Document
Style Semantics and Specification Language)[DSSSL]. Also at about this time,
the U.S. Department of Defence started developing their own standard for SGML
style sheets, the Format Output Specification[FOSI]. Many SGML practitioners
like myself started beating their heads against the practical problems of
publishing from SGML. There were many problems with the tools used to
address these needs, from poor parsers to editors that put odd things in files to
composition engines that were expensive to buy, difficult to configure (being
essentially typesetting macro languages like DCF), etc. Tools came and went.
The DSSSL standard was finally published in 1996 and we had great hope for it,
but alas, it came to naught1. The only free implementation, James Clark's Jade
tool, was good but not feature complete and lacked a few layout features needed
for full production use. The only commercial DSSSL implementation was built in
Japan by Next Solution and not actively marketed in North America or Europe. At
the same time we started to realize that, for all its brilliance and elegance,
DSSSL was never going to be viable simply because its syntax, while completely
appropriate for the task at hand, made DSSSL style sheets essentially
unmaintainable. They were unmaintainable for the simple reason that few people
would take the time to learn the syntax because it was very different from
traditional procedural languages (DSSSL is Scheme-based).

At the same time, XML popped into existence and our whole way of thinking
about how to do processing and how to design processors for generalized
markup changed and evolved in important and valuable ways. We realized that
simplicity and directness trump elegance, that learnability and maintainability
must be given great weight. And we learned that people seem to get the idea of
XSLT[XSLT] in a way that they never got DSSSL. So, many of the very same
people who developed DSSSL (and who had also been key figures in defining
XML), along with many other new players, started defining XSL and XSLT, with
the express goal of making it possible to compose XML documents into high-
quality print and online pages. They took everything they had learned in the
previous 15 or 20 years of painful experience and used it to craft the XSLT and
XSL-FO standards. XSLT took the spotlight because its value as a way to
generate HTML quickly and easily or to generate new XML forms from existing
XML, coupled with its ease of learning, rapid adoption, and wide deployment by a
number of very solid implementations, all free, made XSLT an immensely
important tool in every XML practitioner's toolkit.

But the dream of composing high-quality pages from XML was still just a
dream. Even in 2001, the choices were still limited to the venerable SGML-based
composition systems that had been around forever: XPP, 3B2, Datalogics

XML 2002 Copyright © 2002, ISOGEN International, LLC p. 3

Composer, Epic (nee Adept) Publisher, FrameMaker+SGML, etc. All good
systems, but all showing their age. There were a few experimental FO
implementations developed with the XSL specification, such as PassiveTeX
[PSVTEX], but they were not yet sufficiently complete to enable general
production use.

Then, in October of 2001, the XSL FO 1.0 recommendation was finally
published and with it came one free FO implementation, the Apache project's
FOP, and two commercial implementations, RenderX' XEP[XEP] and Antenna
House's XSL Formatter[AHXF]. At the same time, Arbortext indicated it was
developing a full-featured FO implementation for its Epic product[EPIC] and Next
Solution, the company that had implemented DSSSL, announced development of
an FO implementation as well.

Suddenly the dream seemed very close, at long last, to being a reality. But
could it be?

At this same time, late fall of 2001, one of ISOGEN's customers realized that
the SGML composition tool they were using to publish user and service manuals
for computer peripherals would not be able to handle a number of very important
national languages, in particular, Chinese, Japanese, Korean, Thai, Hebrew, and
Arabic. This company is a world-wide market leader in its space, so
internationalized documents are key to its business. What to do?

I looked at the options and decided that, given what I knew about XML, XSLT,
and XSL-FO and what I had seen of the available FO implementations, that it
would be worth the risk to try an FO-based solution. The risk was that we
wouldn't be able to make it work, either because the tools would fail or the
standard wouldn't provide the features we needed. The potential reward was
being able to produce documents in all the languages we needed at a
significantly lower dollar cost than using the only other solution I could identify
(one of the venerable, old-school SGML publishing systems) and significantly
lower implementation and maintenance cost because of the inherent goodness of
XSLT.

There were some tense moments along the way, and a few late nights, but I
can report that we were successful in developing an FO-based solution that does
everything we need it to, at a lower implementation cost, lower software cost, and
lower maintenance cost, than the system we replaced. At the time of writing,
October 2002, all technical issues relating to the formatting requirements and the
functionality of the FO implementation used have been resolved (and all but a
couple small issues had been resolved by May of 2002) and the system is ready
for production use. From this experience I am confident not only that XSL FO can
be safely used to do high-quality print production of XML documents but that it is
without question a superior solution to anything I have used in the past, as long
as you can satisfy your page layout requirements.

I am also delighted that the dream of practical, affordable page composition
from XML is finally being realized. There are still a few kinks to work out, but it is
definitely a 95% solution, not an 80% solution.

How XSL-FO Works
XSL Formatting Objects is based on a two-stage process for getting from input
XML document to composed pages. The XSL-FO recommendation defines a

XML 2002 Copyright © 2002, ISOGEN International, LLC p. 4

document type, Formatting Objects, for documents that represent the
components of composed, but unpaginated, documents. An FO document
instance is then interpreted by FO implementation to create a paginated rendition
of the formatting objects by applying the layout and formatting semantics defined
in the XSL-FO recommendation. The typical output of an FO engine is a
Postscript or PDF file or, when printing directly to a physical printer, printed paper
pages. The formatting objects themselves represent the usual typesetting and
page layout constructs that have been well understood for decades: page
sequences, text flows, blocks, inlines, and so on. These constructs carry a large
number of possible properties or characteristics that describe the details of the
presentation: geometry, font, color, etc. Many of the formatting characteristics
used in XSL-FO are taken directly from the CSS (Cascading Style Sheet)
specification.

One important and distinguishing aspect of the FO design is its support for
internationalized documents. FO is designed explicitly to not be biased in favor of
any particular writing order, writing direction, page orientation or other culture-
specific aspect of text presentation. Thus FO has been designed from the start to
support, for example, right-to-left writing systems like Hebrew and Arabic and
top-to-bottom writing directions like Traditional Chinese, as well as Western
writing systems. It has also been designed to accommodate complex glyph
layout requirements, such as those of Thai. Of course, this does not mean that all
FO implementations can support all writing directions, scripts, or glyph
construction rules. But it does mean that authors can be explicit about the
features they need page composition systems to support.

You can create FO documents in any number of ways, but the typical
approach uses XSLT transforms to generate FO documents from XML
documents in exactly the same way XSLT is used to generate HTML documents.
It's the same basic task and uses the same basic implementation techniques.
The only difference is the output document type. In fact, it's often possible to re-
use schema-specific XSLT business logic between HTML transforms and FO
transforms.

A Note About XSL-FO Terminology
XSL Formatting Objects has been carefully designed to be culturally neutral.
Thus it avoids use of terms like “top” “bottom”, “left”, and “right”, preferring the
terms “before”, “after”, “start”, and “end”. These terms are always in reference to
the orientation and direction that has been set for blocks and inline text. For
Western left-to-right, top-to-bottom layouts, before is top and start is left.

All references to left, right, top, and bottom in the FO specification are for
compatibility with CSS but are formally mapped to the equivalent culture-neutral
specifications.

A Note About FO Implementations Discussed in This Paper
One purpose of this paper is to evaluate the different FO implementations for
suitability to specific requirement sets. All discussion of product features is with
respect to the generally released versions of these products available as of 15
October 2002. Where a beta version is publicly available I have mentioned it if
relevant, with the appropriate qualifications.

XML 2002 Copyright © 2002, ISOGEN International, LLC p. 5

Note that all of the commercial FO implementations are evolving rapidly and
that features missing in October 2002 may well be implemented or announced by
the time you read this. As a long-time integrator and user of SGML and XML
tools I have been struck by the high speed with which the FO implementations
have been developed and by the responsiveness of all the vendors to tool issues
and feature requests. After a decade of largely incremental improvement to a
fairly static suite of SGML and XML tools, it is exciting to see these new FO
implementations being implemented so aggressively and with such high quality of
implementation, service, and support.

The FO implementations available at the time of writing are:
• Epic Publisher V4.3 from Arbortext[EPIC].
• FOP, part of the open-source Apache project[FOP].
• PassiveTeX, from Sebastian Rahtz[PSVTEX].
• IBM XSL Formatting Objects Composer[XFC].
• XEP from RenderX[XEP].
• XSL Formatter from Antenna House[AHXF].

These products are discussed in more detail in 4 [below]. PassiveTeX and
XFC are not included in this discussion simply because they are not yet
sufficiently feature complete to be candidates for general production use. But that
will almost certainly change with time.

§ Strengths and Limitations of XSL-FO
XSL Formatting Objects has a number of strengths that derive from being XML-
based and from the use of XSLT to generate FO instances. It also has strengths
that derive from the FO design itself, which reflects hundreds of person years of
experience with doing page composition from generalized markup, and in
particular, the direct lessons learned from DSSSL, FOSI, and other approaches
to standardized page composition.

XSL Formatting Objects has unavoidable limitations from two principal
causes: missing layout features and the limitations inherent in the two-step XML-
to-pages processing model.

Inherent Limitations of XSL-FO
The XSL FO 1.0 recommendation naturally fails to define a number of features
that one might need. Correctly, I think, the FO working group decided to publish
something, even though it was incomplete with respect to all the known
requirements, rather than wait until the specification was 100% complete. For
example, the Working Group realized that it had not provided a full solution for
index generation but also realized that a complete solution would require a lot of
careful thought and design.

The two-step FO processing model means that there is no standardized way
to get feedback from the pagination step to the FO generation step. This makes it
difficult to implement presentation features that are dependent on knowing
exactly what page something will occur on. Thus, it is impossible using standard
features of FO to make choices in the XSLT transform based on whether or not a
particular formatting object will appear on a particular page. However, it would be
possible for specific implementations to provide this feedback, but that

XML 2002 Copyright © 2002, ISOGEN International, LLC p. 6

mechanism would not be a standard, at least in the short term (there's no reason
an FO feedback mechanism couldn't be standardized but there is currently no
effort to do so as far as I know).

Performance Issues with XSL-FO
The abstract, generalized nature of XSL-FO naturally imposes some
performance penalty simply because it requires more computing power to
implement a generalized solution than it does to implement a task-specific
solution. In addition, the two-step XSLT process imposes another performance
penalty, especially if the transformation step results in a file on disk that is then
read by the XSL-FO implementation, rather than doing the transformation into a
shared memory area that is then used directly by the FO processor.

For most applications these performance limitations are not an issue. A
typical FO process instance is comparable to, for example, using Epic Publisher
with a FOSI-based style sheet to compose the same document. However, for
some high-volume publishing applications the current FO implementations may
not be fast enough, although normal hardware solutions can be applied.

There is no inherent reason why an XSL-FO implementation cannot be as fast
as the fastest non-FO markup-based composition system, but the focus of FO
implementors to date has been on feature completeness more than on raw
performance (although all the products have demonstrated significant
performance improvements from version to version over the last year). I expect
that as the FO implementations become more mature and the use of FO
becomes more widespread that the focus of implementors will turn more toward
performance.

As a rule of thumb, if Epic Publisher or Framemaker+SGML will meet your
performance requirements then any of the FO implementations will also meet
your performance requirements. If these products would not meet your
performance requirements then the FO implementations probably will not meet
them either. And of course, as for all performance issues, Moore's law continues
to hold, meaning that many short-term performance limitations may have an easy
hardware solution in the near term.

Another significant value of XSL-FO is its ease of implementation and
maintenance over time, as discussed in the following sections. For many use
cases the value of these characteristics of FO far outweighs any short-term
performance issues, especially when performance issues can be addressed by
simply upgrading computing hardware. That is, a near-term investment in extra
hardware will be more than recouped by both a near-term savings in initial
development cost and a medium- and long-term savings from reduced
maintenance and incremental development costs.

Strengths Deriving from XSLT
The use of XSLT to generate FO instances from XML documents realizes a
number of advantages that stem from strengths of XSLT itself. XSLT is relatively
easy to learn, it is widely supported and widely used. There are a large number of
skilled XSLT practitioners, which significantly reduces the long-term maintenance
cost of XSLT transforms. XSLT has good modularity features, allowing the use of
traditional programming techniques for creating re-usable code modules that can

XML 2002 Copyright © 2002, ISOGEN International, LLC p. 7

be applied to a number of different document types or presentation styles in a
way that few other print production systems can provide. XSLT has good
conditional processing features, making it cost effective to have a single style
sheet that can account for variations in either the input documents or the output
FO instances, again reducing implementation and maintenance costs and
improving reusability.

The ability to write XSLT extensions in Java also makes it easier, or
sometimes simply possible, to solve specific implementation problems that would
be difficult or impossible to do with XSLT alone, including integration of XSLT
transforms with underlying information systems, database publishing, and so on.

Strengths Deriving from the FO Design
The design of the Formatting Object document type itself generally makes it
easier to create sophisticated page layouts and formatting effects compared with
similar SGML- or XML-based composition systems. The FO design reflects
decades of experience with doing high-quality page composition, including
lessons learned from DSSSL, CSS, FOSI, and various commercial products. The
various FO constructions and characteristics will be largely familiar to anyone
with page layout experience, whether from a desktop publishing background or a
markup-based publishing background. The design is very consistent and largely
intuitive. A great deal of careful thought has gone into the FO design and it
shows. All of these qualities translate into a formatting system that is relatively
easy to learn and easy to apply to specific layout problems.

ISOGEN's experience over the last year or so is that creating an XSLT- and
FO-based style sheet requires about one half the effort of creating the equivalent
style sheet in a proprietary system. In addition, the incremental cost of adding
new document types or new layouts to an existing family of document types or
layouts goes down over time as you refine your XSLT code to be more modular,
making it easier to add new functionality or new input or output choices. No other
SGML- or XML-based composition system has this characteristic.

Strengths Deriving from the XSLT and FO Community
The XSLT and FO communities are quite large and very supportive, as well as a
number of good books on applying XSLT and FO. There are a number of online
forums and websites where answers to questions will be answered very quickly.
There are three, almost four2, commercial implementations of the FO standard,
all useful and appropriate for production use. All of this works to greatly reduce
the risk of using FO as a solution for print publication. The competition in the
marketplace serves to both encourage vendors to constantly improve their
support for FO features, add features to support requirements not met by the FO
specification, improve performance, and generally increase the value of their
products. This is a level of competition that has not been seen before in the
markup-based composition marketplace.

The existence of a number of FO implementations, all of which are
appropriate for production use within the bounds of their individual limits, helps to
protect FO users from abuse by product vendors. More than almost any other
XML technology domain, FO implementations must compete almost entirely on
value and not on proprietary lock-in through extensions. This is in part because

XML 2002 Copyright © 2002, ISOGEN International, LLC p. 8

the features defined by FO are sufficiently complete that they don't provide much
room for proprietary extension and in part because XSLT makes it easy to create
style sheets that will work with any implementation (because it is easy to create
conditional processing based on the target FO implementation).

§ Comparison of XSL FO To Typical Technical
Documentation Requirements

There are few things that FO cannot do. Therefore, it is easier to list those
requirements that FO does not meet, rather than those it does. FO provides
facilities for all the basic page layout requirements: headers, footers, margin
areas, multiple columns, top and side floats, page flows with complex pagination
rules, page number references, dynamic, page-sensitive content in headers and
footers, tables, graphics, footnotes, and so on. It provides facilities for specifying
writing direction (left-to-right or right-to-left), block placement direction (top-to-
bottom, bottom-to-top, left-to-right, right-to-left), mixed left-to-right and right-to-left
text, and fine control of glyph placement, including different baseline orientations.
It enables the easy creation of rules and boxes. It allows the use of a variety of
color models (RGB, CMYK, etc.). It provides for absolute positioning of blocks on
a page.

The layout requirements that FO as specified does not currently satisfy are:
• Multiple, independent, multi-page flowed areas within a single page body (e.

g., two independent articles on the same page that continue to different
pages). There are no known proprietary extensions for satisfying this
requirement.

While there's no reason in theory that FO could not be refined to meet the
requirements of, for example, magazine design, it is unlikely that it will be any
time soon simply because the business case for standards-based authoring
and production in magazines is much less compelling than it is for technical
documentation (although ISOGEN has at least one customer that would very
much like to use XML for design-heavy magazines if it were practical).

For example, one could imagine an interactive, XML- and FO-based
design tool that provided all the design functionality of a Quark or Adobe
InDesign, but implementing such a tool would be a challenge and the market,
at least in the short term, would be fairly small.

• Revision marks (“rev bars”) that reflect the block-progression-direction extent
of text sequences (i.e., the vertical extent of a changed phrase within a
paragraph). All of the vendors are working on or have implemented
extensions for producing revision marks in some form.

• Before floats within a single column. Before floats are supported, but the float
is always to the top of the body area. At least one product (Epic) provides an
extension for column floats.

• Dynamic, page-sensitive information in figure captions, table captions, and
table headers (although this can be faked using floats or tricks with page
headers or footers in some cases). Epic Publisher provides an extension for
before floats that can be used to satisfy this requirement.

XML 2002 Copyright © 2002, ISOGEN International, LLC p. 9

• Composition of back-of-the-book indexes such that lists of page number
citations are reduced to unique page numbers, as well as the automatic
creation of page ranges (although it's not clear that page ranges can be
reliably created automatically--they can always be created using markup in
the original document that identifies the start and end of the range to be
indexed). All the commercial FO products provide extensions that satisfy this
requirement to one degree or another.

• Writing systems that use alternating start-to-end and end-to-start inline
progression directions (some forms of ancient Hungarian, for example). There
are no extensions for this requirement (this is a pretty esoteric requirement
that would not normally be needed by technical documentation, although it
might be needed for scholarly publication).

• Text that flows around arbitrary curved areas (but text flowing around
rectangular areas is possible using side floats). There are no extensions that
satisfy this requirement.

• Page-location sensitive inclusion or exclusion of content. For example, there
is no direct way to condition the text of a cross reference based on whether or
not the target of the reference occurs on the same page as the reference
itself. There are no extensions that satisfy this requirement.

• Any other presentation tuning semantics that require feedback from the
pagination step to the initial FO generation step. But note that this feedback
could be provided in implementation-specific ways, enabling a mutli-pass
process in which second and subsequent FO generation instances would
have access to information about what page a given input node occurred on
in the previous pagination instance. None of the current products provide this
feature.

• Rotation of flowed text at angles other than multiples of 90 degrees. The FO
specification only provides for rotation in increments of 90 degrees (that is,
parallel to or perpendicular to the block progression direction). There are no
extensions for other rotation options. However, embedded SVG can be used
with FOP and XSL Formatter to create a wide range of text effects (XEP
removed embedded SVG support in version 3 but RenderX has indicated that
SVG support will be restored in a later release).

• Creation of PDF bookmarks, links, and annotations. While PDF is not, strictly
speaking, a standard, it is a defacto standard and is almost universally used
for online delivery of print-quality documents. PDF includes a number of
useful features for online display, including navigation bookmarks and
hyperlinks. The FO specification does not provide any direct facilities from
which these PDF artifacts could be derived. However, all the FO
implementations provide extensions for creating bookmarks, links, and other
PDF-specific, online artifacts.
All of these requirements have been submitted to the XSL editors via the XSL

editors mailing list.

§ Current FO Implementations
All of the FO implementations clearly document their support for the various FO
features. You can use this documentation to determine if a particular product will

XML 2002 Copyright © 2002, ISOGEN International, LLC p. 10

support the specific requirements of your documents and processing system.
This section does not re-state the feature support details provided by each
implementation. Rather, this section talks in general terms about the key features
and characteristics that distinguish the various FO implementations.

Of the four full-featured FO implementations currently available, XSL
Formatter implements the most FO features, although XEP version 3 almost
matches it. FOP, as an open-source, volunteer product is the least feature
complete and is not generally suitable for production use at this time. Epic is
slightly limited by the fact that some FO constructs, mostly to do with page
geometry and page master sequences, have no direct mapping into Epic's
underlying formatting engine, which was originally engineered to support the
FOSI style language. However, Arbortext has for the most part provided
extensions that work around these limitations. Epic has been used for years to do
high-quality production of technical documentation, so its support for features that
are actually needed by most technical documents is quite good (in other words,
the features of FO that it doesn't support are features that you probably don't
need anyway if you are producing typical technical manuals).

There are at least two other freeware or open-source FO implementations,
but they are not sufficiently feature complete to currently be considered as
candidates for production-quality document production of typical technical
manuals. Sebastian Rahtz' PassiveTex[PSVTEX] is a TeX-based FO
implementation. From the PassiveTeX home page: “provides a rapid
development environment for experimenting with XSL FO, using a reliable pre-
existing formatter.” IBM's Alphaworks is also developing and FO implementation,
IBM XSL Formatting Objects Composer[XFC]. The current version lacks a
number of key features that also makes it inappropriate for production use for
technical manuals. In particular it does not yet implement footnotes or marker
references. Marker references are pretty much a hard requirement for doing
technical manuals (enabling dynamically-generated running heads and feet in a
page-specific way).

Overview of FO Implementations
Epic from Arbortext is a Windows- and Unix-based FO implementation built
around the FOSI-based Epic Publisher composition engine. Epic can be used as
a standalone composition engine or in its integration with the Epic Editor SGML
and XML editor. The version at the time of writing is 4.3. Arbortext has
announced the development of version 5, slated for mid-2003 release, and
promises a more complete FO implementation at that time. It can be used either
as a command-line tool or interactively through the Epic Editor user interface.

The FOP FO implementation is implemented in pure Java as Apache-licensed
open source. It lacks a number of important FO features but is actively being
developed. It can be used either as a command-line tool or integrated with other
Java tools using its Java API. FOP is also integrated with the eXcelon Stylus
Studio XSLT development environment.

The XEP product is implemented in pure Java and can be used with any JVM.
It exposes a Java API. It can be used as a command-line tool or integrated with
other Java tools using its Java API. RenderX also licenses a version of XEP
integrated with the XML Spy editor. ISOGEN has created simple integrations of

XML 2002 Copyright © 2002, ISOGEN International, LLC p. 11

XEP with Epic Editor and SoftQuad XMetal, available from the ISOGEN Web
site.

The XSL Formatter product is currently Windows-only, although a Java
version is being developed. XSL Formatter exposes both COM and Java APIs. It
can be used as a command line tool, as an interactive tool using its graphical
user interface, or integrated with other tools using its COM or Java APIs.
ISOGEN has created simple integrations of XSL Formatter with both Epic Editor
and SoftQuad XMetal, available from the ISOGEN Web site.

Support for Non-Western Languages
XML and XSL-FO make it easy as it can be to author and produce documents in
almost any national language, including the traditionally “hard” languages3 such
as Thai, Arabic, Hebrew, and the various ideographic languages. However, just
because you can create an XML document in Thai or Hebrew it doesn't mean
that your FO implementation will be able to render it properly.

A quick note on the jargon of internationalization: in this context the term
“language” means a national language, like English or Chinese. The term “locale”
refers to a subgroup of users of a particular language. For example, U.S. English
and U.K. English, where “U.S.” and “U.K.” are distinct locales. Language and
locale are used to construct ISO language codes, where the first two characters
are the language and the second two are the locale. For example, “zh” is the
language code for Chinese, “zh-CN” is the language and locale code for
Simplified Chinese. The term “script” refers to a system of characters or glyphs
outside the context of any language. Thus the Roman script is the system of
characters used for most Western languages. The term “glyph” refers to the
presentation form used for a given character. A “character” is an abstract thing
that may be mapped to many different glyphs. For example, the character “a”,
Unicode value 0x0061, represents the idea of the letter “a”. For a given
presentation the character “a” may be mapped to any number of graphic
representations of the letter “a”, the glyphs. A set of glyphs makes up a font. For
most Western languages and scripts there is usually a one-to-one mapping of
characters to glyphs in a particular font (because most Western scripts do not
use different glyph forms for the same character). For many non-Western scripts,
such as Arabic, there may be a one-to-many mapping from characters to glyphs.

Non-Western languages present a number of formidable challenges for print
presentation:
• Proper rendering of glyphs. Of modern languages, Thai is probably one of the

most challenging. Thai glyphs consist of a number of different components
that are combined together in subtly different ways depending on adjacent
glyphs and other variables. This makes composing Thai text quite a
challenge. Likewise, languages that use Arabic scripts, such as Arabic and
Farsi, also have a number of rules for glyph substitution based on where a
particular character occurs within a word (initial, medial, or terminal).
Rendering of these scripts requires implementation of the appropriate glyph
transformation, substitution, or construction algorithms, which may vary based
on language or locale.

XML 2002 Copyright © 2002, ISOGEN International, LLC p. 12

• Rendering bi-directional text, that is, text with a left-to-right writing order mixed
with right-to-left text, such as English words within a Hebrew sentence. The
Unicode standard defines an algorithm for determining the writing order of
sequences of characters but it is difficult to implement at best. From a
composition and layout standpoint, handling bi-directional text can be a
challenge as well.

• Correct font selection. For ideographic languages such as Chinese and
Japanese there are different locale-specific fonts that must be used. Chinese
and Japanese use many of the same ideographic characters (and thus the
same Unicode characters) but use slightly different glyphs for these
characters. Thus a composition system must be configured to select the
appropriate locale-specific font for ideographs, for example.

• Thai word breaking. The Thai language has no well-defined notion of “word,”
meaning that there are no natural word breaks as there are in most
languages. Thus a composition system must either implement a Thai word
breaking algorithm (as Microsoft Word does, for example) or the input to the
XSLT or FO processor must have word breaks added. No FO implementation
currently provides a built-in Thai word breaking algorithm. However, ISOGEN
has adapted a Thai word breaking algorithm provided by IBM as parf of its
ICU4J package into a SAX filter that can be integrated with any SAX parser,
such as Saxon or Xerces. This filter inserts zero-width space characters into
PCDATA content as it passes through the parser so that the data passed to
the XSLT processor already has appropriate word boundaries. The algorithm
is not perfect but is good enough for most applications[THAI].
Of all the FO implementations, XSL Formatter[AHXF] has the best support for

non-Western languages, including build-in locale-specific font configurations,
complete Thai glyph construction, and full support for bi-directional text. RenderX
is close, supporting bi-directional text and a limited implementation of the
Unicode bidirectional algorithm, but requires more effort to configure locale-
specific fonts.

Support for Graphics and Mathematics
All the FO implementations support the common bitmap formats GIF, JPEG, and
TIFF (although XSL Formatter requires a separate, nominally-priced license for
GIF rendering. XEP and Epic support scaling of bit-mapped graphics, although
the quality of the scaled result may be poor in some instances (RenderX
recommends scaling graphics to the appropriate size before including them in the
FO instance to avoid any problems with dynamic scaling, either by the FO
renderer or by the presentation device (i.e., PDF)).

All the FO implementations support EPS graphics. XSL Formatter and XEP
only support interpreted EPS graphics when using their Postscript output options
(as opposed to their direct-to-PDF options). For direct PDF generation, they both
use the EPS preview image, if present. Note that both XSL Formatter and XEP
include PDFMark in the Postscript they generate, meaning that you can create
“online” PDFs from both tools using a Postscript-to-Distiller process instead of the
direct-to-PDF process. Epic does not have a separate direct-to-PDF option,
instead requiring the use of Distiller to create PDFs. Thus interpreted EPS
graphics are always supported by Epic.

XML 2002 Copyright © 2002, ISOGEN International, LLC p. 13

Epic supports CGM graphics, as does XSL Formatter when using the free
ISOView CGM viewer plug-in on Windows.

FOP and XSL Formatter support the use of embedded SVG graphics. XEP
had partial SVG support in version 2 but removed it in version 3, although
RenderX has announced the intent to restore SVG support in the near future.

XSL Formatter supports embedded MathML through the use of a Windows
MathML rendering plug-in. Epic supports the use of TeX for mathematics (the
underlying Epic composition engine is TeX based).

XSL Formatter supports the Windows WMF (Windows Metafile) format.

Support for Non-RGB Color Models
All of the FO implementations implement RGB color exclusively. The generation
of Postscript or PDF that uses CMYK or another color model requires post-
processing. There are a number of RGB-to-CMYK post processors available for
both Postscript and PDF, including a PDF plug-in.

§ Future Enhancements of the XSL-FO Specification
It appears that the XSL FO specification is not being actively developed at the
moment. The XSL working group is focusing all of its energy on XSLT 2.0. This
suggests that enhancements to XSL-FO in the short term will be either
proprietary extensions or community-developed extensions in the model of the
EXSLT extensions[EXSLT]. It is probably be prudent to gain a bit more
implementation and use experience with XSLT 1.0 before attempting the
enhancement of XSL-FO to address any outstanding requirements. It is also the
case that several of the remaining requirements present serious design and
implementation challenges that will not be solved quickly.

§ Conclusions
Our experience to date with using XSL-FO for production of high-quality printed
documents, primarily technical manuals, has been tremendously positive. At
almost every step of the process of implementing FO-based publishing solutions
the task has been easier than we expected. We have been pleasantly surprised
by the how much easier it is to create and maintain FO style sheets using XSLT
as the transformation technology than any other publishing technology we have
used in the past. We have been impressed by the quality of the FO
implementations and the responsiveness of vendors to problem reports and
feature requests.

It seems clear that by mid-2003 there should be at least three, if not four,
fully-featured, stable, and mature FO implementations from which to choose, with
a high degree of interoperability among them. As the open-source
implementations improve, that will put increasing pressure on the commercial
vendors to increase the value of their products, most likely by providing better
performance and a greater range of support for graphics formats and specialized
requirements not met by the FO specification directly.

Thus, the answer to the question of “can FO be used for production print
production?” is a largely unqualified “yes.” As long your layout and formatting

XML 2002 Copyright © 2002, ISOGEN International, LLC p. 14

requirements can be satisfied by FO or FO plus the available extensions, there
seems to be little reason not to use an FO-based solution.

Notes
1. However, a small but dedicated band of DSSSL enthusiasts have kept

the flame alive by forming the Open Jade project to continue
development of the Jade DSSSL engine.

2. Next Solution's FO implementation, announced at XML Europe 2002
and still, presumably, under development at the time of writing.

3. Hard only from a Western perspective, where we have been spoiled by
having a very simple script and writing system. If the first digital
computers had been developed in China or Thailand or India then
working with ideographic languages or languages with complex glyph
construction rules would not be hard at all because computers would
have had to handle it from the start. We are only now, with the advent
of widespread support for standards like Unicode and XML coupled
with fully internationalized operating systems, able to correct the
decades of culturally insensitive computer systems developed by
Western engineers.

Bibliography
[AHXF] Antenna House XSL Formatter product. A Windows-based FO

implementation. Version current at time of writing is 2.3. See http://www.
antennahouse.com for more information. Free evaluation version available

[DSSSL] ISO/IEC 10179:1996, Document Style Semantics and Specification
Language (DSSSL). See http://www.jclark.com/dsssl for more information.

[EPIC] Epic page composition system (an optional feature of the Epic SGML/
XML editor). See http://www.arbortext.com for more information. Available on
Windows and Unix platforms (but not Linux).

[EXSLT] A set of community-defined extensions to XSLT 1.0. See http://www.
exslt.org.

[FOP] Apache Project's FO implementation. Open source, volunteer-developed
FO implementation. See http://www.apache.org for more information.
Implemented in Java.

[FOSI] Formatting Output Specification Instance, defined in U.S. Department of
Defense standard MIL-PRF-28001. See http://navycals.dt.navy.
mil/28001/28001c.pdf.

[PSVTEX] PassiveTex. A TeX-based FO implementation developed by
Sebastian Rahtz. See http://www.tei-c.org.uk/Software/passivetex/.

[THAI] Thai word breaker SAX filter, written in Java. Available from the ISOGEN
Web site, http://www.isogen.com/downloads. Open source under LGPL
license. Based on IBM ICU4J Thai word breaker.

XML 2002 Copyright © 2002, ISOGEN International, LLC p. 15

[XEP] RenderX XEP product. A Java-based FO implementation. Version at time
of writing is 3.02. See http://www.renderx.com for more information. Free
evaluation version available.

[XFC] IBM XSL Formatting Objects Composer. Developed by IBM alphaWorks.
See http://www.alphaworks.ibm.com/tech/xfc.

[XSL-FO] XSL 1.0 Recommendation ("Formatting Objects"), published by the
W3C October 2001. See www.w3.org/TR/xsl.

[XSLT] XSL Transformations (XSLT) 1.0 Recommendation, published by the
W3C November 1999. See www.w3.org/TR/xslt.

XML 2002
Baltimore, MD, USA, December 8-13, 2002

This paper produced from XML source via XSL, Saxon and Antenna House's XSL Formatter
product.

XML 2002 Copyright © 2002, ISOGEN International, LLC p. 16

