
Key Management Interoperability Protocol

Usage Guide

Draft Version 0.98

Last revision February 10, 2009



Permission to copy, display, perform, modify and distribute the “Key Management
Interoperability Protocol Usage Guide v0.98” (the “Usage Guide”), and to authorize
others to do the foregoing, in any medium without fee or royalty is hereby granted by
EMC, Hewlett Packard Development Corporation, IBM and Thales (collectively, the
“Authors”) for the purpose of developing and evaluating the Usage Guide by the
OASIS Key Management Interoperability Protocol Technical Committee (the “KMIP
TC”) members. The Authors each agree to grant licenses under the Intellectual
Property Licensing operating mode of the KMIP TC, stipulated as the OASIS
“Royalty-Free on RAND” IPR Mode, defined in sections 10.2.1 and 10.2.2 of the
OASIS IPR terms dated 16 December 2008.

DISCLAIMERS:

THE USAGE GUIDE IS PROVIDED "AS IS," AND THE AUTHORS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS
OF THE USAGE GUIDE ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
USAGE GUIDE OR THE PERFORMANCE OR IMPLEMENTATION OF THE
CONTENTS THEREOF.

You may remove these disclaimers from your modified versions of the Usage Guide
provided that you effectively disclaim all warranties and liabilities on behalf of all
Authors in the copies of any such modified versions you distribute. The name and
trademarks of the Authors may NOT be used in any manner, including advertising or
publicity pertaining to the Usage Guide or its contents without specific, written prior
permission. Title to copyright in the Usage Guide will at all times remain with the
Authors. No other rights are granted by implication, estoppel or otherwise.

Copyright © 2009 Brocade, EMC, Hewlett Packard Development Corporation, IBM, LSI,
NetApp and Thales



Table of Contents
1.0 Introduction 1
2.0 Assumptions 1

2.1 Islands of Trust 1
2.2 Message Security 1
2.3 State-less Server 1
2.4 Extensible Protocol 2
2.5 Support for Cryptographic Objects 2
2.6 Client-Server Message-based Model 2
2.7 Synchronous and Asynchronous Messages 2
2.8 Support for “Intelligent Clients” and “Key Using Devices” 2
2.9 Batched Requests and Responses 3
2.10 Reliable Message Delivery 3
2.11 Large Responses 3
2.12 Key Life-cycle and Key State 3

3.0 KMIP Profiles 3
3.1 SSL/TLS Profile (Mandatory) 3

3.1.1 Mandatory cipher suites 4
3.1.2 Discouraged cipher suites 4

3.2 HTTPS Profile 5
4.0 Usage Guidelines 6

4.1 Authentication 6
4.2 Authorization for Revoke, Recover, Delete and Archive Operations 6
4.3 Using Notify and Put Operations 7
4.4 Usage Allocation 8
4.5 Key State and Times 8
4.6 Template 10
4.7 Archive Operations 10
4.8 Message Extensions 10
4.9 Unique Identifiers 10
4.10 Result Message Text 10
4.11 Certificate Transitions 10
4.12 Query 11
4.13 Canceling Asynchronous Operations 11
4.14 Multi-instance Hash 11
4.15 Returning Related Objects 11
4.16 Reducing Multiple Requests through Use of Batch 11
4.17 Maximum Message Size 12
4.18 Using Offset in Re-key and Re-certify Operations 12
4.19 Locate Queries 12
4.20 ID Placeholder 14
4.21 Using Wrapped Keys with KMIP 15

4.21.1 Encrypt-only Example Using Wrapped Keys 15
4.21.2 MAC-only Example Using Wrapped Keys 16

5.0 Conformance 17



6.0 Deferred KMIP Functionality 17



KMIP Usage Guide

- 5 -

1.0 Introduction
This Key Management Interoperability Protocol Usage Guide is intended to complement
the Key Management Interoperability Protocol Specification by providing guidance on
how to implement the Key Management Interoperability Protocol (KMIP) most
effectively to ensure interoperability.   In particular, it includes the following guidance:

Clarification of assumptions and requirements that drive or influence the design of
KMIP and implementation of KMIP-compliant key management.

Definition of required and optional profiles for authentication and communication
privacy between KMIP participants (clients and servers).

Specific recommendations for implementation of particular KMIP functionality.

Clarification of mandatory and optional capabilities for conformant
implementations.

Functionality considered for inclusion in KMIP V1.0 but deferred to subsequent
versions of the standard.

Further assistance for implementing KMIP is provided by the KMIP Use Cases for Proof
of Concept Testing document that describes a set of recommended test cases and provides
the TTLV (Type/Tag/Length/Value) format for the message exchanges defined by those
use cases.

2.0 Assumptions
The section describes assumptions that underlie the KMIP protocol and implementation
of clients and servers that utilize the protocol.

2.1 Islands of Trust
Clients are necessarily given key material but they must only use that keying material for
the purposes explicitly listed in the delivery payload. Clients that ignore these instructions
and use the keys in ways not explicitly allowed by the server are non-compliant. There is
no requirement for the key management system, however, to enforce this behavior.

2.2 Message Security
KMIP relies on TLS/SSL to authenticate the client and on the underlying protocol to
provide confidentiality, integrity, message authentication and protection against replay
attack. KMIP offers a wrapping mechanism for Key Value that does not rely on the
transport the messages travel over; this is intended for importing or exporting managed
objects. 



- 6 -

2.3 State-less Server
The protocol operates on the assumption that the server is state-less, which means that
there is no concept of “sessions” inherent in the protocol. State-less server operation is
much more reliable and easier to implement, and is consistent with possible
implementation scenarios, such as web-services-based servers. This does not mean that
the server itself maintains no state, only that the protocol does not require this.

2.4 Extensible Protocol
The protocol provides for “private” or vendor-specific extensions, which allow for
differentiation among vendor implementations. However, any objects, attributes and
operations included in an implementation must always be implemented as specified,
regardless of whether they are optional or required.

2.5 Support for Cryptographic Objects
The protocol supports all reasonable key management system related cryptographic
objects. This list currently includes:

Symmetric Keys

Split (multi-part) Keys

Asymmetric Key Pairs and their components

Digital Certificates

Derived Keys

Opaque (non-interpretable) cryptographic objects

2.6 Client-Server Message-based Model
The protocol operates primarily in a client-server, message-based model (the exceptions
are the Put and Notify operations). This means that most protocol exchanges are initiated
by a client sending a request message to a server, which then sends a reply to the client.
The protocol also provides optional mechanisms to allow for unsolicited notification of
events to clients, and unsolicited delivery of cryptographic objects to clients, that is, a
“push” model. These latter features are optionally supported by servers and clients.
Clients must register in order to receive such events/notifications. Registration is
implementation specific and not described in the specification.

2.7 Synchronous and Asynchronous Messages
The protocol allows two modes of operation. Synchronous (mandatory) operations are
those in which each request from a client sends a request and waits for a response from
the server. Polled Asynchronous operations (optional) are those in which the client sends
a request, the server responds with a “pending” status and the client polls the server for



- 7 -

the completed response and completion status. Server implementations may choose not to
support the Polled Asynchronous feature of the protocol.

2.8 Support for “Intelligent Clients” and “Key Using Devices”
The protocol supports intelligent clients, such as end-user workstations, which are
capable of requesting all of the functions of KMIP. It also allows subsets of the protocol,
and possible alternate message representations, in order to support less capable devices
which only need a subset of the features of KMIP.

2.9 Batched Requests and Responses
The protocol contains a mechanism for sending batched requests and receiving batched
responses, to allow for higher throughput on operations that deal with a large number of
entities, e. g. requesting dozens or hundreds of keys from a server at one time, and
performing operations in a group. An option is provided to continue processing requests
after an earlier one fails or to stop processing the remaining requests in the batch.  Note
that there is no option to treat an entire batch as atomic, that is, if a request in the batch
fails then preceding requests in the batch are undone or rolled back.  A special ID
Placeholder is provided in KMIP to allow related requests in a batch to be pipelined.

2.10 Reliable Message Delivery
The reliable message delivery function is relegated to the transport protocol, and not part
of the key management protocol itself.

2.11 Large Responses
For requests that are capable of large responses, a mechanism in the protocol allows a
client to specify in a request the maximum allowed size of a response. The server must be
able to indicate in a response to such a request that the response would have been too
large and therefore not returned.

2.12 Key Life-cycle and Key State
The KMIP Specification describes the key life-cycle model, based on the NIST 800-57
key state definitions, supported by the KMIP protocol. Particular implications of the key
life-cycle model in terms of defining time-related attributes of objects are discussed in
section 4.5 below.

3.0 KMIP Profiles
This section describes two KMIP profiles. These profiles describe mechanisms by which
authentication and communications privacy are established outside KMIP. Both profiles
must be supported by any conforming implementation of KMIP. 



- 8 -

3.1 SSL/TLS Profile (Mandatory)
Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), are
cryptographic protocols that provide secure communications for data transfers, using
cryptographic mechanisms to provide both authentication of participants and privacy of
the communication.  SSL 2.0 has known security issues and all current implementations
of HTTP/S support more recent protocols. Therefore this profile prohibits the use of SSL
2.0 and recommends SSL 3.1 or TLS 1.0.

In this profile, a KMIP client and server must use SSL/TLS to negotiate a
mutually-authenticated connection by using a handshaking procedure. 

1. The handshake begins when a client connects to a TLS-enabled server requesting
a secure connection, presenting a list of supported cryptographic functions.

2. From this list, the server picks the strongest cipher and hash function that it also
supports and notifies the client of the decision.

3. The server sends back its identification in the form of a digital certificate and
requests a certificate from the client.

4. The client validates the server certificate. In order to generate the session keys
used for the secure connection, the client then encrypts a random number with the
server's public key, and sends the result to the server, along with the requested
client certificate.

5. From the random number, both parties generate key material for encryption and
decryption of all subsequent communication.

Mutual authentication ensures that both the client and the server provide their certificates
during the handshake. However, the client certificate used in the SSL session may also be
included in any client-initiated KMIP messages between the client and server as the value
of the Credentials object in the message, with credential type of certificate. Similar, the
server certificate used in the SSL session may be included in any server-initiated KMIP
messages between the client and server as the value of the Credentials object in the
message, with credential type of certificate. 

In SSL and TLS, choices of algorithms are expressed as cipher suites. The following
subsections specify cipher suites that are required or discouraged, respectively. The use of
any other cipher suite not discussed below is optional.

3.1.1 Mandatory cipher suites
The mandatory cipher suites for the SSL/TLS profile are:

A TLS-capable instance must support TLS_RSA_WITH_AES_128_CBC_SHA

An SSL-capable instance must support SSL_RSA_WITH_AES_128_CBC_SHA



- 9 -

3.1.2 Discouraged cipher suites
As discussed in “WS-I Basic Security Profile”,  the cipher suites defined in the SSL and
TLS specifications that use anonymous Diffie-Hellman (i. e. those that have DH_anon in
their symbolic name) are vulnerable to man-in-the-middle attacks. It is recommended that
such cipher suites be avoided. This profile recommends against the use of the following
cipher suites due to their lack of confidentiality services:

SSL_RSA_WITH_NULL_SHA

TLS_RSA_WITH_NULL_SHA

SSL_RSA_WITH_NULL_MD5

TLS_RSA_WITH_NULL_MD5

It is also recommended that cipher suites that use 40 or 56 bit keys be avoided, due to
their relative ease of compromise through brute-force attack.
See
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp409.pdf
for a list of NIST-recommended cipher suites.

3.2 HTTPS Profile
Hypertext Transfer Protocol over Secure Socket Layer or https is a URI (Universal
Resource Indicator) scheme used to indicate a secure HTTP connection, requiring a
different default TCP port (443) and an additional encryption and authentication layer,
implemented by SSL/TLS, between HTTP and TCP. The establishment of the trust
relationship between the client and server is the same as in the SSL/TLS profile described
above. 

As in the SSL/TLS profile, the client certificate used in the SSL session must be included
in any client-initiated KMIP messages between the client and server as the value of the
Credentials object in the message, with credential type of certificate. Similarly, the server
certificate used in the SSL session must be included in any server-initiated KMIP
messages between the client and server as the value of the Credentials object in the
message, with credential type of certificate. 

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp409.pdf


- 10 -

4.0 Usage Guidelines
This section provides guidance on using the functionality described in the Key
Management Interoperability Protocol Specification. 

4.1 Authentication
As discussed in the Authentication section of the Key Management Interoperability
Protocol Specification, a conforming KMIP implementation must support mutual
authentication of the client and server as described in the SSL/TLS and HTTPS profiles
in Section 3 of this Key Management Interoperability Protocol Usage Guide. Other
mechanisms for client and server authentication are possible and optional for KMIP
implementations.  

The Credential attribute can be used for additional identification of a client. It does not,
however, assert that an identity has been authenticated. Therefore it should not be used as
an alternative to the transport-level authentication described above.

KMIP implementations that use other vendor-specific mechanisms for authenticating the
client and server may also use the Credential attribute to include additional identification
information. The Credential attribute may also be used for authentication of the client to
the server, but only if the communication is secured to prevent man-in-the-middle attacks
that can result in replacement of the credential attribute value.

If an “authentication not successful” error can be returned, it should be returned in
preference to any other result status. This prevents status code probing by a client that
can't authenticate.

Server decisions regarding which operations to reject if there is insufficiently strong
authentication of the client are not specified in the protocol. However, see Section 4.2 for
recommendations regarding particular operations for which authentication and
authorization are particularly important.

4.2 Authorization for Revoke, Recover, Delete and Archive Operations
Neither authentication nor authorization is handled by the KMIP protocol directly. In
particular, the Credential attribute is not guaranteed to be an authenticated identity of the
requesting client. However, the mandatory profiles described in this KMIP Usage Guide
describe how client identity must be established for KMIP-compliant implementations.
This authentication must be performed for all KMIP operations, with the single exception
of the Query operation.

Certain operations that may be requested by a client via KMIP, particularly revoke,
recover, delete and archive can have a significant impact on the availability of a key, on
server performance and on key security. When a server receives a request for one of these
operations, it should ensure that the client has established an authenticated identity (see
the profiles in Section 3). It should also ensure that client requesting the operation is



- 11 -

an object creator, security officer or other identity authorized to issue the request.  It
may also require additional authentication to ensure that the object owner or security
officer has issued the request. Even with such authentication and authorization,
requests for these operations should be considered only a “hint” to the key
management system, which may or may not choose to act upon this request.

4.3 Using Notify and Put Operations
The Notify and Put operations are the only operations in the KMIP protocol that are
initiated by the server rather than the client. As the functionality provided by these
operations can be accomplished through client-initiated requests (using a polling model
from the client to request notification, for example), these operations are optional for
conforming KMIP implementations. However, they provide a mechanism for optimized
communication between KMIP servers and clients and have therefore been included in
the KMIP specification. 

In using Notify and Put, the following constraints and guidelines must be observed:

Registration of the client with the server, such that the server knows how to locate
the client to which a Notify or Put is being sent and which events for the Notify
are supported, is required for Notify and Put operations. However, such
registration is outside the scope of the KMIP protocol. This also includes
specification of whether a given client supports Put and Notify, and what
attributes may be included in a Put for a particular client. 

Communication between the client and the server must be properly authenticated
to forestall man-in-the-middle attacks in which the client receives Notify or Put
operations from an unauthenticated server. Authentication for a particular
client/server implementation must at a minimum be accomplished using one of
the mandatory authentication mechanisms. Further strengthening of the
client/server communications integrity by means of signed message content and/or
wrapped keys is recommended. Attribute values other than “Last Changed Date”
should not be included in a Notify to minimize risk of exposure of attribute
information.

In order to minimize possible divergence of key or state information between
client and server as a result of server-initiated communication, any client
receiving Notify or Put messages must return acknowledgements of these
messages to the server. This acknowledgement can be at communication layers
below the KMIP layer, such as by using transport-level acknowledgement
provided in TCP/IP

For client devices that are incapable of responding to messages from the server,
communication with the server must happen via a proxy entity that communicates
with the server, using KMIP, on behalf of the client. Communication between a
proxy entity and the client can be secured using other, potentially proprietary
mechanisms.  



- 12 -

4.4 Usage Allocation
Usage should be allocated and handled carefully since power outages or other types of
client failures (crashes) may render allocated usage lost. For example, in the case a key is
used for encryption of tape drives, such a loss of the usage allocation information
following a client failure during encryption may result in the necessity for the entire tape
backup session to be re-encrypted using a different key, if the server cannot allocate more
usage.  This can be addressed through such approaches as, caching usage allocation
information on stable storage at the client, and/or having conservative allocation policies
at the server (e.g., by keeping the maximum possible usage allocation per client request
moderate). In general, usage allocations should be as small as possible; it is preferable to
use multiple smaller allocation requests rather than a single larger request, to minimize
the likelihood of unused allocation.

4.5 Key State and Times
The KMIP specification provides a number of time-related attributes, including the
following:

Initial Date: The date and time when the KMIP Managed Cryptographic
Object was first created or registered at the server

Activation Date: The date and time when the KMIP Managed Cryptographic
Object may begin to be used

Process Start Date: The date and time when an KMIP Managed Symmetric or
Asymmetric Key Object may begin to be used for process purposes

Protect Stop Date: The date and time when an KMIP Managed Symmetric or
Asymmetric Key Object may no longer be used for protect purposes

Deactivation Date: The date and time when the KMIP Managed Cryptographic
Object may no longer be used for any purpose, except for decryption,
signature verification, or unwrapping, but only under extraordinary
circumstances and when special permission is granted

Destroy Date: The date and time when the KMIP Managed Cryptographic
Object was destroyed

Compromise Occurrence Date: The date and time when the KMIP Managed
Cryptographic Object was first believed to be compromised

Compromise Date: The date and time when the KMIP Managed
Cryptographic Object is entered into the compromised state

Archive Date: The date and time when the KMIP Managed Object was placed
in Off-Line storage



- 13 -

These attributes apply to all KMIP key-related objects (symmetric keys, asymmetric keys,
etc). However, certain of these attributes (such as Initial Date) cannot be specified in
template-related objects.
In using these attributes, the following guidelines should be observed:

As discussed for each of these attributes in Section 3 of the KMIP
Specification, a number of these times are set once and cannot be modified by
client or server. However, several of the time attributes (particularly
Activation Date, Protect Start Date, Process Stop Date and Deactivation Date)
can be set by server and/or requested by the client.   Coordination of
time-related attributes between client and server, therefore, is primarily the
responsibility of the server, as it establishes the key and manages its state.
However, special conditions related to time-related attributes, governing when
the server accepts client modifications to time-related attributes, may be
negotiated by policy exchange between the client and server, outside the Key
Management Interoperability Protocol. 

In general, state transitions will occur as a result of operational requests.
However, clients may need to specify times in the future for such things as
activation time, deactivation time and so on. 

It is allowed in KMIP for clients to specify times in the past for such attributes
as activation time, deactivation time and so on. This is intended primarily for
clients that were disconnected from the server at the time the client performed
that operation on a given key. 

It is valid to have a deactivation time when there is no activation time. This
means, however, that the key is not yet active even though its deactivation
time has been specified. A valid deactivation time must be greater than or
equal to activation time.  

Protect stop date must be greater than or equal to process start date. KMIP
implementations should consider specifying both these attributes, particularly
for symmetric keys, as a key may be needed for decryption (process) long after
it is no longer appropriate to use it for encryption of new objects (protect). 

If a delete operation is performed, resulting in the destroy time being set, and
the object has not already been deactivated, the deactivation of the object must
also be performed prior to delete so that destroy time is greater than or equal
to deactivation time. Although not required, it is highly desirable to set other
related attributes, such as protect stop time, if they have not already been set.
KMIP allows the specification of attributes on a per-client basis, such that a
server could maintain different set of attributes for different clients. This
flexibility may be necessary in some cases, such as when a server must
maintain availability of a key for some clients even after a key moved to



- 14 -

inactive state for most clients. However, such an approach can result in
significant inconsistencies regarding the object state from the point of view of
all participating clients and should therefore be avoided. It is highly
recommended that a server maintain a consistent state for each object, across
all clients that have or can request that object. 

4.6 Template
A server can maintain different policy templates for different clients. As in the state
transitions described above, however, this practice is discouraged.

4.7 Archive Operations
When the Archive operation is performed, it is recommended that an object identifier and
a minimal set of attributes be retained within the server for operational efficiency. In such
a case, the retained attributes may include Unique Identifier and State.

4.8 Message Extensions
Any number of vendor-specific extensions may be included in the Message Extension
optional structure. This allows KMIP implementations to create multiple extensions to
the protocol.

4.9 Unique Identifiers
For clients which require unique identifiers in a special form (such as IBM tape drives
requiring 12- byte IDs), out-of-band registration/configuration can be used to
communicate this requirement to the server.

4.10 Result Message Text
KMIP specifies result status, result reason and result message as normative message
contents. For result status and result reason, the enumerations provided in the KMIP
specification are the normative values. The values for result message text, on the other
hand, are implementation-specific. In consideration of internationalization, it is
recommended that any vendor implementation of KMIP provide appropriate language
support for return message. How a client specifies the language for Result Messages is
outside the scope of the KMIP.

4.11 Certificate Transitions
There is a possible state transition for certificate objects that is not represented by the
NIST state transition diagram. Certificate suspension (or certificate hold) allows a
certificate to be revoked (certificate appears on a CRL with a revocation reason of
“certificateHold”) and then reinstated (certificate appears on a CRL with revocation
reason of “removeFromCRL”). There is no facility in the SP 800-57 diagram to reinstate
a deactivated/compromised object. This state transition can be accomplished in KMIP by
returning an object from Revoked to Active state. However, there is no indication in the
protocol that an object has undergone such a transition.



- 15 -

.

4.12 Query
Query does not explicitly support client requests to determine what operations require
authentication. To determine whether an operation requires authentication, a client must
request that operation.

4.13 Canceling Asynchronous Operations
If an asynchronous operation is cancelled, no information is returned in the result code
regarding any operations that may have been partially completed. Identification and
remediation of partially completed operations is the responsibility of the server.

It is the responsibility of the server to determine when to discard the status of
asynchronous operations. The determination of how long a server should retain the status
of an asynchronous operation is implementation-dependent and not defined by KMIP.

Once a client has received the status on an asynchronous operation other than “pending”,
any subsequent request for status of that operation may return either the same status as in
a previous polling request or an “unavailable” response.

4.14 Multi-instance Hash
The Digest attribute contains the output of hashing a managed object such as a key or a
certificate.  The server always generates the SHA-256 hash when the object is created or
generated. KMIP allows multiple digests to be associated with the same managed object.
For example, it is common practice for public trusted CAs to publish two digests (often
referred to as the fingerprint or the thumbprint) of their certificate one calculated using
the SHA-1 algorithm and another using the MD-5 algorithm. In this case, each digest
would be calculated by the server using a different hash algorithm.  

4.15 Returning Related Objects
The key block is intended to return a single object and associated attributes and other
data. For those cases in which multiple related objects are needed by a client, such as the
private key and the related certificate required by RACF and JKS, the client should issue
multiple Get requests to obtain these related objects.

4.16 Reducing Multiple Requests through Use of Batch
KMIP supports batch operations in order to reduce the number of calls between the client
and server for related operations. For example, Locate and Get are likely to be commonly
accomplished within a single batch request.

KMIP does not ensure that batch operations are atomic on the server side. But such
atomicity can be implemented by the server and in such a case,  the client can use the



- 16 -

optional “undo” mode to request roll-back for batch operations implemented as atomic
transactions. However, support for “undo” mode is not required by the protocol, nor is
there a guarantee that a server that supports “undo” mode has effectively implemented
atomic batches, such as by preventing interleaving of batch requests. The use of “undo”,
therefore, should be restricted to those cases in which the client can be assured, through
mechanisms outside of KMIP, of the server effectively supporting atomicity for batch
operations.

4.17 Maximum Message Size
When a server is processing messages in a batch, it should compare the resultant message
size after each message with the specified maximum message size. If the message is too
large, it should prepare a maximum message size response at that point, rather than
continuing with operations in the batch. This increases the client’s ability to understand
what operations have and have not been completed.

When processing individual requests within the batch, the server that has encountered a
maximum message size error should not return attribute values or other information as
part of the response. 

4.18 Using Offset in Re-key and Re-certify Operations
Both the re-key and the re-certify operations allow the specification of an offset interval. 

The re-key operation allows the client to specify an offset interval for activation of the
key. This offset specifies the duration of time between the time the request is made and
when the activation of the key will occur. If an offset is specified, all other times for the
new key will be determined using the intervals from Activation Date to Process Start
Date, Protect Stop Date, etc as defined from the original key. 

The re-certify operations allows the client to specify an offset interval that indicates the
difference between the Initial Date of the new certificate and the Activation Date of the
new certification. As with re-key, all other times for the certificate will be determined
using the intervals as defined from the original certificate. 

4.19 Locate Queries

Locate queries can be formulated to address any of the following conditions:

Exact match of a transition. Locate the key(s) that transitioned to a certain
state at a specified time (t).

Range match of a transition. Locate the key(s) that transitioned to a certain
state at any time between two specified times (t and t’).



- 17 -

Exact match of a state at a given instance. Locate the key(s) that are in a
certain state at a specified time (t).

Match of a state during through a time range. Locate the key(s) that are in a
certain state at any time between two specified times (t and t’).

Match of a state at some point during a time range. Locate the key(s) that are
in a certain state at some time between two specified times (t and t’). In this
case, the transition to that state could have happened before the start of the
specified time range.

This is accomplished by allowing any date/time attribute to be present either once (for an
exact match) or at most twice (for a range match). 

For instance, if the state we are interested in is Active, the Locate queries would be the
following (corresponding to the bulleted list above):

Exact match of a transition: Locate ( ActivationDate(t) )

Range match of a transition: Locate ( ActivationDate(t), ActivationDate(t') )

Exact match of a state at a given instance: Locate ( ActivationDate(0),
ActivationDate(t), DeactivationDate(t+1), DeactivationDate(MAX_INT),
CompromiseDate(t+1), CompromiseDate(MAX_INT)  ) This looks for keys that
transitioned to an Active state before t, and transitioned to Deactivated or
Compromised after t (because we don't want the keys that also transitioned to
Deactivated or Compromised before t). The server assumes that keys that don't
have a DeactivationDate or CompromiseDate equivalent to MAX_INT (i.e.,
infinite). 

Match of a state during through a time range: Locate ( ActivationDate(0),
ActivationDate(t), DeactivationDate(t'+1), DeactivationDate(MAX_INT),
CompromiseDate(t'+1), CompromiseDate(MAX_INT)  )

Match of a state at some point during a time range: Locate ( ActivationDate(0),
ActivationDate(t'-1), DeactivationDate(t+1), DeactivationDate(MAX_INT),
CompromiseDate(t+1), CompromiseDate(MAX_INT) )

The queries would be similar for Initial Date, Deactivation Date, Compromise Date and
Destroy Date. 

In the case of the Destroyed-Compromise state, there are two dates recorded: Destroy
Date and CompromiseDate. For this state, the Locate operation would be expressed as
follows:



- 18 -

Exact match of a transition: Locate ( CompromiseDate(t), State(Compromised)
and  Locate ( DestroyDate(t), State(Compromised) )  KMIP doesn’t support the
OR in the Locate request, so two requests must be issued).

Range match of a transition: Locate ( CompromiseDate(t), CompromiseDate(t'),
State(Compromised)  and  Locate ( DestroyDate(t), DestroyDate(t'),
State(Compromised) )

Exact match of a state at a given instance: Locate ( CompromiseDate(0),
CompromiseDate(t), DestroyDate(0), DestroyDate(t) )  nothing else needed since
there is no exit transition. 

Match of a state during through a time range: Locate ( CompromiseDate(0),
CompromiseDate(t), DestroyDate(0), DestroyDate(t) )  

Match of a state at some point during a time range: Locate ( CompromiseDate(0),
CompromiseDate(t'-1), DestroyDate(0), DestroyDate(t'-1) )  

4.20 ID Placeholder
The table below shows the ID Placeholder input and output for various operations.

ID
Placeholder
input

ID Placeholder
output (in case
of operation
failure, a batch
using ID
Placeholder
must stop)

Create - new Object
Create Key Pair - new Private

Key (the new
Public Key can
be obtained in
the batched via
a Locate)

Register - new Object
Derive Key - (because

there can
be more
than one
object)

New
Symmetric
Key

Locate - Object
Get Object no change



- 19 -

Request Object Object no change
Validate - -
Get Attributes
List/Modify/Add/Delete

Object no change

Activate Object no change
Revoke Object no change
Destroy Object no change
Archive/Recover Object no change
Certify Public Key new Certificate
Re-certify Certificate new Certificate
Re-key Symmetric

Key
New
Symmetric
Key

Obtain Lease Object no change
Get Usage Allocation Keys no change

4.21 Using Wrapped Keys with KMIP

KMIP provides the option to import and get keys in wrapped format. Clients who wish to
get a wrapped key from the server are expected to include the Key Wrapping
Specification in the Get Request Payload. The wrapping method will identify the type of
mechanism used to wrap a key, but will not identify the algorithm or block cipher mode.
These will be extracted from the specified Encryption Key or MAC/Signing Key. If a key
has multiple Cryptographic Parameters defined, clients can pick one by including the
parameters for the specified key in Key Wrapping Specification. Clients also have the
option to omit the parameters for the specified key and use the default parameters, i.e.
those with the lowest index.

The Key Value includes both the Key Material and if requested in Key Wrapping
Specification certain attributes of the key. The Key Value can be encrypted,
signed/MACed, or both encrypted and signed. In addition, client’s have the option to
wrap the key block according to ANSI TR-31 or other standard or vendor-specific key
wrapping methods.

It is important to note that if Key Wrapping Specification is included in the Get Request
Payload, the Key Value may not necessarily be encrypted. If Wrapping Method is
MAC/sign, the returned Key Value will be in plaintext and the Key Wrapping Data will
include the MAC or Signature of the Key Value.



- 20 -

4.21.1 Encrypt-only Example Using Wrapped Keys

If a key is to be wrapped with the Cryptographic Usage Mask attribute using AES key
wrap, clients must include the following information in the Key Wrapping Specification:

Wrapping Method: Encrypt
Encryption Key Information
Unique Key ID: Key ID of AES key
Cryptographic Parameters: Block Cipher Mode is AES key wrap (not required if
default block cipher mode for wrapping key is AES key wrap)
Attribute Name: Cryptographic Usage Mask

The AES key must have the AES key wrap set as an allowable Block Cipher Mode. This
must be verified by the server.

If the correct data was provided to the server and no conflicts exist, the server will AES
key wrap the Key Value, including both the Key Material and the Attribute objects, and
return the encrypted blob (octet string) inside the Key Block under Key Value. The Key
Wrapping Data includes the same data as specified in the Key Wrapping Specification
except for the Attribute Name. 

4.21.2 MAC-only Example Using Wrapped Keys

A client that wishes to HMAC SHA-256 the Key Value including a custom attribute must
specify the following in Key Wrapping Specification:

Wrapping Method: MAC/sign
MAC/Signature Key Information
Unique Key ID: Key ID of HMAC SHA-256 
Attribute Name: x-Nonce

For HMAC, no crypto parameters need to be specified. The algorithm set for the key
already identifies the hash function. The server will create an HMAC over the Key Value
if the correct data was provided by the client and no conflicts exist. The Key Value will
be returned in plaintext and the Key Block will include the following Key Wrapping
Data:

Wrapping Method: MAC/sign
MAC/Signature Key Information
Unique Key ID: Key ID of HMAC SHA-256 
MAC/Signature: HMAC of Key Value



- 21 -

In the example the custom attribute x-Nonce was included to help clients, who are relying
on the proxy model, to detect replay attacks.  End-clients, who communicate with the key
management server, may not support SSL/TLS and may not be able to rely on the
message protection mechanisms provided by a security protocol. A custom attribute can
be created to hold a random number, counter, nonce, date, or time. The custom attribute
needs to be created before requesting the server to return a wrapped key and is
recommended to be set if clients frequently wrap/sign the same key with the same
wrapping/signing key. 

5.0 Conformance
Server implementations of the KMIP protocol must support all objects, attributes,
operations and profiles not specified as “optional” in the KMIP Specification in order to
be conformant to the specification. Server implementations that do not support objects,
attributes, operations and profiles defined as “optional” can claim KMIP conformance,
though they may be limited in terms of interoperability with other KMIP
implementations.

Client implementations of the KMIP protocol may implement any subset of the KMIP
protocol. For example, a client may implement only the Get and Locate operations for
symmetric keys. In order to claim conformance, however, such a client must implement
all aspects of any elements of the protocol (objects, attributes, operations, profiles) that it
claims to support. In the example of Get/Locate support for symmetric keys, therefore, a
conforming client implementation must support all required attributes for symmetric
keys.

6.0 Deferred KMIP Functionality
The KMIP specification is currently missing items that have been judged candidates for
future inclusion in the specification.  These items currently include:

Registration of Clients. This would allow in-band registration and management of
clients, which currently can only be registered and/or managed using off-line
mechanisms. 

Client-requested specification of additional clients allowed to use a key. This
requires coordinated identities between the client and server, and as such is
deferred until registration of clients is addressed.

Registration of Notifications. This would allow clients to specify, using an
in-band mechanism, information and events that they wish to be notified of, and
what mechanisms should be used for such notifications, possibly including the
configuration of pushed cryptographic material.  This functionality would assume
Registration of Clients as a prerequisite.

Key Migration.  This would standardize migration of keys from one HSM to
another, using mechanisms already in the protocol or ones added for this purpose.



- 22 -

Server to Server key management.  This would extend the protocol to support
communication between key management servers in different key management
domains, for purposes of exporting and importing of cryptographic material and
potentially policy information.

Specification by client of key encoding. KMIP does not currently allow the client
to specify the encoding in which a key should be returned; the server returns the
key in whatever format it has or otherwise determines it should be returned (such
as through out-of-band client specification of encoding). Client specification of
encoding may be considered for the future.

Multiple derived keys. This would allow creation of multiple derived keys from
one or more input keys. Note, however, that the current version of KMIP provides
the capability to derive multiple keys and initialization vectors by creating a
Secret Data object and specifying a cryptographic length equal to the total length
of the derived objects.

XML encoding. Expression of KMIP in XML rather than in type/tag/length/value
may be considered for the future.


