Technical Overview of the Job Definition Format (JDF)

www.cip4.org

Dr. Markus Möller
mmoe@mro.man.de
MAN Roland Druckmaschinen AG
Table of Contents 1

• Introduction
 – About JDF, Scope of JDF
 – CIP4 and JDF
 • structure of organization, members, working groups
• Goals of JDF
• Simple JDF Workflow
• JDF Properties
 – Relation to other standards
Table of Contents 2

- Architecture of JDF
 - Core: Nodes, Resources and Resource Links
 - Structure of a JDF-Node (High Level Elements)
 - Node Hierarchy, Tree-Structures of Nodes
 - JDF Execution Model
 - How these concepts play together.
 - Spawning and Merging of Nodes
 - Workflow Components
 - Structure of Resources, Resource Links, CustomerInfo, NodeInfo, Audits
 - Pipes
 - Job Messaging Format (JMF)
 - Dynamic Pipes
About JDF

- A new, open standard for integration of all computer aided business and production processes around print media.
- Basis for future solutions.
- Common announcement was made on Seybold Conference 2000 by Adobe, Agfa, Heidelberg and MAN Roland.
- Release of Version 1.0 in April 2001
- Specification and further information available at: http://www.cip4.org
Scope Of JDF

- Horizontal Job Description
 - Job Ticket
- Vertical Communication
 - Messaging
- Why JDF?
 - Solutions for a Computer Integrated Manufacturing (CIM) in the Graphic Arts Industry need a comprehensive, vendor-independent standard.
 - Other formats do not cover all process steps.
CIP4 and JDF

- CIP4 is the Organization that owns JDF
 CIP4: Cooperation for the Integration of Processes in Prepress, Press and Postpress, more: http://www.cip4.org
- Three classes of membership in CIP4
 - Partner
 - Full
 - Associate
- General Conditions
 - voting rights according to membership class
 - participation in working groups for all members
 - payment of class annual dues according to membership class
 - use of the CIP4 member logo
 - commercial use of open source for full + partner members

Dr. Markus Möller, MAN Roland Druckmaschinen AG
CIP4 and JDF

- CIP4: Structural Organization

Board of Directors

Advisory Board

- 2
- 4
- N

Associated Members

Full Members

Partner Members

Workgroup 1

Workgroup

Workgroup n

Chair

Chair

Chair

Technical Steering Committee

Dr. Markus Möller, MAN Roland Druckmaschinen AG
CIP4 and JDF

- CIP4 currently consists of 78 members
- 13 Partner Members
 - Adobe
 - CreoScitex
 - Heidelberger Druckmaschinen AG
 - Koenig & Bauer AG
 - Müller Martini
 - Optimus
 - Xerox
 - Agfa
 - EFI
 - Hewlett-Packard
 - MAN Roland
 - NexPress Solutions LLC
 - PrintCafé
- 42 Full Members
- 23 Associate Members
CIP4 and JDF

- CIP4 Technical Working Groups:
 - Working Group Agenda:
 - Develop addenda to the specification
 - Discuss and resolve technical issues
 - Working Group Structure
 - Chair + Alternate Chair
 - Member of the Technical Steering Committee
 - 1 Vote / Working Group
 - CIP4 members of all membership levels may actively participate in any technical working group
CIP4 and JDF

- CIP4 Technical Working Groups:
 - Advertising / Magazine Publishing (1)
 - Color Workflow (12)
 - Device Capability Description (22)
 - Device messaging / Job tracking (27)
 - eCommerce (25)
 - Finishing (9)
 - Gravure (4)
 - Newspaper (4)
 - Packaging & Label (4)
 - Process Resources and Definitions (7)
 - Tools + Infrastructure (29)
 - Variable Data (13)
 - Use Cases / Compliance (23)
 - Web / Rotary Printing (4)
High Level Goal of JDF

- Represent and interchange Information about a Print Job between the workflow participants
- Create a digital “Job-Bag”
- Describe a Print Job in all Stages of its existence
Design Goals of JDF

- Flexible mapping of myriads of existing workflows
- Allow both detailed production level representation and customer level representation of print jobs.
- Allow parallel work
- Use widely available technologies
- Leverage from existing standards, where possible
- Low redundancy of the specification
- Simple implementation (use of XML)
- Job Centric view of the world
- Object-Oriented design
Simple JDF Workflow

- Customer creates a JDF representation of the desired product and delivery.
- Customer and Print Sales negotiate contract; Print sales uses MIS to do this.
- Printer defines production workflow using MIS.
- Job gets executed. Quasi-Real-time information is transferred to MIS from the JDF enabled devices.
- Collected data is evaluated for calculation.
- Job is archived for potential rerun.
Simple JDF Workflow

- Customer
 - RFQ
 - Quote
 - Invoice
 - Sales (Customer Interface)
 - Job Tracking
- MIS (Production Interface)
 - Production Specification
 - Schedule
 - Machine Status
 - Warehousing
- PrePress Print Shop Finishing

Dr. Markus Möller, MAN Roland Druckmaschinen AG
JDF Properties

- JDF is a Data Interchange Format Specification - not an Application or System.
- Encoded in XML
- Extensible
- Based on Semantic structures defined by:
 - Adobe PJTF
 - CIP3 PPF
- Process Modeling with Product- and Process-Nodes and Resources.
- JDF Job Definition + JMF Messaging define the JDF Framework
Relations to other Standards

- Adobe PJTF: 1--1 mapping to JDF resources
- CIP3 PPF: simple mapping to JDF resources
- IFRATrack: JDF contains IFRATrack’s functionalities
- PrintTalk: eCommerce (Request for Quote, Quote, Invoice, Change Order); wrapper ar. JDF

- JDF is independent of the Content Description Languages like PDF, PS, PPML (from PODi)...
- JDF contains Production Data
JDF Encoding

- XML Encoding
- External references via URI/URL
- Use of ID-IDREF pairs
- XML Schema for Data Type Definitions (Work in Progress)
- Extensibility using XML name spaces
- Optionally in a MIME/Multipart Wrapper
 - Allows single file with binary data
- Image Preview Data as Multiple PNG (Portable Network Graphics) Grayscale Separations
Core: Node and Resource Interaction

- JDF Node
 - Specifies a Product, Process or group of Processes
- Resources
 - represent Parameteres or Physical Resources
- Resource Links
 - Bind a Resources to a Node: determine consumption, usage and production of resources

<table>
<thead>
<tr>
<th>Resource 1</th>
<th>Link (Input)</th>
<th>JDF Node</th>
<th>Link (Output)</th>
<th>Resource 2</th>
</tr>
</thead>
</table>

scheduling:

Start | End | Time
High Level Elements (1)

Type: determines node type (Product, ProcessGroup, Combined, any physical process)

JDF
- ID
- Type
- Status
- Activation?
- JobID?
- JobPartID?
- Types?
- Version?
- CommentURL?
- DescriptiveName?

Content determines resources used, consumed or produced by this node.

Comment*
- AncestorPool?
- CustomerInfo?
- NodeInfo?
- ResourcePool?
- ResourceLinkPool?
- AuditPool?
- StatusPool?
- JDF*

Nested child nodes: determines hierarchy
JDF High Level Elements (2)

- JDF Node
 - Specifies a Product, Process or group of Processes
 - Modifies, consumes creates resources
 - May contain further nested JDF Nodes

- Resources represent:
 - Parameters or Logical Entities
 - Physical Entities: Quantity (Component), Handling Resource (ExposedMedia), or Consumable
 - Implementation (Device or Employee)
 - Intent, used for Product Nodes
 - Selector and PlaceHolder, used for workflow definition
JDF High Level Elements (3)

- Resource Links
 - Bind Resources to a Node
 - determine the consumption, usage and production of resources

- StatusPool
 - Logs Status of Parts of Partitioned Resources
JDF High Level Elements (4)

- **NodeInfo**
 - Contains scheduled, planned job properties
- **AuditPool**
 - Logbook: Logs actual events, job states, and post-facto job properties.
- **CustomerInfo**
 - Customer + Delivery Address
- **Comment**
 - Internationalization
 - Path / Box annotation
JDF Node -- Simple Example

```xml
<JDF ID="n20000824112251" Type="Product" JobID="some product ID" Status="Waiting" Version="0.9">
  <NodeInfo/>
  <CustomerInfo/>
  <ResourcePool>
    <SomeInputResource ID="Link0002" Class="Parameter" Status="Available"/>
    <Component ID="Link0003" Class="Quantity" Status="Unavailable" DescriptiveName="Some output resource"/>
  </ResourcePool>
  <ResourceLinkPool>
    <SomeInputResourceLink rRef="Link0002" Usage="Input"/>
    <ComponentLink rRef="Link0003" Usage="Output"/>
  </ResourceLinkPool>
  <AuditPool/>
</JDF>
```
Hierarchy of Nodes (1)

JDF
- ID
- Type
- Status
- JobID?
- JobPartID?
- ...

parent JDF node

P1 P2 P3 PA
 / / / \
 P4 P5 P6 P7
Hierarchy of Nodes (2)

- One JDF node type for Products and Processes
 - Allows Spawning and Merging of JDF for subcontracting, parallelizing
- Less Precise Product Intent at the Root
- Workflow Groups in between
- Detailed Processes in the Leaves
- Job + Job Part Identification
JDF Execution Model (1)

- Product Definition
 - No Process
 - Abstract
 - Segmentation by Product Components
- Serial Processing
- Parallel Processing
- Overlapping Processing
 - Pipes
- Iterative Processing
 - Informal Iterative Processing using Draft Resources
 - Formal Iterative Processing additionally using JMF Messages
JDF Execution Model (2)

- A Node is executable when all required input resources are available.
- Define arbitrary workflow sequencing.
- Link one resource to multiple nodes.
- Node dependencies allow Process configuration.
 - A proof node can create an ApprovalSuccess Resource which is a required input resource for a printing node.
JDF Execution Model (3)

- Linking of nodes by resource links and resources.

<table>
<thead>
<tr>
<th>JDF</th>
<th>Resource</th>
<th>JDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID="Node1"</td>
<td>ID="Res2"</td>
<td>ID="Node2"</td>
</tr>
<tr>
<td>Status: Waiting</td>
<td>Status: Unavailable</td>
<td>Status: Waiting</td>
</tr>
<tr>
<td>Ready</td>
<td>Completed</td>
<td>Available</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Output of node 1

Node 1

Resource 1

Resource 2

Resource 3

Input of node 2

Input of node n

Node 2

Node n

Dr. Markus Möller, MAN Roland Druckmaschinen AG
JDF Execution Model (4)

- Linking of nodes by resource links and resources.

<table>
<thead>
<tr>
<th>JDF</th>
<th>Resource</th>
<th>JDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>- ID="Node1"</td>
<td>- ID="Res2"</td>
<td>- ID="Node2"</td>
</tr>
<tr>
<td>Status: Waiting</td>
<td>Status:</td>
<td>Status: Waiting</td>
</tr>
<tr>
<td>Ready</td>
<td>Unavailable</td>
<td>Ready</td>
</tr>
<tr>
<td>Completed</td>
<td>Available</td>
<td>InProgress</td>
</tr>
<tr>
<td>etc.</td>
<td>etc.</td>
<td>etc.</td>
</tr>
</tbody>
</table>

Output of node 1

Node 1

Resource 1

Resource 2

Node 2

Resource 3

Node n

Input of node 2

Input of node n
JDF Tree / Network Structure

Node PA: P4 + P5 + P6
JDF Job Example

Top Down Hierarchy of Nodes

Top: Product Nodes
Middle: Group Nodes
Leaves: Process Nodes

Book

Cover

Insert

Finishing

Production

Finishing

Prod. Color Pages

Prod. b/w Pages

A
B
C

RIP.

Plate making

Print

RIP.

Print

Dr. Markus Möller, MAN Roland Druckmaschinen AG
Combination of JDF Nodes

- Define a limited number of “atomic” Processes.
- Combine multiple predefined processes into one process, e.g.:
 - inline finishing = printing + folding + cutting;
 - in-RIP trapping = trapping + RIPping
- Two types of Combination Nodes
 - Combined Node: All internal interfaces are hidden
 - Smart multi-function device
 - ProcessGroup: Internal nodes are accessible
 - Workflow group in a department
 - Subcontract
Sub-Table of Contents

• JDF - Spawning and Merging
 – Basic Mechanism
 – Recursive Spawning & Merging
 – Merging of Independent Jobs
JDF - Spawning and Merging

- Spawn parts of the JDF Tree for independent Processing
- Merge back after Processing
 - Basic Mechanism
 - Recursive Spawning and Merging
 - Independent Spawning and Merging
Basic Spawning and Merging Mechanism

- Job P
 - P.a
 - P.b

Parent

- P
 - P.a
 - P.b'

Original

Spawning

- Spawned
 - P.b

Phase Before

Job P.b

Spawning Depth

Spawn Phase

Phase After

Time
Recursive Spawning & Merging

Spawning depth

Spawning

correctly nested

Job A Job B Job C

reversely nested

Job A Job B Job C

Time

Time
Merging of Independent Jobs

e.g. for Combined Processing in one Press Run

Submission Diagram

- independent job A
 - Job A, B
- independent job C
 - Job C, D
- big job bigA
 - Job bigA

small Job B
small Job D
execution
Sub-Table of Contents

• Workflow Components
 – Some Definitions: Machines, Devices, Agents, and Controllers
 – Example of Component Interaction
Definitions of Workflow Components

- JDF does not dictate how a JDF/JMF system should be designed, built, or implemented.
- **Machine**: has no JDF interface.
- **Device**:
 - reads JDF.
 - executes JDF nodes.
 - may support JMF.
- **Agent**:
 - writes JDF.
 - creates jobs and JDF nodes, modifies JDFs, composes JDFs.
 - may support JMF.
- **Controller**:
 - routes JDFs to devices/agents.
 - initiates processes on at least one device.
 - Communicates via JDF file-exchange protocol, may support JMF.
System Interaction Example

- Single arrows indicate Uni.-directional communication channels and double arrows indicate bi-directional communication.
Sub-Table of Contents

• Inside JDF
 – JDF Resources, Resource Classes, Partitioned Resources
 – ResourceLink, Pipes
 – CustomerInfo and NodeInfo
 – Audits
JDF Resources

- Based of PJTF and CIP3 PPF
 - Sheet definition, Colors: PJTF
 - Press, Finishing: CIP3
 - Extensions where appropriate.
- Internal to JDF
 - Parameters
 - URL definitions
- Internal to JDF or External Links to well-defined Formats
 - Thumbnails,
 - ICC Profiles
 - Content Data
Resource Classes (I)

- Base class resource is abstract
- Parameter, like:
 - Process parameters
 - Content file reference
- Physical Resources (abstract):
 - Consumable, like paper, ink, raw plate
 - Handling, (reusable) like ExposedMedia (developed film)
 - Quantity, like printed or processed material
- Implementation, like:
 - Devices (limited to string + family in v1.0)
 - Operators: id, shift, role
- Intent, describes the content of product nodes
- Selector
- PlaceHolder
Resource Classes (II)

- ResourcePool?
 - Resource*
 - ID
 - Status
 - Class
 - CatalogID?
 - CatalogDetails?
 - Locked?
 - PipeID?
 - ProductID?
 - rRefs?
 - SpawnStatus?

- Selector
 - PlaceHolder
 - PlaceHolderResource
 - Implementation
 - Device
 - Employee

- Handling
 - ExposedMedia

- Quantity
 - Component
 - Media
 - Ink

- Consumable
 - AdhesiveBindingParams
 - ConventionalPrintingParams
 - …

- Location?
 - LocID?
- Address?
- Contact?
Partitioned Resources (I)

- Inheritance of common Data
 - Overwrite defaults
- Partition keys are predefined, like:
 - SheetName
 - Separation
 - Side
 - TileID
 - etc.
- Access individual parts of a large resource
 - Only the yellow plate of the front surface of sheet 17
- Mechanisms for Parallel Processing of Partitioned Resources
Partitioned Resources (II)

Resource PartIDKeys="KeyA KeyB" DescriptiveName="Root part"

Resource KeyA="keyA-id1" DescriptiveName="Part 1"
 Resource KeyB="keyB-identifier1" DescriptiveName="Leaf 1.1"
 Resource KeyB="keyB-identifier2" DescriptiveName="Leaf 1.2"

Resource KeyA="keyA-id2" DescriptiveName="Part 1"
 Resource KeyB="keyB-identifier1" DescriptiveName="Leaf 2.1"
 Resource KeyB="keyB-identifier2" DescriptiveName="Leaf 2.2"
Partitioned Resource (III) Examp.

<ExposedMedia Class="Handling" Brand="Gooey" ID="L1" Status="Available"
PartIDKeys="SheetName Side Separation" Amount="2">
<Media MediaType="Plate" Dimension="500 600">
<ExposedMedia SheetName="S1">
<ExposedMedia Side="Front">
<ExposedMedia Separation="Cyan" ProductID="S1FC"/>
<ExposedMedia Separation="Black" ProductID="S1FK" Status="Unavailable"/>
</ExposedMedia>
<ExposedMedia Side="Back">
<ExposedMedia Separation="Cyan" ProductID="S1BC"/>
<ExposedMedia Separation="Black" ProductID="S1BK"/>
</ExposedMedia>
</ExposedMedia>
<ExposedMedia SheetName="S2" Side="Front">
<ExposedMedia Separation="Cyan" ProductID="S2FC"/>
<ExposedMedia Separation="Black" ProductID="S2FK"/>
</ExposedMedia>
</ExposedMedia>
</ExposedMedia>
ResourceLink (I)

- Bind a Resource to a Node
 - A Resource is NOT bound to the JDF that contains it unless it is linked by a ResourceLink.
- Define Resource Usage (Input or Output)
- May Link to a Subset / Part of a Resource
- May Contain Pipe control meta-data.
- Live in ResourceLinkPool of a JDF node.
- Name is derived from the linked resource
- Allow reuse of Resources by multiple processes
 - One resource may be linked by multiple ResourceLinks
ResourceLink (II)

ResourceLinkPool? ResourceLink* Part*

- rRef
- Usage
- ProcessUsage?
- CombinedProcessType?
- rSubRef?
- DraftOK?
- PipeURL?
- PipePartIDKeys?

PlaceHolderLink

SelectorLink

IntentLink

ImplementationLink
- Recommendation?
- Start?
- StartOffset?
- Duration?

ParameterLink

PhysicalLink
- Amount?
- PipeResume?
- PipePause?

HandlingLink

ConsumableLink

QuantityLink

Dr. Markus Möller, MAN Roland Druckmaschinen AG
ResourceLink (III) Examples

- Simple
 - `<ScanParameterLink rRef="ScanLinkID" Usage="Input"/>
- Quantity
 - `<MediaLink rRef="MediaLinkID" Amount="6642" Usage="Input"/>
- Part (Links to previous example)
 - `<ExposedMediaLink rRef="L1" Usage="Input">
 `<Part SheetName="S2" Side="Front" Separation="Cyan"/>
 </ExposedMediaLink>
Pipes (Transient Resources)

- Overlapping Processing
 - Print 10 pallets and start folding when one is ready;
- Undefined Amounts
 - Request new plates in long press runs
- Data streams
- Buffer Handling
- Synchronization Messages
Pipe Resource Linking

Pipe resource R2

- PipePause = maximum (of output, P1)
- PipeResume (of output, P1)
- PipeResume (of input, P2)
- PipePause (of input, P2)

Dr. Markus Möller, MAN Roland Druckmaschinen AG
Customer / Node Information

- **CustomerInfo**
 - Map Subcontracting via Localized Customer Information in any JDF Node
 - Customer ID
 - Addresses (Delivery, Accounting, …)

- **NodeInfo**
 - Scheduling
 - Deadlines
 - Processing Time Estimation
CustomerInfo and NodeInfo

- JDF
 - ID
 - Type
 - Status
 - Activation?
 - JobID?
 - JobPartID?
 - Types?
 - Version?
 - CommentURL?
 - DescriptiveName?

- CustomerInfo?
 - CustomerID?
 - CustomerJobName?
 - CustomerOrderID?
 - rRefs?

- NodeInfo?
 - Start?
 - End?
 - DueLevel?
 - Quotes?
 - Route?
 - TargetRoute?
 - rRefs?
 - ...

- Company?
 - OrganizationName

- Contact*
 - Type

- OrganizationalUnit*

- JMF*
 - Person?
 - Address?

- NotificationFilter*

- Employee?

- BusinessInfo?
Audit Objects (1)

- Logging of Job Execution
 - Start time
 - End time
 - Phases
- Logging of Late Changes
 - Resources (used 85g Paper instead of 80g)
 - Consumables
- Status Summary
- Event Log
Audit Objects (2)

AuditPool?
 • rRefs?

Audit *
 • TimeStamp
 • Author?

Created*
Modified*
Spawned *
Merged*
Notification*
PhaseTime*
ResourceAudit*
ProcessRun*
Audit Objects (4)

AuditPool?
- rRefs?

Audit*
- TimeStamp
- Author?

Notification*
- Class
- Type?

PhaseTime*
- Start
- End
- Status
- StatusDetails?

Comment*

CostCenter?

Employee*

NotificationDetails?

Part?

Device*

Employee*

ModulPhase*
- Start
- End
- DeviceID?
- DeviceStatus
- StatusDetails?
- ModulIndex
- ModulType

Employee*
Audit Objects (5)

- AuditPool?
 - rRefs?
- Audit*
 - TimeStamp
 - Author?
- ResourceAudit*
 - ContentsModified?
- ProcessRun*
 - Start
 - End
 - Duration?
 - EndStatus

ResourceLink
- ResourceLink?
AuditPool -- Simple Example

```xml
<JDF ID="n0123" Type="Product" JobID="some product ID"
Status="Completed" Version="0.9">
...
<AuditPool>
    <Created TimeStamp="2001-05-18T12:15+01:00" ref="n0123"/>
    <ProcessRun Start=".." End="..." TimeStamp="..." EndStatus="Aborted"/>
    <Modified .../>
    <ProcessRun Start=".." End="..." TimeStamp="..." EndStatus="Completed"/>
</AuditPool>
</JDF>
```
Sub-Table of Contents

- JMF - JDF Messaging Format
 - Properties
 - Types I, II + III
JMF Messaging Properties

- Dynamic Process Interaction
- Five Message Families
 - **Query**: Request for information
 - **Command**: Request for a state change
 - **Response**: Immediate Answer to Query or Command
 - **Acknowledge**: Delayed Answer to Query or Command
 - **Signal**: Unidirectional Post
- Message Protocol using HTTP
 - Firewalls are not an obstacle
 - Easy to use and implement
Message Communication (I)

- Bi-directional
 - Query ==> Response
 - Command ==> Response
 - HTTP Protocol:
 - send: HTTP POST, Body contains the JMF::Query or JMF::Command
 - response: HTTP Response, Body contains the JMF::Response
Message Communication (II)

- Uni-directional
 - Signal
 - Acknowledge
- HTTP Protocol:
 - send: HTTP POST, Body contains the JMF::Signal or JMF::Acknowledge
 - response: HTTP Response, body stays empty.

Diagram:
- JDF Controller who subscribed Signals / Acknowledge
- HTTP POST
- Body conveys Signal
- HTTP Response
- Body has no function for JMF
- JDF Controller with JMF support

Dr. Markus Möller, MAN Roland Druckmaschinen AG
JMF Message Structure

Legend:
abstract elements
- elements
 - attributes

JMF
- TimeStamp
- SenderID
- Version?
- DeviceID?

Message*
- ID
- Type
- Time?

Message Families

Command
- AcknowledgeURL?
 - CommandTypeObj*

Acknowledge
- refID
- returnCode?
 - ResponseTypeObj*

Response
- refID
- ReturnCode?
- Subscribed?
- Acknowledged?
 - ResponseTypeObj*

Notification
- Notification?

Query
- QueryTypeObj*
- Subscription?

Signal
- refID?
- LastRepeat?
 - QueryTypeObj?
 - ResponseTypeObj*
 - Notification?
 - Trigger?

Dr. Markus Möller, MAN Roland Druckmaschinen AG
JMF Message Types (I)

- Initialization
 - Registration
 - Publish JDF Capabilities

- Device / Job Status / Progress Information
 - Consumable Level
 - Progress / Status
 - Settings
 - Currently executing jobs
 - Job Tracking
JMF Message Types (II)

- **Queue Handling**
 - Set Priority
 - Reorder / Group jobs
 - Hold / restart queued jobs (NOT running jobs)
 - Abort running Job

- **Job Submission**
 - Submission via HTTP
 - File Based JDF submission
 - hot folder
 - URL
JMF Message Types (III)

- Pipe Interactions
 - models the phone call from operator to operator
 - Start Production
 - Stop Production
 - High Water / Low Water marks
 - Individual Resource Requests
 - Resource Changes for iterative processing
Dynamic Pipe Linking (via JMF)

Dr. Markus Möller, MAN Roland Druckmaschinen AG