IPC-2571

Generic Requirements for Electronics Manufacturing Supply Chain Communication – Product Data eXchange (PDX)
In May 1995 the IPC’s Technical Activities Executive Committee adopted Principles of Standardization as a guiding principle of IPC’s standardization efforts.

Standards Should:
- Show relationship to Design for Manufacturability (DFM) and Design for the Environment (DFE)
- Minimize time to market
- Contain simple (simplified) language
- Just include spec information
- Focus on end product performance
- Include a feedback system on use and problems for future improvement

Standards Should Not:
- Inhibit innovation
- Increase time-to-market
- Keep people out
- Increase cycle time
- Tell you how to make something
- Contain anything that cannot be defended with data

Notice

IPC Standards and Publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for his particular need. Existence of such Standards and Publications shall not in any respect preclude any member or nonmember of IPC from manufacturing or selling products not conforming to such Standards and Publication, nor shall the existence of such Standards and Publications preclude their voluntary use by those other than IPC members, whether the standard is to be used either domestically or internationally.

Recommended Standards and Publications are adopted by IPC without regard to whether their adoption may involve patents on articles, materials, or processes. By such action, IPC does not assume any liability to any patent owner, nor do they assume any obligation whatever to parties adopting the Recommended Standard or Publication. Users are also wholly responsible for protecting themselves against all claims of liabilities for patent infringement.

IPC Position Statement on Specification Revision Change

It is the position of IPC’s Technical Activities Executive Committee (TAEC) that the use and implementation of IPC publications is voluntary and is part of a relationship entered into by customer and supplier. When an IPC standard/guideline is updated and a new revision is published, it is the opinion of the TAEC that the use of the new revision as part of an existing relationship is not automatic unless required by the contract. The TAEC recommends the use of the lastest revision.

Adopted October 6, 1998

Why is there a charge for this standard?

Your purchase of this document contributes to the ongoing development of new and updated industry standards. Standards allow manufacturers, customers, and suppliers to understand one another better. Standards allow manufacturers greater efficiencies when they can set up their processes to meet industry standards, allowing them to offer their customers lower costs.

IPC spends hundreds of thousands of dollars annually to support IPC’s volunteers in the standards development process. There are many rounds of drafts sent out for review and the committees spend hundreds of hours in review and development. IPC’s staff attends and participates in committee activities, typesets and circulates document drafts, and follows all necessary procedures to qualify for ANSI approval.

IPC’s membership dues have been kept low in order to allow as many companies as possible to participate. Therefore, the standards revenue is necessary to complement dues revenue. The price schedule offers a 50% discount to IPC members. If your company buys IPC standards, why not take advantage of this and the many other benefits of IPC membership as well? For more information on membership in IPC, please visit www.ipc.org or call 847/790-5372.

Thank you for your continued support.
A standard developed by the Product Data Exchange Task Group (2-15a) of the Supply Chain Communication Subcommittee (2-15) of IPC.

The IPC-2571 standard defines an XML encoding schema that enables a total product definition to be described at a level appropriate to facilitate supply chain interactions.

Users of this standard are encouraged to participate in the development of future revisions.

Contact:

IPC
2215 Sanders Road
Northbrook, Illinois
60062-6135
Tel 847 509.9700
Fax 847 509.9798
Acknowledgment

Any Standard involving a complex technology draws material from a vast number of sources. While the principal members of the Product Data Exchange Task Group (2-15a) of the Supply Chain Communication Subcommittee (2-15) are shown below, it is not possible to include all of those who assisted in the evolution of this standard. To each of them, the members of the IPC extend their gratitude.

<table>
<thead>
<tr>
<th>Supply Chain Communication Subcommittee</th>
<th>Product Data Exchange Task Group</th>
<th>Technical Liaison of the IPC Board of Directors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair</td>
<td>Co-Chairs</td>
<td>Stan Plzak</td>
</tr>
<tr>
<td>Barbara Goldstein</td>
<td>Barbara Goldstein</td>
<td>NIST</td>
</tr>
<tr>
<td>NIST</td>
<td>NIST</td>
<td>Ben Poole</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Data Exchange Task Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mike Alner, Intel Corporation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patricia O’Sullivan, Intel Corporation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thy Nguyen, Cisco</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Daniel O’Neill, Lucent Technologies Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lou Debelo, Lucent Technologies Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roger Carlson, Lucent Technologies Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sayeed Quazi, Lucent Technologies Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bruce Ambler, Lucent Technologies Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kurt Kanaskie, Lucent Technologies Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>William Dellner, Lucent Technologies Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Joanne Friedman, META Group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mangesh Bhandarkar, Netfish Technologies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patrick Gannon, Netfish Technologies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jim Dills, Netfish Technologies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Curtis Parks, National Institute of Standards and Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barbara Goldstein, National Institute of Standards and Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tom Rhodes, National Institute of Standards and Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frank McBryan, Nortel Networks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mark Benzick, Nortel Networks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Richard Kubin, Nortel Networks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mike Horgan, PTC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sarah Dehart, RosettaNet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suhayl Masud, RosettaNet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angela Warburton, RosettaNet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Charles Richardson, SCI Systems Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ben Poole, SCI Systems Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dick Kloskowski, SCI Systems Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jim Harrington, Village Principle Partners</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. Harry Parkinson, Parkinson Consulting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tom Dinnel, Universal Instruments Corp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ken Ouchi, Solectron Corporation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taka Shioya, Solectron Corporation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Randy Allen, Valor Computerized Systems Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chuck Feingold, Valor Computerized Systems Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dave Godlewski, National Electronics Manufacturing Initiative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jim McElroy, National Electronics Manufacturing Initiative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peter Kacandes, Sun Microsystems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carlos Fernandez, Compaq Computers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xiang Fu, Agile Software</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Martin Zimmerman, Nortel Networks</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

Introduction ... 1

Relationships to Other Standards Initiatives ... 2

1 **Scope** .. 5

2 **Applicable Documents** ... 5
 2.1 IPC Documents ... 5
 2.2 RosettaNet Documents ... 6
 2.3 OAG Documents ... 6
 2.4 RFC Documents .. 6

3 **Product Data eXchange Package** ... 6
 3.1 Modeling Diagram Occurrence Indicator Meanings ... 7

4 **Pictorial Representation of IPC2570 Series** ... 8
 4.1 Product Data eXchange Package ... 8
 4.2 Items ... 8
 4.3 Additional Attributes (see 10.1) ... 9
 4.4 Changes ... 10
 4.5 Manufacturer Parts .. 10
 4.6 Supplier Parts ... 11
 4.7 History (see 7.1) .. 11
 4.8 Attachments (see 8.1) ... 11
 4.9 Contact (see 9.1) ... 12
 4.10 AsBuilt Product ... 12
 4.11 Product Instance ... 13

5 **Recommended Implementation Practices** .. 14
 5.1 Inclusion of Linked Objects .. 14
 5.2 Attachments .. 14
 5.3 Missing Required Attributes .. 15
 5.4 Avoid Data Duplication in Product Data eXchange Package 15
 5.5 Excluding data from the Product Data eXchange package 16
 5.6 Format of Date/Time Fields .. 17
 5.7 isTopLevel Attribute ... 17

6 **Product Data eXchange Package** ... 18

7 **History** .. 19
 7.1 HistoryItem .. 19

8 **Attachments** .. 20
 8.1 Attachment ... 20

9 **Contacts** .. 21
 9.1 Contact .. 21
 9.2 ContactRoles ... 24
 9.2.1 ContactRole ... 24
 9.2.2 GroupRole .. 24
 9.3 PublicDigitalCertificate ... 25
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Additional Attributes</td>
<td>25</td>
</tr>
<tr>
<td>10.1</td>
<td>Additional Attribute</td>
<td>26</td>
</tr>
<tr>
<td>11</td>
<td>Alternate Identifiers</td>
<td>27</td>
</tr>
<tr>
<td>11.1</td>
<td>Alternate Identifier</td>
<td>27</td>
</tr>
<tr>
<td>12</td>
<td>Document Type Definition (DTD)</td>
<td>28</td>
</tr>
</tbody>
</table>
Generic Requirements for Electronics Manufacturing Supply Chain Communication - Product Data eXchange (PDX)

Introduction

Today, manufacturing is accomplished through the collaboration of a dynamic, global network of original equipment manufacturers, manufacturing service providers, and parts suppliers. To capture market opportunities, this network of partners is required to function even more efficiently than would a single company which kept control of all production processes in house.

Virtual manufacturing networks, such as these, are highly dependent on accurate and immediate product content information. Yet today's manufacturing networks are often forced to rely on inadequate paper-based communications like faxes and emails, or on web pages that are not dynamically linked to the source of the product content.

The dilemma is especially acute among organizations trying to bring electronic products to market. It is becoming increasingly rare for companies that design products, which have substantial electronics content, to manufacture their own products. It is more typical for the bulk of the manufacturing to be subcontracted to an Electronics Manufacturing Services (EMS) provider. The Original Equipment Manufacturer (OEM) who designs the product will typically only perform the final assembly and packaging but in some cases, even this is sub-contracted. The EMS provider may ship the finished product directly to customers. The EMS provider in turn will purchase the bulk of the components either directly from the component manufacturers or from distributors.

Increasingly, even the product design process is a collaborative effort. Often the Electronics Manufacturing Services provider or component supplier will suggest changes to a product design based on component price or availability information that is not available to the Original Equipment Manufacturer. The pressure to both reduce costs and improve products translates directly into a much higher frequency of product changes throughout a product's lifecycle. Effective and timely communication of these product changes across the supply chain is essential in order to avoid potentially costly rework or dead inventory problems.

PDX is the Product Data eXchange standard for the e-supply chain. Product Data eXchange is a multi-part standard, represented by the IPC 2570 series of specifications. The Product Data eXchange standardization effort is focused on the problem of communicating product content information between Original Equipment Manufacturers, Electronics Manufacturing Services providers and component suppliers. The standard is based on XML because this provides a simple yet powerful and flexible way to encode structured data into a format that is both human and machine-readable. The Product Data eXchange standard provides a way to describe product content (Bill of Materials (BOM), Approved Manufacturer Lists (AML), Drawings, etc.), Engineering Change Requests (ECR), Engineering Change Orders (ECO) and Deviations in an eXtensible Markup Language (XML) format. This standard will enable dramatic efficiency improvements throughout the supply chain since partners will have a way to exchange product content and changes in a common language.

The OEM companies at the top of the supply chain (SC), originate the product structure and feed it to the down stream SC partners. Various design for assembly, fabrication, test feedback (DF*) and material status, WIP and Quality information will flow back up the SC to the OEM (i.e. 257* standards). In some cases OEMs will be feeding data to both internal EMSs and multiple external EMSs and they need methods to make sense of this varying feedback. It is assumed that most SC partners will have several internal applications that they use to vault and control the product information (PDMs, ERPs, CAMs, CADs, etc).
As the product structure moves through the supply chain, various subsets of the product information will be made available to the suppliers and EMSs. Non Disclosure Agreements and security mechanisms are needed that allow this data to be shared in a secure and protected way. For example EMSs usually strip the PCB (Printed Circuit Board) information out of the full product data package before sending it on to the PCB fabricators. They also partition the BOM when they send quote packages to suppliers as part of the component procurement process. OEMs typically decide to partition the complete product structure and have different assemblies manufactured by several EMS companies.

To satisfy this mode of SC information exchange, IPC 257X allows all or portions of the product structure to be defined and transmitted. In some cases what appears as a “component” to one SC partner, may in fact be a complex assembly to another. The applications generating and processing this standard must be able to subset and merge the partial definitions into their company’s internal information models.

Relationships to Other Standards Initiatives

IPC 2510 – GenCAM

The GenCAM standard (IPC 2510) describes printed boards and printed board assemblies. GenCAM describes a printed board in enough detail to be able to manufacture and assemble a board. The Product Data eXchange standard, on the other hand, is intended for high-level supply chain communication of product definition data. Product Data eXchange allows a company to describe a complete system or sub-system including hardware and other higher-level assemblies that would not normally be described by GenCAM documents. Product Data eXchange does not however define a standard for describing parts and assemblies in enough detail to be able to manufacture them. This is achieved only by including other documents in a Product Data eXchange package. These other documents may include GenCAM documents. There is some overlap in scope between the bill of materials section of Product Data eXchange and the parts list section of GenCAM, however there are also significant differences. In a GenCAM file, the electrical characteristics of each device are described, as is the placement on the board of each instance of that device. A Product Data eXchange bill of material for a printed board assembly can be characterised as...
a summary of a GenCAM parts list in the sense that it does not contain electrical characteristics or placement information. It may however also contain some information such as find numbers or information about mechanical fasteners, which is typically omitted from a GenCAM file. In general it should be possible for software to generate most of a Product Data eXchange bill of material from a GenCAM parts list but the reverse will not in general be possible. There are also some differences in the relative importance of some of the optional data that may be included both in a GenCAM parts list and a Product Data eXchange bill of material. Notably, both GenCAM and Product Data eXchange allow manufacturer part numbers to be recorded. This information may in some cases be omitted from a GenCAM parts list because the choice of which of the many possible manufacturer parts to use may not have been made at the time that the GenCAM file was generated. In a Product Data eXchange document this information will normally be required. Engineering Notes, examples, and other engineering related information that is used in a GenCAM file through the reference of attachments and utilizing workflow can be transmitted via the IPC2571 & IPC2578 series.

RosettaNet

RosettaNet is dedicated to the development and deployment of standard electronic business interfaces to align the processes between supply chain partners on a global basis. In order to efficiently conduct eBusiness, companies require a robust technical dictionary and data structures, a framework for passing messages, and conventions for business transactions. RosettaNet addresses these needs by building a master dictionary to define properties for products, partners, and business transactions. This master dictionary, coupled with an established implementation framework (exchange protocols), is used to support the eBusiness dialog known as the Partner Interface Process or PIP.

RosettaNet has well-defined Partner Interface Processes for the exchange of data about complete products and data about electronic components, and is embarking on developing a mechanism for exchanging manufacturing information. Product Data eXchange provides exactly this missing capability. It is anticipated that the data descriptions in Product Data eXchange will be leveraged into RosettaNet Partner Interface Processes to provide an end-to-end solution for the entire electronics supply chain.

Open Applications Group, Incorporated (OAGI)

The Open Applications Group, Incorporated has defined standard interfaces between enterprise software applications. The scope of the Open Applications Group, Incorporated Interchange Specification (OAGIS) overlaps to a small extent with the Product Data eXchange standard, and it is anticipated there will be opportunities for consolidation in the future.
Figure 2 Multi-level Product BOM Structure
1 Scope

The Product Data eXchange 1.0 standard defines an XML encoding scheme that enables a total product definition to be described at a level appropriate to facilitate supply chain interactions. The scheme is defined for bill of materials (BOM), approved manufacturer list (AML), changes (Engineering, Manufacturing, Product) and references to documents describing geometric and other definition characteristics.

IPC 2571 is the umbrella specification for other IPC 2570-series specifications. It describes the Package element that is required for every Product Data eXchange implementation, as well as other common elements shared across the 2570 series. The sectional standards provide application exchange capability. IPC 2576, for instance, transfers as-built product configuration data, and IPC 2578 defines specific product definition elements such as items, changes, bills of material (BOMs), and approved manufacturing lists (AMLs).

The IPC 2570-series of standards transfer the data required to support the following business processes:

- Quote request
- Manufacturing
- Engineering change management (including signoff)
- Work in Process (not started)
- Report on Quality (in development)
- Report on as-built product configuration

2 Applicable Documents

The following documents are related to the Product Data eXchange efforts.

2.1 IPC Documents

The following documents contain provisions, which, through reference in this text, constitute provisions of this standard. All documents are subject to revision. Parties who make agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the documents indicated below.

IPC-T-50 Terms and Definitions for Interconnecting and Packaging Electronic Circuits.

IPC 2510 Generic Computer Aided Manufacturing Descriptions for Printed Boards and Printed Board Assembly.

IPC 2576 Product Data eXchange – Sectional Requirements for Electronics Manufacturing Supply Chain Communication of As-Built Product Data

IPC 2577 Product Data eXchange – Sectional Requirements for Supply Chain Communication of Manufacturing Quality Assessment

IPC 2578 Product Data eXchange – Sectional Requirements for Supply Chain Communication of Bill of Material and Product Design Configuration Data
2.2 RosettaNet Documents

The following are RosettaNet Partner Interface Process documents that relate to this standard, and reflect an effort made by both organizations towards harmonization.

<table>
<thead>
<tr>
<th>RosettaNet PIPs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C1-10 (IPC2578)</td>
<td>Product Design Information</td>
</tr>
<tr>
<td>Segment 7A</td>
<td>Design Transfer</td>
</tr>
<tr>
<td>Segment 7C</td>
<td>Distribute Manufacturing Information</td>
</tr>
</tbody>
</table>

2.3 OAG Documents

OAGIS Open Applications Group Interchange Specifications will be used to harmonize with this standard and will be incorporated in later revisions of this standard.

2.4 RFC Documents

<table>
<thead>
<tr>
<th>RFC Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 1950</td>
<td>ZLIV Compressed Data format Specification 3.0</td>
</tr>
<tr>
<td>RFC 1951</td>
<td>DFLATE Compressed Data Format Specification Version 1.3</td>
</tr>
<tr>
<td>RFC 1952</td>
<td>GZIP file format specification 4.3</td>
</tr>
</tbody>
</table>

3 Product Data eXchange Package

This standard uses a single XML file in the format described by this specification to represent a Product Data eXchange (PDX) package. The Product Data eXchange package can reference external attachments (see attachments section below). The XML file will be named “pdx.xml”. The pdx.xml file must contain a single ProductDataeXchangePackage element and optionally the other elements described in this specification. The pdx.xml file may also contain elements from the other IPC 257x PDX standards.

Since a Product Data eXchange package can be one XML file and an unlimited number of external attachments, one way to communicate the Product Data eXchange package as a single package is to compress the files as described in Internet RFC's 1950 through 1952. This not only brings all the files together in one file for ease of delivery, but also compresses the files to reduce their size. Compression is particularly useful for XML files since they tend to be very large with large amounts of repeated data and thus compress significantly. This compressed file consisting of the pdx.xml file and any external attachments can be named a Product Data eXchange file with a “.pdx” extension and the MIME type can be application/x-pdx. The compression of the Product Data eXchange package contents is optional and is not required by this specification. The sending and receiving partners must define this as part of the transport layer they use for communicating Product Data eXchange packages.

The Product Data eXchange package requires internal Document Type Definition (DTD) file inclusion so the entire content of the DTD file is included in the pdx.xml file. The DTD is included at the end of this document. In addition to the mandatory XML process instruction of <?xml version = “1.0”?>, or <?xml version = “1.0” encoding=“UTF-8”?>, the pdx.xml file also includes two other process instructions: <?pdx_version = “1.0”?>, which states in which version of Product Data eXchange standard the package is formed, and <generated_by SoftwareVendor/SoftwareName/Version/BuildNumber?>, which states which version of what software was used to create the package.
3.1 Modeling Diagram Occurrence Indicator Meanings

Occurrence indicators are used within element content models to specify how many times an element may appear at a given location. The indicators available to schema developers are listed below:

<table>
<thead>
<tr>
<th>Occurrence Indicator</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>The element must appear once and only once.</td>
</tr>
<tr>
<td>?</td>
<td>The element (or group of elements) may appear zero or one times. The element is optional, but is only allowed to appear once.</td>
</tr>
<tr>
<td>+</td>
<td>The element (or group of elements) must appear one or more times. The element is required to appear at least once, but multiple consecutive occurrences may be present.</td>
</tr>
<tr>
<td>*</td>
<td>The element (or group of elements) may appear zero or more times. The element can appear as many times consecutively as needed, or even zero times.</td>
</tr>
</tbody>
</table>

Note that graphics and a table of attribute descriptions are provided as an aid to understanding the elements in the PDX standard suite. In any instance where the XML DTD conflicts with an image or description, the DTD should be considered normative.
4 Pictorial Representation of IPC2570 Series

The following illustrations provide a graphical representation of some of the primary elements contained in the suite of Product Data eXchange standards:

4.1 Product Data eXchange Package

4.2 Items
4.3 Additional Attributes (see 10.1)
4.4 Changes

- Changes
 - Change
 - changeNumber
 - revisionIdentifier
 - changeOriginatedByName
 - changeOriginatedByContactUniqueIdentifier
 - globalEngineeringChangeStatusCode
 - globalEngineeringChangeStatusCodeOther
 - changeSubType
 - changeOriginatedDateTime
 - requestReason
 - changeReason
 - description
 - changeRequestDescription
 - changeOwner
 - changeOwnerContactUniqueIdentifier
 - AdditionalAttributes
 - History

4.5 Manufacturer Parts

- ManufacturerParts
 - ManufacturerPart
 - manufacturerPartIdentifier
 - manufacturerPartUniqueIdentifier
 - manufacturerName
 - manufacturerContactUniqueIdentifier
 - globalManufacturerPartStatusCode
 - globalManufacturerPartStatusCodeOther
 - description
 - owner
 - ownerContactUniqueIdentifier
 - isTopLevel
 - referenceNotes
 - manufacturerPartType
 - AdditionalAttributes
 - ApprovedSupplierList
 - History
 - Attachments
 - AlternateIdentifiers
4.6 Supplier Parts

4.7 History (see 7.1)

4.8 Attachments (see 8.1)
4.9 Contact (see 9.1)

```
- Contacts
  + Contact
    - contactIdentifier
    - contactUniqueIdentifier
    - contactName
    - addressLine1
    - addressLine2
    - addressLine3
    - cityName
    - regionName
    - globalCountryCode
    - nationalPostalCode
    - telephoneNumber
    - facsimileNumber
    - department
    - businessName
    - globalBusinessIdentifier
    - emailAddress
    - universalResourceIdentifier
    - contactStatus
    - isTopLevel
    - globalPartnerClassificationCode
    - globalPartnerSubClassificationCode
    - globalLocationIdentifier
    - postOfficeBoxIdentifier
    - AdditionalAttributes
    - History
    - Attachments
    - ContactRoles
    - PublicDigitalCertificate
```

4.10 AsBuilt Product

```
- AsBuiltProduct
  + ProductInstance
    - globalProductIdentifier
    - asBuiltProductQuantity
    - manufacturerUnitOfMeasure
    - customerProductNumber
    - customerIdentifier
    - primaryIdentifier
    - secondaryIdentifier
    - isTopLevel
    - AdditionalAttributes
```
4.11 Product Instance
5 Recommended Implementation Practices

5.1 Inclusion of Linked Objects

In order to fully understand ID and IDREF, please refer to the XML W3C standard. These are values that are unique to the individual PDX package. You may view them as virtual flat file pointers. ID and IDREF have no value outside of the PDX package.

Objects are often linked to other objects by referring to them. For example, the manufacturerContactUniqueIdentifier refers to a contactUniqueIdentifier by use of IDREF and ID respectfully. The attributes used to link objects are of type IDREF and are defined in the Product Data eXchange diagram. The ID field is not optional and must always be populated to define the ID of the referred object. Every IDREF must have a corresponding ID entry.

Contact information exchanged within this standard is different than the contact information found in RosettaNet headers in that the information concerns a role of engineering manager, purchasing manager, test engineer, etc. and not to the IT contact person that is referenced in RosettaNet headers for the purpose of delivery and receipt of transactions. This technique can also be used to send an entire contact list with referential information on all contacts between trading partners in bulk and then agreeing upon referential cross identification of roles and responsibilities and any required or optional approval or alternate approval contact information. The requirements of approval's and tracking is in the workflow layer and therefore beyond the scope of this standard and should be addressed in either a transport standard such as RosettaNet or OAG, or in the implementation workflow by the solution provider, or by the trading partners through mutual agreement of management of the information exchanged in the workflow layer in implementing the IPC257x standard. However, there are available optional attributes that assist the workflow layer.

5.2 Attachments

The Product Data eXchange package may include attachments that are necessary as part of the product content. These may be any kind of file including a Universal Resource Identifier (URI) reference, other XML/DTD documents, corresponding XSL files, drawings, Gerber files, test specifications, etc. Attachments may be handled in the following ways:

- Included in the package – The attachment is included as part of the Product Data eXchange package and is delivered with the package. The “isFileIn” attribute is set to “yes” to indicate that the product data includes an attachment referenced via a URI. This requires careful communication as the contents of a URI are not managed as part of the package and can change independently. The “isFileIn” attribute is set to “no” to indicate that the product data references an attachment, but the attachment is not included as part of the package.

- Referenced via FileName – The metadata, including the FileName that is associated with the attachment is included, but the attachment itself is not included. The “isFileIn” attribute is set to “no” to indicate that the product data includes an attachment, but the attachment is not included as part of the PDX package. One use of this feature is when the sender knows the recipient already has the attachment and does not wish to resend it.

- Excluded from the package – The attachment can be excluded from the package entirely by giving no reference to the attachment in the package.
5.3 Missing Required Attributes

If the data source used to generate a Product Data eXchange package does not have a value for a required attribute, the value of the attribute should be set to "" so that the package won't be rejected by an application using a validating XML parser.

It is recommended that workflow rules be established such that error level checking is enabled for various levels, such as: critical, required, suggested, split, optional, obsolete, isolate – do not use category. The resulting communication should be one of logging, alerts, escalation, tracking and resolution. It is encouraged that the use of roles within the contact element should be defined between partners in facilitating this communication within the workflow layer but is beyond the scope of this standard.

5.4 Avoid Data Duplication in Product Data eXchange Package

If a Product Data eXchange package has two objects that share a sub-assembly or an item, the shared data (both meta data and possible attachment files associated with them) should not be duplicated in the package. For example, in figure 3, object A and P share the sub-assembly C. When a Product Data eXchange package contains both object A and P, the data of the C assembly should be included in the package only once. It must be noted that any change in any underlying part or assembly requires a change in the levels above so as to keep each level unique for clarification in manufacturing. It may, however, be agreed within the supply chain trading partners the level above is not materially affected from a business or engineering reason and therefore may not need to be changed. However, this is discouraged in use so that a complete audit trail for warranty entitlement can be maintained.

This consideration led to the important design decision to define Item in a flat structure instead of an embedded or recursive structure. Doing so makes it possible to include just one instance for multiple presences of a given object in a PDX package; the instance would then be referenced in multiple places.

The avoidance of data duplication is a recommended practice, which the Product Data eXchange standard does not enforce, and transmitting data duplication in a Product Data eXchange package does not constitute a violation of the standard. There are standard practices within government or industry groups that require a complete “line by line” transmittal of information, which would require data duplication in lower subsections of the BOM. Therefore, the standard does not prohibit the practice of sending a fully duplicated subsection of the BOM for adherence to established practices.
It should be noted that the package could be used to transmit complete contact information without other information. The same is true of a complete BOM with partial buyer required elements for RFQ submittals. AML vendors database information can be transmitted in bulk form also. This allows the loading of catalogue information in bulk for components and their suppliers. It is up to the particular application to make use of cross-reference information capabilities that are available in IPC257x series. The AdditionalAttributes element can be used to transmit additional purchasing information including pricing which is beyond the scope of this standard but allows this standard to be used in RFQ and Quote Response scenarios.

By sending bulk load information separate, only updated or changed – delta – information need to be transmitted unless an error is encountered.

5.5 Excluding data from the Product Data eXchange package

The Product Data eXchange standard supports the ability to send incremental change data or subsections of the element tree, rather than replicate data supporting an entire BOM with every Product Data eXchange package sent.

For example, when an ECO is sent for a particular product, it is unnecessary to send the entire Product Data eXchange file to the agency responsible for implementing the ECO if it is known that the agency has the data loaded into their system. It would only be necessary to send the changes to the Product Data eXchange document.

If data is excluded from a Product Data eXchange package, the sender should verify that the pruned Product Data eXchange package can stand-alone and be understood by the recipient. For example, BOM subsets/subtrees, BOM mark-ups, or AML mark-ups may be sent without all related data included. The sender should ensure that the Product Data eXchange package contains enough information to identify the change being communicated and its association with all other affected elements.

In particular, BOM changes, AML changes, schematic changes (attachments), and other attachments should all be linked and identified with each other, and be tagged with ECO identification specified by the Product Data eXchange standard. Sub-assemblies within a BOM should be able to be transmitted to recipients without needing to send the entire BOM. For example, a product sub-assembly is to be contracted to a particular Electronics Manufacturing Services provider, which doesn’t need the entire BOM. The Electronics Manufacturing Services provider may be involved in manufacturing several sub-trees of the BOM at various levels, and the standard can be used to transmit the appropriate BOM sub-trees without needing to transmit the entire BOM, for a more efficient transmission. This is particularly needed when the Product Data eXchange goes back and forth due to negotiation between the originator of the design and the manufacturer of some of the sub-assemblies. Any process that is lengthy and unwieldy will result in an impediment to the process of converging on an agreed upon solution.

However, best practices should require a fresh resend of the complete BOM subsection or other subsection information upon error in processing an incremental change with alert notification of all trading partners involved. A more sophisticated and elegant solution would be to have systems resend and compare information higher up in the BOM tree structure or other tree structure until successful synchronization of the database occurs without the need of human intervention or escalation unless directed in the workflow layer. It is not a violation of this standard for a complete database or subsection database “refresh” to be transacted on each change or at predetermined intervals if the trading partners so agree. The PDX standard provides content definition. The implementation of the workflow process is beyond the scope of this standard and is left to other standard bodies, implementers and solution providers, which deal specifically with the workflow layer of implementation.
5.6 Format of Date/Time Fields

The recommended format for date/time data is a string containing W3C datetime format of the current date and time. (See http://www.w3.org/TR/NOTE-datetime-970915.html). The following formats from the W3C specification are allowed:

Complete date: YYYY-MM-DD (eg 1997-07-16)

Complete date plus hours and minutes: YYYY-MM-DDThh:mm TZD (eg :1997-07-16T19:20+01:00)

Complete date plus hours, minutes, and seconds: YYYY-MM-DDThh:mm:ssTZD
(eg: 1997-07-16T19:20:30+01:00)

Complete date plus hours, minutes, seconds and a decimal fraction of a Second
YYYY-MM-DDThh:mm:ss.sTZD(e.g. 1997-07-16T19:20:30.45+01:00)

Where:

YYYY = four-digit year

MM = two-digit month (01=January, etc.)

DD = two-digit day of month (01 through 31)

hh = two digits of hour (00 through 23) (am/pm NOT allowed)

mm = two digits of minute (00 through 59)

ss = two digits of second (00 through 59)

s = one or more digits representing a decimal fraction of a second

TZD = time zone designator (Z or +hh:mm or -hh:mm)

Since all the attributes in Product Data eXchange are defined as character strings due to constraints of XML DTD, the above recommended date/time formats cannot be enforced by the current version of the Product Data eXchange standard. It is up to Product Data eXchange package generating applications to voluntarily adhere to these recommendations. In suggested best practices, the diagrams illustrate strong data typing associated with Schema Development as do the included tables.

5.7 isTopLevel Attribute

The isTopLevel attribute is used to indicate how an object (of type item, ManufacturerPart, or SupplierPart) fits into a Product Data eXchange package. The isTopLevel attribute provides Product Data eXchange parsers an efficient mechanism to identify the top-level item of an assembly.
6 ProductDataeXchangePackage

The ProductDataeXchangePackage element is required for every Product Data eXchange file. It is the root element of a Product Data eXchange transmission and describes the package as well as all the data within the package. There can be only one ProductDataeXchangePackage element in each ProductDataeXchange package.

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Type</th>
<th>Required?</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>thisDocumentIdentifier</td>
<td>CDATA</td>
<td>#REQUIRED</td>
<td>ID for a package. It is recommended that it is universally unique. There is no format defined for it. Any algorithm generating such an id can be used.</td>
</tr>
<tr>
<td>thisDocumentGenerationDateTime</td>
<td>CDATA</td>
<td>#REQUIRED</td>
<td>The date and time when the package was generated. Refer to section 5.6 for suggested formats.</td>
</tr>
<tr>
<td>thisDocumentModificationDateTime</td>
<td>CDATA</td>
<td>#REQUIRED</td>
<td>Date and time when the package was last modified. Refer to section 5.6 for suggested formats.</td>
</tr>
<tr>
<td>originatedByContactName</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Originator of the package</td>
</tr>
<tr>
<td>originatedByContactUniqueIdentifier</td>
<td>IDREF</td>
<td>#IMPLIED</td>
<td>Originator’s contact element</td>
</tr>
<tr>
<td>packageType</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Type of package. It is recommended values: Manufacture</td>
</tr>
<tr>
<td>description</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Description of the package</td>
</tr>
<tr>
<td>dataSource</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Source of the package</td>
</tr>
<tr>
<td>thisDocumentCopyright</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Copyright information of the package</td>
</tr>
</tbody>
</table>
7 History

The history element holds a collection of HistoryItem elements that together describe the entire history of the related object.

7.1 HistoryItem

The HistoryItem element describes a specific historic action.

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Type</th>
<th>Required?</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>action</td>
<td>CDATA</td>
<td>#REQUIRED</td>
<td>Action taken on the object (Add, Modify, Delete, etc.)</td>
</tr>
<tr>
<td>revisionIdentifier</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Revision number</td>
</tr>
<tr>
<td>userName</td>
<td>CDATA</td>
<td>#REQUIRED</td>
<td>Originator of package instance</td>
</tr>
<tr>
<td>userContactUniqueIdentifier</td>
<td>IDREF</td>
<td>#IMPLIED</td>
<td>Originator’s ContactID referencing Contact element</td>
</tr>
<tr>
<td>modificationDate</td>
<td>dateTime</td>
<td>#REQUIRED</td>
<td>Date and time of the action</td>
</tr>
<tr>
<td>historyItemStatus</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Status of the object</td>
</tr>
<tr>
<td>details</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Specific details related to the action taken.</td>
</tr>
<tr>
<td>comments</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Free-form comments for this event. These are general comments on the action.</td>
</tr>
</tbody>
</table>
8 Attachments

The attachments element contains all the attachment elements associated with a specific object.

8.1 Attachment

The attachment element is a pointer to a file either through a URL or within the Product Data eXchange zip file. If the file is zipped and included in the Product Data eXchange package, the FileName contains the name of the file. Otherwise, the full URL of the file location is contained in the FileName. There is one attachment element for each attachment associated with an object.

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Type</th>
<th>Required?</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>referenceName</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>User specified file name (eg: file.doc)</td>
</tr>
<tr>
<td>universalResourceIdentifier</td>
<td>URI</td>
<td>#REQUIRED</td>
<td>A network-centric identifier that provides the fully attributed identity of a resource. Refer to IETF RFC 2396 for further definition. If referring to a file contained in the PDX package, use the file://filename notation.</td>
</tr>
<tr>
<td>fileIdentifier</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Unique identifier for the file; may be a key to the file. This field may be used when several attached files have the same filename.</td>
</tr>
<tr>
<td>versionIdentifier</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Version of the file</td>
</tr>
<tr>
<td>fileSize</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>File size</td>
</tr>
<tr>
<td>checkSum</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>MD5 message digest algorithm, RFC 1321 (FTP://NIS.NSF.NET/internet/documents/rfc)</td>
</tr>
<tr>
<td>isFileIn</td>
<td>Yes</td>
<td>No</td>
<td>#REQUIRED</td>
</tr>
<tr>
<td>description</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>File description</td>
</tr>
<tr>
<td>globalMimeTypeQualifierCode</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>The MIME type. Refer to http://www.iana.org for a list of types.</td>
</tr>
<tr>
<td>attachmentModificationDate</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Datetime stamp of file</td>
</tr>
</tbody>
</table>
9 Contacts

The contacts element is used to hold a collection of contact elements.

9.1 Contact

Each contact represents an individual or entity. The main differentiating factor between the RosettaNet RNIF 1.x or 2.0 contact field and the PDX element is that the contact information within this standard assigns additional roles (beyond information technology). For example, trading partners that wish to effect a Engineering Change Order (ECO) have different persons within their company who are responsible for reviewing the ECO and agreeing to implementation or “cut in” date, and reviewing the proposed changes as it may effect purchasing, test engineering, production, etc. Therefore, a contact may have the role of Engineering Manager whose digital signature is determined to be required for approval of the ECO.

Although the workflow of ECO’s is beyond the scope of this standard, it is anticipated that implementers will use the role information in order to track the approval process. The Engineering Manager, in the example above, may have alternate people who can “signoff” on the approval in his/her absence. In such an instance, the isAlternate attribute of the GroupRole entity would be set to “yes” for the role of Engineering Manager. A person can occupy more than one role. Furthering the example, the Test Engineering Manager may have “veto” power on an EC through his/her role as Test Engineering Manager but is not required to sign. The Engineering Test Manager could also be the alternate signoff designee for the Engineering Manager role that has a requirement for approval before an ECO can be implemented.

The PublicDigitalCertificate (optional) can have multiple entries that can be used in the “signoff” process. Multiple digital certificates are available due to a person possibly using two or more different certificates, one from each trading partner involved.
<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Type</th>
<th>Required?</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>contactIdentifier</td>
<td>CDATA</td>
<td>#REQUIRED</td>
<td>contact id</td>
</tr>
<tr>
<td>contactUniqueIdentifier</td>
<td>ID</td>
<td>#REQUIRED</td>
<td>Unique Pointer for referencing this contact</td>
</tr>
<tr>
<td>contactName</td>
<td>CDATA</td>
<td>#REQUIRED</td>
<td>Name of the contact person(s) within the organization</td>
</tr>
<tr>
<td>addressLine1</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>The first line of a physical address</td>
</tr>
<tr>
<td>addressLine2</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>The second line of a physical address</td>
</tr>
<tr>
<td>addressLine3</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>The third line of a physical address</td>
</tr>
<tr>
<td>cityName</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>The name of a City</td>
</tr>
<tr>
<td>regionName</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>The name of a province or state within a country</td>
</tr>
<tr>
<td>globalCountryCode</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Code identifying the two character country code specified in ISO 3166-1993</td>
</tr>
<tr>
<td>nationalPostalCode</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Code identifying geographic location as specified by a national postal code</td>
</tr>
<tr>
<td>telephoneNumber</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>The numeric schema designed to achieve contact via telephone</td>
</tr>
<tr>
<td>facsimileNumber</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>The numeric schema design to achieve contact via facsimile</td>
</tr>
<tr>
<td>department</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Department or Mail Stop</td>
</tr>
<tr>
<td>businessName</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>The name of a business entity</td>
</tr>
<tr>
<td>globalBusinessIdentifier</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>A unique business identifier (DUNS).</td>
</tr>
<tr>
<td>Attribute Name</td>
<td>Type</td>
<td>Required?</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>emailAddress</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>email address</td>
</tr>
<tr>
<td>universalResourceIdentifier</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Company's URI</td>
</tr>
<tr>
<td>contactStatus</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Status – suggest use "active", "alternate", "inactive", etc.</td>
</tr>
<tr>
<td>isTopLevel</td>
<td>(Yes</td>
<td>No)</td>
<td>#IMPLIED</td>
</tr>
<tr>
<td>globalPartnerClassificationCode</td>
<td>(Carrier</td>
<td>Distributor</td>
<td>EndUser</td>
</tr>
<tr>
<td>globalPartnerClassificationCodeOther</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>If the above globalPartnerClassificationCode attribute is set to “Other”, use this attribute to provide a more descriptive value. If the above globalPartnerClassificationCode is NOT set to “Other”, LEAVE THIS FIELD BLANK.</td>
</tr>
<tr>
<td>globalPartnerSubClassificationCode</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Code further identifying a partner's function in the supply chain.</td>
</tr>
<tr>
<td>globalLocationIdentifier</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Location uniquely identified by the DUNS +4 number.</td>
</tr>
<tr>
<td>postOfficeBoxIdentifier</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>The proprietary identity of a physical address, located at a post office, designed solely to accept or receive mail.</td>
</tr>
</tbody>
</table>
9.2 ContactRoles

ContactRoles allow an implementer of this standard to assign multiple roles to individuals. The groupLabel attribute could contain the project name, division, or other designator. The groupLabel is coupled with zero or more ContactRole attributes. The groupRoleDescription may contain descriptions such as Engineering, Purchasing or other descriptions which may be applicable between the trading partners. The isAlternate element allows for others being able to “signoff” within the approval process.

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Type</th>
<th>Required?</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>groupLabel</td>
<td>CDATA</td>
<td>#REQUIRED</td>
<td>Label for the grouping of roles</td>
</tr>
</tbody>
</table>

9.2.1 ContactRole

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Type</th>
<th>Required?</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>groupRoleDescription</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Optional description or may be used to further subdivide grouping classifications</td>
</tr>
</tbody>
</table>

9.2.2 GroupRole

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Type</th>
<th>Required?</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>role</td>
<td>CDATA</td>
<td>#REQUIRED</td>
<td>Agreed upon role classification between trading partners</td>
</tr>
<tr>
<td>isAlternate</td>
<td>(Yes</td>
<td>No)</td>
<td>#REQUIRED</td>
</tr>
<tr>
<td>description</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Description of the role</td>
</tr>
</tbody>
</table>
9.3 PublicDigitalCertificate

A digital certificate may be used to encrypt an attachment, for non-repudiation of approval/disapproval, and allows embedding of security within the PDX package exchange.

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Type</th>
<th>Required?</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>publicDigitalCertificate</td>
<td>CDATA</td>
<td>#REQUIRED</td>
<td>Public digital certificate</td>
</tr>
<tr>
<td>trustedRoot</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Name of the issuer of the certificate</td>
</tr>
<tr>
<td>trustedRootURI</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>The URI of the issuer of the certificate for verification and validation of the certificate.</td>
</tr>
</tbody>
</table>

10 AdditionalAttributes

PDX was engineered with the understanding that it is unrealistic to expect a standard to meet every organization’s needs, especially as those needs change with time. For that reason, the AdditionalAttributes and AdditionalAttribute elements are included in the standard to allow user-defined extensions to any Product Data eXchange entity. The AdditionalAttribute element defines a single new attribute; AdditionalAttributes enables the grouping of these new attributes.

Note that the use of these elements in effect creates a custom version of the standard, and extensions defined in this manner will not interoperate with standard Product Data eXchange implementations. For this reason, users are encouraged to use expansion mechanisms judiciously, and to recommend any desired additions to the IPC Product Data eXchange committee.

Item characteristics such as package, resistance, etc. attributes are not to be handled by AdditionalAttributes, but are to be handled by the characteristics element defined in IPC 2578.
All entities may have zero or more child `AdditionalAttribute` elements. The `AdditionalAttributes` element is a collection of `AdditionalAttribute` elements.

```
<AdditionalAttributes>
  <AdditionalAttribute>
    <groupLabel>string</groupLabel>
    <name>string</name>
    <value>string</value>
    <dimension>string</dimension>
    <dataType>String | Boolean | Float | Double | Decimal | DateTime | Binary | UriReference | Other</dataType>
    <description>string</description>
  </AdditionalAttribute>
  ...
</AdditionalAttributes>
```

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Type</th>
<th>Required?</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>groupLabel</td>
<td>CDATA</td>
<td>#REQUIRED</td>
<td>Label for a group of grouped additional attributes</td>
</tr>
</tbody>
</table>

10.1 `AdditionalAttribute`

Each `AdditionalAttribute` element represents a non-standard, user-defined attribute.

```
<AdditionalAttribute>
  <name>string</name>
  <value>string</value>
  <dimension>string</dimension>
  <dataType>String | Boolean | Float | Double | Decimal | DateTime | Binary | UriReference | Other</dataType>
  <description>string</description>
</AdditionalAttribute>
```

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Type</th>
<th>Required?</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>CDATA</td>
<td>#REQUIRED</td>
<td>The attribute name</td>
</tr>
<tr>
<td>value</td>
<td>CDATA</td>
<td>#REQUIRED</td>
<td>The attribute value</td>
</tr>
<tr>
<td>dimension</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>The dimension (units) of the value.</td>
</tr>
<tr>
<td>dataType</td>
<td>(String</td>
<td>Boolean</td>
<td>Float</td>
</tr>
<tr>
<td>dataTypeOther</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>If the above <code>dataTypeCode</code> attribute is set to “Other”, use this attribute to provide a more descriptive value. If the above <code>dataTypeCode</code> is NOT set to “Other”, LEAVE THIS FIELD BLANK.</td>
</tr>
<tr>
<td>description</td>
<td>CDATA</td>
<td>#IMPLIED</td>
<td>Description of the attribute</td>
</tr>
</tbody>
</table>
11 AlternateIdentifiers

The AlternateIdentifiers element holds a collection of AlternateIdentifier elements that provide an optional, alternative mechanism for referring to an item or part.

11.1 AlternateIdentifier

The AlternateIdentifier element allows for the modeling of an item that maps to more than one part number (itemIdentifier). This is necessary for supporting businesses, who through acquisitions or industry requirements, have identical items represented by more than one part number (itemIdentifier). A description is used to support classification of the alternate identifying number.

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Type</th>
<th>Required?</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alternateIdentifierNumber</td>
<td>CDATA</td>
<td>#REQUIRED</td>
<td>The identifying number.</td>
</tr>
<tr>
<td>description</td>
<td>CDATA</td>
<td>#REQUIRED</td>
<td>The description of the numbering scheme from which the alternateIdentifierNumber is derived.</td>
</tr>
</tbody>
</table>
12 Document Type Definition (DTD)

This specification uses a DTD instead of XML Schemas because, at the time of this writing, the XML Schema specification was not completely defined. It is expected that a future version of Product Data eXchange XML definitions will be written in XML Schema.

The following is a master DTD that includes all elements from the IPC-2571, IPC-2576 and IPC-2578.

```xml
<?xml version='1.0' encoding='UTF-8' ?>
<!ELEMENT AdditionalAttribute EMPTY>
<!ATTLIST AdditionalAttribute  name          CDATA  #REQUIRED
value         CDATA  #REQUIRED
dimension     CDATA  #IMPLIED
dataType       (String | Boolean | Float | Double | Decimal | DateTime | Binary | UriReference | Other ) #IMPLIED
dataTypeOther CDATA  #IMPLIED
description   CDATA  #IMPLIED >
<!ELEMENT AdditionalAttributes (AdditionalAttribute+)>
<!ATTLIST AdditionalAttributes  groupLabel CDATA  #REQUIRED >
<!ELEMENT AffectedItems (AffectedItem+)>
<!ELEMENT AffectedItem (AdditionalAttributes* , BillOfMaterialMarkups? , ApprovedManufacturerListMarkups? , AttachmentMarkups?)>
<!ATTLIST AffectedItem  itemIdentifier                CDATA  #REQUIRED
itemUniqueIdentifier          IDREF  #IMPLIED
manufacturingSite             CDATA  #IMPLIED
oldRevision                   CDATA  #IMPLIED
newRevision                   CDATA  #REQUIRED
obsoleteDate                  CDATA  #REQUIRED
effectiveDate                 CDATA  #REQUIRED
disposition                   CDATA  #IMPLIED
globalLifeCyclePhaseCode       (Design | Preliminary | Prototype | Pilot | Conditional | Production | Pending | Inactive | Unqualified | Disqualified | Obsolete | Other ) #IMPLIED
globalLifeCyclePhaseCodeOther CDATA  #IMPLIED
description                   CDATA  #IMPLIED >
<!ELEMENT AlternateItems (AlternateItem+)>
<!ELEMENT AlternateItem (AdditionalAttributes*)>
<!ATTLIST AlternateItem  itemIdentifier            CDATA  #IMPLIED
itemUniqueIdentifier      IDREF  #REQUIRED
globalPreferredStatusCode CDATA  #IMPLIED >
<!ELEMENT ApprovedManufacturerListItem (AdditionalAttributes* , AlternateIdentifiers?)>
<!ATTLIST ApprovedManufacturerListItem  manufacturerPartIdentifier            CDATA  #REQUIRED
manufacturerPartUniqueIdentifier      IDREF  #IMPLIED
globalPreferredStatusCode CDATA  #IMPLIED >
<!ELEMENT ApprovedManufacturerList (AdditionalAttributes* , AlternateIdentifiers?)>
```
<ELEMENT ChangeHistoryItem (AdditionalAttributes*)>

<ATTLIST ChangeHistoryItem changeNumber CDATA #REQUIRED
revisionIdentifier CDATA #IMPLIED
globalLifeCyclePhaseCode (Design | Preliminary | Prototype | Pilot | Conditional | Production | Pending | Inactive | Unqualified | Disqualified | Obsolete | Other) #IMPLIED
globalLifeCyclePhaseCodeOther CDATA #IMPLIED
releasedDate CDATA #IMPLIED
incorporatedDate CDATA #IMPLIED
effectiveDate CDATA #IMPLIED
obsoleteDate CDATA #IMPLIED
changeType CDATA #IMPLIED
proposedRevision CDATA #IMPLIED
globalEngineeringChangeStatusCode (IssueIdentified | ChangeRequested | UnderInvestigation | ChangeOrderProposed | ApprovalPending | OnHold | Approved | Rejected | Completed | Released | Implemented | Other) #IMPLIED
globalEngineeringChangeStatusCodeOther CDATA #IMPLIED
description CDATA #IMPLIED

<ELEMENT Characteristics (MeasuredCharacteristic*, RangedCharacteristic*, EnumeratedCharacteristic*, TextualCharacteristic*)>

<ATTLIST Characteristics category CDATA #REQUIRED>
<ELEMENT MeasuredCharacteristic EMPTY>

<ATTLIST MeasuredCharacteristic definitionSource CDATA #IMPLIED
measuredCharacteristicName CDATA #IMPLIED
measuredCharacteristicValue CDATA #IMPLIED
engineeringUnitOfMeasure CDATA #IMPLIED
engineeringNegativeTolerance CDATA #IMPLIED
engineeringPositiveTolerance CDATA #IMPLIED

<ELEMENT RangedCharacteristic EMPTY>

<ATTLIST RangedCharacteristic definitionSource CDATA #IMPLIED
rangedCharacteristicName CDATA #IMPLIED
rangedCharacteristicLowerValue CDATA #IMPLIED
rangedCharacteristicUpperValue CDATA #IMPLIED
engineeringUnitOfMeasure CDATA #IMPLIED
engineeringNegativeTolerance CDATA #IMPLIED
engineeringPositiveTolerance CDATA #IMPLIED

<ELEMENT EnumeratedCharacteristic EMPTY>

<ATTLIST EnumeratedCharacteristic definitionSource CDATA #IMPLIED
enumeratedCharacteristicName CDATA #IMPLIED
enumeratedCharacteristicValue CDATA #IMPLIED

<ELEMENT TextualCharacteristic EMPTY>

<ATTLIST TextualCharacteristic definitionSource CDATA #IMPLIED
textualCharacteristicName CDATA #IMPLIED
textualCharacteristicValue CDATA #IMPLIED

<ELEMENT Contacts (Contact*)>

<ELEMENT Contact (AdditionalAttributes*, History?, Attachments?, ContactRoles*, PublicDigitalCertificate*)>
<ATTLIST Contact contactIdentifier CDATA #REQUIRED
 contactUniqueIdentifier ID #REQUIRED
 contactName CDATA #REQUIRED
 addressLine1 CDATA #IMPLIED
 addressLine2 CDATA #IMPLIED
 addressLine3 CDATA #IMPLIED
 cityName CDATA #IMPLIED
 regionName CDATA #IMPLIED
 globalCountryCode CDATA #IMPLIED
 nationalPostalCode CDATA #IMPLIED
 telephoneNumber CDATA #IMPLIED
 facsimileNumber CDATA #IMPLIED
 department CDATA #IMPLIED
 businessName CDATA #IMPLIED
 globalBusinessIdentifier CDATA #IMPLIED
 emailAddress CDATA #IMPLIED
 universalResourceIdentifier CDATA #IMPLIED
 contactStatus CDATA #IMPLIED
 isTopLevel (Yes | No) #IMPLIED
 globalPartnerClassificationCode (Carrier | Distributor | EndUser | EndUserGovernment | Financier | Manufacturer | Retailer | Shopper | FreightForwarder | Broker | CustomsBroker | Warehouser | DistributionCenter | ContractManufacturer | Reseller | OriginalEquipmentManufacturer | Other) #IMPLIED
 globalPartnerClassificationCodeOther CDATA #IMPLIED
 globalPartnerSubClassificationCode CDATA #IMPLIED
 globalLocationIdentifier CDATA #IMPLIED
 postOfficeBoxIdentifier CDATA #IMPLIED>
</ELEMENT History (HistoryItem+)>
<ELEMENT Configuration EMPTY>
<ATTLIST Configuration configurationType CDATA #REQUIRED
configurationData CDATA #REQUIRED >
<ELEMENT Lot EMPTY>
<ATTLIST Lot lotNumber CDATA #REQUIRED
lotQuantity CDATA #IMPLIED
manufacturerUnitOfMeasure CDATA #IMPLIED
globalBusinessIdentifier CDATA #IMPLIED
globalCountryCode CDATA #IMPLIED globalProductIdentifier CDATA #IMPLIED
referenceDesignator CDATA #IMPLIED
lotType CDATA #REQUIRED >
<ELEMENT WorkOrder EMPTY>
<ATTLIST WorkOrder manufacturingWorkOrderType CDATA #REQUIRED
manufacturingWorkOrderNumber CDATA #REQUIRED >
<ELEMENT Packaging EMPTY>
<ATTLIST Packaging packagingUniqueIdentifier CDATA #REQUIRED
cartonIdentifier CDATA #IMPLIED
palletIdentifier CDATA #IMPLIED >
<ELEMENT Process EMPTY>
<ATTLIST Process stepIdentifier CDATA #REQUIRED
processDateTime CDATA #IMPLIED
operation CDATA #IMPLIED
resource CDATA #IMPLIED
router CDATA #IMPLIED >
<ELEMENT AlternateIdentifier EMPTY>
<ATTLIST AlternateIdentifier alternateIdentifierNumber CDATA #IMPLIED
description CDATA #IMPLIED >
<ELEMENT AlternateIdentifiers (AlternateIdentifier+)>
<ELEMENT ContactRoles (ContactRole*)>
<ATTLIST ContactRoles groupLabel CDATA #REQUIRED >
<ELEMENT ContactRole (GroupRole*)>
<ATTLIST ContactRole groupRoleDescription CDATA #IMPLIED >
<ELEMENT Role (#PCDATA)>
<ELEMENT GroupRole EMPTY>
<ATTLIST GroupRole role CDATA #REQUIRED
isAlternate (Yes | No) #REQUIRED
description CDATA #IMPLIED >
<ELEMENT PublicDigitalCertificate EMPTY>
<ATTLIST PublicDigitalCertificate publicDigitalCertificate CDATA #REQUIRED
trustedRoot CDATA #IMPLIED
trustedRootURI CDATA #IMPLIED >
<ELEMENT SerialNumberIdentification EMPTY>
<!ATTLIST SerialNumberIdentification sequenceNumber CDATA #IMPLIED
ProprietarySerialIdentifier CDATA #IMPLIED >
Appendix A – IPC Web-based Standards (IPC25XX)

The web-based standards (IPC 25XX) are designed to foster application integration and electronic commerce through data and information interchange standards based on XML. There is no need for a common object model, programming language, network protocol, persistent storage mechanism or operating system for two applications to exchange XML messages formatted using the web-based standards. The two applications simply need to be able to format, transmit, receive and consume a standardized XML message.

A web-based standards series has been identified for each of the value-added activities occurring throughout the product life cycle of an electronics product. The web-based standards are:

- IPC-2500 – Framework Standard
- IPC-2510 – Product Data Representation
- IPC-2520 – Product Data Quality
- IPC-2530 – Surface Mount Equipment Standard Recipe File Format
- IPC-2540 – Shop Floor Equipment Communications
- IPC-2550 – Manufacturing Execution Systems Communications
- IPC-2560 – Enterprise Resource Planning Systems Communications
- IPC-2570 – Supply Chain Communications

Table A-1 shows the correlation of the different standards in each of the series. Although not every standard has been started, the figure represents a coordinated opportunity to maintain consistency throughout the standard development cycle.

<table>
<thead>
<tr>
<th>IPC Number/Function</th>
<th>-xxx1 Generic</th>
<th>-xxx2 Administ</th>
<th>-xxx3 Documnt</th>
<th>-xxx4 Board Fabricat</th>
<th>-xxx5 Bare Bd Test</th>
<th>-xxx6 Assy Manufac</th>
<th>-xxx7 Assy/Test/Insp.</th>
<th>-xxx8 Comp. & Material</th>
<th>-xxx9 Informa. Modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC-2500 CAMX Framework</td>
<td>IPC-2501 CAMX PINS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC-2520 Quality Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IPC-2524 (Pub)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC-2530 SRFF Process Data Recipe file</td>
<td>IPC-2531 ANSI Draft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC-2540 Shop Floor Communicate</td>
<td>IPC-2541 (Pub)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IPC-2546 (Pub)</td>
<td>IPC-2547 2nd IF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC-2550 Execution Communicate</td>
<td>IPC-2551 PINS</td>
<td>IPC-2554 Working draft</td>
<td></td>
<td>IPC-2556 PINS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC-2560 Enterprise Communicate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC-2570 Supply Chain Communicate</td>
<td>IPC-2571 (Pub)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IPC-2576 (Pub)</td>
<td>IPC-2577 Proposal</td>
<td>IPC-2578 (Pub)</td>
<td></td>
</tr>
</tbody>
</table>