

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]
April 2002. All Rights Reserved.

 1

 2

 3

 4

ebXML Test Framework 5

Committee Specification Version 1.1 DRAFT 6

 7

OASIS ebXML Implementation, Interoperability and 8

Conformance Technical Committee 9

 11 October, 200410

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 2 of 214

Document identifier: 1
ebxml-iic-test-framework-11 2

Location: 3
 http://www.oasis-open.org/committees/documents.php?wg_abbrev=ebxml-iic 4

Authors/Editors: 5
 6
Michael Kass, NIST <michael.kass@nist.gov> 7
Jacques Durand, Fujitsu <jdurand@fsw.fujitsu.com> 8
 9
 10
 11

Contributors: 12
Monica Martin, Sun Microsystems <monica.martin@sun.com> 13
Jacques Durand, Fujitsu <jdurand@fsw.fujitsu.com> 14
Christopher Frank < C.Frank@seeburger.de> 15
Serm Kulvatunyou, NIST <serm@nist.gov> 16
Tim Sakach, Drake Certivo, Inc. tsakach@certivo.net 17
Hyunbo Cho, Postech hcho@postech.ac.kr 18
Han Kim Ngo, NIST han.ngo@nist.gov 19
Pete Wenzel, SeeBeyond <pete@seebeyond.com> 20

Abstract: 21
This document specifies ebXML interoperability testing specification for the eBusiness 22
community. 23

Status: 24
This document has been approved as a committee specification, and is updated periodically on 25
no particular schedule. 26

Committee members should send comments on this specification to the ebxml-iic@lists.oasis-27
open.org list. Others should subscribe to and send comments to the ebxml-iic-28
comment@lists.oasis-open.org list. To subscribe, send an email message to ebxml-iic-comment-29
request@lists.oasis-open.org with the word "subscribe" as the body of the message. 30

For more information about this work, including any errata and related efforts by this committee, 31
please refer to our home page at http://www.oasis-open.org/committees/ebxml-iic. 32

 33

Errata to this version: 34
None 35

 36

 37
 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 3 of 214

Table of Contents1

1 Introduction... 8 2
1.1 Summary of Contents of this Document.. 8 3
1.2 Document Conventions ... 8 4
1.3 Audience.. 9 5
1.4 Caveats and Assumptions ... 9 6
1.5 Related Documents ... 9 7
1.6 Minimal Requirements for Conformance... 10 8

2 Principles and Methodology of Operations .. 11 9
2.1 Objectives .. 11 10

2.1.1 General.. 11 11
2.2 General Methodology .. 12 12
 Changes from version 1.0 of this specification .. 13 13
2.3 ... 13 14

2.3.1 Test Service Changes ... 13 15
2.3.2 Test Requirements Schema Changes: ... 13 16
2.3.3 Test Driver Scripting Changes: ... 14 17
2.3.4 Modified MessageStore Schema .. 15 18
2.3.5 Modified Test Report Schema... 15 19

3 The Test Framework Components... 16 20
3.1 The Test Driver .. 16 21

3.1.1 Functions ... 16 22
3.1.2 Using the Test Driver in Connection Mode ... 18 23
3.1.3 Using the Test Driver in Service Mode.. 20 24

3.2 The Test Service.. 22 25
3.2.1 The ebXML Messaging Services Test Service ... 22 26
3.2.2 Modes of Operation of the Test Service.. 24 27
3.2.3 Configuration Parameters of the Test Service .. 25 28
3.2.4 The Messaging Actions of the Messaging Services Test Service .. 26 29

3.2.4.1 Common Functions...26 30
3.2.4.2 Test Service Actions ...26 31

3.2.4.2.1 Mute action ..27 32
3.2.4.2.2 Dummy action ..27 33
3.2.4.2.3 Reflector...27 34
3.2.4.2.4 Initiator action...28 35
3.2.4.2.5 PayloadVerify action ..28 36

3.2.4.3 Integration of the Test Service with an MSH Implementation ...29 37
3.2.5 Interfaces for Test Driver and Test Service... 29 38

3.2.5.1 Abstract Test Service “Send” Interface ...30 39
3.2.5.2 WSDL representation of the initiator RPC method..31 40
3.2.5.3 Abstract Test Service “Configuration” Interface ..31 41

3.2.5.3.1 WSDL representation of the configurator SOAP method ...32 42
3.2.5.4 Abstract Test Driver “Receive” Interface...32 43

3.2.5.4.1 WSDL representation of the Test Driver notify SOAP method ...34 44

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 4 of 214

3.2.6 Test Service Configurator, Initiator and Notification Message formats 35 1
4 The Test Case Script.. 42 2

4.1 Executing Test Cases.. 42 3
4.1.1 A Typical Execution Scenario.. 42 4
4.1.2 Test Case as a Workflow of Threads .. 43 5
4.1.3 Message Declarations... 44 6
4.1.4 Testing Configuration Data.. 44 7

4.2 An Abstract View of Test Scripts ... 45 8
4.2.1 Test Case #1: Basic Transaction Send/Receive within specified TimeToAcknowledge and 9
TimeToPerform... 46 10

4.2.1.1 Semantics of Execution for this test case: ..47 11
4.2.2 Test Case #2: Basic Error Handling Test.. 47 12

4.2.2.1 Semantics of Execution for this test case: ..48 13
4.2.3 Test Case #3: Conditional Branching Scenario .. 48 14

4.2.3.1 Semantics of Execution for this Test Case: ..50 15
4.2.4 Final Test Case Result Rules.. 51 16

5 Test Suite ... 53 17
5.1 Conformance vs. Interoperability Test Suite.. 53 18
 The Test Suite Document .. 54 19
5.2 ... 54 20

5.2.1 Test Suite Metadata .. 56 21
5.2.2 The ConfigurationGroup.. 57 22

5.2.2.1 Precedence Rules for Test Driver/MSH configuration parameters ...61 23
5.2.2.1.1 Test Driver Parameter Exception Conditions ...62 24

5.2.3 The ThreadGroup.. 63 25
5.2.4 The TestServiceConfigurator Test Operation ... 63 26

5.2.4.1 TestServiceConfigurator behavior in Connection and Service mode..64 27
 “Inlined” Message Content... 65 28
5.2.5.. 65 29
5.2.6 Test Cases .. 66 30

6 Test Requirements ... 67 31
6.1 Purpose and Structure... 67 32
6.2 The Test Requirements Document.. 67 33
6.3 Specification Coverage.. 70 34
6.4 Test Requirements Coverage (or Test Run-Time Coverage) ... 71 35

7 Test Profiles.. 73 36
7.1 The Test Profile Document .. 73 37
7.2 Relationships between Profiles, Requirements and Test Cases... 74 38

8 Test Cases ... 76 39
8.1 Detailed Structure of a Test Case ... 76 40

8.1.1 Individual TestCase Instructions ... 79 41
 Test Threads ..79 42
8.1.1.1..79 43
8.1.1.2 SetParameter: Setting Parameter values..81 44
8.1.1.3 SetXPathParameter: Setting Parameter values using retrieved message content82 45
8.1.1.4 LockParameter: Synchronizing concurrent Thread access to parameters..................................83 46
8.1.1.5 UnlockParameter: Synchronizing concurrent Thread access to parameters84 47

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 5 of 214

8.1.1.5.1 Scope of a parameter...84 1
8.1.1.5.2 Referencing/Dereferencing parameters in PutMessage Filter and TestAssertion operations2
 85 3

8.1.1.6 PutMessage: Message Construction and Transmission ...85 4
8.1.1.6.1 The SetMessage test operation: ..89 5
8.1.1.6.2 The Packaging test operation: ...89 6
8.1.1.6.3 The Declaration..90 7
8.1.1.6.4 Mutator: Turning a Declaration into an actual Message...91 8
8.1.1.6.5 DSignEnvelope and DSignPayload: Applying an XML Signature to the message91 9

8.1.1.7 Initiator: Passing message construction directives to the Test Service.......................................93 10
8.1.1.8 GetMessage: Message Retrieval..96 11
8.1.1.9 The GetMessage Test Operation..97 12

 Semantics..97 13
8.1.1.9.1 of the GetMessage test operation ..97 14

8.1.2 The Message Store ... 99 15
8.1.2.1 Semantics of the Message Store ..101 16
8.1.2.2 Filter Result Structure ...101 17
8.1.2.3 SetXPathParameter: Defining variables using content from a Filter result102 18
8.1.2.4 The TestAssertion Operation..103 19

8.1.2.4.1 Semantics of TestAssertion ...106 20
 The WhenTrue and WhenFalse operations..107 21
8.1.2.5..107 22

9 Test Material... 110 23
9.1.1 Testing Profile Document .. 110 24
9.1.2 Test Requirements Document... 110 25
9.1.3 Test Suite Document... 110 26
9.1.4 Mutator documents.. 111 27
9.1.5 CPAs ... 111 28
9.1.6 Test Report Document .. 111 29

10 Testing Components and Scenarios .. 112 30
 Base features running ebXML Test Suites .. 112 31
10.1 ... 112 32
10.2 Test Driver: Feature Profiles and Test Suites.. 112 33
 Test Service : Feature Profiles and Test Suites .. 113 34
10.3 ... 113 35
10.4 Test Material: Minimally Required Documents .. 114 36

11 Sample Scenarios and Test Material .. 115 37
11.1 MS Testing: ebXML Messaging Service Test Material Samples... 115 38

11.1.1 Example Test Requirements... 115 39
11.1.2 Conformance Test Requirements ... 115 40
11.1.3 Interoperability Test Requirements ... 117 41
11.1.4 Example Test Profiles ... 118 42
11.1.5 Conformance Test Profile Example .. 118 43
11.1.6 Interoperability Test Profile ... 119 44
11.1.7 Conformance Test Suite ... 119 45
11.1.8 Interoperability Test Suite ... 121 46

Appendix A (Normative) (Normative) Test Profile Schema.. 126 47

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 6 of 214

Appendix B (Normative) (Normative) Test Requirements Schema.. 128 1
Appendix C (Normative) (Normative) Test Suite Schema.. 132 2
Appendix D (Normative) ebXML Message Declaration Schema.. 146 3

11.1.9 Interpreting the SOAP portion of the ebXML Declaration...151 4
11.1.10 Interpreting the SOAP Header Extension Element Declaration ...152 5

Appendix E (Normative) Message Store and Filter Result Schema .. 178 6
Appendix F (Normative) Test Report Schema ... 183 7
Appendix G (Normative) WSDL Test Service Definitions... 196 8
Appendix H (Normative) Sample Test Cases... 200 9
Appendix I Terminology... 209 10
Appendix J References.. 211 11
Normative References .. 211 12
Non-Normative References... 212 13
Appendix K Acknowledgments ... 213 14
IIC Committee Members ... 213 15
Appendix L Revision History .. 214 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 7 of 214

 1

 2

 3

 4

 5

 6

 7

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 8 of 214

1 Introduction 1

 2

1.1 Summary of Contents of this Document 3

"This document describes a test framework for automatically running test suites for - but not limited to - 4
ebXML specifications. The framework includes an architecture design based on components that can be 5
combined and distributed in different ways, to accommodate different test harnesses. It also includes an 6
extensible test scripting language for coding test suites in an executable way. It can accommodate third-7
party plug-ins, that would perform advanced verifications for example on message material (e.g. semantic 8
verification using rule engine), or that would help build testing material (e.g. digital signature)." 9

This specification is organized around the following topics: 10

Test Framework Components 11

Test Suite Representation using XML 12

Test Execution using Workflow Principles 13

Test Scenarios and Test Framework Profiles 14

Sample Instance files of Test Material 15

Normative Schemas for Test Material 16

 17

1.2 Document Conventions 18

Terms in Italics are defined in the Definition of Terms in Appendix J. Terms listed in Bold Italics 19
represent the element and/or attribute content. Terms listed in Courier font relate to test data. Notes 20
are listed in Times New Roman font and are informative (non-normative). Attribute names begin with 21
lowercase. Element names begin with Uppercase. 22

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, 23
RECOMMENDED, MAY and OPTIONAL, when they appear in this document, are to be interpreted as 24
described in [RFC2119] as quoted here: 25

MUST: This word, or the terms "REQUIRED" or "SHALL", means that the definition is an absolute requirement of 26
the specification. 27

MUST NOT: This phrase, or the phrase "SHALL NOT", means that the definition is an absolute prohibition of the 28
specification. 29

SHOULD: This word, or the adjective "RECOMMENDED", means that there may exist valid reasons in particular 30
circumstances to ignore a particular item, but the full implications MUST be understood and carefully 31
weighed before choosing a different course. 32

SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that there may exist valid reasons 33
in particular circumstances when the particular behavior is acceptable or even useful, but the full 34
implications should be understood and the case carefully weighed before implementing any behavior 35
described with this label. 36

MAY: This word, or the adjective "OPTIONAL", means that an item is truly optional. One vendor may choose to 37
include the item because a particular marketplace requires it or because the vendor feels that it enhances 38
the product while another vendor may omit the same item. An implementation that does not include a 39
particular option MUST be prepared to interoperate with another implementation which does include the 40
option, though perhaps with reduced functionality. In the same vein an implementation that does include a 41
particular option MUST be prepared to interoperate with another implementation which does not include the 42
option (except, of course, for the feature the option provides). 43

 44

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 9 of 214

1.3 Audience 1

The target audience for this specification is: 2

• The community of software developers who implement and/or deploy the ebXML Messaging 3
Service (ebMS) or use other ebXML technologies such a s Registry/Repository (RegRep), 4
Collaboration Profile Protocol/Agreement (CPPA) or Business Process Specification Schema 5
(BPSS) 6

 7

• The testing or verification authority, which will implement and deploy conformance or 8
interoperability testing for ebXML implementations. 9

 10

1.4 Caveats and Assumptions 11

It is assumed the reader has an understanding of communications protocols, MIME, XML, SOAP, SOAP 12
Messages with Attachments and security technologies. 13

 14

1.5 Related Documents 15

The following set of related specifications is developed independent of this specification as part of the 16
ebXML initiative, they can be found on the OASIS web site (http://www.oasis-open.org). 17

• ebXML Collaboration Protocol Profile and Agreement Specification [ebCPP] – CPP defines 18
one business partner's technical capabilities to engage in electronic business collaborations with 19
other partners by exchanging electronic messages. A CPA documents the technical agreement 20
between two (or more) partners to engage in electronic business collaboration. The MS Test 21
Requirements and Test Cases will refer to CPA documents or data as part of their material, or 22
context of verification. 23

• ebXML Messaging Service Specification [ebMS] – defines the messaging protocol and 24
service for ebXML, which provide a secure and reliable method for exchanging electronic 25
business transactions using the Internet. 26

• ebXML Test Framework [ebTestFramework] – describes the test architecture, procedures and 27
material that are used to implement the MS Interoperability Test Suite, as well as the test harness 28
for this suite. 29

• ebXML MS Conformance Test Suite [ebMSConfTestSuite] – describes the Conformance test 30
suite and material for Messaging Services. 31

• ebXML Registry Specification [ebRS] – defines how one party can discover and/or agree upon 32
the information the party needs to know about another party prior to sending them a message 33
that complies with this specification. The Test Framework is also designed to support the testing 34
of a registry implementation. 35

• ebXML Business Process Specification Schema [BPSS] – defines how two parties can 36
cooperate through message-based collaborations, which follow particular message 37
choreographies. The Test Framework is also designed to support the testing of a business 38
process implementation. 39

 40

 41

 42

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 10 of 214

1.6 Minimal Requirements for Conformance 1

An implementation of the Test Framework specified in this document MUST satisfy ALL of the following 2
conditions to be considered a conforming implementation: 3

It supports all the mandatory syntax; features and behavior (as identified by the [RFC2119] key words MUST, 4
MUST NOT, REQUIRED, SHALL and SHALL NOT) defined in Part 1.1.1 – Document Conventions. 5

It supports all the mandatory syntax, features and behavior defined for each of the components of the Test 6
Framework. 7

It complies with the following interpretation of the keywords OPTIONAL and MAY: When these keywords 8
apply to the behavior of the implementation, the implementation is free to support these behaviors or not, 9
as meant in [RFC2119]. When these keywords apply to data and configuration material used by an 10
implementation of the Test Framework, a conforming implementation of the Test Framework MUST be 11
capable of processing these optional materials according to the described semantics. 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 11 of 214

2 Principles and Methodology of Operations 1

 2

2.1 Objectives 3

 4

2.1.1 General 5

 6

The OASIS IIC ebXML Test Framework is intended to support conformance and interoperability testing 7
for ebXML (as well as other eBusiness) specifications. It describes a testbed architecture and its software 8
components, how these can be combined to create a test harness for various types of testing. It also 9
describes the test material to be processed by this architecture, a mark-up language and format for 10
representing test requirements, and test suites (a set of Test Cases). 11

 12

The Test Framework described here has been designed to achieve the following objectives: 13

 14

The Test Framework is a foundation for testing all ebXML architectural components such as Messaging, 15
Registry, BPSS, CPA, and Core Components 16

 17

Although designed to support testing implementations of current and future ebXML specifications , the 18
Test Framework is flexible enough to permit testing beyond ebXML message format, to include any 19
message envelope and payload testing of XML-based e-Business messaging services. 20

 21

Additionally, the IIC Test Framework can be employed for XML-based A2A (Application to Application) 22
conformance and interoperability testing. 23

 24

Regardless of the type of testing that is employed however, all testing MUST follow the same procedural 25
steps, and employ the same XML format as defined by the XML schemas defined in the Appendix of this 26
specification. By following the formalized guidelines in this specification, conformance and interoperability 27
test suites can be used by any IIC Test Framework Specification compliant implementation. 28

 29

The harnessing of an ebXML implementation (or possibly several implementations, in case of 30
interoperability testing) with the Test Framework requires a moderate effort. It generally requires some 31
interfacing work specific to an implementation, in the case no standard interface (API) has been specified. 32
For example, the Test Service (a component of the Test Framework) defines Actions that will need to be 33
called by a particular MSH implementation for ebXML Messaging Services conformance testing. 34
Additionally, MS interoperability testing would require the interfaces defined in section 3.2.6. 35

 36

Operating the Test Framework - or one of the test harnesses that can be derived from it – in order to 37
execute a test suite, does not require advanced expertise in the framework internals, once the test suites 38
have been designed. The tests should be easy to operate and to repeat with moderate effort or overhead, 39
by users of the ebXML implementation(s) and IT staff responsible for maintaining the B2B infrastructure, 40
without expertise in testing activity. 41

 42

Users can define new Test Suites and Test Cases to be run on the framework. For this, they will script 43
their tests using the proposed test suite definition language or mark-up (XML-based) for Test Cases. 44

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 12 of 214

 1

A Test Suite (either for conformance or for interoperability) can be run entirely and validated from one 2
component of the framework: the Test Driver. This means that all test outputs will be generated - and test 3
conditions verified - by one component, even if the test harness involves several – possibly remote – 4
components of the framework. 5

The verification of each Test Case is done by the Test Driver at run-time, as soon as the Test Case 6
execution is completed. The outcome of the verification can be obtained as the Test Suite has completed, 7
and a verification report is generated. 8

 9

2.2 General Methodology 10

 11

This specification only addresses the technical aspect of ebXML testing, and this section describes the 12
portion of testing methodology that relates directly to the usage of the Test Framework. A more general 13
test program for ebXML, describing a comprehensive methodology oriented toward certification, is 14
promoted by the OASIS Conformance TC and is described in [ConfCertTestFrmk] (NIST). When 15
conformance certification is the objective, the ebXML Test Framework should be used in a way that is 16
compliant with a conformance certification model as described in [ConfCertModelNIST]. More general 17
resources on Testing methodology and terminology can be found on the OASIS site 18

(www.oasisopen.org), as well as at NIST (www.itl.nist.gov/div897/.) 19

This specification adopts the terminology and guidelines published by the OASIS Conformance 20
Committee [ConfReqOASIS]. 21

 22

The Test Framework is intended for the following mode of operation, when testing for conformance or for 23
interoperability. In order for a testing process (or validation process) to conform to this specification, the 24
following phases need to be implemented: 25

 26

• Phase 1: Test Plan (RECOMMENDED). An overall test plan is defined, which includes a 27
validation program and its objectives, the conditions of operations of the testing, levels or profiles 28
of conformance or of interoperability, and the requirements for Candidate Implementations to be 29
tested (context of deployment, configuration). 30

 31

• Phase 2: Test Requirements Design (MANDATORY). A list of Test Requirements is established 32
for the tested specification, and for the profile/level of conformance/interoperability that is 33
targeted. These Test Requirements MUST refer to the specification document. Jointly to this list, 34
it is RECOMMENDED that Specification Coverage be reported. This document shows, for each 35
feature in the original specification, the Test Requirements items that address this feature. It also 36
estimates to which degree the feature is validated by these Test Requirements items. 37

 38

• Phase 3: Test Harness Design (MANDATORY). A Test Harness is defined for a particular test 39
plan. It describes an architecture built from components of the Test Framework, along with test 40
operation instructions and conditions. In order to conform to this specification, a test harness 41

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 13 of 214

MUST be described as a system that includes a Test Driver as specified in this document, and 1
MUST be able to interpret conforming test suites. 2

 3

• Phase 4: Test Suite Design (MANDATORY). Each Test Requirement from Phase 2 is translated 4
into one or more Test Cases. A Test Case is defined as a sequence of test operations over the 5
Test Harness. Each Test Case includes: configuration material (CPA data), message material 6
associated with each operation and test verification conditions that define criteria for passing this 7
test. All this material, along with any particular test operation directives, defines a Test Suite. In 8
order to be conforming to this specification, a test suite needs to be described as a document 9
(XML) conforming to part II of this specification. 10

 11

• Phase 5: Validation Conditions (RECOMMENDED). Validation criteria are defined for the profile 12
or level being tested, and expressed as a general condition over the set of results from the 13
verification report of each Test Case of the suite. These validation criteria define the certification 14
or “badging” for this profile/level. 15

 16

• Phase 6: Test Suite Execution (MANDATORY). The Test Suite is interpreted and executed by 17
the test Driver component of the Test Harness. 18

 19

2.3 Changes from version 1.0 of this specification 20

 21

This specification introduces some minor and major changes to the execution model of the Test 22
Framework. These changes will require a transformation of a version 1.0 XML test suite document to a 23
test suite document that validates to the normative test suite schema found in Appendix C. 24

 25

Below is a list of changes to the Test Framework architecture, and a reference to the specification section 26
describing the changes: 27

 28

2.3.1 Test Service Changes 29

 30

Test Service Changes: Initiator, Configurator, ErrorAppNotify, ErrorURLNotify are now defined via RPC 31
methods (no longer Test Service Actions) 32

 33

2.3.2 Test Requirements Schema Changes: 34

 35

• Nested Test Requirements is now permitted 36

 37

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 14 of 214

2.3.3 Test Driver Scripting Changes: 1

 2

New Features: 3

• New Test Driver ConfigurationGroup Parameters – StoreAttachments, ValidationType, 4
MutatorType, XMLDSIG, SetParameter (replaces ConfigurationItem), StepDuration 5
(replaces StepDelay) 6

• Optional TestServiceConfigurator instruction exists at top of TestSuite document 7

• Message replaces MessagePayload element for referring to “inlined” message or payload 8
declaration content 9

• Optional ThreadGroup container for Thread definitions (concurrent processes) may be 10
defined at beginning of Test Suite document (for global reference) or within individual 11
Test Cases (for local reference) 12

• SetParameter can now set a value using the value of another referenced parameter 13

• PutMesssage now has “repeatWithSameContext” and “repeatWithNewContext” attributes 14

• Packaging (i.e. message packaging API) instructions are now separate from the 15
Message Declaration content 16

• Message Declaration can now be any well-formed XML content to be interpreted by a 17
Mutator transformation 18

• Mutator (either XSLT or XUpdate) replaces internal “API driven” method of constructing 19
message, so that any message envelope can be created by Test Driver via XSLT or 20
XUpdate 21

• DSign changed to DSignEnvelope and DSignPayload, with a simplified instruction set for 22
creating/manipulating a digital signature 23

• GetMessage now has a “mask” attribute for removing Filtered messages from the 24
Message Store 25

• TestPreCondition no longer exists (semantically replaced with workflow 26
“exit/undetermined” instruction) 27

• TestAssertion has additional sub-operation called VerifyTimeDifference (for comparing 28
time difference between two parameters with a time duration value 29

• TestAssertion now has additional sub-operation called VerifyParameter (for doing a string 30
comparison of parameter with a string value or another parameter’s string value 31

• SetXPathParameter (creating parameter using received message content) instruction 32
has been added 33

• WhenTrue and WhenFalse conditional branching operators have been added to 34
TestAssertion 35

• Split instruction (for forking Threads) has been added 36

• ThreadRef (reference to Thread definition to be executed) has been added 37

• Join instruction (for synchronizing scripting based upon completion of a Split) has been 38
added 39

• Sleep (instruction for Test Driver to wait for a specified time interval) has been added 40

• Return (instruction for Test Driver to exit the currently executing Thread, and continue 41
execution) has been added 42

• Initiator instruction (for passing message construction directives to Test Service via local 43
call or RPC) is added to script language 44

• LockParameter instruction (used to synchronize access of multiple Threads to a common 45
parameter) 46

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 15 of 214

• UnlockParameter instruction (used to synchronize access of multiple Threads to a 1
common parameter) 2

• SetParameter “lock” attribute (also used to synchronize access of multiple Threads to a 3
common parameter) 4

• SetXPathParameter “lock” attribute (also used to synchronize access of multiple Threads 5
to a common parameter) 6

• Namespaces MUST be declared in the main ConfigurationGroup to permit the same 7
XPath queries to resolve correctly for any implementation tested 8

 9

Removed Test Script Features 10

 11

• Test Step has been removed 12

• GetMessage no longer has “getMultiple” (not necessary, since this can be handled via 13
XPath Filter operation) or “testStepContext” attribute (this is now handled by parameter 14
references) 15

• GetPayload has been removed (message payloads (if XML) are automatically stored in 16
Message Store for query. Non-XML payloads are not stored. 17

 18

2.3.4 Modified MessageStore Schema 19

 20

• MessageStore schema is now “agnostic” to what type of XML content is stored in it. 21
Also, message packaging (e.g. MIME packaging) is no longer a normative part of the 22
Message Store schema. Instead, a generic “packaging” schema is used to represent 23
other types of message packaging attributes. 24

 25

2.3.5 Modified Test Report Schema 26

 27

• Schema is a full trace of the new test script instructions, with an optional “Result” tag 28
assigned to each test instruction, providing a “pass|fail|undtermined” result with a 29
“description” attribute to indicate the reason for the result. 30

 31

 32

 33

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 16 of 214

3 The Test Framework Components 1

 2

The components of the framework are designed so that they can be combined in different configurations, 3
or Test Harnesses. 4

 5

We describe here two components that are central to the Test Framework: 6

 7

The Test Driver, which interprets Test Case data and drives Test Case execution. 8

The Test Service, which implements some test operations (actions) that can be triggered by received 9
messages. These actions support and automate the execution of Test Cases. 10

 11

These components interface with the ebXML Message Service Handler (MSH), but are not restricted to 12
testing an MSH implementation. 13

 14

3.1 The Test Driver 15

 16

The Test Driver is the component that drives the execution of each step of a Test Case. Depending on 17
the test harness, the Test Driver may drive the Test Case by interacting with other components in 18
connection mode or in service mode. 19

In connection mode, the Test Driver directly generates ebXML messages at transport protocol level – e.g. 20
by using an appropriate transport adapter. 21

In service mode, the Test Driver does not operate at transport level, but at application level, by invoking 22
actions in the Test Service, which is another component of the framework. These actions will in turn send 23
or receive messages to and from the MSH. 24

 25

3.1.1 Functions 26

 27

The primary function of the Test Driver is to parse and interpret the Test Case definitions that are part of a 28
Test Suite, as described in the Test Framework mark-up language. Even when these Test Cases involve 29
several components of the Test Framework, the interpretation of the Test Cases is under control of the 30
Test Driver. 31

 32

 33

The Test Driver component of the ebXML Test Framework MUST have the following capabilities: 34

 35

• Self-Configuration - Based upon supplied configuration parameters specified in the ebXML 36
TestSuite.xsd schema (Appendix C), Test Driver configuration is done at startup, and MAY be 37
modified at the TestCase and Thread levels as well. 38

 39

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 17 of 214

• Test Service Configuration – Based upon supplied configuration parameters, Test Service 1
configuration may be done at startup via remote procedure call. 2

 3

 4

• ebXML (or other type) Message Construction – Includes any portion of the message, including 5
message envelope and optional message payloads 6

 7

 8

• Persistence of (received) Messages –received messages MUST persist for the life of a Test 9
Case. 10

 11

• Persistent messages MUST validate to the ebXMLMessageStore.xsd schema in Appendix E. 12

 13

 14

• Parse and query persistent messages – Test Driver MUST use XPath query syntax to query 15
persistent message content 16

 17

 18

• Parse and query message payloads – Test Driver MUST support XPath query syntax to query 19
XML message payloads of persistent messages. 20

 21

 22

• Control the execution and workflow of the steps of a Test Case. Some steps may be executed by 23
other components, but their initiation is under control of the Test Driver. 24

 25

 26

• Repeat previously executed Test operations– Test Driver MUST be capable of repeating 27
previously executed message requests for the current Test Case. 28

 29

 30

• Send messages through the Test Driver - Directly at transport layer (e.g. by opening an HTTP 31
connection). 32

 33

 34

• Send messages through the Test Service – Locally (if coupled with the Test Service) or via 35
remote procedure call (if not directly interfaced with the Test Service) 36

 37

 38

• Receive messages - Either directly at transport layer, or by notification from Test Service actions. 39

 40

 41

• Perform discreet message content validation – Test Driver MUST be capable of performing 42
discreet validation of Time, URI, Signature and the entire XML message 43

 44

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 18 of 214

 1

• Perform discreet payload content validation – Test Driver MUST be capable of performing 2
discreet validation of Time, URI, Signature and an XML payload 3

 4

 5

• Report Test Results – Test Driver MUST generate an XML test report for all executed tests in the 6
profile. Reports MUST validate to the ebXMLTestReport.xsd schema in Appendix E. 7

 8

 9

 10

 11

A possible design that supports these functions is illustrated in Figure 1. 12

 13

Figure 1 : Test Driver Function and Data Flows 14

 15

 16

 17

3.1.2 Using the Test Driver in Connection Mode 18

 19

The Test Driver MUST be able to control the inputs and outputs of an MSH at transport level. This can be 20
achieved by using an embedded transport adapter. This adapter has transport knowledge, and can 21
format message material into the right transport envelope. Independently from the way to achieve this, 22
the Test Driver MUST be able to: 23

 24

• Create a message envelope, and generate fully formed messages for this transport. 25

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 19 of 214

 1

• Parse a message envelope and extract header data from a message, as well as from the 2
message payload in case it is an XML document. 3

 4

• Open a message communication channel (connection) with a remote message handler. In that 5
case the Test Driver is said to operate in connection mode. 6

 7

When used in connection mode, the Test Driver is acting as a transport end-point that can receive or 8
send messages with an envelope consistent with the transport protocol (e.g. HTTP,SMTP, or FTP). The 9
interaction between the MSH and the Test Service is of the same nature as the interaction between the 10
MSH and an application (as the Test Service simulates an application), i.e. it involves the MSH API, 11
and/or a callback mechanism. Figure 2 illustrates how the Test Driver operates in connection mode. 12

 13

 14

 15

 16

 17

 18

Figure 2 – Test Driver in Connection Mode 19

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 20 of 214

Fi1
gure 3 – Test Driver in Remote Connection Mode 2

3.1.3 Using the Test Driver in Service Mode 3

 4

In this configuration, the Test Driver directly interacts with the Service/Actions of the Test Service 5
component, without involving the transport layer, e.g. by invoking these actions via a software interface, in 6
the same process space. This allows for controlling the Test Cases execution from the application layer 7
(as opposed to the transport layer). Such a configuration is appropriate when doing interoperability testing 8
- for example between two MSH implementations – and in particular, in situations where the transport 9
layer should not be tampered with, or interfered with. The interactions with the Test Service must consist 10
of: 11

 12

• Sending: One method of the Test Service(represented by the “Initiator” scripting element) , 13
instructs the MSH it has been interfaced with to construct and send a message. This method also 14
MUST interface with the Test Service at application level. When invoked by a call that contains 15
message data, the method generates a sending request using that MSH’s API. 16

 17

• Receiving: As all actions of the Test Service may participate in the execution of a Test Case (i.e. 18
of its Threads), the Test Driver needs to be aware of their invocation by incoming notification 19
messages provided by the Test Service. Each of these actions notify the Test Driver through its 20
“Receive” interface, passing received message data, as well as response data. In this way, the 21
Test Driver builds an internal trace (or state) for the Test Case execution, and is able to verify the 22
test based on this data. 23

 24

The Test Driver MUST support the above communication operations with the Test Service when in 25
Service Mode. This may be achieved by using an embedded Service Adapter to bridge the sending and 26

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 21 of 214

receiving functions of the Test Driver, with the Service/Action calls of the Test Service. Figure 4 illustrates 1
how the Test Driver operates with a Service Adapter. Alternately, the Test Service MAY notify the Test 2
Driver of receive messages and errors via RPC. 3

 4

Figur5
e 4 – Test Driver in Service Mode 6

 7

This design allows for a minimal exposure of the MSH-specific API, to the components of the Test 8
Framework. The integration code that needs to be written for connecting the MSH implementation is then 9
restricted to an interface with the Service/Actions defined by the framework. Neither the Test Driver, nor 10
the Service Adapter, need to be aware of the MSH-specific interface. An example of test harness using 11
the Test Driver in Service Mode is shown in Figure 5. 12

 13

 14

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 22 of 214

1
Figure 5 - Test Driver in Service Mode: Point to Po int MSH Interop Testing 2

 3

3.2 The Test Service 4

 5

 6

Depending upon the type of testing being performed, a Test Service MAY NOT be a required component 7
of the Test Framework. For example, ebXML Registry Services conformance testing does not require a 8
Test Service, and can be treated solely as a “black box” testing environment. 9

 10

3.2.1 The ebXML Messaging Services Test Service 11

 12

For conformance and interoperability testing of an ebXML Messaging Service implementation however, a 13
Test Service is a REQUIRED Test Framework component. The Test Service represents the application 14
layer for a message handler. It receives message content and error notifications from the MSH, and also 15
generates requests to the MSH, which normally are translated into messages to be transmitted. The Test 16
Actions are predefined, and are part of the Test Framework). For ebXML Messaging Services testing, 17
Service and Actions will map to the Service and Action header attributes of ebXML messages generated 18
during the testing. 19

 20

For ebXML Messaging Services testing, the Test Service name MUST be: urn:ebXML:iic:test . 21

 22

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 23 of 214

Figure 6 shows the details of the Test Service and its interfaces. 1

 2

 3

Fig4
ure 6 - Test Service and its Interfaces 5

 6

The functions of the Test Service are: 7

 8

• To implement the actions which map to Service / Action fields in a message header. The set of 9
test actions which are pre-defined in the Test Service will perform diverse functions, which are 10
enumerated below: 11

 12

• To notify the Test Driver of incoming messages. This only occurs when the Test Service is 13
deployed in reporting mode, which assumes it is coupled with a Test Driver either locally, or via 14
RPC. 15

 16

• To perform some message processing, e.g. compare a received message payload with a 17
reference payload (or their digests). 18

 19

• To send back a response to the MSH. Depending on the action invoked, the response may 20
range from a pre-defined acknowledgment to a specific message as previously specified. 21

 22

• Optionally, to generate a trace of its test operations, in order to help trouble-shooting, or for 23
reporting purpose. 24

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 24 of 214

 1

 2

Although the Test Service simulates an application, it is part of the Test Framework, and does not vary 3
from one test harness to the other. However, in order to connect to the Test Service, a developer will 4
have to write wrapper code to the Test Service/Actions that is specific to the MSH implementation that 5
needs to be integrated. This proprietary code is expected to require a minor effort, but is necessary as the 6
API and callback interfaces of each MSH are not specified in the [ebMS] standard and is implementation-7
dependent. 8

 9

 10

 11

3.2.2 Modes of Operation of the Test Service 12

 13

The Test Service operates in two modes: Reporting or Loop mode 14
 15

Reporting mode: in that mode, the actions of the Test Service instance, when invoked, will send a 16
notification to the Test Driver. The Test Driver will then be aware of the workflow of the test case. There 17
are two “sub-modes” of behavior: 18

 19

Local Reporting Mode: The Test Driver is installed on the same host as the Test Service, and executes in 20
the same process space. The notification uses the Receive interface of the Test Driver, which is operating 21
in service mode. 22

 23

Remote Reporting Mode: The Test Driver is installed on a different host than the Test Service. The 24
notification is done via messages to the Test Driver, which is operating in connection mode. 25

 26

Loop mode: in this mode, the actions of the Test Service instance, when invoked, will NOT send a 27
notification to the Test Driver. The only interaction of the Test Service with external parties, is by sending 28
back messages via the message handler 29

 30

The Test Service actions operate similarly in both reporting and loop modes. In other words, the mode of 31
Test Service operation does not normally affect the logic of the action. The action may send a response 32
message, to the requesting party via the “ResponseURL”. In general, the ResponseURL is the same as 33
the requestor URL. 34

 35

Figure 7 shows a test harness with a Test Driver in connection mode, controlling a Test Service (Host 1) 36
in remote reporting mode. The other Test Service (Host 3) is operating in loop mode. This configuration is 37
used when the test cases are controlled from a third party test center, when doing interoperability testing. 38
The test center may also act as a Hub, and be involved in monitoring the traffic between the 39
interoperating 40

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 25 of 214

parties.1

 2

 3

 4

Figure 7- Example of Remote Reporting Mode : The In teroperability Test Center Model 5

 6

3.2.3 Configuration Parameters of the Test Service 7

 8

Test Service configuration is initially performed when the Test Driver reads the executable Test Suite 9
XML document, and sends the TestServiceConfigurator element content referenced (using the 10
configurationGroupRef attribute) at the beginning of the TestSuite document to the Test Service via its 11
Configuration interface. If the TestServiceConfigurator element is absent from the Test Case, then it is 12
assumed that the Test Service has been “manually” configured for testing. 13

If the TestServiceConfigurator instruction is present in the TestSuite document, and the Test Driver is 14
unable to configure the Test Service, then the Test Driver MUST generate an exception and end 15
execution of the Test Suite, with a final state of “undetermined” for the Test Suite. 16

 17

Test Service configuration parameters are defined as content within the TestServiceConfigurator element. 18
There are four parameters that MUST be present to configure the Test Service, and one “optional” 19
parameter type. The three REQUIRED parameters are: 20

 21

 22

OperationMode (either local-reporting, remote-reporting or loop mode) 23

ResponseURL (destination for response messages in any mode) 24

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 26 of 214

NotificationURL (destination for notification messages, if in local or remote reporting mode) 1

 2

Additionally, the content of the PayloadDigests element MAY be passed to the Test Service. These 3
values are used by the PayloadVerify Test Service action to assert whether a received message payload 4
is unchanged when received by the MSH. 5

 6

Outside of these three parameters, the Test Service is considered “stateless”. 7

 8

Test Service configuration MAY be performed locally, if in the same program space as the Test Service 9
via the Configuration interface. Test Service configuration MUST be performed via RPC to the Test 10
Service Configuration interface’s “configurator” method if it is in “loop” mode. 11

 12

In a test harness where an interoperability test suite involves two parties, the test suite (and Test Service 13
Configuration) will need to be executed twice - alternatively driven from each party. In that case, each 14
Test Service instance will alternatively be set to a reporting mode (local or remote), while the other will be 15
set to loop mode. 16

 17

3.2.4 The Messaging Actions of the Messaging Services Test Service 18

 19

The actions described here are required of the Test Service when performing messaging services testing, 20
and should suffice in supporting most messaging Test Cases. In the case of ebXML Messaging Services 21
testing, these actions map to the Service/Action field of a message, and will be triggered on reception of 22
messages containing these service/action names. However, these actions are generic enough to be 23
used for any business messaging service. 24

 25

3.2.4.1 Common Functions 26

 27

Some functions are common to several actions, in addition to the specific functions they fulfill. These 28
common functions are: 29

 30

• Generate a response message . Response messages are destined to the ResponseURL . 31
They also specify a Service/Action, as they are usually intended for another Test Service 32
although in case the ResponseURL directly points to the Test Driver in connection mode, 33
Service/Action will not have the regular MSH semantics. 34

• Notify the Test Driver . This assumes the Test Service is coupled with a Test Driver. In that 35
configuration, the Test Service is in reporting mode. The reporting is done by a message 36
(sent to the Notification URL) when in remote reporting mode, or by a call to the Receive 37
interface when in local reporting mode. 38

 39

3.2.4.2 Test Service Actions 40

 41

The Test Service actions defined below are “generic” types of actions that can be implemented for any 42
type of messaging service. Specific details regarding Service, Action, MessageId and other elements are 43
requirements specific to testing ebXML MS. In order to implement these actions for other types of 44
messaging services the “equivalent” message content would require manipulation. The ebXML test 45
actions are: 46

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 27 of 214

 1

3.2.4.2.1 Mute action 2

 3

 Reporting/Loop Mode Action Description: This is an action that does not generate any response 4
message back. Such an action is used for messages that do not require any effect, except possibly to 5
cause some side effect in the MSH, for example generating an error. 6

Response Destination: None 7

In Reporting Mode: The action will notify the associated Test Driver. The notification containing the 8
received header and payload(s) material, will be done via the Receive interface, if in local reporting mode, 9
or with a message with Service / Action fields set to “urn:ebXML:iic:test ”/ “Notify”, if in remote 10
reporting mode. The notification will report the action name (“Mute”) and the instance ID of the Test 11
Service. 12

 13

3.2.4.2.2 Dummy action 14

 15

Reporting/Loop Mode Action Description: This is an action that generates a simple response. On 16
invocation, this action will generate a canned response message back (no payload, simplest header with 17
minimally required message content), with no dependency on the received message, except for the 18
previous MessageId (for correlation) in the RefToMessageId header attribute. 19

Response Destination: A message with a Mute action element is sent to the Test Component (Test Driver 20
or Service) associated with the ResponseURL. This notice serves as proof that the message has been 21
received, although no assumption can be made on the integrity of its content. 22

In Reporting Mode: The action will also notify the associated Test Driver. The notification containing the 23
received header and payload(s) material, will be done via the Receive interface, if in local reporting mode, 24
or with a message with Service / Action fields set to “urn:ebXML:iic:test ”/ “Notify”, if in remote 25
reporting mode. The notification will report the action name (“Dummy”) and the instance ID of the Test 26
Service. 27

 28

3.2.4.2.3 Reflector 29

Reporting/Loop Mode Action Description : On invocation, this action generates a response to a received 30
message, by using the same message material, with minimal changes in the header: 31

Swapping of the to/from parties so that the “to” is now the initial sender. 32
Setting RefToMessageId to the ID of the received message. 33
Removing AckRequested or SyncReply elements if any. 34
All other header elements (except for time stamps) are unchanged. The conversation ID remains unchanged, as 35

well as the CPAId. The payload is the same as in the received message, i.e. same attachment(s). 36

Response Destination: a message with a Mute action element is sent to the Test Component (Test Driver 37
or Service) associated with the ResponseURL. This action acts as a Reflector for the initial sending party 38

In Reporting Mode: The action also notifies the associated Test Driver. The notification containing the 39
received header and payload(s) material, will be done via the Receive interface, if in local reporting mode, 40
or with a message with Service / Action fields set to “urn:ebXML:iic:test ”/ “Notify”, if in remote 41
reporting mode. The notification will report the action name (“Reflector”) and the instance ID of the Test 42
Service. 43

 44

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 28 of 214

3.2.4.2.4 Initiator action 1

 2

Reporting/Loop Mode Action Description: This Test Service action is not invoked through reception of a 3
request message. Instead, it is invoked via a local method call to the Test Services “Send” interface. 4
This action may be initiated by a locally interfaced Test Driver, or (via RPC) by a remote Test Driver. 5

On invocation, this action generates a new message. This message may be the first message of a totally 6
new conversation, or it may be part of an existing conversation (depending upon the message declaration 7
provided by the Test Driver. The header of the new message can be anything that is specified by the Test 8
Driver. For example, this action would be used to generate a "first" message of a new conversation, 9
different from the conversation ID specified in the invoking message. 10

Response Destination: Any party defined by the Test Driver. 11

In Reporting mode: Not Applicable, since this action is invoked directly by the Test Driver only (i.e. no 12
incoming message is received via MSH). 13

 14

3.2.4.2.5 PayloadVerify action 15

 16

Reporting/Loop Mode Action Description: On invocation, this action will compare the payload(s) of the 17
received message, with the expected payload. Instead of using real payloads, to be pre-installed on the 18
site of the Test Service, it is RECOMMENDED that a digest (or signature) of the reference payloads (files) 19
be pre-installed on the Test Service host using TestServiceConfigurator parameters supplied by the Test 20
Driver. The PayloadVerify action will then calculate the digest of each received payload and compare with 21
the reference digest parameter values. This action will test the service contract between application and 22
MSH, as errors may originate either on the wire, or at every level of message processing in the MSH until 23
message data is passed to the application. The action reports to the Test Driver the outcome of the 24
comparison. This is done via an alternate communication channel to ensure that the same system being 25
tested is not used to report the reliability of its own MSH. A “notification” message is sent via RPC to the 26
Test Driver. The previous MessageId is reported (for correlation) in the RefToMessageId header attribute 27
of the response. The previous ConversationId is also reported. The payload message will contain a 28
verification status notification for each verified payload, as specified in Appendix F. 29

The XML format used by the response message is described in the section 7.1.12 (“Service Messages”). 30

 31

Response Destination: a notification message is sent with a Mute action element to the Test Component 32
(Test Driver or Service) via its “Receive” interface 33

In both loop and reporting mode: Action will also notify the associated Test Driver. The notification 34
containing the received header and payload(s) material, will be done via the Receive interface, if in local 35
reporting mode, or with a message with Service / Action fields set to “urn:ebXML:iic:test" / 36
“Notify”, if in remote reporting mode. 37

 38

 39

 40

 41

 42

 43

 44

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 29 of 214

3.2.4.3 Integration of the Test Service with an MSH Implementation 1

 2

As previously mentioned, the actions above are predefined and are a required part of the Test Framework 3
for messaging services testing, and will require some integration code with the MSH implementation, in 4
form of three adapters, to be provided by the MSH development (or user) team. These adapters are: 5

 6

(1) Reception adapter , which is specific to the MSH callback interface. This code allows for 7
invocation of the actions of the Test Service, on reception of a message. 8

(2) MSH control adapter , which will be invoked by some Test Service actions, and will invoke in turn 9
the MSH-specific Message Service Interface (or API). Examples of such invocations are for 10
sending messages (e.g. by actions which send response messages), and MSH configuration 11
changes 12

Error URL adapter , which is actually independent from the candidate MSH. This adapter will catch error 13
messages, and invoke the report method of the Test Service. The report method notifies the Test Driver 14
of the error message. 15

 16

3.2.5 Interfaces for Test Driver and Test Service 17

 18

Not all Test Harness communication occurs at the messaging level (i.e. through Test Service actions). 19
Certain Test Harness functionality can only be safely and reliably guaranteed by decoupling it from the 20
actual messaging protocol being tested. This is the case for Test Service message initiation, 21
configuration and notification. . If the same protocol under test were also used as the infrastructure for 22
the actions above, then failure of that protocol would result in undetermined/ambiguous Test Case 23
results. 24

 25

 Three interfaces (2 Test Service, 1 Test Driver) are defined to provide a “decoupled” relationship 26
between the system under test, and the test harness. 27

 28

The two interfaces on the Test Service component are: 29

 30

Send – consists of one method (initiator) that accepts a message declaration, builds the message 31
envelope, attaches any referenced payloads, and sends the message. The method returns an XML 32
notification document with a “true/false” Success element. 33

 34

Configuration – Consists of one method, (configurator) which accepts a Configuration Group list of 35
parameters and their corresponding values. This includes three “required” parameters, and additional 36
optional payload digest name/value parameters. The method returns an XML notification document with 37
a “true/false” Success element. 38

 39

 40

These two interfaces can be accessed either locally (if the Test Driver and Test Service are running in the 41
same program space), or remotely (if the Test Driver and Test Service are not local). In the case of 42
remote communication, these methods MUST be accessible via RPC call. 43

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 30 of 214

 1

The interface on the Test Driver component is: 2

 3

Receive – Its “notify” method accepts incoming notification messages from the Test Service and passes 4
them to the Test Driver for storage in its Message Store. Notification messages include messages 5
received by the Test Service (when the Test Service is in “reporting mode”) and MSH and application 6
error messages generated by the Test Service 7

3.2.5.1 Abstract Test Service “Send” Interface 8

 9

The abstract interface is defined as: 10

 11

• An interface that must be supported by the Test Service 12

• An initiator method that must be supported by that interface 13

• The parameters and responses that must be supported by that method 14

 15

This abstract Test Service interface does not specify any particular implementation of a MSH, nor does it 16
specify a particular language binding. 17

 18

Method Return Type Method Name Test Driver
Exception
Condition

InitiatorResponse (an XML
document , returning a
synchronous response
message containing a boolean
Success element)

initiator (MessageDeclaration
declaration
MessagePayloadList payloads)

Passes the constructed
message “declaration” to the
Test Service initiator action
Additionally, any message
payloads are passed as an
encapsulated list.

Failed to
construct or send
message

Table 1- Initiator method description 19

 20

 21

Semantic Description: The Initiator call instructs the Test Service to generate a new message. The 22
new message content is provided as an argument to the initiator call. Any payload content is provided as 23
attachments in the SOAP message, and have the same content-Id as defined in the message 24
Declaration. The declaration of the new message can be any of the XML formats agreed to by testing 25
communities as a normative declarative syntax to be interpreted by the Test Service for a particular 26
messaging system (e.g. ebXML or RNIF). This action may be used to generate a "first" message of a new 27
conversation (if no ConversationId is present in the Declaration) . 28

 29

The method is of return-type InitiatorResponse, meaning the method returns a response XML message 30
document containing a status message describing the success/failure of the Initiator method call. This is 31
returned to the Test Driver. A return value of “false” stops execution of the Test Case with a final result of 32
“undetermined”. A return value of “true” signals the Test Driver to proceed with the testing workflow. 33

 34

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 31 of 214

3.2.5.2 WSDL representation of the initiator RPC method 1

 2

If the Test Driver is “remote” to the Test Service (i.e. resides outside of the program space of the Test 3
Service), messages may still be initiated by the Test Driver on the remote Test Service via RPC. The 4
WSDL document in Appendix I describes the Service, Operation, Port and (example SOAP) bindings that 5
MUST be implemented in the Test Service in order to perform remote message initiation via SOAP v1.2 6
Other RPC bindings may be implemented, as long as the operations and documents described in this 7
WSDL definition are used, and both the Test Service and Test Driver are using the same RPC methods 8
and definitions. 9

 10

 11

12
Figure 8 – WSDL diagram of the Initiator SOAP metho d 13

 14

3.2.5.3 Abstract Test Service “Configuration” Interface 15

 16

The abstract interface is defined as: 17

 18

1. An interface that must be supported by the Test Service 19

2. A configurator method that must be supported by that interface 20

3. The parameters and responses that must be supported by that method 21

 22

This abstract MSH interface does not specify any particular implementation of a MSH, nor does it specify 23
a particular language binding. 24

 25

Method Return Type Method Name Test Driver
Exception
Condition

ConfiguratorResponse (an XML
document containing a boolean
“Success” result element)

configurator (ConfigurationList
list)

Passes the configuration
parameters to the Test Service

Test Service fails
to configure
properly

Table 2 – Configurator method 26

 27

Semantic Description: The configurator call passes configuration data from the Test Driver to the Test 28
Service. This includes the three REQUIRED configuration items (ResponseURL, NotificationURL, 29
ServiceMode), plus additional optional parameters that may be used in payload verification payload 30
integrity verification. 31

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 32 of 214

The method is of type ConfiguratorResponse, meaning the method returns a response XML message 1
document containing a status message describing the success/failure of the configurator method call to 2
the Test Driver. A Success element return value of “false” stops execution of the Test Case with a final 3
result of “undetermined”. A return value of “true” signals the Test Driver to proceed with the testing 4
workflow. 5

 6

3.2.5.3.1 WSDL representation of the configurator SOAP method 7

 8

If the Test Driver is “remote” to the Test Service (i.e. resides outside of the program space of the Test 9
Service), messages may still be initiated by the Test Driver on the remote Test Service via RPC. The 10
WSDL document in Appendix I describes the Service, Operation, Port and bindings that MUST be 11
implemented in the Test Service in order to perform remote Test Service configuration via SOAP v1.2 12
Other RPC bindings may be implemented, as long as the operations and documents described definition 13
are used, and the same RPC mechanism is implemented for both Test Driver and Test Service. 14

 15

 16

17
Figure 9 – WSDL diagram of the configurator SOAP me thod 18

 19

3.2.5.4 Abstract Test Driver “Receive” Interface 20

 21

The Test Driver MUST also have an interface available for communication with the Test Service. The 22
abstract interface is defined as: 23

 24

1. An interface that must be supported by the Test Driver 25

2. An notify method that must be supported by that interface 26

3. The parameters and responses that must be supported by that method 27

 28

This abstract MSH interface does not specify any particular implementation of a MSH, nor does it specify 29
a particular language binding. 30

 31

Method Return Type Method Name Test Driver Test
Driver
Exception
Condition

NotificationResponse notify (NotificationMessage
message, MessagePayloadList
messagePayloads)

Test Driver fails
to accept the
notification
message

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 33 of 214

Table 3 – WSDL diagram of the notify SOAP method 1

 2

Semantic Description: The notify method instructs the Test Driver to add the received or generated 3
message content to the Message Store, along with accompanying service instance id, service action and 4
other data provided by the Test Service. 5

 6

The method is of type NotificationResponse, meaning the method returns a response XML message 7
document containing a status message describing the success/failure of the notify method call back to the 8
Test Service. 9

 10

The types of notifications that a Test Service may pass to a Test Driver include: 11

 12

An application error notification message captures specific error notifications from the MSH to its using 13
application. It is not triggered by reception of an error message, but it is directly triggered by the internal 14
error module of the MSH local to this Test Service. If the MSH implementation does not support such 15
direct notification of the application (e.g. instead, it writes such notifications to a log), then an adapter 16
needs to be written to read this log and invoke this method whenever such an error is notified. 17

Such errors fall into two categories: 18

MSH errors that need to be directly communicated to its application – and not to any remote party, e.g. failure to 19
send a message (no Acknowledgments received after maximum retries). 20

In the case (for example) of ebXML Messaging Services, if an MSH generates regular errors with a severity 21
level set to “Error” – as opposed to “Warning” – the MSH is supposed to (SHOULD) also notify its 22
application. The notify method is intended to support both types of notifications. 23

 24

Application Error Notification Message Format: 25

Error notification messages have the same characteristics a normal error message (i.e. have a 26
MessageHeader with refToMessageId, ConversationId, CPAId corresponding to that of the incoming 27
“offending” message that generated the error). In addition, the message will contain an Error List 28
conforming to that normally generated by the MSH. This message will be identified as “different” from a 29
received message by the presence of a “Notification” root element, which contains reporting test service 30
name, reporting test service instance id, reporting Action name , synch type (synchronous or 31
asynchronous), and a unique id. 32

 33

An MSH Error notification message captures “normal” error notifications from the MSH (i.e. errors 34
normally returned to the sending MSH). This method is specified to handle cases where the MSH cannot 35
resolve the error reporting location (not present in CPA) and does not return the error to the sending 36
MSH. In this case the Test Service Notification interface is utilized to report the error to the Test Driver. 37

 38

MSH Error Notification Message Format: 39

Error notification messages will have the same characteristics a normal error message (i.e. have a 40
MessageHeader with refToMessageId, ConversationId, CPAId corresponding to that of the incoming 41
“offending” message that generated the error). In addition, the message will contain an Error List 42
conforming to that normally generated by the MSH. This message will be identified as “different” from a 43
received message by the presence of a “Notification” root element, which contains reporting test service 44
name, reporting test service instance id, reporting method name (errorURLNotify), synch type 45
(synchronous or asynchronous), and id. 46

 47

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 34 of 214

Received Message notifications capture messages received by the Test Service. This method is 1
specified to handle testing scenarios where the Test Service is in “local-reporting” or “remote reporting” 2
mode. A notification message generated by the messageNotify method is a “copy” of the received 3
message envelope and an encapsulated list of any attachments provided with the message. The 4
message contains. 5

 6

Received Message Notification Format: 7

All notification messages generated by the messageNotify method will have the same characteristics a 8
normal message (i.e. have a MessageHeader with refToMessageId, ConversationId, CPAId). 9
Additionally, an encapsulated list of message attachments that were a part of the received message is 10
passed to the Test Driver. The message will be identified as “different” from a received message by the 11
presence of a “Notification” root element, which contains reporting test service name, reporting test 12
service instance id, reporting method name (notify), synch type (synchronous or asynchronous), and id. 13

 14

Payload verification notification messages inform the Test Driver of the result of the PayloadVerify 15
action of the Test Service. A notification message consists of a message envelope with the same 16
characteristics a normal response message (i.e. have a MessageHeader with refToMessageId, 17
ConversationId, CPAId corresponding to that of the incoming message). This message will be identified 18
as “different” from a received message by the presence of a “Notification” root element, which contains 19
reporting test service name, reporting test service instance id, reporting method name (payloadVerify), 20
synch type (synchronous or asynchronous), and id. 21

 22

Received Payload Verification Format: 23

All payload verification messages will have the same characteristics a normal message (i.e. have a 24
MessageHeader with refToMessageId, ConversationId, CPAId). Additionally, the notify method will pass 25
to the Test Driver an XML document describing the result of the payload verification. This message will 26
be identified as “different” from a received message by the presence of a “Notification” root element, 27
which contains reporting test service name, reporting test service instance id, reporting method name 28
(messageNotify), synch type (synchronous or asynchronous), and id. 29

The payload verification notification message will also contain a single XML document as an attachment, 30
listing the “success/fail” results of the payload verification for each individual message payload verified by 31
the Test Service. The format of that XML document is specified in Appendix H. 32

 33

Additional note: 34

 Notification messages do not contain any artifacts pertaining to the protocol that carried them. For 35
example, no MIME or SOAP header content is passed along with the notification message; because the 36
Test Service does not normally have access to this message content at the application level. Only 37
message content, and accompanying message payloads are passed on to the Test Driver’s “Receive” 38
interface. 39

 40

3.2.5.4.1 WSDL representation of the Test Driver notify SOAP method 41

 42

If the Test Driver is “remote” to the Test Service (i.e. resides outside of the program space of the Test 43
Service), messages may still be initiated by the Test Service via RPC. The WSDL document in Appendix 44
G describes the Service, Operation, Port and (example) Bindings that MUST be implemented in the Test 45
Service in order to perform remote Test Service configuration via SOAP v1.2 Other RPC methods may be 46
implemented, as long as the operations and documents described in the WSDL definition are used, and 47
the same RPC mechanism is used by both Test Driver and Test Service implementer. 48

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 35 of 214

 1

 2

3
Figure 10 – WSDL diagram of the Test Driver notify SOAP method 4

 5

3.2.6 Test Service Configurator, Initiator and Notification Message formats 6

 7

The Test Service Message Schema (Appendix G) describes an XML syntax that MUST be followed for 8
passing Test Service configuration, message initiation and message notification data between the Test 9
Driver to the Test Service when the Test Driver is either interfaced with the Test Service, or is remote to 10
the Test Service but is receiving notification messages from the Test Service via RPC. 11

 12

 Using an alternate channel for Test Service configuration, message initiation and message reporting 13
separates the implementation under test from the actual testing infrastructure. This helps to isolate 14
failures in conformance and interoperability from failures in the test harness. 15

 16

The particular alternate communication binding that a test driver and test service implement is not 17
mandated in this specification, however (as an example) an abstract definition and WSDL definition with a 18
SOAP binding is provided in section 3.2.5.The list below describes each of the alternate channel 19
messages defined in Appendix G. 20

 21

InitiatorRequest – XML message content to be interpreted by the Test Service initiator method to 22
construct an ebXML Message (or any other message envelope). This XML request is passed to a 23
candidate MSH Test Service via the Send interface (if the Test Driver is in service mode) or via a remote 24
procedure call to the Test Service (if the Test Driver is in connection mode). The first argument carries 25
the message envelope construction declarations. The second argument is a list of message payloads to 26
be added to the message. If the Test Driver is in “service” mode, the configuration parameters are 27
passed to the Send interface via the initiator method call. If the Test Driver is in “loop” mode, the 28
parameters are passed to the Test Service via RPC call to the initiator method. 29

 30
Figure 11 – Initiator request content 31

 32

 33

 34

 35

 36

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 36 of 214

Name
Description Default Value Schema

Required or
Optional

Test Service
Exception
Condition

Declaration Container for instructions to
Test Service to construct a
message

#wildcard Any XML content that can
be interpreted by the Test
Service to construct a
message

Table 4 – Description of InitiatorRequest content 1

 2

 3

InitiatorResponse – XML message content to be interpreted by the Test Driver, with a Success element 4
result of “true” or “false” returned by the Test Service. The response is passed to Test Driver through its 5
Receive interface (if Test Driver is in Service mode) .The Test Driver will automatically evaluate the result 6
of the response message, and exit the Test Case with a final status of “undetermined” if the initiator 7
Success element result is “false”. Otherwise, the Test Case will proceed to the next test operation 8

 9

 10

Figure 12 - Graphical representation of the Initiat orResponse schema 11

 12

Name
Description Default Value

From Test
Service

Schema
Required or
Optional

Test Driver
Exception
Condition

InitiatorResponse
Container for response from
Test Service

 Required

Success
Boolean result (true | false)
for conversation initiation
from Test Service

 Required Test Service
failed to

 13

Table 5 – Description of the content of the Initiat orResponse element 14

 15

 16

 17

 18

 19

 20

 21

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 37 of 214

TestServiceConfiguratorRequest – XML message content passed to a candidate MSH Test Service, to 1
be interpreted by the configurator method call. Content consists of three required parameter names and 2
their corresponding values and types. If the Test Driver is in “service” mode, the configuration 3
parameters are passed to the Test Service Configuration interface via the configurator method call. If the 4
Test Driver is in “loop” mode, the parameters are passed to the Test Service via RPC call to the 5
configurator method. 6

 7

 8

Figure 13 - A Graphical representation of the TestS erviceConfiguratorRequest content schema 9

 10

 11

 12

Name Description Default
Value

Required/Option
al

Test Service Exception
Condition

ServiceMode
Toggle Test Service
between “loop” ,
“local-reporting” and
“remote-reporting”
modes

 Required Unable to configure Test
Service in this mode

ResponseURL
Normal destination for
response messages
from Test Service

 Required

NotificationURL
RPC endpoint for
notification messages
from Test Service

 Required

PayloadDigests
Container for
message payload
digest values to be
used by Test Service
“PayloadVerify” action

 Required

Payload
Individual payload
data container

 Required

Id
Identifier of the
payload

 Required

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 38 of 214

Table 6 – Description of the content of the TestSer viceConfiguratorRequest element 1

 2

TestServiceConfiguratorResponse – XML message content to be interpreted by the getMessage method 3
of the Test Driver Receive interface. The response is passed to Test Driver through its Receive interface 4
(if Test Driver is in Service mode) or sent to the Test Driver Receive RPC Service (if Test Driver is in Loop 5
mode). In both cases, the Test Driver will automatically evaluate the result of the response message, and 6
exit the Test Case with a final status of “undetermined” if the XML content in the response message 7
indicates “failure” to configure the Test Service. Otherwise, the Test Case will proceed to the next test 8
operation. 9

 10

Figure 14 - A graphical representation of the Confi guratorResponse content schema 11

 12

 13

 14

 15

 16

Name
Declaration Default Value

From Test
Service

Schema
Required or
Optional

Test Driver
Exception
Condition

TestServiceConfi
guratorResponse

Container for response from
Test Service

 Required

Success
Boolean result (true | false)
for Test Service
configuration

 Required Failed to
configure Test
Service

Table 7 Definition of content for TestServiceConfig uratorResponse 17

 18

 19

Notification – XML message envelope and payloads passed from the Test Service to the Test Driver. 20
This includes MSH error notifications, application error notifications or any messages received by the 21
Test Service while operating in “reporting” mode. Notifications are passed to Test Driver through its 22
Receive interface (if Test Driver is in service mode) or sent to the Test Driver via RPC to the Test Driver 23
notify method. In both cases, the Test Driver will automatically append the received Notification element 24
and content the root element of the Message Store. Additional XML message payloads associated with 25
the message MUST be stored by the Test Driver for examination by a GetMessage test operation if 26
necessary. 27

 28

Although the Notification message format is stored the same way in the MessageStore, there are 29
important differences for each type of notification. 30

 31

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 39 of 214

A Notification message with a notificationType attribute of “message”, looks in many ways like a message 1
received directly by a Test Driver, with the exception that some information may not be present (such as 2
MIME header content), since this portion of the message may not be exposed to the methods of the Test 3
Service Notification interface. 4

 5

A Notification message with a notificationType attribute value of “errorURL” is similar to a generic 6
“message” notification, with the exception that the message was passed to the Test Driver in response to 7
an erroneous message received by the candidate MSH. The content of the notification is the error 8
message that the candidate MSH would normally send to the requesting party or to an identified error 9
reporting URI if one were defined. 10

 11

A Notification message with a notificationType attribute value of “errorApp” is identical to an “errorURL” 12
notification , with the exception that error list provided in the notification contains “application-level” errors 13
that are not normally returned to the sending party, but are handled internally by the candidate 14
implementation under test. 15

 16

 17

 18
 19

 20

Figure 15 - Graphical representation of the Notific ation element content schema 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 40 of 214

Name
Description Default

Value
Schema Required
or Optional

TestDriver
Exception

Notification
Container for reported
message content

 Optional Invalid
notification
message

notificationType
Type of notification
(errorApp|errorURL|message)

 Required

synchType
Descriptor of type of how
message was received by
Test Service

 Required

id
Test Service provided unique
identifier of received message

 Required

serviceInstanceId
Unique identifier of the Test
Service that generated the
notification

 Optional

serviceName
Name of the Service that
generated the notification

 Optional

Container
Portion of the message
received by the Test Service

 Required

Table 8 - Description of MessageNotification eleme nt content 1

 2

 3

 4

NotificationResponse – XML message content to be interpreted by the Test Service. The response is 5
returned by the notify method of the Test Driver or sent to the Test Service as an RPC response. 6

 7

 8
 9

Figure 16 Graphical representatnio of NotificationR esponse content 10

 11

 12

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 41 of 214

PayloadVerifyResponse – XML message content to be interpreted by the “notify” method of the Test 1
Driver’s “Receive” interface. This message content is an attachment to the notification message. 2

 3

 4

Figure 17 – A graphical representation of the Paylo adVerifyResponse content schema 5

 6

 7

 8

Name
Description Default

Value
Schema
Required or
Optional

Test Driver
Exception

PayloadVerifyResponse
Container for results of
comparison of message
payload received by
candidate MSH with their
MD5 digest values

 Required

Payload
Container for individual
payload verification result

 Required

Id
ID of the payload Required

Table 9 - Description of PayloadVerifyResponse con tent 9

 10

 11

 12

 13
 14

 15

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 42 of 214

4 The Test Case Script 1

 2

4.1 Executing Test Cases 3

 4

 5

A Test Suite document contains a collection of Test Cases. Each Test Case is an XML script, intended to 6
be interpreted by a Test Driver. Using the Test Suite document, the Test Driver MUST be able to: 7

 8

Configure Itself – Define necessary parameters that permit the Test Driver to send messages and verify 9
and/or validate received message content 10

Configure the Test Service – Define necessary parameters that permit the Test Service to set its mode of 11
operation, and send notification messages to the Test Driver (if required). 12

Access all necessary testing material – Test Requirements documents, message content, payload 13
content 14

Execute Test Cases – Interpret a formalized and valid XML scripting language that permits unambiguous, 15
repeatable results each time it is interpreted and executed 16

Generate a Test Report – After executing the Test Cases, a Test Driver MUST is able to generate a Test 17
Report using the material provided in the Test Suite, and collateral test material that is part of the Test 18
Suite. 19

 20

4.1.1 A Typical Execution Scenario 21

 22

In order to get an idea of how the Test Framework operates, a brief description of how a Test Driver 23
would typically execute a Test Suite is described below. This is an “overview” description of how the Test 24
Framework executes. In order to fully understand the details and requirements of implementing this 25
specification, the remaining portion of this specification must be examined. 26

 27

A typical execution model for the Test Harness would be: 28

 29

A Test Driver is installed on a networked computer. 30

An implementer wishing to test an ebXML (or other) implementation invokes the Test Driver executable. 31

The Test Driver asks the tester for fundamental information (e.g. mode of testing to be used by the Test 32
Driver, message and error reporting URL for the candidate implementation) 33

The Test Driver “self configures” based upon user preferences. 34

The Test Driver performs any local or remote configuration of the candidate implementation if necessary. 35

The Test Driver presents the tester with a list of conformance or interoperability testing profiles that 36
he/she may select from for testing the candidate implementation. 37

The tester chooses a testing requirements profile, which identifies particular testing requirements (and 38
subsequently their matching Test Cases). 39

Execution of Test Cases against the specified testing requirements profile begins. 40

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 43 of 214

A standard Test Report Document is generated by the Test Driver, providing a trace of all testing 1
operations performed for each Test Case, with accompanying Test Case results, indicating a final result 2
of “pass”, “fail” or “undetermined” for each Test Case, based upon detailed results of each test operation 3
within each Test Case. 4

If a candidate implementation passes all Test Cases in the Test Suite, it can be considered conformant or 5
interoperable for that particular testing profile. 6

If a candidate implementation fails some Test Cases, but the Test Requirement that they tested against 7
were “OPTIONAL”, “HIGHLY RECOMMENDED” or “RECOMMENDED”, then that implementation may 8
still be conformant for all REQUIRED features tested. 9

If the optional features tested were actually implemented on the candidate, and it failed any Test Cases 10
that test against those features then the candidate would be considered “non-conformant” for those 11
optional features. 12

 13

If any Test Case results were “undetermined” (due to network problems, or due to missing prerequisite 14
candidate features that are not under the control of the Test Harness) then ultimate 15
conformance/interoperability of the candidate implementation is deemed “undetermined” for that testing 16
profile. In such cases, resolution of the underlying system issue must be resolved or the Testing Profile 17
must be redefined to test only those features that are truly supported by the candidate implementation. 18

 19

The above list represents an “overall” view of how a Test Harness operates. Detailed descriptions of the 20
testing material that drives the Test Harness, and implementation requirements for the Test Driver and 21
Test Service follow. 22

 23

4.1.2 Test Case as a Workflow of Threads 24

 25

A Test Case is a workflow of Test Threads. A Thread can be executed either in a synchronous or 26
asynchronous manner. If a particular test operation consists of a logically grouped sequence of 27
message “send” and “receive” test operations (described using the “PutMessage” and “GetMessage” 28
operators), then a Thread is a logical container to group those test operations. In addition, a Thread may 29
test an assertion of expected message content from a received message (using the “TestAssertion” 30
operator). 31

A Test Case Instance is the execution of a particular sequence of test operations. Two instances of the 32
same Test Case will be distinguished by distinct ConversationId and MessageId values in the generated 33
messages (referred to as the message “context”). An example of a sequence of Threads associated with 34
an MS Conformance Test Case is: 35

 36

Thread 1: Test driver sends a sample message to the Reflector action of the Test Service. Message 37
header data is obtained from message header declaration, and message payload from the received file. 38

Thread 2: Test driver receives the response message and adds it to the stored messages received for 39
this Test Case instance Message Correlation is done based on the ConversationId attribute, which should 40
be identical to the MessageId of the sent message Test driver verifies the test condition on response 41
message, for example that the SOAP envelope and extensions are valid. 42

 43

 44

 45

 46

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 44 of 214

4.1.3 Message Declarations 1

 2

All cases require the construction of message data. Outgoing message data MUST be specified using a 3
Declaration (see Section 7). A Declaration is an XML-based script interpreted by the Test Driver (or Test 4
Service if doing interoperability testing) to construct a message envelope and its content. Payload 5
material is not included in the messages declaration, but may be referenced by it (for example, in the 6
case of ebXML Messaging, via the Manifest element). 7

 8

Declaration content can be any well-formed XML content. That content can be inserted “as is” and sent 9
over the wire by the Test Service (if no Mutator XSL stylesheet is employed to transform the Declaration 10
content into a valid message). In that case, the Declaration is assumed to already be a valid XML 11
message. 12

 13

More typically however, the Declaration content would be transformed by a Mutator XSL stylesheet into a 14
valid message. The presence of a Mutator element following a Declaration indicates that the Declaration 15
content MUST be mutated (or transformed) into a valid message. 16

4.1.4 Testing Configuration Data 17

 18

Test Cases MAY be executed under a pre-defined collaboration agreement. For example, when testing 19
ebXML Messaging Services, this agreement is a CPA [ebCPP]. This agreement will configure the ebXML 20
Candidate Implementations involved in the testing, and define the collaborations that execute on these 21
implementations. 22

 23

Test Driver Configuration data (found in the Test Suite XML document) parameters define the operational 24
mode of the test driver itself. The Test Driver is agnostic to any type of collaboration agreement, but does 25
have its own set of configuration parameters and requirements. This information is provided (or 26
referenced via URI) in the Test Suite document.. 27

 28

 29

 30

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 45 of 214

 1

Figure 18 - Test Case Document and Database 2

 3

 4

 5

 6

 7

 8

4.2 An Abstract View of Test Scripts 9

 10

A Test Case is a workflow of Test Threads. Test Threads can be thought of as containers of test 11
operations used to perform some specific testing function. These operations are typically executed in 12
sequence within a thread. Concurrency of operations typically involve several (concurrent) threads. For 13
example, a Thread may be used to send a message, receive a response and evaluate the content of that 14
message response (to test a single “business transaction activity”. Or, a Thread may be used as a 15
container of other Threads (performing a higher-level role in testing “binary collaboration activity” between 16
two parties. If two conversations must be controlled by the Test Driver, without clear indication on which 17
one will occur first or whether they may be interleaved, then two concurrent threads can be used, each 18
one taking care of a conversation. 19

 20

Threads may contain a number of test operations, including message construction and transmission, 21
message reception and evaluation, assertion testing and logic control operations. Section 8 7 provides 22
the syntactic rules and semantic meaning of the XML schema used to define Test Cases and their 23
Threads. 24

 25

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 46 of 214

However, before introducing the technical details of the IIC Test Framework scripting language, it would 1
be helpful to understand how Threads can be used in 3 sample Test Cases. The 3 sample Abstract Test 2
Cases below use common Test Driver instructions that include: 3

 4
PutMessage() :an operation that will send a message to the remote party. The message material is built or modified by the Test 5

Driver, based on previous messages or based on message material that is part of the test case definition. 6
GetMessage() : an operation that will wait for incoming messages, and only select those that satisfy a filter condition. In fact, all 7

received messages are stored in a queue. and GetMessage() will select any message (including previously received 8
messages) from the Message Store . As soon as the XPath filter is satisfied, GetMessage() us complete. . A timeout is always 9
be specified (via a Test Driver “StepDuration” configuration parameter) so that GetMessage() does not hang query the 10
Message Store indefinitely 11

TestAssertion () : a verification operation that evaluates a condition on messages retrieved via the GetMessage operation. It then 12
may determine the action to follow, such as continue or test case termination (as failure, success, or undetermined outcome). 13

Split() and Join() are typical workflow operators. Split()forks one or more threads concurrently within the parent Thread. Join() is by 14
default an and-join operator that will wait for the completion of its argument threads before proceeding further. 15

 16

 17

4.2.1 Test Case #1: Basic Transaction Send/Receive within specified TimeToAcknowledge and 18
TimeToPerform 19

 20

This Test Case illustrates a typical “send/receive” testing scenario, in which time plays a critical role in 21
determining whether the candidate business application “passes” or “fails”. 22

The Test Driver (acting in the role of the “Buyer”) sends a Purchase Order document to the candidate 23
business application (the “Seller”). 24

The Seller must respond with a “business Acknowledgment message” within 120 seconds. 25

Lastly, either a Confirmation or Rejection (but not both) message must be received by the Test Driver 26
within 180 seconds of sending the Purchase Order message. 27

Test Driver then sends a Receipt Acknowledgment for the confirmation/rejection 28

 29

Below is an abstract script representation of the test case, showing how threads are combined and what 30
operations they execute (the normative version of this Test Case can be found in Appendix I): 31

 32

 33

Test Case Begin “main” execution Thread 34

PutMessage() Send a message containing a Purchase Order attachment 35

Split (thread_01) 36

 Thread 37

Sleep(180) Fork a “sleep” Thread that waits for 3 minutes. 38

End Thread 39

GetMessage() Concurrently check for a business Acknowledgment response. Filter any 40
ReceiptAcknowledgment response message with same ConversationId as PurchaseOrder. 41
TestAssertion Verify that a filtered message is present in the filtered result. If the TestAssertion 42
operation returns a Boolean result of “false”, exit the Test Case with a final result of “fail”, stating that a 43
ReceiptAcknowledgment was not present. 44

 45

TestAssertion Verify that Receipt Acknowledgment occurred within specified 46
'TimeToAcknowledgeReceipt' period of 120 seconds (comparing the Receipt Acknowledgment 47
Timestamp against the Timestamp of the request message (generated by the Test Driver at runtime). If 48

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 47 of 214

the TestAssertion operation returns a Boolean result of “false”, exit the Test Case with a final result of 1
“fail”. 2

Join (thread_01) Synchronize script execution, proceeding if both Threads successfully complete. 3

GetMessage() Retrieve Response message(s). Filter any business response message (either 4
Confirmation or Rejection)” with same ConversationId as PurchaseOrder. 5

TestAssertion Verify that result contains either a single Confirmation or Rejection (but not both). If the 6
TestAssertion operation returns a Boolean result of “false”, exit the Test Case with a final result of “fail”. 7

PutMessage() Send a business Receipt Acknowledgment 8

End Test Case End “main” execution Thread 9

 10

4.2.1.1 Semantics of Execution for this test case: 11

 12

 When the above Test Case is executed, a “main” Thread is started (even if not explicitly defined in the 13
Test Case). This main Thread will spawn other threads, such as thread_01 in our example. The first step 14
in the main Thread above is a “PutMessage” operation which sends a Purchase Order request to a 15
candidate business application. Also within this main Thread, a sub-thread (thread_01) is invoked “in 16
parallel” using the Split operation. This thread simply “sleeps” for 3 minutes, while the main thread 17
proceeds concurrently. 18

 19

4.2.2 Test Case #2: Basic Error Handling Test 20

This Test Case illustrates a scenario where an error message must be caught, no matter when it occurs 21
during the test case execution. The “Buyer” (Test Driver) sends a Purchase Order document to the 22
candidate business application (the “Seller”). The Seller responds with an Acceptance or Rejection 23
message (but not both). An error may occur at any point within 5 minutes of the initial Purchase Order 24
request (either before, during or after receiving the Acceptance or Rejection response). If that is the case, 25
the test case must fail. 26

 27

Below is an abstract script representation of the test case, showing how threads are combined and what 28
operations they execute (the normative version of this Test Case can be found in Appendix I): 29

 30

Test Case Begin “main” execution Thread 31

PutMessage() Send a message containing a Purchase Order attachment 32

Split (thread_01) Fork “sleep” Thread that waits for 3 minutes 33

 Thread 34

Sleep(180) 35

 End Thread 36

Split (thread_02) Fork “sleep” Thread that waits for 5 minutes then checks for an Error message 37

 Thread 38

Sleep(300) 39

GetMessage() Check for any received Error Messages. Filter a specific Error message 40
referring to this PurchaseOrder ID. 41

TestAssertion() Verify an Error message was received. If the verification condition 42
returns a boolean result of “true”, exit the Test Case with a final result of “fail”. If the value 43
is “false”, the test case is instructed to continue its execution. 44

 End Thread 45

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 48 of 214

Join (thread_01) Synchronize script execution, proceeding after thread_02 completes successfully (i.e. 1
3 minutest have passed since the request message was sent). 2

GetMessage() Retrieve Response message(s). Filter any business response message with same 3
ConversationId as PurchaseOrder. 4

TestAssertion() Verify that result contains either a single Confirmation or Rejection(but not both). If 5
the TestAssertion operation returns a Boolean result of “false”, exit the Test Case with a final result of 6
“fail”. 7

Join (thread_02) Synchronize script execution, proceeding after thread_01 completes successfully. 8

End Test Case End “main” execution Thread 9

 10

 11

4.2.2.1 Semantics of Execution for this test case: 12

 13

 The main Thread starts by executing a “PutMessage” operation to send a Purchase Order request to a 14
candidate business application. After this, two threads are forked: 15

 16

Thread_01 (a Thread that sleeps for 3 minutes, is executed via the Split operation. The role of this thread 17
is the same as in use case #1. 18

 Thread_02 is forked and sleeps for 5 minutes. then tests for any received Error messages 19
 20

Continued execution of the Test Case is predicated upon the completion of thread 01 Assuming 21
thread_01 completes successfully, Test Case execution continues with a retrieval of the response 22
message. Like in Use Case #1, a TestAssertion operation verifies that either a single Confirmation or 23
Rejection (but not both) message is received by the Test Driver. If neither is received, the Test Case 24
ends with a final result of “fail”. 25

Lastly, thread_02 (the Error checking Thread) is Joined as the final determinant of success/failure of the 26
Test Case. If thread_02 completes its execution (meaning it has failed to detect an error message), the 27
final Test Case result is “pass”. . 28

 29

4.2.3 Test Case #3: Conditional Branching Scenario 30

 31

This Test Case illustrates a scenario in branching of Test Case logic, which is dependent upon the 32
outcome of a TestAssertion operation. The Test Driver (acting in the role of the “Buyer”) sends a Request 33
for Quote document to the candidate business application (the “Seller”). The Seller responds with an 34
Approval or Rejection message. An error may occur at any point after the initial of the initial Request for 35
Quote, and must be caught by the Test Driver. 36

 37

Below is an abstract script representation of the test case, showing how threads are combined and what 38
operations they execute (the normative version of this Test Case can be found in Appendix I): 39

 40

Test Case Begin “main” execution Thread 41

PutMessage() Send a message containing a Request For Quote 42

Split (thread_01) 43

 44

 Thread 45

Sleep(300) 46

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 49 of 214

GetMessage() Check for any received Error Messages. Filter a specific Error message 1
referring to this PurchaseOrder ID. 2

TestAssertion() Verify an Error message was received. If the verification condition 3
returns a boolean result of “true”, exit the Test Case with a final result of “fail”. If the value 4
is “false”, the test case is instructed to continue its execution. 5

 End Thread 6

 7

GetMessage() Retrieve Response message(s). Filter any business response message with same 8
ConversationId as Request For Quote. 9

TestAssertion() Verify that result contains an “Approval” or “Rejection” document. If the TestAssertion 10
operation returns a Boolean result of “false”, exit the Test Case with a final result of “fail”. 11

TestAssertion() Verify that result contains an “Approval” document. 12

WhenTrue 13

Split (thread_02) Process the Approval document by forking the “Approval” Thread (02) 14

 Thread 15

TestAssertion () Validate the Approval document. If the 16
TestAssertion operation returns a Boolean result of “false”, exit the Test 17
Case with a final result of “fail”. 18

GetMessage () Retrieve a Quote message with corresponding, filtering 19
messages of type “Quote and having the same ConversationId as the 20
Approval document. 21

PutMessage () Send an Approval of Quote message response. 22
Message created reuses the same ConversationId. Message created 23
reuses the same ConversationId as the Approval document. 24

End Thread 25

 26

WhenFalse 27

Continue() “Continue” to next Test Operation. Explicitly continue execution if the 28
TestAssertion operation fails (i.e. do not abort the Test Case), because the response is a 29
“Rejection”. 30

 31

TestAssertion() Verify that result contains a “Rejection” document. 32

 33

WhenTrue Process the Rejection document by forking the “Rejection” Thread (03) 34

Split (thread_03) Process the Rejection document by forking the “Rejection” Thread 35
(03) 36

 Thread 37

TestAssertion () Verify that this is a Rejection document. 38
TestAssertion operation returns a Boolean result of “false”, exit the Test 39
Case with a final result of “fail”. 40

GetMessage () Retrieve the “alternative” message , filtering messages 41
of type with same corresponding ConversationId as the Rejection 42
document. 43

TestAssertion () Verify that it is not a ‘Quote’ message.. exit Test Case 44
with a result of “fail” if it is. . If the TestAssertion operation returns a 45
Boolean result of “false”, exit the Test Case with a final result of “fail”. 46

End Thread 47

 48

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 50 of 214

 1

WhenFalse Not a Rejection 2

Continue ()“Continue” to next Test Operation. Explicitly continue execution if the 3
TestAssertion operation fails (i.e. do not exit the Test Case), because the 4
response is an “Approval”. 5

OrJoin(thread_02, thread_03) Synchronize script execution to make sure that either an Approval or 6
Rejection was successfully processed before doing proceeding to a final synchronization of the “Error 7
Checking” thread. 8

Join (thread_01) Synchronize script execution, proceeding after thread_01 completes, signifying that no 9
Errors were generated. If thread_01 does not complete, exit the Test Case with a final state of 10
“undetermined”, since test execution cannot proceed for an unknown reason. 11

End Test Case End “main” execution Thread 12

 13

4.2.3.1 Semantics of Execution for this Test Case: 14

 15

 16

The main Thread executes a simple Request for Quote request to the candidate business application. 17

 18

Following the PutMessage test operation one sub-thread (thread_01) is invoked “in parallel” using the 19
Split operation. This thread will check for any received error message over the 5 minutes that follow the 20
start of the execution. 21

 22

Next, the main Thread does a GetMessage test operation to retrieve any response message having the 23
same ConversationId as the initial request.. 24

 25

Continued execution of the Test Case is predicated upon the successful retrieval of either an Approval or 26
a Rejection message from the candidate application. 27

 28

This can be expressed as two boolean expressions, whose true result causes the execution of a sub-29
thread of test operations (either Acceptance thread_02 or Rejection thread_03). 30

Continued Test Case script execution is predicated upon the completion of thread_02 OR thread_03 (via 31
the OrJoin instruction). If one or the other completes, then script execution continues. Otherwise, the 32
Test Driver exits with a final Test Case result of “undetermined”. 33

 34

Lastly, a final Join operation verifies that thread_01 (the “error checking Thread”) completes. If thread_01 35
runs to completion, then the entire Test Case script has run to completion, and the final Test Case state is 36
“pass”, since no further execution is possible. 37

 38

 39

 40

 41

 42

 43

 44

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 51 of 214

4.2.4 Final Test Case Result Rules 1

 2

A Test Assertion may specify a particular action to be taken by the Test Driver, based upon its “true” or 3
“false” result value. Such an action could be (1) exit test case on either “fail”, “pass”, or “undetermined”, 4
(2) return from this thread (complete it), (3) continue to the next step in this thread. In case no action 5
statement is specified for either boolean value of the Test Assertion, the following default rules apply: 6

 7

The default action for a boolean value of “true” is “continue”. 8

The default action for a boolean value of “false” is exit test case with a final result of “fail”) 9

 10

The final outcome of a Test Case follows these rules: 11

 12

 A final Test Case state of "pass" occurs when: 13

 14

The Test Driver encounters an explicit "exit/pass" instruction from within a TestAssertion 15

Logical Test Case execution proceeds from beginning to end without the Test Driver encountering: 16

1) An explicit "exit/fail" or "exit/undetermined" instruction 17

2) A system "exception" condition occurs (such as an HTTP timeout, network protocol error, or improper 18
test scripting (e.g. an invalid XPath expression in a TestAssertion operation) that precludes continuation 19
of Test Case execution. 20

 21

 A final Test Case state of "fail" is given to a TestCase when: 22

 23

a) A TestAssertion boolean operation returns a result of "false" (default behavior) (i.e. it is assumed by 24
default that a TestAssertion is a meaningful condition of conformance/interoperability that must pass. 25

* Note however, that this default behavior can overridden by the test writer in such cases where a 26
different meaning is given to the TestAssertion, such as when a TestAssertion verifies a "precondition" to 27
further testing, in which case the test writer may wish to "exit" the Test Case with a final state of 28
"undetermined". Additionally, the test writer may wish to "continue" if the failed result of the TestAssertion 29
is used to alter the flow of Test Case execution. 30

 31

b) The Test Driver encounters an explicit "exit/fail" instruction within a TestAssertion operation. 32

 33

 A final Test Case state of "undetermined" occurs when: 34

 35

a) The Test Driver encounters an explicit "exit/undetermined" instruction within a TestAssertion operation. 36

b) A system "exception" condition occurs (such as an HTTP timeout, network protocol error, or improper 37
test scripting (e.g. an invalid XPath expression in a TestAssertion operation) that precludes continuation 38
of Test Case execution. 39

 40

 41

 42

 43

 44

 45

 46

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 52 of 214

Part II: Test Suite Representation 1

 2

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 53 of 214

5 Test Suite 1

 2

5.1 Conformance vs. Interoperability Test Suite 3

 4

We distinguish two types of test suites, which share similar document schemas and architecture 5
components, but serve different purposes: 6

Conformance Test Suite . The objective is to verify the adherence or non-adherence of a Candidate 7
Implementation to the target specification. The test harness and Test Cases will be designed around 8
a single (candidate) implementation. The suite material emphasizes the target specification, by 9
including a comprehensive set of Test Requirements, as well as a clear mapping of these to the 10
original specification (e.g. in form of an annotated version of this specification). 11

 12

Interoperability Test Suite . The objective is to verify that two implementations (or more) of the same 13
specification, or that an implementation and its operational environment, can interoperate according 14
to an agreement or contract (which is compliant with the specification, but usually restricts further the 15
requirements). These implementations are assumed to be conforming (i.e. have passed conformance 16
tests or have achieved the level of function of such tests), so the reference to the specification is not 17
as important as in conformance. Such a test suite involves two or more Candidate Implementations of 18
the target specification. The test harness and Test Cases will be designed in order to drive and 19
monitor these implementations. 20

 21

A conformance test suite is composed of: 22

 23

One or more Test Profile documents (XML). Such documents represent the level or profile of 24
conformance to the specification, as verified by this Test Suite. 25

Design of a Test Harness for the Candidate Implementation that is based on components of the ebXML 26
IIC Test Framework. 27

A Test Requirements document. This document contains a list of conformance test assertions that are 28
associated with the test profile to be tested. 29

An annotation of the target specification, that indicates the degree of Specification Coverage for each 30
specification feature or section, that this set of Test Requirements provides. 31

A Test Suite document. This document implements the Test Requirements, described using the Test 32
Framework material (XML mark-up, etc.) 33

 34

An Interoperability Test Suite is composed of: 35

 36

One or more Test Profile documents (XML). Such documents represent a set of features specific to a 37
particular functionality, represented in a Test Suite through Test Cases that only test those particular 38
features, and hence, that profile. 39

Design of a Test Harness for two or more interoperating implementations of the specification that is based 40
on components of the ebXML Test Framework. 41

A Test Requirements document. This document contains a list of test assertions associated with this 42
profile (or level) of interoperability. 43

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 54 of 214

A Test Suite document. This document implements the Test Requirements, described using the Test 1
Framework material (XML mark-up, etc.) 2

 3

 4

5.2 The Test Suite Document 5

 6

The Test Suite XML document is a collection of Test Driver configuration data, documentation and 7
executable Test Cases. 8

Test Suite Metadata provides documentation used by the Test Driver to generate a Test Report for all 9
executed Test Cases. 10

Test Driver Configuration data provide basic Test Driver parameters used to modify the configuration of 11
the Test Driver to accurately perform and evaluate test results. It also contains configuration data for 12
the candidate ebXML implementation(s). 13

Message data is a collection of pre-defined XML payload messages that can be referenced for inclusion 14
in an ebXML test message. 15

Test Cases are a collection of discrete Threads. Each Thread can execute any number of test 16
Operations (including sending, receiving, and examining returned messages). An ebXML Test Suite 17
document MUST validate against the ebTest.xsd file in Appendix C. 18

Message Payloads provide XML and non-XML content for use as material for test messages, as well as 19
message data for Test Services linked to the Test Driver. 20

 21

 22

 23
 24

Figure 19 - Graphic representation of basic view of TestSuite schema 25

 26

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 55 of 214

Below is one of the many similar tables found throughout this document to describe the XML content 1
represented by the graphical schemas like the one above. The meaning of each column in the tables is 2
described below: Name: The name of the XML element or attribute 3

Description: A semantic description of that XML element or attribute 4

Default Value: What the “default” value is for any XML content supplied by the Test Driver 5

Schema Required or Optional: Whether or not the content MUST be supplied by the test writer (i.e. to 6
validate against the Test Suite XML schema), or is optional 7

Test Driver Exception Condition: REQUIRED exception that must be thrown by the Test Driver if XML 8
content prohibits execution 9

 10

Name Description Default
Value

Schema Required
or Optional

Test Driver
Exception
Condition

TestSuite Container for all
configuration,
documentation and
tests

 Required

configurationGroupRef Reference ID of the
ConfigurationGroup
data used to
configure the Test
Driver (in
connection mode)
or Test
Service/MSH (
when in service
mode)

 Required ConfigurationGroup
not found

Metadata Container for
general
documentation of
the entire Test
Suite

 Required

ConfigurationGroup Container for Test
Driver configuration
instance data

 Optional

ThreadGroup Container for
“global” Threads
that MAY be
referenced by any
Test Case in the
Test Suite

 Optional

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 56 of 214

TestServiceConfigurator Container for Test
Service
configuration
instance data

 Required Unable to configure
Test Service (non-
fatal)

Message Container element
for “wildcard”
message content
(i.e. any well-
formed XML
content)

 Optional

Table 10 – A list of TestSuite element and attribut e content 1

 2

 3

5.2.1 Test Suite Metadata 4

 5

Documentation for the ebXML MS Test Suite is done through the Metadata element. It is a container 6
element for general documentation. 7

 8

 9

 10

Figure 20 - Graphic representation of expanded view of the Metadata element 11

 12

 13

 14

 15

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 57 of 214

 1

Name
Description Default

Value
Schema Required
or Optional

Test Driver Exception
Conditions

Title
Brief title of the Test Suite Required

Description
General description of the
Test Suite

 Required

Version
Version identifier for Test
Suite

 Required

Maintainer
Name of person(s)
maintaining the Test Suite

 Required

Location URL or filename of this test
suite

 Required

PublishDate Date of publication Required

Table 11 - A list of Metadata element and attribute content 2

 3

5.2.2 The ConfigurationGroup 4

 5

The ConfigurationGroup element contains configuration data for both the Test Driver as well as modifying 6
the content of test messages constructed by the Test Driver (when in “connection” mode) or message 7
declarations passed to the Test Service (when in “service” mode). 8

ConfigurationGroups may be referenced throughout a Test Suite, in a hierarchical fashion. By default, a 9
“global” ConfigurationGroup is required for the entire Test Suite, and MUST be referenced by the 10
TestSuite element in the Executable Test Suite document. This established a “base” configuration for the 11
Test Driver. 12

Subsequent re-configurations of the Test Driver may be done at the Test Case and Thread levels of the 13
test object hierarchy. At each level, a reference to a ConfigurationGroup via the “configurationGroupRef” 14
attribute takes precedence and defines the Test Driver configuration for the current test object and any 15
“descendent” test objects (e.g. any Test Cases and sub-Threads will inherit the Test Driver configuration 16
defined by their parent Thread). Logically, when workflow control of the Test Case returns to a higher 17
level in the object hierarchy, then the ConfigurationGroup defined at that level again takes precedence 18
over any defined at a lower level by a descendent test object. 19

 20

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 58 of 214

 1

Figure 21 - Graphic representation of expanded view of the ConfigurationGroup element 2

 3

 4

 5

 6

 7

 8

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 59 of 214

NameNameNameName
Description Default

Value
Schema
Required or
Optional

Test Driver
Exception
Condition

ConfigurationGroup

Container Test Driver/MSH configuration
data

 Required

id

Unique URI used to identify this set of
configuration data

 Required

Mode

One of two types for the Test Driver,
(service | connection)

 Required

StepDuration Timeout (in seconds) of a message send
or receive operation

 Required

Transport Directs the Test Driver as to which
transport protocol to use to carry
messages.

 Required Transport not
supported

Envelope Directs the Test Driver as to which
Messaging envelope type it is
constructing

 Required Envelope type
not supported

StoreAttachments Toggle switch directing Test Driver to
ignore (false) or store (true) incoming
message attachments

 Required

ValidationType Default type of message (or payload)
validation (XMLSchema or Schematron)

 Required

XMLDSIG Container for Test Driver digital signature
configuration

 Optional XMLDSIG not
supported

KeystoreFileURI Location of keystore file to be used by all
Test Cases (unless explicitly overridden
for that operation)

 Required

KeystoreType Type of keystore (jks | pkcs12) to be
used for all DSignEnvelope and
DSignPayload operations (unless
explicitly overridden for that operation)

 Required

KeystorePasswor
d

To be used for all DSignEnvelope and
DSignPayload operations (unless
explicitly overridden for that operation)

 Required

KeystoreAlias To be used for all DSignEnvelope and
DSignPayload operations (unless
explicitly overridden for that operation)

 Required

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 60 of 214

KeystoreAliasPas
sword

To be used for all DSignEnvelope and
DSignPayload operations (unless
explicitly overridden for that operation)

 Optional

MutatorType Default type of message (or payload)
mutation to be used with this Test Suite
(XSLT or XUpdate)

 Required

SetParameter
Container for ”ad-hoc” name/value pair
used by the Test Driver for configuration
or possibly for message payload content
construction

 Optional

Name Name for the ConfigurationItem Required

Value
Value of the ConfigurationItem Optional

Namespaces
Container used to define namespaces
used in XPath queries of message filter
operations. All namespaces used in
XPath queries MUST be defined in this
configuration group.

 Optional

Namespace
Name/value pair container Required

Name
The namespace prefix (without colon) Required

Value
The URI of the namespace Required

Table 12 - A list of ConfigurationGroup element and attribute content 1

 2

 3

 4

 5

 6

 7

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 61 of 214

 1
 2

Figure 22 - Graphic representation of hierarchical use of the ConfigurationGroup via reference at 3
TestSuite, TestCase and ThreadRef Thread levels in the test object hierarchy 4

 5

 6

5.2.2.1 Precedence Rules for Test Driver/MSH configuration parameters 7

 8

In order to generate messages correctly, the Test Driver MUST follow the precedence rules for 9
interpreting a Configuration Group parameter reference. The precedence rules are: 10

 11

Certain portions of a message are auto-generated by the Test Driver (or MSH) at run-time 12

 13

This includes the following run time generated parameters: 14

 15

ConversationId – Unique to each new Test Case 16

MessageId – Unique to each message generated by the PutMessage instruction 17

Timestamp - Unique to each message generated by the PutMessage instruction 18

 19

These run time parameters MUST have the names specified above (case sensitive). 20

 21

 22

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 62 of 214

Additional message content MAY be provided through parameter definitions in the current 1
ConfigurationGroup, or through a SetParameter or SetXPathParameter test operation within a Thread. 2
This includes message content such as: 3

 4

CPA Id 5

Service 6

Action 7

Sender Party Id 8

Receiver Party Id 9

 10

The parameters listed above can be given any parameter name the test writer chooses. However, the 11
test writer MUST reference the parameter in XSLT mutator stylesheets, or in XPath expressions using the 12
identical name (case sensitive) with which it was defined using the SetParameter instruction. 13

 14

The following rule describes how a Test Driver MUST interpret parameter values and their precedence of 15
assignment within a Test Suite. 16

 17

The TestSuite element’s “configurationGroupRef” attribute points to the global parameter definition for the 18
entire Test Suite. This acts as the “base” parameter definition before Test Suite execution begins. 19

Parameters MAY be used by an XSL stylesheet or XUpdate document to “mutate” a Declaration into a 20
valid message. They are passed to the XSL or XUpdate processor via name reference. 21

Parameters MAY be used by the VerifyContent test operation through reference in an XPath expression. 22
Parameter names are referenced in XPath expressions with a preceding “$” character. The Test Driver 23
MUST dereference the parameter prior to performing an XPath query on a FilterResult document object. 24

If a parameter is defined in a ConfigurationGroup or via a SetParameter test operation, the parameter 25
definition takes precedence over any “auto-generated” definition of that parameter by the Test Driver. 26
Care should be taken to only “override” such values at the TestCase or Thread Thread level, so that “side 27
effects” are not passed on through the Test Suite object hierarchy (i.e. influencing message construction 28
beyond the scope of the Thread that is intended). 29

Any descendent Thread element with a “configurationGroupRef” attribute “redefines” a parameters value 30
for itself and any of its descendent Threads (i.e. it limits the scope of the parameter definition to all of its 31
descendents only). 32

Any “SetParameter” instruction within a TestCase or Thread element supersedes its current definition 33
within the currently defined ConfigurationGroup. The scope of the parameter definition is limited to the 34
current Thread and any descendent Threads. . 35

 36

5.2.2.1.1 Test Driver Parameter Exception Conditions 37

 38

 39

A Test Driver MUST generate an exception and terminate the Test Case with a result of “undetermined” if 40
it cannot mutate a message due to an undefined parameter. 41

 42

A Test Driver MUST generate an exception and terminate the Test Case with a result of “undetermined” if 43
it cannot verify a message due to an undefined parameter in an XPath query. 44

 45

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 63 of 214

5.2.3 The ThreadGroup 1

 2

The ThreadGroup element contains “global” Thread declarations (useable by all Test Cases in the Test 3
Suite). Such a group permits reusability of common testing operations, such as a commonly used 4
conversation initiation message request and response. Threads are explained in detail in section 7.1.1. 5

 6

 7

Figure 23 - Graphic representation of ThreadGroup c ontent 8

 9

 10

NameNameNameName
Description Default

Value
Schema
Required or
Optional

Test Driver
Exception
Condition

ThreadGroup
Container for Thread declarations
available for use by any Test Case
via reference call

Thread
Individual container of a Thread
declaration

Table 13 - ThreadGroup content description 11

 12

5.2.4 The TestServiceConfigurator Test Operation 13

 14

The TestServiceConfigurator element instructs the Test Driver to configure the Test Service. A Test 15
Service MUST provide both a Configuration interface to the Test Driver, with a “configurator” method, like 16
that specified in section 3.2.5. The Test Driver MAY access the Configuration interface either locally or 17
remotely (via RPC), depending upon the mode of the Test Driver 18

 19

 20

 21

Figure 24 - Graphic representation of the TestServi ceConfigurator content 22

 23

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 64 of 214

 1

NameNameNameName
Description Default

Value
Schema Required or
Optional

Test Driver
Exception
Condition

TestServiceConfigura
tor Container for Test Service

configuration data
 Required Test Service

Configuration
Failed

ServiceMode
Switch to set to one of three
modes (loop | local-
reporting | remote-reporting)

 Required

ResponseURL
Endpoint to send response
messages

 Required

NotificationURL
Endpoint to send message
and error notifications
(typically the Test Driver
URL)

 Required

PayloadDigests
Container for one or more
payload identifiers and
corresponding MD5 digest
value

 Optional

Payload
Container for individual
payload information

 Required

Id
Id of the message payload Required

Table 14 - ConfigurationGroup content description 2

 3

5.2.4.1 TestServiceConfigurator behavior in Connection and Service mode 4

 5

In Connection Mode: The “TestServiceConfigurator” test operation instructs the Test Driver to pass 6
configuration parameters to a remote Test Service Configuration interface, using its “configurator” 7
method. The Test Service MUST respond with a success status of “true” or “false”. 8

 9

 10

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 65 of 214

In Service Mode: The “TestServiceConfigurator” instructs the Test Driver to pass configuration 1
parameters to the local Test Service via its Configuration interface, and its “configurator” method. The 2
Test Service MUST respond with a success status of “true” or “false”. 3

 4

5.2.5 “Inlined” Message Content 5

 6

XML Message content MAY be included in the Test Suite document, and referenced via ID. This is 7
particularly useful for message content that is used repeatedly throughout the Test Suite. Message 8
content is stored as a child of the TestSuite element, and is represented below: 9

 10

 11

Figure 25 - Graphic view of Message element content 12

 13

NameNameNameName
Description Default

Value
Schema Required or
Optional

Test Driver
Exception
Condition

Message
Container for Test Service
configuration data

 Optional

id
Unique identifier of this
message content, to be
referred to by Test Cases
wishing to re-use this
content

 Required

#wildcard
Any XML content is
acceptable to declare a
message

 14

Table 15 Content description for message content 15

 16

 17

 18

 19

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 66 of 214

 1

5.2.6 Test Cases 2

 3

The majority of the Test Suite content will consist of actual Test Cases. Each Test Case contains the 4
instructions to the Test Driver to construct, send, receive and evaluate messages. The choreograph of 5
this exchange may also involve forking concurrent Threads of test operations and conditional branching . 6
The details of all possible Test Case operations is explained in section 8. 7

 8

 9

Figure 26 - Graphical representation of the TestCas e element content 10

 11

 12

 13

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 67 of 214

6 Test Requirements 1

 2

6.1 Purpose and Structure 3

 4

The first step in designing a test suite is to define Test Requirements. This material, when used in a 5
conformance-testing context, is also called Test Assertions in NIST and OASIS terminology (see 6
definition in glossary in Appendix). 7

When used for conformance testing, each Test Requirement defines a test item to be performed, that 8
covers a particular requirement of the target specification. It rewords the specification element into a 9
“testable form”, closer to the final corresponding Test Case, but unlike the latter, independently from the 10
test harness specifics. In the ebXML Test Framework, a Test Requirement will be made of three parts: 11

 12

Pre-condition The pre-condition defines the context or situation under which this test item applies. It 13
should help a reader understand in which case the corresponding specification requirement applies. In 14
order to verify this Test Requirement, the test harness will attempt to create such a situation, or at the 15
very least to identify when it occurs. If for some reason the pre-condition is not satisfied when doing 16
testing, then it does not mean that the outcome of this test is negative – only that the situation in which it 17
applies did not occur. In that case, the corresponding specification requirement could simply not be 18
validated, and the subsequent Assertion will not be tested. 19

 20

Assertion The assertion actually defines the specification requirement, as usually qualified by a MUST or 21
SHALL keyword. In the test harness, the verification of an assertion will be attempted only if the pre-22
condition is itself satisfied. When doing testing, if the assertion cannot be verified while the pre-condition 23
was, then the outcome of this test item is negative. 24

 25

 Requirement Level Qualifies the degree of requirement in the specification, as indicated by such 26
keywords as RECOMMENDED, SHOULD, MUST, and MAY. Three levels can be distinguished: (1) 27
“required” (MUST, SHALL), (2) “recommended” ([HIGHLY] RECOMMENDED, SHOULD), (3) “optional” 28
(MAY, OPTIONAL). Any level lower than “required” qualifies a Test Requirement that is not mandatory 29
for Conformance testing. Yet, lower requirement degrees may be critical to interoperability tests. The test 30
requirement level can be override by explicit declaration in the Test Profile document, in case a lower or 31
higher level is required. 32

 33

6.2 The Test Requirements Document 34

 35

The Test Requirements XML document provides metadata describing the Testing Requirements, their 36
location in the specification, and their requirement type (REQUIRED, HIGHLY RECOMMENDED, 37
RECOMMENDED, or OPTIONAL). A Test Requirements XML document MUST validate against the 38
ebXMLTestRequirements.xsd file found in Appendix B. The ebXML MS Conformance Test Requirements 39
instance file can be found in Appendix E. 40

 41

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 68 of 214

1
Figure 27 - Graphic representation of ebXMLTestRequ irements.xsd schema 2

 3

 4

 5

 6

Name Description Default
Value

Schema
Required
or
Optional

Test Driver
Exception
Condition

Requirements Container for all test requirements Required

MetaData Container for requirements metadata,
including Description, Version,
Maintainer, Location, Publish Date and
Status

 Required

TestRequirement Container for all testable sub-
requirements (FunctionalRequirements)
of a single generalized Test
Requirement. A TestRequirement may
also contain other TestRequirement
elements as children

 Required

description Description of requirement Required

id
Unique identifier for each Test
Requirement

 Required

name Name of test requirement Required

specRef Pointer to location in specification where
requirement is found

 Required

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 69 of 214

functionalType
Generic classification of function to be
tested

 Required

dependencyRef
ID of “prerequisite” TestRequirement or
FunctionalRequirement that must be
successfully tested prior to testing this
requirement

 Optional

FunctionalRequirement
Sub-requirement for the main Test
Requirement. This is an actual testable
requirement, not a “container” of
requirements.

 Required

id Unique ID for the sub-requirement Required

name Short descriptor of Functional
Requirement

 Required

specRef Pointer to location in specification where
sub-requirement is found

 Required

dependencyRef
ID of “prerequisite” TestRequirement or
FunctionalRequirement that must be
successfully tested first prior to testing
this requirement

 Optional

TestCaseId Identifier of Test Case(s) that test this
requirement

 Optional

Clause Grouping element for Condition
expression(s)

 Optional

Condition Textual description of test precondition Required

ConditionRef Reference (via id attribute) to existing
Condition element already defined in the
Test Requirements document

 Optional

And/Or Union/Intersection operators for
Conditions

 Optional

Assertion Axiom expressing expected behavior of
an implementation under conditions
specified by any Clause

 Required

reuirementType One of the enumerated types: (required |
strongly recommended | recommended |
optional)

id Unique ID of the Assertion within the test
requirements document

AssertionRef Reference (via id attribute) to existing
Assertion element already defined in the
Test Requirements document

 Optional

Table 16 - A list of the testing Requirements eleme nt and attribute content 1

 2

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 70 of 214

6.3 Specification Coverage 1

 2

A Test Requirement is a formalized way to express a requirement of the target specification. The 3
reference to the specification is included in each Test Requirement, and is made of one or more section 4
numbers. There is no one-to-one mapping between sections of a specification document and the Test 5
Requirement items listed in the test material for this specification: 6

 7

A specification section may map to several Test Requirements. 8

A Test Requirement item may also cover (partially or not) more than one section or sub-section. 9

 10

A Test Requirement item may then cover a subset of the requirements that are specified in a section. 11

For these reasons, it is important to determine to which degree the requirements of each section of a 12
specification, are fully satisfied by the set of Test Requirements listed in the test suite document. 13
Establishing the Specification Coverage by the Test Requirements does this. 14

 15

The Specification Coverage document is a separate document containing a list of all sections and 16
subsections of a specification document, each annotated with: 17

 18

• A coverage qualifier. 19

• A list of Test Requirements that map to this section. 20

 21

The coverage qualifier may have values: 22

 23

• Full : The requirements included in the specification document section are fully covered by 24
the associated set of Test Requirements. This means that if each one of these Test 25
Requirements is satisfied by an implementation, then the requirements of the corresponding 26
document section are fulfilled. When the tests requirements are about conformance: The 27
associated set of test requirement(s) are a clear indicator of conformance to the specification 28
item, i.e. if a Candidate Implementation passes a Test Case that implements this test 29
requirement(s) in a verifiable manner, there is a strong indication that it will behave similarly 30
in all situations identified by the spec item. 31

 32

• None : This section of the specification is not covered at all. Either there is no associated set 33
of Test Requirements, or it is known that the test requirements cannot be tested even 34
partially, at least with the Test Framework on which the test suite is to be implemented, and 35
under the test conditions that are defined. 36

 37

• Partial : The requirements included in this document section are only partially covered by the 38
associated (set of) Test Requirement(s). This means that if each one of these Test 39
Requirements is satisfied by an implementation, then it cannot be asserted that all the 40
requirements of the corresponding document section are fulfilled: only a subset of all 41
situations identified by the specification item are addressed. Reasons may be: 42

 43

o (1) The pre-condition(s) of the test requirement(s) ignores on purpose a subset of 44
situations that cannot be reasonably tested under the Test Framework. 45

o (2) The occurrence of situations that match the pre-condition of a Test Requirement 46
is known to be under control of the implementation (e.g. implementation-dependent) 47

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 71 of 214

or of external factors, and out of the control of the testbed. (See contingent run-time 1
coverage definition, Section 7). 2

When the tests requirements are about conformance: The associated set of test 3
requirement(s) are a weak indicator of conformance to the specification item. A negative test 4
result will indicate non-conformance of the implementation. 5

 6

6.4 Test Requirements Coverage (or Test Run-Time Co verage) 7

 8

In a same way as Test Requirements may not be fully equivalent to the specification items they represent 9
(see Specification Coverage, Section 5.3), the Test Cases that implement these Test Requirements may 10
not fully verify them, for practical reasons. 11

 12

Some Test Requirements may be difficult or impossible to verify in a satisfactory manner. The reason for 13
this generally resides in an inability to satisfy the pre-condition. When processing a Test Case, the Test 14
Harness will attempt to generate an operational context or situation that intends to satisfy the pre-15
condition, and that is supposed to be representative enough of real operational situations. The set of such 16
real-world situations that is generally covered by the pre-condition of the Test Requirement is called the 17
test requirements (or test run-time) coverage of this test Requirement. This happens in the following 18
cases: 19

 20

Partial run-time coverage: It is in general impossible to generate all the situations that should verify a test. 21
It is however expected that the small subset of run-time situations generated by the Test Harness, is 22
representative enough of all real-world situations that are relevant to the pre-condition. However, it is in 23
some cases obvious that the Test Case definition (and its processing) will not generate a representative-24
enough (set of) situation(s). It could be that a significant subset of situations identified by the pre-condition 25
of a Test Requirement cannot be practically set-up and verified. For example, this is the case when some 26
combinations of events or of configurations of the implementation will not be tested due to the 27
impracticality to address the combinatorial nature of their aggregation. Or, some time-related situations 28
cannot be tested under expected time constraints. 29

 30

Contingent run-time coverage: It may happen that the test harness has no complete control in producing 31
the situation that satisfies the pre-condition of a Test Requirement. This is the case for Test 32
Requirements that only concern optional features that an implementation may or may not decide to 33
exhibit, depending on factors under its own control and that are not understood or not easy to control by 34
the test developers. An example is: “ IF the implementation chooses to bundle together messages [e.g. 35
under some stressed operation conditions left to the appreciation of this implementation] THEN the 36
bundling must satisfy condition XYZ”. 37

 38

When a set of Test Cases is written for a particular set of Test Requirements, the degree of coverage of 39
these Test Requirements by these Test Cases SHOULD be assessed. The Test Requirements coverage 40
– not to be confused with the Specification Coverage - is represented by a list of the Test Requirements 41
Ids, which associates with each Test Requirement: 42

 43

The Test Case (or set of Test Cases) that cover it, 44

The coverage qualifier, which indicates the degree to which the Test Requirement is covered. 45

 46

 47

 48

 49

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 72 of 214

The coverage qualifier may have values: 1

 2

• Full : the Test Requirement item is fully verified by the set of Test Cases. 3

• Contingent : The run-time coverage is contingent (see definition). 4

• Partial : the Test Requirement item is only partially verified by the associated set of Test 5
Cases. The run-time coverage is partial (see definition). 6

• None : the Test Requirement item is not verified at all: there is no relevant Test Case. 7

 8

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 73 of 214

7 Test Profiles 1

 2

7.1 The Test Profile Document 3

 4

The Test Profile document points to a subset of Test Requirements (in the Test Requirements document), 5
that is relevant to the conformance or interoperability profile to be tested. 6

The document drives the Test Harness by providing the Test Driver with a list of unique reference IDs of 7
Test Requirements for a particular Test Profile. The Test Driver reads this document, and executes all 8
Test Cases (located in the Test Suite document) that contain a reference to each of the test 9
requirements. A Test Profile driver file MUST validate against the ebXMLTestProfile.xsd file found in 10
Appendix A. A Test Profile example file can be found in section 10.2. 11

 12

Figure 28 - Graphic 13
representation of ebXMLTestProfile.xsd schema 14

 15

 16

 17

 18

Name Description Default
Value

Schema
Required or
Optional

Test Driver
Exception
Condition

TestProfile Container for all references to test
requirements

 Required

requirementsLocation URI of test requirements XML file Required Requirements
document not
found

name Name of profile Required

description Short description of profile Required

Dependency Prerequisite profile reference
container

 Optional

name Name of the required prerequisite
profile

 Required

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 74 of 214

profileRef Identifier of prerequisite profile to be
loaded by Test Driver before
executing this one

 Required Profile document
not found

TestRequirementRef Test Requirement reference Required

id
Unique Identifier of Test
Requirement, as defined in the Test
Requirements document

 Required

requirementType Override existing requirement type
with enumerated type of
(REQUIRED, OPTIONAL,
STRONGLY RECOMMENDED or
RECOMMENDED)

 Optional

Table 17 - A list of TestProfile element and attrib ute content 1

 2

7.2 Relationships between Profiles, Requirements an d Test Cases 3

 4

Creation of a testing profile requires selection of a group of Test Requirement references that fulfill a 5
particular testing profile. For example, to create a testing profile for a Core Profile would require the 6
creation of an XML document referencing Test Requirements 1,2,3,4,5 and 8. 7

 8

The Test Driver would read this list, and select (from the Test Requirements Document) the 9
corresponding Test Requirements (and their “sub” Functional Requirements). The Test Driver then 10
searches the Executable Test Suite document to find all Test Cases that “point to” the selected Functional 11
Requirements. If more than one Test Case is necessary to satisfactorily test a single Functional 12
Requirement (as is the case for Functional Requirement #1) there may be more than one Test Case 13
pointing to it. The Test Driver would then execute Test Cases #1, #2 and #3 in order to fully test an 14
ebXML application against Functional Requirement #1. 15

 16

The only test material outside of the three documents below that MAY require an external file reference 17
from within a Test Case are large, or non-XML message Payloads 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 75 of 214

 1
 2

 3

 4
 5

 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19

 20
 21
 22
 23
 24

 25

 26

 27

 28

 29

 30
 31
 32
 33
 34
 35
 36
 37

Figure 29 - Test Framework documents and their rela tionships 38

 39

 40

 41

 42

Test Profile XML Document

TestRequirementRef #1 (Validation)

TestRequirementRef #2 (Packaging)

TestRequirementRef #3 (Core
Extension Elements)

TestRequirementRef #4 (Error
Handling)

TestRequirementRef #5 (SyncReply)

Test Requirements XML Document

Test Requirement #1 (Validation)

 Functional Requirement #1 (Valid
MessageHeader content)

 Functional Requirement #2 (Valid
Acknowledgment content)

 Functional Requirement #3 (Valid Signature
content)

Test Requirement #2 (Packaging)

 Functional Requirement #4 (SOAP message
in root of MME doc)

 Functional Requirement #5 (MIME message
type is “text/xml”)

 Functional Requirement #6 (MIME ‘start’
header is present)

 …

Test Requirement #3 (Core Extension Elements)
Test Suite XML Document

Test Driver Configuration Data

XML Payloads

Test Cases

Test Case #1 (Test Valid “To content)

Test Case #2 (Test Valid “From
content)

Test Case #3 (Teset Valid
‘MessageData” content)

 …

Message

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 76 of 214

8 Test Cases 1

 2

XML Test Cases provide the instructions to the Test Driver to execute conformance or interoperability 3
testing against candidate implementations. Test Cases provide the context for constructing, sending, 4
receiving and evaluating message content. The final outcome of the Test Case is based upon the logical 5
outcome of these operations (and is described in section 4.2.4 of this document). 6

 7
8

 9

8.1 Detailed Structure of a Test Case 10

 11

 All IIC Test Framework Executable Test Cases MUST conform to the XML schema defined in Appendix 12
C. The schema is represented in a graphical fashion below. A semantic description of the meaning of all 13
XML elements and attributes in the schema is provided in the “Definition of Content” tables that follow: 14

 15

 16

 17

Figure 30 - Graphic representation of expanded view of the TestCase element 18

 19

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 77 of 214

Name
Description Default Value Schema

Required or
Optional

Test Driver
Exception
Condition

TestCase
Container element for
all test case content

 Optional

id
Unique identifier for
this Test Case

 Required

description Short description of
TestCase

 Optional

author
Name of person(s)
creating the Test
Case

 Optional

version Version number of
Test Case

 Optional

requirementReferenceId Pointer to the unique
ID of the
FunctionalRequireme
nt

 Required Test Requirement
not found

configurationGroupRef URI pointing to a
ConfigurationGroup
instance used to
reconfigure Test
Driver

 Optional Configuration
Group not found

ThreadGroup Container for all
Threads declared for
this Test Case

 Optional

Thread Definition of a sub
process of test
operations and/or
Threads that may be
forked synchronously
or asynchronously

 Required

SetParameter Contains name/value
pair to be used by
subsequent Threads
in this Test Case

 Optional

SetXPathParameter Instruction to Test
Driver to extract the
content of an XPath
expression on the
Filter Result and store
it in a parameter

 Optional Invalid XPath
expression

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 78 of 214

LockParameter Instruction for Test
Driver to lock a
parameter with either
“readOnly” or
“readWrite” lock,
making it unavailable
to other Threads

 Optional Parameter not
found

UnlockParameter Instruction to Test
Driver to release a
parameter lock,
making that parameter
available for read or
read/write to other
Threads

 Optional Parameter not
found

PutMessage Instruction to Test
Driver to construct
and send a message

 Optional Unable to
construct or unable
to send message

Initiator Instruction to Test
Driver to pass a
message Declaration
to the Test Service

 Optional Unable to pass
message to Test
Service. Test
Service was not
able to
construct/send
message.

GetMessage Instruction to Test
Driver to retrieve a
message(s) from the
MessageStore based
upon an XPath query
filter

 Optional Invalid XPath
expression

ThreadRef Name of the Thread to
be executed in this
TestCase

 Optional Thread not found

Split Parallel execution of
referenced sub-
threads inside of the
Split element

 Optional Thread not found

Join Evaluation of results
of named threads (as
“andjoin” or “orjoin”)
permits execution of
test operations that
follow the Join
element

 Optional Thread not found

Table 18 - A list of TestCase element and attribute content 1

 2

 3

 4

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 79 of 214

8.1.1 Individual TestCase Instructions 1

 2

8.1.1.1 Test Threads 3

 4

Test Threads are a workflow of test operations and/or other sub-threads. One can think of a Thread as a 5
collection of related test operations (such as a message send/receive sequence). Test operations and 6
sub-threads contained in a Test Thread are executed sequentially as they appear in that Thread script. 7
The TestCase itself can be considered the “main thread” for execution of all operations and sub-threads. 8

 9

The Test Driver interprets a ThreadRef element as an instruction to execute the Thread instance whose 10
name matches that defined in the ThreadRef. Sub-threads MUST be executed in parallel if they are the 11
child of a Split element. 12

 13

A Join test operation synchronizes the execution of the Test Case, waiting until one (orjoin) or all (14
andjoin) Threads defined as children within the Join complete execution Concurrent Threads MUST be 15
“joined” anywhere in the scripting AFTER the Split but within the same Thread in which they were 16
invoked. 17

 18

A Join operation is by default an “andjoin”, unless specifically set otherwise by the “type” attribute of the 19
Join element. 20

 21

 22

 23

 24

Figure 31 - The Thread content diagram 25

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 80 of 214

Name
Description Default Value Schema

Required or
Optional

Test Driver
Exception
Condition

Thread
Container for test driver
instructions to be executed
within a forked process

 Optional

name
Short name for the Thread Optional

description
Description of the Thread Optional

SetParameter
Set name/value pair to be
used by subsequent test
operations

 Optional

SetXPathPara
meter

Instruction to create or modify
a parameter using the value
returned by an XPath query to
the current Filter Result

 Optional Invalid XPath
expression

LockParameter
Instruction to Test Driver to
“lock” a parameter with either
“readOnly” or “readWrite”
locking enabled

 Optional Parameter not
found

UnlockParamet
er

Instruction to Test Driver to
“unlock” a parameter

 Optional Parameter not
found

PutMessage
Instruction to Test Driver to
send a message

 Optional Message could
not be sent

Initiator
Instruction to Test Driver to
pass a message declaration
to the Test Service for
sending

 Optional Message could
not be initiated by
Test Service

GetMessage
Instruction to Test Driver to
retrieve message(s) from the
Message Store

 Optional Protocol error
occurred

TestAssertion
Instruction to the Test Driver
to perform an evaluation

 Optional

ThreadRef
Reference via name to
Thread to execute serially

 Optional Thread not found

Split
Directive to run the
referenced Thread(s)
enclosed in the Split element
in parallel

 Optional Thread not found

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 81 of 214

Join
Directive to evaluate the
boolean result of the enclosed
referenced Thread(s) in a
previous Split

 Optional Thread not found

 1

Table 19 - Thread Content Description 2

 3

8.1.1.2 SetParameter: Setting Parameter values 4

 5

The “SetParameter” operation instructs the Test Driver to create (or modify if the parameter has already 6
been defined at a higher level in the Thread hierarchy) a name/value pair that can be used via reference 7
by any subsequent test operation in the current Thread, as well as any test operation in any descendent 8
Threads. Parameter names can be included in XSL stylesheets of message Mutators, or they may be 9
referenced in XPath expressions to verify message content. 10

 11

A note on parameter “locking”: If a SetParameter operation attempts to lock a parameter that already is 12
currently locked by an another Thread, then the current Thread MUST wait until that parameter is 13
“unlocked” by that Thread before proceeding to modify its value. 14

 15

 16
 17

Figure 32 - Graphic representation of expanded view of SetParameter element 18

 19

 20

Name
Description Default Value Schema

Required or
Optional

Test Driver
Exception
Condition

SetParameter
Instruction for Test Driver to
store a name/value pair

 Optional

scope
Attribute to control visibility of
parameter to other Threads
(selfAndDescendents | self |
parent)

selfAndDesce
ndents

Optional

lock
Attribute to instruct Test
Driver to lock this parameter
with either “readOnly” or
“readWrite” lock for
concurrent Threads

 Optional

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 82 of 214

Name
Parameter Name Required

Value
String representation of
parameter value

 Optional Not a valid value

ParameterRef
Name of another parameter
whose value you wish to store
in this parameter

 Optional Parameter not
found |
Parameter is
read locked

 1

Table 20 – List of content for the SetParameter ele ment 2

 3

8.1.1.3 SetXPathParameter: Setting Parameter values using retrieved message content 4

 5

The “SetXPathParameter” operation instructs the Test Driver to create (or modify if the parameter has 6
already been defined at a higher level in the Thread hierarchy) a name/value pair that can be used via 7
reference by any subsequent test operation in the current Thread, as well as any test operation in any 8
descendent Threads. The content for the parameter value is the string result returned by an XPath query 9
on a Filter Result object returned by a GetMessage operation (see section below for an in-depth 10
description of GetMessage). Parameter names can be included in XSL stylesheets of message Mutators, 11
or they may be referenced in XPath expressions to verify message content. 12

 13

A note on parameter “locking”: If a SetXPathParameter operation attempts to lock a parameter that is is 14
currently locked by an another Thread, then the current Thread MUST wait until that parameter is 15
“unlocked” before proceeding to modify its value. 16

 17

 18

Figure 33 - Graphic representation of expanded view of SetXPathParameter element 19

 20

 21

Name
Description Default Value Schema

Required or
Optional

Test Driver
Exception
Condition

SetXPathPara
meter

Instruction for Test Driver to
store a name/value pair using
content retrieved from
retrieved message

 Optional

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 83 of 214

scope
Attribute to control visibility of
parameter
(selfAndDescendents | self |
parent)

selfAndDesce
ndents

Optional

lock
Attribute to instruct Test
Driver to lock this parameter
with either “readOnly” or
“readWrite” lock for
concurrent Threads

 Optional

Name
Parameter Name Required Not a valid name

Value
String representation of
parameter value

 Required Not a valid value

Expression
XPath expression whose
result is used as the value for
the parameter

 Required Invalid XPath
expression

Table 21 Definition of content for SetXPathParamete r instruction 1

 2

 3

8.1.1.4 LockParameter: Synchronizing concurrent Thread access to parameters 4

 5

The “LockParameter” operation instructs the Test Driver to “lock” a parameter (similar to the database 6
equivalent) so that it may not be read or modified by a concurrently executing Thread). Each 7
LockParameter instruction MUST have an accompanying “UnlockParameter” instruction in a Thread. 8

The modes of locking are either “readOnly” or “readWrite”. If another Thread has already locked a 9
parameter, then the current Thread MUST wait until the parameter has bee “unlocked” prior to examining 10
or modifying that parameter’s value. 11

 12

 13
 14

Figure 34 - Graphic representation of expanded view of LockParameter element 15

 16

 17

Name
Description Default Value Schema

Required or
Optional

Test Driver
Exception
Condition

LockParameter
Instruction for Test Driver to
lock a parameter

 Optional

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 84 of 214

lock
Attribute to instruct Test
Driver to lock this parameter
with either “readOnly” or
“readWrite” lock

readOnly Required

Name
Parameter Name Required Parameter not

found

 1

Table 22 Definition of content for LockParameter in struction 2

8.1.1.5 UnlockParameter: Synchronizing concurrent Thread access to parameters 3

 4

The “UnlockParameter” operation instructs the Test Driver to “unlock” a parameter (similar to the 5
database equivalent) so that it may be read or modified by a concurrently executing Thread). 6

A note on parameter “unlocking”: If an UnlockParameter operation attempts to lock a parameter that 7
already exists, and is currently locked by another Thread, then the current Thread MUST wait until that 8
parameter is “unlocked” before proceeding to modify its value. 9

 10

 11

 12
 13

Figure 35 - Graphic representation of expanded view of UnlockParameter element 14

 15

 16

Name
Description Default Value Schema

Required or
Optional

Test Driver
Exception
Condition

UnlockParamet
er

Instruction for Test Driver to
lock a parameter

 Optional

Name
Parameter Name Required Parameter not

found

 17

Table 23 – List of content for UnlockParameter element 18

 19

8.1.1.5.1 Scope of a parameter 20

 21

These same semantic rules apply to parameters referenced via ConfigurationGroup. The 22
“configurationGroupRef” attribute is available for use at the TestSuite, TestCase, and Thread levels. A 23
hierarchical relationship exists for any parameters defined in the ConfigurationGroup. A 24
configurationGroupRef at the TestSuite level is “global”, meaning any parameter definitions defined at the 25

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 85 of 214

TestSuite level are exposed to descendent TestCase or Thread. If a parameter is “redefined” at any of 1
those “lower levels” in the object hierarchy, then that definition takes precedence for that object and any 2
“descendent” objects, until the logical workflow of the TestCase moves back to the current level in the 3
object hierarchy. When that occurs, whichever previous definition of a parameter (via a 4
configurationGroupRef or SetParameter test operation) takes precedence. 5

 6

The SetParameter operation dynamically creates (or redefines) a single parameter whose value is 7
available to the current Test Object (TestCase or Thread) it is defined in. For example, if it is defined 8
within a Thread, then it is available to any test operation in that Thread, as well as any descendent 9
Threads... If it is defined within a Thread, then its definition exists for the lifecycle of that Thread. When 10
the workflow execution moves to a “higher” level (i.e. to the parent Thread) then that parameter a) ceases 11
to exist if it was not already defined at a higher level in the workflow hierarchy or b) if defined at a higher 12
level, takes the previously value defined at the next highest level in the workflow hierarchy. 13

 14

A parameter’s scope MAY be restricted using the “scope” attribute of the SetParameter instruction. By 15
default, a parameter is visible to all operations within the Thread in which it is defined, and any 16
descendent Threads. This is represented by the “selfAndDescendents” enumeration value (the default) 17
for scope. A parameter’s scope MAY be restricted to the current Thread only if the scope attribute of the 18
SetParameter (or SetXPathParameter) instruction is set to “self”. A parameter’s scope MAY be set to a 19
more “global” visibility if the scope attribute is set to “parent”. This means that the parameter’s value is 20
set at the “parent thread” level, and is visible to all “sibling” Threads of the current Thread. 21

 22

 23

8.1.1.5.2 Referencing/Dereferencing parameters in PutMessage Filter and TestAssertion operations 24

 25

In the case of a PutMessage operation (see below) , a parameter defined with the ConfigurationGroup 26
and/or the SetParameter operation can be passed to an XSL or XUpdate processor and referenced within 27
an XSL stylesheet or XUpdate “mutator” document (via its name) and used to provide/mutate message 28
content of the newly constructed message. A Test Driver MUST pass these parameters to the XSL or 29
XUpdate processors for use in mutating a Declaration. 30

In the case of a GetMessage operation, a parameter defined with the ConfigurationGroup and/or the 31
SetParameter operation can be passed to the XPath processor used for the Filter or VerifyContent 32
operations. Within the XPath expression, the parameter MUST be referenced with the same name (case 33
sensitive) with which it has been assigned, and MUST be preceded by a ‘$’ character. The Test Driver 34
MUST recognize the parameter within the XPath expression, and substitute its value prior to evaluating 35
the XPath expression 36

 How parameters are stored and retrieved by the Test Driver is an implementation detail. 37

 38

 39

8.1.1.6 PutMessage: Message Construction and Transmission 40

 41

The “PutMessage” directive instructs the Test Driver to construct a message and transmit it to the 42
designated party. The PutMessage element contains one “SetMessage” and zero or more “SetPayload” 43
test operation instructions. Both SetMessage and SetPayload have four “sub-operations”. They are: 44

 45

 46

 47

 48

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 86 of 214

 1

 2

 3

 4

 5

 6

 7

8

Figure 36 – Graphic representation of PutMessage el ement content 9

 10

 11

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 87 of 214

 1

Name
Description Default

Value
Schema
Required
or
Optional

Test Driver
Exception
Condition

PutMessage
Container element for message
construction and sending
operation directives

 Optional Protocol error
prevented
message
transmission

description
Data describing the nature of the
PutMessage operation

 Required

repeatWithSameContext
Integer looping parameter, using
same message context (
MessageId and Timestamp)

 Optional

repeatWithNewContext
Integer looping parameter, using
new message context (
MessageId and Timestamp)

 Optional

SetMessage
Container for instructions to
construct a message envelope

 Required

SetPayload
Container for instructions to
construct and attach a message
payload

 Optional

description
Description of the message part
being added

 Required

Header
Container for optional packaging
instructions to the Test Driver

 Optional

Name
Name of packaging header to be
added (if it does not exist) or
modified

 Required

Value
Header value to be inserted Optional

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 88 of 214

Attribute
Definition or modification (if it
does not exist) of an attribute of
this particular Header

 Optional

Name
Attribute name Required

Value
Attribute value to be inserted Required

Content
Container for one of three
instructions to the Test Driver on
where to retrieve the message
content

 Required

Declaration
XML content defines message
envelope to be created (or
mutated) by Test Driver

 Optional

FileURI
Reference to message
declaration (or attachment)
contained in a file

 Optional File not found

MessageRef
Reference to an ID in the Test
Suite whose parent is a Message
element

 Optional Invalid reference

Mutator
Container element for a reference
to either an XSL stylesheet or
XUpdate document that will
mutate this part of the message

 Optional

FileURI
Reference to message
declaration (or attachment)
contained in a file

 Optional File not found

DSignEnvelope Instruction for Test Driver to sign
the message envelope
(dependent upon “Envelope” type
defined in ConfigurationGroup)

 Optional

Table 24 – List of content of the PutMessage elemen t 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 89 of 214

Semantics of the PutMessage test operation: 1

 2

A message may be composed of one or more “parts”. Normally, if a message contains only one part, it is 3
a “message envelope”, containing a message identifier, from/to party identifiers, a timestamp and other 4
details. It also MAY contain the actual business message. 5

If a message contains more than one part, then the additional parts are typically “attachments” (ancillary 6
documents passed along with the business message). 7

In order to accommodate both types of messages, the Test Framework incorporates the concept of a 8
“message” and a “payload” part in directing the Test Driver to construct the message. The scripting within 9
the SetMessage and SetPayload element permits modification of the packaging of the message part, the 10
addition of both XML and non-XML content, optional mutation of an XML part, and optional XML Digital 11
Signature application to that part. 12

 13

8.1.1.6.1 The SetMessage test operation: 14

 15

 16

Figure 37 – Graphic representation of the SetMessag e element content 17

 18

 19

8.1.1.6.2 The Packaging test operation: 20

 21

 22

Figure 38 – Graphic representation of content for t he Packaging element 23

 24

Packaging is an optional XML fragment, that if present, requires the Test Driver to make the appropriate 25
API calls (MIME or otherwise) to modify the message packaging. By default, the Test Driver will 26
construct a package with minimal default attributes. Because there are many different types of message 27
packaging APIs, a generic XML syntax for describing a packaging “header” and its attributes is provided. 28
. 29

 30

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 90 of 214

 1

8.1.1.6.3 The Declaration 2

 3

 4

Figure 39 - Graphic representation of content for t he Declaration element 5

 6

The IIC Test Framework is a generalized testing framework, agnostic to any particular messaging 7
protocol (ebXML, RNIF, EDI). To achieve this goal, it is designed in a very flexibly way. Any type of 8
message can be expressed inside an XML Declaration element. As long as a “mutator” XSL style sheet 9
or XUpdate document is used to interpret that declaration and generate a valid message, it is at the 10
discretion of the test writer how they wish to express their message declaration. 11

 12

As a best practice however, it is HIGHLY RECOMMENDED that a testing community agree to a common 13
Declaration syntax to provide ease of understanding, and minimize duplication of effort in constructing 14
Test Suites. The XML content necessary to describe a basic message declaration should be minimal, 15
relying on default parameter values supplied by the Test Driver for most common and reusable message 16
content (such as ConversationId, CPAId, Sending Party Id..etc) . If the test developer wishes to 17
“override” the default element and attribute values, they may do so by explicitly declaring those values in 18
the XML Declaration markup. A standard Declaration format for ebXML Messaging Services v2.0 was 19
created by the OASIS IIC to facilitate the writing of Test Cases for the ebXML MS v2.0 Conformance Test 20
Suite [ebMSConfTestSuite]. An XML schema is defined in Appendix D describing the minimum markup 21
necessary to construct a SOAP and ebXML message. 22

 23

Accompanying the schema in Appendix D is an XSL “mutator” stylesheet, that transforms ebXML 24
message Declaration XML content into a valid ebXML message envelope, complete with runtime 25
parameters such as ConversationId, Timestamp, Service, Action…etc.. 26

 27

Other messaging declarations (such as RNIF) would require their own declaration syntax, and 28
corresponding Mutator stylesheet. Additionally, message payloads can be created via the same 29
Declaration and Mutator stylesheet method by defining an XML syntax to construct the message payload, 30
and an accompanying Mutator stylesheet to transform it into a final payload format.. 31

 32

Default values for mutating message content (such as ConversationId, FromPartyId..etc.) are typically 33
set using the Test Suite ConfigurationGroup parameters. Setting parameter values at the Test Suite level 34
makes them “global” for use by any Test Case in the Test Suite. Parameters such as (in ebXML 35
Messaging Services testing) CPAId, ConversationId, Service, Action, ToPartyId and FromPartyId (or their 36
equivalent) would typically be set globally for a messaging Test Suite. They could be optionally 37
“overridden” locally within each Test Case by use of an individual “SetParameter” instruction in the Test 38
Case scripting. 39

 40

A test writer may additionally override any Test Driver parameter value by explicitly specifying a value in 41
the Declaration itself. For example, explicitly providing a ConversationId in the Declaration can be used 42
as a way to override the Test Driver supplying it in its mutator transformation if the mutator is designed to 43
allow it. 44

 45

Two parameters (using the exact names specified below) are generated by the Test Driver, and CAN 46
NOT be overridden using parameter definition. They are MessageId and Timestamp. These two values 47

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 91 of 214

can however, be explicitly defined in a Declaration if the test writer wishes to substitute an explicit value 1
for that supplied by the Test Driver in their mutator transformation. 2

NOTE: If the Declaration is not “inlined” as content in the Test Case script, it MAY be included via the 3
FileURI element content, or via the MessageRef (an IDREF pointing to a static Declaration already 4
defined in the Test Suite document). Also not that, in the absence of a Mutator element, the Test Driver 5
MUST assume that no mutation is necessary, and the message declaration (or payload) is inserted into 6
the document “as is”. 7

 8

8.1.1.6.4 Mutator: Turning a Declaration into an actual Message 9

 10

 11

Figure 40 - Graphic representation of content for t he Mutator element 12

 13

The message portion of a Declaration is transformed into a valid XML message document using the 14
Mutator test operation document. Additional information such as a message timestamp, message 15
identifier and other “run time” can be added by the Mutator operation in order to provide all the necessary 16
“runtime” information needed to complete a message. The Mutator test operation transforms the 17
Declaration content into a valid message using either an XSL processor and stylesheet or an XUpdate 18
processor and document. The location of the Mutator document is defined in the “FileURI” content of the 19
Mutator element. 20

If a Mutator element is absent, the Test Driver assumes that the message Declaration does not need 21
mutation, or that the message is not an XML document, and simply appends it to the message package 22
“as is”. The “FileURI” child element of the Mutator specifies the location of the XSL stylesheet or XUpdate 23
document used to modify the Declaration. 24

 25

8.1.1.6.5 DSignEnvelope and DSignPayload: Applying an XML Signature to the message 26

 27

 28

 29

Figure 41 - Graphic representation of content for t he DSignEnvelope element 30

 31

DSignEnvelope: Is an instruction for the Test Driver to create and insert an XML Digital Signature 32
[XMLDSIG] in the content of the message envelope. Depending upon the envelope type defined in the 33
ConfigurationGroup element of the Test Suite, the Test Driver will sign each part accordingly. For 34
example, for SOAP envelope types, the XML Signature is inserted as the first child element found in the 35
SOAP Header. 36

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 92 of 214

Name Description Default Value Schema
Required or
Optional

Test Driver
Exception
Condition

DSignEnvelope Container for
variable
XMLDSIG
signing
parameters

 Optional

URI URI pointing to
message
content to be
signed

Dependent upon
envelope type: ebXML=“”
SOAP = “#Body”

Optional Unable to
resolve URI

CanonicalizationMeth
odAlgorithm

As defined by
name

http://www.w3.org/TR/20
01/REC-xml-c14n-
20010315

Optional Canonnicaliz
ationMethod
ot supported

SignatureMethod http://www.w3.org/2000/0
9/xmldsig#dsa-sha1"

Optional Signature
method ot
supported

DigestMethod http://www.w3.org/2000/0
9/xmldsig#sha1”

Optional Digest
method
supported

Transform Algorithm http://www.w3.org/2000/0
9/xmldsig#enveloped-
signature

Optional Transform
algorithm
supported

Figure 42 Definition of content for DSignEnvelope e lement 1

 2

DSignPayload: An instruction for the Test Driver to create and insert an XML Digital Signature 3
[XMLDSIG] in the message package. Depending upon the envelope type defined in the 4
ConfigurationGroup element of the Test Suite, the Test Driver will sign each payload accordingly. For 5
example, for SOAP/ebXML envelope types, the payload XML Signature is inserted after the first 6
Signature element (i.e. the message envelope signature) found in the SOAP Header. 7

 8

 9

Figure 43 - Graphic representation of content for t he DSignPayload element 10

 11

 12

 13

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 93 of 214

Name Description Default Value Schema
Required or
Optional

Test Driver
Exception
Condition

DSignPayload Container for
variable
XMLDSIG
signing
parameters

URI URI pointing to
message
content to be
signed

Content id of payload to
be signed

Optional Unable to
resolve URI

CanonicalizationMeth
odAlgorithm

As defined by
name http://www.w3.org/TR/2001/RE

C-xml-c14n-20010315

Optional Not
supported

SignatureMethod As defined by
name http://www.w3.org/2000/09/xml

dsig#dsa-sha1"

Optional Not
supported

DigestMethod As defined by
name http://www.w3.org/2000/09/xml

dsig#sha1”

Optional Not
supported

 1

 2

 3

8.1.1.7 Initiator: Passing message construction directives to the Test Service 4

 5

Unlike the “PutMessage” operation, in which the Test Driver constructs and sends a message, the 6
“Initiator” operation instructs the Test Driver to instead pass an (optionally “mutated”) Declaration (and 7
any associated message payloads) to the Test Service Initiation interface, via its “initiator” method. The 8
initiator method of the Test Service must successfully interpret the Declaration; construct the message 9
(using its internal messaging building API) and send the message through its host messaging service. 10
The Test Service initiator method must return a synchronous response message (defined in Appendix F) 11
to the Test Driver indicating success or failure. 12

 13

Message payloads ARE constructed and optionally mutated by the Test Driver, and are then passed to 14
the Test Service for it to include in the message that it constructs, using the same ID that are supplied by 15
the Test Driver. 16

 17

 Any digital signatures are assumed to be applied by the Test Service when it generates the message. 18

 19

 20

 21

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 94 of 214

 1

Figure 44 - Graphic representation of content for t he Initiator element 2

 3

 4

 5

Name
Description Default

Value
Schema
Required
or Optional

Test Driver
Exception
Condition

Initiator
Container element for message
construction and sending operation
directives

 Optional Protocol error
prevented
message
transmission

description
Metadata describing the nature of the
PutMessage operation

 Required

InitiateMess
age Container for Test Service instructions to

const a message
 Required

Content Container for one of three representations
of message content (file reference,
reference to XML text, or “inline” XML
content)

Required

Declaration
XML content defines message envelope to
be created by Test Service

 Optional

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 95 of 214

FileURI
Reference to message declaration
contained in a file

 Optional File not found

MessageRef
Reference to an ID in the Test Suite whose
parent is a Message element

 Optional Message not
found

Mutator Container for reference to mutating
document to be applied to message
declaration before passing it to the Test
Service

Optional

FileURI
Location of the mutator document Required

InitiatePaylo
ad Container for construction of a message

payload to be passed to Test Service
 Required

description
Description of the portion of the payload
being added

 Optional

Content Container for one of three representations
of payload content (file reference, reference
to XML text, or “inline” XML content)

Required

Declaration
XML content defines message payload
content to be passed to Test Service

 Optional

FileURI
Reference to message declaration
contained in a file

 Optional File not found

MessageRef
Reference to an ID in the Test Suite whose
parent is a Message element

 Optional Message not
found

Mutator Container for reference to mutating
document to be applied to message
payload prior to passing it to the Teset
Service

Optional

FileURI Location of mutator document

Required

Table 25 – List of content for the Initiator elemen t 1

 2

 3

. 4

 5

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 96 of 214

8.1.1.8 GetMessage: Message Retrieval 1

 2

The “GetMessage” test operation is used by the Test Driver to retrieve incoming messages (when the 3
Test Driver is in Connection mode) and message notifications (when the Test Driver is in Service mode). 4
Incoming messages for a Test Case are maintained in a persistent Message Store for the life of a Test 5
Case. 6

 7

Figure 45 - Graphic representation of 8
expanded view of the GetMessage element 9

 10

 11

Name
Description Default Value Schema

Required
or
Optional

Test Driver
Exception
Condition

GetMessage
Container for instructions to
retrieve a message(s) from the
Message Store

description
Metadata describing the nature
of the SetPayload operation

 Required

mask
Instruction to hide any Filtered
message content from
subsequent Filter XPath
queries (true | false)

false Optional Masking not
supported

Filter
Container for XPath query that
is used to retrieve message
content from Message Store

 Required Invalid
XPath
expression

OR

Filter result
is not a
nodelist of
TEST:Mess
age
elements

Table 26 – List of content for the GetMessage eleme nt 12

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 97 of 214

 1

 2

8.1.1.9 The GetMessage Test Operation 3

 4

The GetMessage operation, using its child XPath Filter instruction, retrieves a node-list of messages (or 5
fragments of messages) from the Message Store of the Test Driver. The content of the node-list is 6
dependent upon the XPath Filter provided. The resulting node-list MAY then be queried for adherence to 7
a particular Test Assertion. Additionally, parameter values that may be used later in the Test Case script 8
can be assigned using the SetXPathParameter instruction. 9

 10

 11

 12

Figure - Graphical representation of GetMessage el ement content 13

 14

8.1.1.9.1 Semantics of the GetMessage test operation 15

 16

A fundamental aspect of the GetMessage operation is its behavior and effect on the Message Store. 17
The Message Store is an XML document object created by the Test Driver that contains an XML 18
representation of all synchronous and asynchronously received messages for a Test Case. The received 19
messages for a particular Test Case MUST persist in the Message Store for the life of the Test Case. 20
Messages in the Message Store MAY contain an XML representation of MIME, SOAP, ebXML or other 21
types of message content, represented as an XML document (the Message Store schema permits any 22
type of XML representation of a messaging envelope, with each representation specified in a “best 23
practice” document for a particular testing community). If the messages being stored are ebXML 24
messages using HTTP transport and a SOAP envelope, the XML format of the Message Store document 25
MUST validate against the ebXMLMessageStore.xsd schema in appendix D. The scope of message 26
content stored in the Message Store is “global”, meaning its content is accessible at any time by any 27
Thread (even concurrently executing Threads) during the execution of a Test Case. Message Store 28
content changes dynamically with each received message or notification. 29

 30

The GetMessage “Filter” operation queries the Message Store document object, and retrieves the XML 31
content that satisfies the XPath expression specified in its Filter child element. As the MessageStore is 32
updated every time a new message comes in, a GetMessage operation will automatically execute as 33
often as needed, until either (1) its XPath Filter is satisfied (evaluates to “true”), or (2) the timeout 34
(stepDuration) expires. 35

 36

The XPath query used as content for a Filter operation MUST yield a node-list of 0 or more XML 37
elements. Although the content of a message may vary (e.g. ebXML, RNIF, SOAP), all node-list results 38
from a Filter operation MUST contain XML elements in order to permit the creation of a FilterResult 39
document object, which can then be examined by the TestAssertion operation The required structure of 40
the FilterResult document object is defined in the Filter Result schema in Appendix D. 41

 42

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 98 of 214

Message Masking: 1

 2

 All the message items available for querying are children of the MessageStore document object. The 3
XPath expression in the Filter will select Message Store content that satisfies the filter. Such content 4
MUST be a node list of XML elements. If they are not, the Test Driver MUST generate an exception and 5
terminate the Test Case with a final result of “undetermined”. 6

The elements returned by the XPath query are appended as children of a FilterResult element, available 7
for further querying, by the TestAssertion operation. 8

 When the mask attribute is set to “true”, the messages (or XML elements) that have been selected 9
by a GetMessage test operation are "invisible" to future GetMessage operations in the same test case. 10
By default, filtering is not performed by the Test Driver. 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 99 of 214

8.1.2 The Message Store 1

 2

The Generic Message Store schema (Appendix D) describes the XML document format required for a 3
Test Driver implementation. The schema facilitates a standard XPath query syntax to be used for retrieval 4
and evaluation of received messages, notifications and (optionally) parameter names and values by the 5
Test Driver. The “generic” schema design of the Message Store document object permits virtually any 6
type of XML format for messages and notifications to be stored and queried via XPath. 7

 8
 9

Figure 46 – Graphic representation of MessageStore element content 10

 11

 12

 13

 14

 15

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 100 of 214

Name
Description Default

Value
Schema
Required
or Optional

Test Driver
Exception
Condition

MessageStore
Container for all message, notification and
possibly parameter values for a Test Case
instance

 Required

Message
Container for a received message, along
with some overhead attributes describing
the type of message, its origin etc

 Optional

synchType
Descriptor of type of how message was
received (synchronous|asynchronous)

 Required

id
Test driver provided unique identifier of
received message

 Required

serviceInstanceId
Unique identifier of the Test Service that
generated the received message

 Optional

serviceName
Name of the Service that generated the
received message

 Optional

reportingAction
Name of the action that generated the
received message

 Optional

Part
Container for content of a single portion of
entire message

 Required

Header
Container of any name/value attribute
associated with this particular message
part

Name
Container for actual message part attribute
name

 Required

Value
Container for actual message part attribute
value

 Required

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 101 of 214

Content
Container for actual XML message. If
message part is not XML, then no Content
element is present

 Optional

#wildcard
Any XML representation of message
content (typically conforming to specified
schemas)

 Required

Notification
Container for any type of message
received by a Test Service and reported to
the Test Driver

 Optional

notificationType
Type of notification (message, errorURL,
errorApp)

 Required

 1

Table 27 – List of content for MessageStore element 2

 3

8.1.2.1 Semantics of the Message Store 4

 5

The Message schema permits any type of message representation. Messages are required to have a 6
unique ID within the Message Store, and a “synchType” attribute, identifying the message as received 7
either synchronously or asynchronously. Messages (unlike Notifications) are received directly by the 8
Test Driver (i.e. the Test Driver is in “connection” mode). Hence message content is more complete , 9
since it was received “over the wire”, and all content is accessible to the Test Driver. 10

 11

Notification messages are received via an interface from the Test Service. Because the messaging 12
system under test cannot be trusted to provide the notifications, they are either passed locally (via the 13
Test Service Notification interface) or remotely (via RPC) between Test Service and Test Driver via the 14
Test Driver “Receive” interface. As a result, message content is restricted to what part of the message 15
was exposed to the Test Service application layer. Therefore the representation or received messages 16
passed via notification is less complete than message content directly received by the Test Driver (for 17
example, MIME content may not be exposed to a Test Service application, therefore MIME headers are 18
not represented in the Notification message). For all other purposes however, the format of the 19
Notification message content is identical to that of a message directly received by the Test Driver. 20

 21

8.1.2.2 Filter Result Structure 22

 23

Like the Message Store, the Filter Result is a document object that can be queried for content testing and 24
verification. Unlike the MessageStore, the FilterResult document object only needs to exist for the 25
lifecycle of a single Thread. Any TestAssertion operation in a Thread queries the “current” FilterResult; 26
meaning that each time a new Filter operation occurs, a new FilterResult object is created, replacing the 27
previous one in the current Thread. The Filter Result document is identical (in structure) to the 28
MessageStore document, with one exception. The root node of the Filter Result document is a 29
FilterResult element, not a MessageStore element. The content of the Filter Result MUST be a node list 30

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 102 of 214

object whose node(s) are XML elements. This means that any Filter XPath expression MUST always 1
query for elements within the Message Store. Doing so means that the Test Driver will be able to 2
construct a document object from the Filter node list, and use it for subsequent VerifyContent and 3
ValidateContent operations. 4

 5

 6

Figure 47 – Graphic representation of FilterResult element content 7

 8

 9

Name
Declaration Default Value Schema Required or

Optional

FilterResult
Container for XML representation of
all messages received by Test Driver
for a given Test Case

 Required

#wildcard
Any XML message content Optional (“empty”

FilterResults are
permitted)

Table 28 – List of content for the FilterResult ele ment 10

 11

8.1.2.3 SetXPathParameter: Defining variables using content from a Filter result 12

 13

In addition to storing message content, the Message Store MAY also store parameter values to be used 14
in the evaluation of subsequent received messages. This is not an implementation requirement however, 15
and how parameters are stored in the Message Store is implementation specific. 16

 17

As in the case of the SetParameter test operation parameters may also be defined/redefined through the 18
SetXPathParameter test operation. This operation extracts message content from the Message Store 19
and stores it as a parameter value. Whether it is a message header, or an XML message payload being 20
examined, the test writer may assign a parameter name, and an XPath pointing to the content to be 21
stored as a parameter. Each parameter value is a string representation of the nodelist content retrieved 22
by the XPath query. 23

 24

 25

 26

Figure 48 – Graphical representation of the SetXPat hParameter element 27

 28

 29

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 103 of 214

 1

 2

Name
Description Default

Value
Schema
Required
or
Optional

Test Driver
Exception
Condition

SetXPathParameter
Container element for instructions
to define and store a parameter,
whose value is the result of an
XPath query on a GetMessage
Filter result

 Optional Invalid XPath
expression

scope
Attribute defines the “visibility” of
the parameter. Enumerated
values are (self |
selfAndDescendents| parent)

selfAnd
Descen
dents

Optional

Name
Parameter name (either new, or
replaces current parameter value)

 Required

Expression
XPath expression used to extract
a string value from the Filter result

 Required Invalid XPath
expression

OR

Result is not a
string

 3

Table 29 – List of content for the SetXPathParamete r element 4

 5

8.1.2.4 The TestAssertion Operation 6

 7

The TestAssertion operation verifies a Test Requirement through one of three possible sub-operations. 8
These sub-operations are: VerifyContent (compare message content to expected values), 9
ValidateContent (validate the structure of a document, or a single item in the document) and 10
VerifyTimeDifference (compare a computed time difference between two parameters against an expected 11
value). 12

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 104 of 214

 1

Figure 49 - Graphic representation of expanded view of the TestAssertion element 2

 3

 4

 5

 6

Name
Description Default Value Required/

Optional

Test
Driver
Exception
Condition

TestAssertion
Container for directives to perform
a test assertion operation

 Optional

description
Metadata describing the nature of
the test operation

 Required

VerifyContent XPath expression to evaluate
content of message(s)

 Optional Invalid
XPath
expression

ValidateContent
Empty if entire XML document is to
be validated or XPath expression
to “point to” content to be validated
for correct format if type is URI,
dateTime or Signature

 Optional Invalid
XPath
expression

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 105 of 214

contentType
An enumerated list of XML, URI,
dateTime, or signature validation
descriptors

 Optional

schemaLocation
URI describing location of
validating XML schema, as defined
in [XMLSCHEMA] or a URI of a
Schematron schema

 Optional Schema
not found

VerifyTimeDifference
Instruction to Test Driver to
compute the time difference
between two parameters and
determine if the difference is less
than equal or greater to an
expected value

 Optional

ParamName
Parameter used in computation of
time difference

 Required Parameter
not found

Operator
(lessThen|lessThanOrEqual|equal|
greaterThan|greaterThanOrEqual)

 Required

Difference
Expected value Required Not a valid

duration

VerifyParameter
Container for instructions to verify a
string value of a parameter against
either a particular value, or the
value of another Parameter

 Optional

Name
Name of parameter to be evaluated Required Parameter

not found

Value
User supplied value to compare Optional

ParameterRef
User supplied parameter reference
(via Name)

 Optional Parameter
not found

WhenTrue/WhenFals
e

Branching instruction based upon
boolean result of the TestAssertion
operation

 Optional

Table 30 – Content list of the TestAssertion elemen t 1

 2

 3

 4

 5

 6

 7

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 106 of 214

8.1.2.4.1 Semantics of TestAssertion 1

 2

The TestAssertion test operation MUST return either a true or false result (or semantically a pass/fail 3
result) to the Test Driver. 4

 5

If TestAssertion includes a VerifyContent sub-operation, the VerifyContent operation MUST yield a 6
boolean value of true/false. If the verification is an XPath operation, the VerifyContent XPath expression 7
may yield a node-set, boolean, number or string object. All of these resulting objects MUST be evaluated 8
using the “boolean” function described in [XPath]. Those evaluation rules are: 9

 10

• a returned node-set object evaluates to true if and only if it is non-empty 11

• a returned boolean object evaluates to true if it evaluates to “true” and false if it evaluates to 12
“false” 13

• a returned number object evaluates to true if and only if it is neither positive or negative zero nor 14
NaN 15

• a returned string object evaluates to true if and only if its length is non-zero 16

If the TestAssertion sub-operation is ValidateContent, then the content pointed to by the XPath 17
expression contained in the text content MUST validate according to its contentType attribute . The 18
ValidateContent operation MUST yield a boolean value of true/false. Rules for determining the resulting 19
Boolean value are: 20

 21

• if the contentType attribute value is XMLSchema, as defined in [XML] , the operation evaluates to 22
true if the content at the specified XPath validates according to the schema defined in the 23
“schemaLocation” attribute 24

• if the contentType is URI, as defined in [XMLSCHEMA], the operation evaluates to true if the 25
content at the specified XPath is a valid URI 26

• if the contentType is dateTime, as defined in [XMLSCHEMA], the operation evaluates to true if 27

the content of the specified XPath is a valid dateTime 28

• if the contentType is signature, as defined in [XMLDSIG], the operation evaluates to true if the 29

content at the specified XPath is a valid signature. 30

If the TestAssertion sub-operation is VerifyTimeDifference, then two dateTime parameter values are 31
compared, with an operator of “lessThen, lessThenOrEqual, equal, greaterThan, greaterThanOrEqual”. 32
The TestAssertion operation evaluates to “true” if the equation is satisfied, otherwise it returns a value of 33
“false” to the Test Driver. The Test Driver MUST generate an exception and exit the Test Case if any of 34
the parameters used in VerifyTimeDifference operation are not a dateTime type. 35

 36

 37

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 107 of 214

8.1.2.5 The WhenTrue and WhenFalse operations 1

 2

Conditional branching can be done based upon the Boolean result of a TestAssertion operation. The 3
WhenTrue and WhenFalse instructions redirect workflow to any number of a list of operations, including 4
the execution of a child Threads within the current Thread. 5

 6

 7

 8

 9

 10

Figure 50 Graphic representation of WhenTrue/WhenFa lse instruction content 11

 12

 13

 14

Name
Description Default Value Schema

Required or
Optional

Test Driver
Exception
Condition

WhenTrue
Container for instructions if
the parent TestAssertion
returns a Boolean result of
“true”

 Optional

WhenFalse
Container for instructions if
the parent TestAssertion
returns a Boolean result of
“false”

 Optional

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 108 of 214

SetParameter
Set name/value pair to be
used by subsequent test
operations

 Optional

SetXPathPara
meter

Instruction to create or modify
a parameter using the value
returned by an XPath query to
the current Filter Result

 Optional Invalid XPath
expression

PutMessage
Instruction to Test Driver to
send a message

 Optional Message could
not be sent

Initiator
Instruction to Test Driver to
pass a message declaration
to the Test Service for
sending

 Optional Message could
not be initiated by
Test Service

GetMessage
Instruction to Test Driver to
retrieve message(s) from the
Message Store

 Optional Protocol error
occurred

TestAssertion
Instruction to the Test Driver
to perform an evaluation

 Optional

Continue
Instruction to “continue”
execution, regardless of
boolean outcome of the
TestAssertion

 Optional

ThreadRef
Reference via name to
Thread to execute serially

 Optional Thread not found

Split
Directive to run the
referenced Thread(s)
enclosed in the Split element
in parallel

 Optional Thread not found

Join
Directive to evaluate the
boolean result of the enclosed
referenced Thread(s) in a
previous Split

 Optional Thread not found

Sleep
Instruction to “wait” (specified
in integer seconds) a period
of time before executing the
next test operation in the
script

 Optional

Exit
Instruction to exit the Test
Case, with one of three
possible final result states
(pass|fail|undetermined)

 Optional

 1

Table 31 – List of content for the WhenTrue and Whe nFalse elements 2

 3

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 109 of 214

1

2

3

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 110 of 214

9 Test Material 1

 2

Test material to support the ebXML Testing includes: 3

 4

A Testing Profile XML document 5

A Test Requirements XML document 6

A Test Suite XML document 7

Message Declaration Mutator document 8

Collaboration Agreement document (if needed to configure an MSH) 9

A Test Report Document 10

 11

9.1.1 Testing Profile Document 12

 13

Both conformance and interoperability testing require the creation of a Testing Profile XML document, 14
which lists the Test Requirements against which Test Cases will be executed. A Test Profile document 15
MUST be included in an interoperability of conformance test suite. The Testing Profile document MUST 16
validate against the ebProfile.xsd schema in Appendix A. 17

 18

9.1.2 Test Requirements Document 19

 20

Both conformance and interoperability testing require the existence of a Test Requirements document. 21
While Test Requirements for conformance testing are specific and detailed against an ebXML 22
specification, interoperability Test Requirements may be more generic, and less rigorous in their 23
description and in their reference to a particular portion of an ebXML specification. However, both types 24
of testing MUST provide a Test Requirements XML document that validates against the 25
ebXMLTestRequirements.xsd schema in Appendix B. 26

 27

9.1.3 Test Suite Document 28

 29

Both conformance and interoperability testing require the existence of a Test Suite XML document that 30
validates against the ebTest.xsd schema in Appendix C. It is important to note that test case scripting 31
inside the Test Suite document MUST take into account the test harness architecture. Although a Test 32
Driver in Connection Mode can manipulate low-level message content (such as HTTP or MIME header 33
content) such content may not be accessible by a Test Driver in Service Mode, as the MSH does not 34
communicate this data to the application layer. Therefore, the following test scripting rules SHOULD be 35
followed when designing Test Cases: 36

Message content described in a Message Declaration MUST be restricted to the business envelope and 37
its content, and not include references to the transport protocol content. Transport level content MAY be 38
described via the Header (name/value pair) child element of the message Part. 39

 40

 41

 42

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 111 of 214

 1

9.1.4 Mutator documents 2

When the Test Driver is in “connection mode”, a message declaration content MAY be “mutated” via an 3
XSL or XUpdate processor into a valid message for transmission by the Test Driver. Likewise, when a 4
Test Driver is in “service mode”, a message declaration content MAY be “mutated” in to a format suitable 5
for interpretation by the Test Service Receive interface, and its message “initiator” method. 6

Because a message Declaration element content can be any well-formed XML content, message Mutator 7
content can also be any valid XSLT or XUpdate document that will mutate its corresponding Declaration 8
content. It is HIGHLY RECOMMENDED that a particular testing community agree to a common message 9
Declaration and Mutator content schema in order to provide understandability and minimize the 10
duplication of effort in constructing conformance and interoperability test suites within that community. 11

The OASIS IIC has adopted a message declaration schema for ebXML Messaging Services v2.0 12
conformance and interoperability testing. It has also defined an XSL stylesheet to mutate that declaration 13
into an ebXML message. The schema and stylesheet are available in Appendix C. 14

 15

Likewise, communities wishing to test other messaging services, or other web applications SHOULD 16
devise a schema and stylesheet for their particular testing purpose. These documents SHOULD be 17
published as a “recommended practice” for that particular testing community, to minimize the work 18
involved in creating test suites that can be used with any IIC Test Framework implementation. 19

 20

9.1.5 CPAs 21

 22

For ebXML Messaging Services (MS) testing), both conformance and interoperability testing require the 23
existence of a “base” CPA configuration that describes the “bootstrap” configuration of the candidate 24
MSH for conformance and interoperability testing. Additional CPAs MAY be needed if testing requires 25
different configurations of the candidate MSH. All CPA configurations MUST be uniquely defined (via a 26
CPA ID) and documented in the Conformance or Interoperability Test Suite Specification document 27
accompanying the Executable Test Suite. How the CPA configuration is presented to the candidate MSH 28
implementation is not defined in this specification. 29

 30

9.1.6 Test Report Document 31

 32

The Test Report is a “full trace” of the Test Case. All XML content in the XML Test Case is available in 33
the Test Report. Additionally, a “result” element is appended to certain test operation elements in the 34
trace, to provide diagnostic information. The “result” attribute MUST have a value of “pass”, “fail” or 35
“undetermined”. The Test Report schema is too large to graphically display on this page. Please consult 36
Appendix E if you wish to examine the normative schema. 37

The Test Report schema (Appendix E) describes the XML report document format required for Test 38
Driver implementations. The schema uses a standard XML syntax for reporting results of Test Cases and 39
their Threads. 40

 41

 42

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 112 of 214

10 Testing Components and Scenarios 1

 2

Because the Test Framework can be employed for more than one type of testing, not all testing 3
components are necessary for each type of testing. And depending upon the type of testing, particular 4
features within a Test Component may not be required to successfully execute the Test Suite. 5

 6

10.1 Base features running ebXML Test Suites 7

"In order to support conformance and interoperability test suites for ebXML (for Messaging and Registry), 8
an implementation of Test Driver must support the following features:" 9

 10

 11

Feature Value

Transport HTTP 1.1

Envelope ebXML

ValidationType XMLSchema

MutatorType XSLT

XMLDSIG Yes

Table 32 – List of required features for a minimall y conformant Test Driver 12

 13

10.2 Test Driver: Feature Profiles and Test Suites 14

 15

Below are the features the MAY be implemented for an IIC Test Driver to be compliant with this 16
specification and can be used as a “feature profile” to define the capabilities of a Test Driver. These 17
features are also represented as Test Driver “configuration parameters” in the XML Executable Test 18
Suite document described in section XX and normatively represented in Appendix XX. 19

 20

In order for a Test Driver to execute a Test Suite, it MUST be able to “match” the profile of features 21
described in the bootstrap ConfigurationGroup of the Executable Test Suite document with its own 22
capabilities. A Test Driver MUST verify that the bootstrap ConfigurationGroup content of an Executable 23
Test Suite matches the capability features of the Test Driver. If a Test Driver does not implement one of 24
the enumerated types defined in the Executable Test Suite ConfigurationGroup content, then the Test 25
Driver MAY cease execution the Test Suite and return a final result status of “undetermined” for the Test 26
Suite. Alternately, the Test Driver MAY execute the Test Suite, but MUST set the final state of any Test 27
Case requiring a particular feature that is not implemented to “undetermined”. 28

 29

 30

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 113 of 214

Feature Value ebXML MS 2.0
Conformance
Test Suite

ebXML RS V3.0
Conformance
Test Suite

ebXML BPSS
V1.05
Conformance
Test Suite

Transport HTTP 1.1 HTTP 1.1 HTTP 1.1 HTTP 1.1

Envelope SWA

 MIME

 ebXML ebXML ebXML ebXML

ValidationType XMLSchema XMLSchema XMLSchema XMLSchema

 Schematron

MutatorType XSLT XSLT XSLT XSLT

 XUpdate

XMLDSIG Yes/No Yes Yes Yes

 1

 Table 33 –Feature Requirement List for ebXML Confo rmance Test Suites 2

 3

10.3 Test Service : Feature Profiles and Test Suit es 4

 5

Below are the optional features that an IIC compliant Test Service MAY implement in order to support 6
conformance and interoperability testing. Note that a Test Service is not necessary in “black box” testing 7
(i.e. testing that does not involve an interface with the internals of the implementation under test). Such is 8
the case with remote application testing (such as ebXML Registry conformance testing). 9

 10

However, in cases where testing requires an interface with the implementation under test (such as 11

 12

Feature ebXML MS 2.0
Conformance
Test Suite

ebXML MS 2.0
Basic
Interoperability
Profile Test Suite

ebXMLBPSS 1.05
Conformance
Test Suite

IIC ebXML MS 2.0
Test Actions

Yes Yes No

IIC BPSS 1.05
Test Actions

No No Yes

Configuration
Interface

No No No

Notification
Interface

Yes Yes No

Initiation Interface Yes Yes No

 13

Table 34 –Required Test Framework Components for eb XML Conformance Test Suites 14

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 114 of 214

 1

 2

10.4 Test Material: Minimally Required Documents 3

 4

Testing scenarios can be as simple as A2A “debug” testing, to B2B conformance and interoperability 5
testing. Documents required depend upon the type of testing being performed. 6

 7

 8

Test Document ebXML MS V2.0
Conformance
Test Suite

ebXML MS V2.0
Basic
Interoperability
Profile Test Suite

ebXML Registry
Services V3.0
Conformance
Test Suite

ebXML BPSS
V3.0
Conformance
Test Suite

Test Profile
Document

Yes Yes Yes Yes

Test Requirements
Document

Yes Yes Yes Yes

Executable Test
Suite Document

Yes Yes Yes Yes

Externally
Referenced
message
declaration
documents

Yes Yes Yes Yes

Externally
referenced
message mutator
documents

Yes Yes Yes Yes

Externally
referenced
message payloads

Yes Yes Yes Yes

 9

Table 35 –Document Requirements for ebXML Conforman ce Test Suites 10

 11

: 12

 13

 14

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 115 of 214

11 Sample Scenarios and Test Material 1

 2

 3

11.1 MS Testing: ebXML Messaging Service Test Mate rial Samples 4

Testing a message service handler requires both a Test Driver and a Test Service component. The Test 5
Service MUST have the actions specified in section xx of this specification. The IIC has written test 6
material to support both interoperability and conformance testing of ebXML Messaging Services V2.0 7
implementations. This includes Test Profile, Test Requirements and Executable Test Suites. Below is a 8
small sample of this material: 9

 10

11.1.1 Example Test Requirements 11

 12

Below are two XML documents illustrating how Test Requirements are constructed, in this case for an 13
ebXML MS 2.0 implementation. In this particular case, the two documents represent Conformance and 14
Interoperability Test Requirements for an ebXML Messaging Services V2.0 implementation. The 15
example XML documents below include a subset of testing requirements defined for implementations of 16
the ebXML Messaging Services v2.0 Specification. Each Test Requirement may have one or more 17
Functional Requirements that together must be satisfied in order for an implementation to fully meet that 18
Test Requirement. 19

 20

 21

11.1.2 Conformance Test Requirements 22

 23

In the example below, a “packaging” TestRequirement element contains two FunctionalRequirement 24
elements. The first Functional Requirement states that the primary SOAP message MUST be the first 25
MIME part of the message. The second packaging Functional Requirement states that the Content-Type 26
MIME header of the Message Package MUST be “text/xml”. If all Test Cases having a requirement 27
reference to these two Functional Requirements “pass”, then an ebXML MS v2.0 implementation would 28
be deemed “conformant” to the specification for the “Packaging” of ebXML messages. Of course, this is a 29
limited set of Test Requirements for illustrative purposes only. 30

 31

<?xml version="1.0" encoding="UTF-8" ?> 32
<Requirements xmlns =" http://www.oasis-open.org/tc/ebxml-iic/conformance/ reqs " 33
xmlns:xsi =" http://www.w3.org/2000/10/XMLSchema-instance " 34
xsi:schemaLocation =" http://www.oasis-open.org/tc/ebxml-iic/conformance/ reqs/ 35
ebXMLTestRequirements.xsd "> 36
<MetaData > 37
 <Title>ebMS 2.0 Conformance Test Requirements</Ti tle> 38
 <Description >Master Requirements File: ebXML Messaging Services 2.0 </ Description > 39
 <Version >1.0 </ Version > 40
 <Maintainer >Michael Kass<Michael.kass@nist.gov> </ Maintainer > 41
 <Location >http://www.oasis-open.org/commitees/ebxml-42
iic/ebmsg/requirements1.0.xml </ Location > 43
 <PublishDate >20 Feb 2003 </ PublishDate > 44
 <Status >DRAFT</ Status > 45
 </ MetaData > 46
<!—Main Test Requirement, for message packaging � 47
<TestRequirement id =" req_id_2 " name =" PackagingSpecification " specRef =" ebMS-2#2.1 " 48
functionalType =" packaging "> 49

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 116 of 214

<!—Define first sub-requirement to fulfill packagin g testing � 1
<FunctionalRequirement id =" funreq_id_2 " 2
name=" GenerateConformantSOAPWithAttachMIMEHeaders " specRef =" ebMS-2#2.1.2 "> 3
<Clause > 4
<!—Set first condition of the message is of type “m ultipart-mime” � 5
 <Condition id =" condition_id_2 " requirementType =" required "> For each generated mesage, 6
if it is multipart MIME </ Condition > 7
 <Or /> 8
<!—Set alternate condition that the message is not “text/xml” � 9
 <Condition id =" condition_id_305 " requirementType =" required "> if it is not 10
text/xml </ Condition > 11
 </ Clause > 12
<!—Define the Assertion that the first part of mess age is a SOAP message � 13
 <Assertion id =" assert_id_2 " requirementType =" required "> The primary SOAP message is 14
carried in the root body part of the message. </ Assertion > 15
 </ FunctionalRequirement > 16
<!—Define a second sub-requirement to fulfill packa ging testing � 17
<FunctionalRequirement id =" funreq_id_4 " name =" GenerateCorrectMessagePackageContent-Type " 18
specRef =" ebMS-2#2.1.2 "> 19
<Clause > 20
<!—Define condition that the candidate MSH generate s a message � 21
 <Condition id =" condition_id_4 " requirementType =" required "> For each generated 22
message </ Condition > 23
 </ Clause > 24
<!—Define the Assertion that the Content-Type of MI ME header of that message is 25
“text/xml” � 26
 <Assertion id =" assert_id_4 " requirementType =" required "> The Content-Type MIME header in 27
the Message Package contains a type attribute of "t ext/xml". </ Assertion > 28
 </ FunctionalRequirement > 29
</TestRequirement> 30
<!—Define a new Test Requirement, for the Core Ext ension Elements of messaging � 31
<TestRequirement id =" req_id_3 " name =" CoreExtensionElements " specRef =" ebMS-2#3.1.1 " 32
functionalType =" packaging "> 33
<!—Define a sub-requirement to test the CPAId exten sion element � 34
<FunctionalRequirement id =" funreq_id_35 " name =" ReportFailedCPAIDResolution " 35
specRef =" ebMS-2#3.1.2 "> 36
<Clause > 37
<!—First , set condition of a candidate MSH receiv ing a message with an unresolvable 38
CPAId� 39
 <Condition id =" condition_id_40 " requirementType =" required "> For each received message, 40
if value of the CPAId element on an inbound message cannot be resolved </ Condition > 41
 </ Clause > 42
<!—Next , define the Assertion that the candidate M SH MUST (since requirementType is 43
“required”) respond with an Error � 44
 <Assertion id =" assert_id_35 " requirementType =" required "> The MSH responds with an error 45
(ValueNotRecognized/Error). </ Assertion > 46
 </ FunctionalRequirement > 47
<!—Define a sub-requirement to test continuity in m essage ConversationId � 48
<FunctionalRequirement id =" funreq_id_36 " name =" ProvideConversationIdIntegrity " 49
specRef =" ebMS-2#3.1.3 "> 50
<Clause > 51
<!—First , set condition of all messages generated by a Candidate Implementation 52
pertaining to a single CPAId � 53
 <Condition id =" condition_id_41 " requirementType =" required "> For each generated message 54
within the context of the specified CPAId </ Condition > 55
 </ Clause > 56
<!—Next , define the Assertion that a ConversationI d element is always present � 57
 <Assertion id =" assert_id_36 " requirementType =" required "> The generated ConversationId 58
will be present in all messages pertaining to the g iven conversation. </ Assertion > 59
 </ FunctionalRequirement > 60
 61
</TestRequirement> 62
</Requirements> 63

 64

 65

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 117 of 214

11.1.3 Interoperability Test Requirements 1

 2

In the example below, a “basic interoperability profile” TestRequirement element contains two 3
FunctionalRequirement elements. The first Functional Requirement states that ebXML MS 4
implementation MUST be able to receive and send a basic ebXML message without a payload. The 5
second packaging Functional Requirement states that an ebXML MS implementation MUST be able to 6
process and return a simple ebXML message with one payload. If all Test Cases having a requirement 7
reference to these two Functional Requirements “pass”, then an ebXML MS v2.0 implementation would 8
be deemed “interoperable” to the Basic Interoperability Profile Specification for ebXML Messaging. Of 9
course, this is a limited set of Test Requirements for illustrative purposes only. 10

 11

<?xml version="1.0" encoding="UTF-8" ?> 12
<Requirements xmlns =" http://www.oasis-open.org/tc/ebxml-iic/interop/reqs " 13
xmlns:xsi =" http://www.w3.org/2000/10/XMLSchema-instance " 14
xsi:schemaLocation =" http://www.oasis-open.org/tc/ebxml-iic/interop/reqs 15
ebXMLTestRequirements.xsd "> 16
<MetaData > 17
 <Title>ebMS Interop Test Requirements</Title> 18
 <Description >Interoperability Requirements File: ebXML Messaging Services 19
2.0 </ Description > 20
 <Version >1.0 </ Version > 21
 <Maintainer >Michael Kass <michael.kass@nist.gov> </ Maintainer > 22
 <Location >http://www.oasis-open.org/commitees/ebxml-23
iic/ebmsg/ms_2.0_interop_requirements1.0.xml </ Location > 24
 <PublishDate >11 Feb 2003 </ PublishDate > 25
 <Status >DRAFT</ Status > 26
 </ MetaData > 27
<!—Main Test Requirement, for basic interoperabilit y testing � 28
<TestRequirement id =" req_id_1 " name =" Basic Interoperability Profile " specRef =" MS 2.0 BIP 29
0.8 " functionalType =" basic interoperability "> 30
<!—Define first sub-requirement to fulfill basic te sting, sending a “no payload” 31
message� 32
<FunctionalRequirement id =" funreq_id_1 " name =" BasicExchangeNoPayload " specRef =" ebMS 2.0 33
BIP#3.2.1 "> 34
<Clause > 35
<!—First , set condition of a candidate MSH receiv ing a message with no payload � 36
 <Condition id =" condition_id_1 " requirementType =" required "> For each received ebXML 37
message with no payload, received by the “Dummy” ac tion </ Condition > 38
 </ Clause > 39
<!—Next , define the Assertion of expected behavior for the Dummy Action � 40
 <Assertion id =" assert_id_1 " requirementType =" required "> The message is received and 41
processed, and a simple response message is returne d</Assertion > 42
 </ FunctionalRequirement > 43
<!—Define second sub-requirement to fulfill basic t esting, sending a “one payload” 44
message� 45
 46
<FunctionalRequirement id =" funreq_id_2 " name =" BasicExchangeOnePayload " specRef =" ebMS 2.0 47
BIP#3.2.2 "> 48
<Clause > 49
<!—Set condition of a candidate MSH receiving a me ssage with one payload � 50
 <Condition id =" condition_id_2 " requirementType =" required "> For each received ebXML 51
message with one payload, received by the “Reflecto r” action </ Condition > 52
 </ Clause > 53
<!—Define the Assertion of expected behavior for th e Reflector Action � 54
 <Assertion id =" assert_id_2 " requirementType =" required "> The message is received and 55
processed, and a simple response message with the i dentical payload is 56
returned </Assertion > 57
 </ FunctionalRequirement > 58
<!—Define third sub-requirement to fulfill basic te sting, sending a “three payload” 59
message� 60
<FunctionalRequirement id =" funreq_id_3 " name =" BasicExchangeThreePayloads " specRef =" ebMS 61
2.0 BIP#3.2.3 "> 62
<Clause > 63
<!—Set condition of a candidate MSH receiving a me ssage with three payloads � 64
 <Condition id =" condition_id_3 " requirementType =" required "> For each received ebXML 65
message with three payloads, received by the “Refle ctor” action </ Condition > 66

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 118 of 214

 </ Clause > 1
<!—Define the Assertion of expected behavior for th e Reflector Action � 2
 <Assertion id =" assert_id_3 " requirementType =" required "> The message is received and 3
processed, and a simple response message with the i dentical three payloads are 4
returned </Assertion > 5
 </ FunctionalRequirement > 6
<!—Define third sub-requirement to fulfill basic te sting, generating Error messages � 7
<FunctionalRequirement id =" funreq_id_4 " name =" BasicExchangeGenerateError " specRef =" ebMS 8
2.0 BIP#3.2.4 "> 9
<Clause > 10
<!—Set condition of a candidate MSH receiving an e rroneous message � 11
 <Condition id =" condition_id_4 " requirementType =" required "> For each received basic 12
ebXML message that should generate an Error </ Condition > 13
 </ Clause > 14
<!—Define the Assertion of expected behavior for th e candidate MSH � 15
 <Assertion id =" assert_id_4 " requirementType =" required "> The message is received and, 16
the MSH returns a message to the originating party with an ErrorList and appropriate 17
Error message </Assertion > 18
 </ FunctionalRequirement > 19
</TestRequirement> 20
</Requirements> 21

 22

 23

11.1.4 Example Test Profiles 24

 25

Below are two XML documents illustrating how a Test Profile document is constructed, in this case for an 26
ebXML MS v2.0 implementation. The example XML documents below represent a subset of test 27
requirements to be exercised. The Test Profile document provides a list of ID references (pointers) to 28
Test Requirements or Functional Requirements in an external Test Requirements document (see above). 29
A Test Harness would read this document, resolve the location of the Test Requirements document, and 30
then execute all Test Cases in the Test Suite document that point to (via ID reference) the Test 31
Requirements listed below. Note that a Test Driver can execute Test Cases pointing to a Functional 32
Requirement (discreet requirement) or a Test Requirement (a container of a group of Functional 33
Requirements). If the TestRequirementRef id attribute value points to a Test Requirement, then all Test 34
Cases for all child Functional Requirements will be executed by the Test Harness (This is a way to 35
conveniently execute a cluster of Test Cases by specifying a single Test Requirement.). This method is 36
used for both conformance and interoperability testing. 37

 38

11.1.5 Conformance Test Profile Example 39

 40

The Test Profile document below would be used to drive a Test Harness, by executing all Test Cases that 41
point (via ID) to the listed Test Requirement references (including individual Functional Requirements and 42
a single Test Requirement listed in the above example Conformance Test Requirements document. 43

 44

<?xml version="1.0" encoding="UTF-8" ?> 45
<TestProfile xmlns="http://www.oasis-open.org/tc/ebxml-iic/test-profile " 46
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance " xsi:schemaLocation="http://www.oasis-47
open.org/tc/ebxml-iic/test-profile http://www.oasis -open.org/tc/ebxml-iic/test-48
profile/test-profile.xsd " requirementsLocation="ebxml-iic-msg-v20-conformance_reqs.xml " 49
name="ebXML MS v2.0 Conformance Test Requirements " description="Core conformance testing 50
profile for ebXML MS v2.0 implementations”> 51
 <TestRequirementRef id="funreq_id_2 " /> <!—Execute all Test Casses that reference the 52
Basic SOAP message structure Functional Requirement � 53
 <TestRequirementRef id="funreq_id_4 " /> <!—Execute all Test Cases that reference Message 54
Packaeg Content Type Functional Requirement � 55

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 119 of 214

 <TestRequirementRef id="req_id_2 " /> <!—Execut all Test Cases that reference all 1
Functional Requirements within the Core Extension Elements Test Requirement � 2
 </TestProfile> 3

 4

11.1.6 Interoperability Test Profile 5

 6

The Test Profile document below would be used to drive a Test Harness, by executing all Test Cases that 7
point (via ID) to the listed Test Requirement references (including individual Functional Requirements 8
and a single Test Requirement listed in the above example Interoperability Test Requirements document. 9

 10

<?xml version="1.0" encoding="UTF-8" ?> 11
<TestProfile xmlns="http://www.oasis-open.org/tc/ebxml-iic/test-profile " 12
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance " xsi:schemaLocation="http://www.oasis-13
open.org/tc/ebxml-iic/test-profile http://www.oasis -open.org/tc/ebxml-iic/test-14
profile/test-profile.xsd " requirementsLocation="ebxml-iic-msg-v20-conformance_reqs.xml " 15
name="ebXML MS v2.0 Conformance Test Requirements " description="Core conformance testing 16
profile for ebXML MS v2.0 implementations”> 17
 <TestRequirementRef id="funreq_id_1.1 " /> <!—Execute all Test Casses that reference the 18
“Basic Exchange, No Payload” Functional Requirement � 19
 <TestRequirementRef id="funreq_id_1.2 " /> <!—Execute all Test Casses that reference the 20
“Basic Exchange, One Payload” Functional Requiremen t � 21
 </TestProfile> 22

 23

 24

 25

11.1.7 Conformance Test Suite 26

 27

 28

For brevity, only one Test Case is included in the Test Suite below. The complete ebXML MS v2.0 29
Conformance Test Suite is available at the OASIS IIC Technical Committee web site. 30

A Test Driver executing conformance Test Cases operates in “connection” mode, meaning it is not 31
interfaced to any MSH, and is acting on its own. The Test Case exercises a Functional Requirement 32
listed in section 10.1 The Test Case below verifies that a ConversationId element is present in an 33
ebXML response message 34

 35

 36

 37

<?xml version = "1.0" encoding = "UTF-8"?> 38
<?xml-stylesheet type="text/xsl" href="xslt\ebXMLTestsuite.xsl"?> 39
 40
<!-- 41
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS] 42
January 2002. All Rights Reserved. 43
This document and translations of it may be copied and furnished to others, and derivative works that 44
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published 45
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright 46
notice and this paragraph are included on all such copies and derivative works. However, this document 47
itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, 48
except as needed for the purpose of developing OASIS specifications, in which case the procedures for 49
copyrights defined in the OASIS Intellectual Property Rights document MUST be followed, or as required 50
to translate it into languages other than English. 51

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 120 of 214

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors 1
or assigns. 2
--> 3
<ebTest:TestSuite xmlns:ebTest = "http://www.oasis-open.org/tc/ebxml-iic/tests" 4
configurationGroupRef = "mshc_basic" xmlns:ds = "http://www.oasis-open.org/tc/ebxml-5
iic/tests/xmldsig" xmlns:xlink = "http://www.w3.org/1999/xlink" xmlns:xsi = 6
"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation = "http://www.oasis-7
open.org/tc/ebxml-iic/tests schemas\ebTest.xsd"> 8
 <ebTest:MetaData> 9
 <ebTest:Title>ebMS 2.0 Conformance Test Suite</ebTest:Title> 10
 <ebTest:Description> Test for presence of ConversationId in ebXML MessageHeader 11
element</ebTest:Description> 12
 <ebTest:Version>0.1</ebTest:Version> 13
 <ebTest:Maintainer>Michael Kass</ebTest:Maintainer> 14
 <ebTest:Location>ScriptingTestSuite.xml</ebTest:Location> 15
 <ebTest:PublishDate>05/20/2004</ebTest:PublishDate> 16
 <ebTest:Status>DRAFT</ebTest:Status> 17
 </ebTest:MetaData> 18
 <ebTest:ConfigurationGroup id = "mshc_basic"> 19
 <ebTest:Mode>connection</ebTest:Mode> 20
 <ebTest:StepDuration>300</ebTest:StepDuration> 21
 <ebTest:Transport>HTTP</ebTest:Transport> 22
 <ebTest:Envelope>ebXML</ebTest:Envelope> 23
 <ebTest:StoreAttachments>false</ebTest:StoreAttachments> 24
 <ebTest:ValidationType>XMLSchema</ebTest:ValidationType> 25
 <ebTest:MutatorType>XSLT</ebTest:MutatorType> 26
 <ebTest:SetParameter> 27
 <ebTest:Name>SenderParty</ebTest:Name> 28
 <ebTest:Value>TestDriver</ebTest:Value> 29
 </ebTest:SetParameter> 30
 <ebTest:SetParameter> 31
 <ebTest:Name>ReceiverParty</ebTest:Name> 32
 <ebTest:Value>TestService</ebTest:Value> 33
 </ebTest:SetParameter> 34
 <ebTest:SetParameter> 35
 <ebTest:Name>Service</ebTest:Name> 36
 <ebTest:Value>urn:ebxml:iic:test</ebTest:Value> 37
 </ebTest:SetParameter> 38
 <ebTest:SetParameter> 39
 <ebTest:Name>Action</ebTest:Name> 40
 <ebTest:Value>Dummy</ebTest:Value> 41
 </ebTest:SetParameter> 42
 <ebTest:Namespaces> 43
 <ebTest:SetNamespace> 44
 <ebTest:Name>eb</ebTest:Name> 45
 <ebTest:Value>http://www.oasis-open.org/committees/ebxml-46
msg/schema/msg-header-2_0.xsd</ebTest:Value> 47
 </ebTest:SetNamespace> 48
 <ebTest:SetNamespace> 49
 <ebTest:Name>soap</ebTest:Name> 50
 51
 <ebTest:Value>http://schemas.xmlsoap.org/soap/envelope/</ebTest:Value> 52
 </ebTest:SetNamespace> 53
 <ebTest:SetNamespace> 54
 <ebTest:Name>TEST</ebTest:Name> 55
 <ebTest:Value>http://www.oasis-open.org/tc/ebxml-56
iic/testing/messageStore</ebTest:Value> 57
 </ebTest:SetNamespace> 58
 </ebTest:Namespaces> 59
 </ebTest:ConfigurationGroup> 60
 <ebTest:TestCase id = "testcase_1" description = "ConversationId is present in message" 61
requirementReferenceId = "funreq_id_36"> 62
 <ebTest:ThreadGroup> 63
 <ebTest:Thread name = "main"> 64
 <ebTest:ThreadRef nameRef = "thread_01"/> 65
 </ebTest:Thread> 66

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 121 of 214

 <ebTest:Thread name = "thread_01"> 1
 <ebTest:PutMessage description = "Send a message to the Dummy 2
action"> 3
 <ebTest:SetMessage> 4
 <ebTest:Content> 5
 <ebTest:Declaration> 6
 <soap:Envelope xmlns:soap = 7
"http://www.oasis-open.org/tc/ebxml-iic/tests/soap" xmlns:eb = "http://www.oasis-open.org/tc/ebxml-8
iic/tests/eb" xmlns:xlink = "http://www.w3.org/1999/xlink"> 9
 <soap:Header> 10
 11
 <eb:MessageHeader> 12
 13
 <eb:Action>Dummy</eb:Action> 14
 15
 </eb:MessageHeader> 16
 </soap:Header> 17
 </soap:Envelope> 18
 </ebTest:Declaration> 19
 </ebTest:Content> 20
 <ebTest:Mutator> 21
 22
 <ebTest:FileURI>ebXMLEnvelope.xsl</ebTest:FileURI> 23
 </ebTest:Mutator> 24
 </ebTest:SetMessage> 25
 </ebTest:PutMessage> 26
 <ebTest:GetMessage description = "Retrieve response message "> 27
 28
 <ebTest:Filter>/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header29
/eb:MessageHeader[eb:CPAId='mshc_Basic' and eb:MessageData/eb:RefToMessageId=$MessageId and 30
eb:Action='Mute']]</ebTest:Filter> 31
 </ebTest:GetMessage> 32
 <ebTest:TestAssertion description = "Verify that a ConversationId 33
element is present in response'"> 34
 35
 <ebTest:VerifyContent>/FilterResult/Message/soap:Envelope/soap:Header/eb:MessgeHeader/eb:Co36
nversationId</ebTest:VerifyContent> 37
 </ebTest:TestAssertion> 38
 </ebTest:Thread> 39
 </ebTest:ThreadGroup> 40
 <ebTest:ThreadRef nameRef = "main"/> 41
 </ebTest:TestCase> 42
</ebTest:TestSuite> 43

11.1.8 Interoperability Test Suite 44

 45

In the example below, a series of four Test Cases make up an Interoperability Test Suite. A Test Driver 46
executing conformance Test Cases operates in “service” mode, meaning it is interfaced to a MSH. The 47
Test Case exercises a Functional Interoperability Requirement. The Test Case below performs a basic 48
message exchange with no message payload. The complete ebXML Basic Interoperability Profile Test 49
Suite is available online at the OASIS IIC Technical Committee web site. 50

 51

<?xml version = "1.0" encoding = "UTF-8"?> 52
 53
<!-- 54
Copyright (C) The Organization for the Advancement of Structured Information Standards 55
[OASIS] 56
January 2002. All Rights Reserved. 57

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 122 of 214

This document and translations of it may be copied and furnished to others, and 1
derivative works that comment on or otherwise expla in it or assist in its implementation 2
may be prepared, copied, published and distributed, in whole or in part, without 3
restriction of any kind, provided that the above co pyright notice and this paragraph are 4
included on all such copies and derivative works. H owever, this document itself may not 5
be modified in any way, such as by removing the cop yright notice or references to OASIS, 6
except as needed for the purpose of developing OASI S specifications, in which case the 7
procedures for copyrights defined in the OASIS Inte llectual Property Rights document 8
MUST be followed, or as required to translate it in to languages other than English. 9
The limited permissions granted above are perpetual and will not be revoked by OASIS or 10
its successors or assigns. 11
--> 12
<ebTest:TestSuite xmlns:ebTest = "http://www.oasis- open.org/tc/ebxml-iic/tests" 13
configurationGroupRef = "mshc_basic" xmlns:ds = "ht tp://www.oasis-open.org/tc/ebxml-14
iic/tests/xmldsig" xmlns:xlink = "http://www.w3.org /1999/xlink" xmlns:xsi = 15
"http://www.w3.org/2001/XMLSchema-instance" xsi:sch emaLocation = "http://www.oasis-16
open.org/tc/ebxml-iic/tests schemas\ebTest.xsd"> 17
 <ebTest:MetaData> 18
 <ebTest:Title>ebMS 2.0 Interop Test Suite</ebTest :Title> 19
 <ebTest:Description>ebXML MS Interoperabilty Tes t Suite 20
</ebTest:Description> 21
 <ebTest:Version>1.1</ebTest:Version> 22
 <ebTest:Maintainer>Michael Kass</ebTest:Maintaine r> 23
 <ebTest:Location>ScriptingTestSuite.xml</ebTest:L ocation> 24
 <ebTest:PublishDate>10/10/2004</ebTest:PublishDat e> 25
 <ebTest:Status>DRAFT</ebTest:Status> 26
 </ebTest:MetaData> 27
 <ebTest:ConfigurationGroup id = "mshc_basic"> 28
 <ebTest:Mode>remote-service</ebTest:Mode> 29
 <ebTest:StepDuration>300</ebTest:StepDuration> 30
 <ebTest:Transport>HTTP</ebTest:Transport> 31
 <ebTest:Envelope>ebXML</ebTest:Envelope> 32
 <ebTest:StoreAttachments>false</ebTest:StoreAttac hments> 33
 <ebTest:ValidationType>XMLSchema</ebTest:Validati onType> 34
 <ebTest:MutatorType>XSLT</ebTest:MutatorType> 35
 <ebTest:SetParameter> 36
 <ebTest:Name>SenderParty</ebTest:Name> 37
 <ebTest:Value>TestService1</ebTest:Value> 38
 </ebTest:SetParameter> 39
 <ebTest:SetParameter> 40
 <ebTest:Name>ReceiverParty</ebTest:Name> 41
 <ebTest:Value>TestService2</ebTest:Value> 42
 </ebTest:SetParameter> 43
 <ebTest:SetParameter> 44
 <ebTest:Name>Service</ebTest:Name> 45
 <ebTest:Value>urn:ebxml:iic:test</ebTest:Value> 46
 </ebTest:SetParameter> 47
 <ebTest:SetParameter> 48
 <ebTest:Name>Action</ebTest:Name> 49
 <ebTest:Value>Dummy</ebTest:Value> 50
 </ebTest:SetParameter> 51
 <ebTest:Namespaces> 52
 <ebTest:SetNamespace> 53
 <ebTest:Name>eb</ebTest:Name> 54
 <ebTest:Value>http://www.oasis-open.org/committ ees/ebxml-55
msg/schema/msg-header-2_0.xsd</ebTest:Value> 56
 </ebTest:SetNamespace> 57
 <ebTest:SetNamespace> 58
 <ebTest:Name>soap</ebTest:Name> 59
 60
 <ebTest:Value>http://schemas.xmlsoap.org/soap/enve lope/</ebTest:Value> 61
 </ebTest:SetNamespace> 62
 <ebTest:SetNamespace> 63
 <ebTest:Name>TEST</ebTest:Name> 64
 <ebTest:Value>http://www.oasis-open.org/tc/ebxm l-65
iic/testing/messageStore</ebTest:Value> 66
 </ebTest:SetNamespace> 67
 </ebTest:Namespaces> 68
 </ebTest:ConfigurationGroup> 69
 <ebTest:TestCase id = "testcase_1" description = " Basic request/response test" 70
requirementReferenceId = " funreq_id_1.1"> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 123 of 214

 <ebTest:ThreadGroup> 1
 <ebTest:Thread name = "main"> 2
 <ebTest:ThreadRef nameRef = "thread_01"/> 3
 </ebTest:Thread> 4
 <ebTest:Thread name = "thread_01"> 5
 <ebTest:Initiator description = "Send a message to the Dummy 6
action"> 7
 <ebTest:InitiateMessage> 8
 <ebTest:Content> 9
 <ebTest:Declaration> 10
 <soap:Envelope xmlns:soap = 11
"http://www.oasis-open.org/tc/ebxml-iic/tests/soap" xmlns:eb = "http://www.oasis-12
open.org/tc/ebxml-iic/tests/eb"> 13
 <soap:Header> 14
 15
 <eb:MessageHeader> 16
 17
 <eb:Action>Dummy</eb:Action> 18
 19
 </eb:MessageHeader> 20
 </soap:Header> 21
 </soap:Envelope> 22
 </ebTest:Declaration> 23
 </ebTest:Content> 24
 <ebTest:Mutator> 25
 26
 <ebTest:FileURI>ebXMLEnvelope.xsl</ebTest:FileURI> 27
 </ebTest:Mutator> 28
 </ebTest:InitiateMessage> 29
 </ebTest:Initiator> 30
 <ebTest:GetMessage description = "Retrieve resp onse message "> 31
 32
 <ebTest:Filter>/TEST:MessageStore/Test:Notificatio n[TEST:Part[1]/soap:Envelope/soap:H33
eader/eb:MessageHeader[eb:CPAId='mshc_Basic' and 34
eb:MessageData/eb:RefToMessageId=$MessageId and eb: Action='Mute']]</ebTest:Filter> 35
 </ebTest:GetMessage> 36
 <ebTest:TestAssertion description = "Verify tha t an ebXML 37
Message notifcdation was received"> 38
 39
 <ebTest:VerifyContent>/TEST:FilterResult/TEST:Noti fication </ebTest:VerifyContent> 40
 </ebTest:TestAssertion> 41
 </ebTest:Thread> 42
 </ebTest:ThreadGroup> 43
 <ebTest:ThreadRef nameRef = "main"/> 44
 </ebTest:TestCase> 45
</ebTest:TestSuite> 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 124 of 214

 1

 2

 3

 4

 5

 6
 7

 8

 9

 10

 11

 12
 13

 14

 15

 16

 17

 18

 19
 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 125 of 214

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16
17

 18

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 126 of 214

Appendix A (Normative) (Normative) Test Profile 1

Schema 2

 3

 4

The OASIS ebXML Implementation and Interoperability Committee has provided a version of the ebXML 5
Test Profile schema using the schema vocabulary that conforms to the W3C XML Schema 6
Recommendation specification [XMLSchema]. 7

 8
<?xml version = "1.0" encoding = "UTF-8"?> 9
<!--Generated by XML Authority. Conforms to w3c htt p://www.w3.org/2001/XMLSchema--> 10
<schema xmlns = "http://www.w3.org/2001/XMLSchema" 11
 targetNamespace = "http://www.oasis-open.org/tc/e bxml-iic/test-profile" 12
 xmlns:tns = "http://www.oasis-open.org/tc/ebxml-i ic/test-profile" 13
 > 14
 <!-- 15
Generated by XML Authority. Conforms to w3c http:// www.w3.org/2001/XMLSchema 16
 --> 17
 18
 19
 <!-- 20
 $Id: TestProfile.xsd,v 1.2 2002/07/02 15:28:27 mat t Exp $ 21
 --> 22
 23
 <element name = "TestProfile"> 24
 <complexType> 25
 <sequence> 26
 <element ref = "tns:Dependency" minOccurs = "0" maxOccurs = 27
"unbounded"/> 28
 <element ref = "tns:TestRequirementRef" maxOccu rs = 29
"unbounded"/> 30
 </sequence> 31
 <attribute name = "requirementsLocation" use = " required" type = 32
"anyURI"/> 33
 <attribute name = "name" use = "required" type = "string"/> 34
 <attribute name = "description" use = "required" type = "string"/> 35
 </complexType> 36
 </element> 37
 <element name = "Dependency"> 38
 <complexType> 39
 <attribute name = "name" use = "required" type = "string"/> 40
 <attribute name = "profileRef" use = "required" type = "anyURI"/> 41
 </complexType> 42
 </element> 43
 <element name = "TestRequirementRef"> 44
 <!-- 45
 To overide the conformance type of the underlying requirement ... 46
 --> 47
 <complexType> 48
 <sequence> 49
 <element name = "Comment" type = "string" minOc curs = "0" 50
maxOccurs = "unbounded"/> 51
 </sequence> 52
 <attribute name = "id" use = "required" type = " string"/> 53
 <attribute name = "requirementType" use = "optio nal" type = 54
"tns:requirement.type"/> 55
 </complexType> 56
 </element> 57
 <simpleType name = "requirement.type"> 58
 <restriction base = "string"> 59
 <enumeration value = "required"/> 60
 <enumeration value = "strongly recommended"/> 61
 <enumeration value = "recommended"/> 62

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 127 of 214

 <enumeration value = "optional"/> 1
 </restriction> 2
 </simpleType> 3
</schema> 4
 5

 6

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 128 of 214

Appendix B (Normative) (Normative) Test 1

Requirements Schema 2

 3

 4

The OASIS ebXML Implementation and Interoperability Committee has provided a version of the ebXML 5
Test Requirements schema using the schema vocabulary that conforms to the W3C XML Schema 6
Recommendation specification [XMLSchema]. 7

 8

<?xml version = "1.0" encoding = "UTF-8"?> 9
<!--Generated by XML Authority. Conforms to w3c htt p://www.w3.org/2001/XMLSchema--> 10
<schema xmlns = "http://www.w3.org/2001/XMLSchema" 11
 targetNamespace = "http://www.oasis-open.org/tc/e bxml-iic/conformance/reqs" 12
 xmlns:tns = "http://www.oasis-open.org/tc/ebxml-i ic/conformance/reqs" 13
 > 14
 <group name = "FunctionalRequirementGroup"> 15
 <sequence> 16
 <element ref = "tns:FunctionalRequirement"/> 17
 </sequence> 18
 </group> 19
 20
 <!-- 21
Copyright (C) The Organization for the Advancement of Structured Information Standards 22
[OASIS] 23
January 2002. All Rights Reserved. 24
This document and translations of it may be copied and furnished to others, and 25
derivative works that comment on or otherwise expla in it or assist in its implementation 26
may be prepared, copied, published and distributed, in whole or in part, without 27
restriction of any kind, provided that the above co pyright notice and this paragraph are 28
included on all such copies and derivative works. H owever, this document itself may not 29
be modified in any way, such as by removing the cop yright notice or references to OASIS, 30
except as needed for the purpose of developing OASI S specifications, in which case the 31
procedures for copyrights defined in the OASIS Inte llectual Property Rights document 32
MUST be followed, or as required to translate it in to languages other than English. 33
The limited permissions granted above are perpetual and will not be revoked by OASIS or 34
its successors or assigns. 35
--> 36
 37
 38
 <!--Generated by XML Authority. Conforms to w3c ht tp://www.w3.org/2000/10/XMLSchema--39
> 40
 41
 42
 <!-- OASIS/ebXML Test Suite Framework 43
 Description: Schema used to define ebXML Te st Requirements instance document 44
 45
 Author: Michael Kass 46
 Organization: NIST 47
 48
 Author: Matthew MacKenzie 49
 Organization: XML Global 50
 51
 Date: 03/31/2002 52
 Version 1.0 53
 --> 54
 55
 56
 <!-- CHANGES: 57
 Version 1.0 (Matt): 58
 - added attributes requirementType and name to L evel. 59
 - added other to functional.type enumeration. 60
 --> 61

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 129 of 214

 1
 <element name = "TestRequirement"> 2
 <complexType> 3
 <sequence> 4
 <choice minOccurs = "0" maxOccurs = "unbounded" > 5
 <element ref = "tns:FunctionalRequirement"/> 6
 <element ref = "tns:TestRequirement"/> 7
 </choice> 8
 </sequence> 9
 <attribute name = "id" use = "required" type = " ID"/> 10
 <attribute name = "name" use = "required" type = "string"/> 11
 <attribute name = "specRef" use = "required" typ e = "string"/> 12
 <attribute name = "functionalType" use = "requir ed" type = "string"/> 13
 <attribute name = "dependencyRef" use = "optiona l" type = "anyURI"/> 14
 </complexType> 15
 </element> 16
 <element name = "FunctionalRequirement"> 17
 <complexType> 18
 <sequence> 19
 <element ref = "tns:Clause" minOccurs = "0"/> 20
 <choice maxOccurs = "unbounded"> 21
 <element ref = "tns:Assertion"/> 22
 <element ref = "tns:AssertionRef"/> 23
 </choice> 24
 </sequence> 25
 <attribute name = "id" use = "required" type = " ID"/> 26
 <attribute name = "name" use = "required" type = "string"/> 27
 <attribute name = "specRef" use = "required" typ e = "string"/> 28
 <attribute name = "testCaseRef" use = "optional" type = "anyURI"/> 29
 <attribute name = "dependencyRef" use = "optiona l" type = "anyURI"/> 30
 </complexType> 31
 </element> 32
 <element name = "Clause"> 33
 <complexType> 34
 <sequence> 35
 <choice> 36
 <element ref = "tns:Clause"/> 37
 <choice> 38
 <element ref = "tns:Condition"/> 39
 <element ref = "tns:ConditionRef"/> 40
 </choice> 41
 </choice> 42
 <sequence minOccurs = "0" maxOccurs = "unbounde d"> 43
 <choice> 44
 <element ref = "tns:And"/> 45
 <element ref = "tns:Or"/> 46
 </choice> 47
 <choice> 48
 <element ref = "tns:Clause"/> 49
 <choice> 50
 <element ref = "tns:Condition"/> 51
 <element ref = "tns:ConditionRef"/> 52
 </choice> 53
 </choice> 54
 </sequence> 55
 </sequence> 56
 </complexType> 57
 </element> 58
 <element name = "Condition"> 59
 <complexType> 60
 <simpleContent> 61
 <extension base = "string"> 62
 <attribute name = "id" use = "required" type = "ID"/> 63
 </extension> 64
 </simpleContent> 65
 </complexType> 66
 </element> 67
 <element name = "ConditionRef"> 68
 <complexType> 69
 <attribute name = "id" use = "required" type = " IDREF"/> 70
 </complexType> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 130 of 214

 </element> 1
 <element name = "And" type = "string"/> 2
 <element name = "Or" type = "string"/> 3
 <element name = "Assertion"> 4
 <complexType> 5
 <simpleContent> 6
 <extension base = "string"> 7
 <attribute name = "requirementType" use = "req uired" 8
type = "tns:requirement.type"/> 9
 <attribute name = "id" use = "required" type = "ID"/> 10
 </extension> 11
 </simpleContent> 12
 </complexType> 13
 </element> 14
 <element name = "MetaData"> 15
 <complexType> 16
 <sequence> 17
 <element ref = "tns:Title"/> 18
 <element ref = "tns:Description"/> 19
 <element ref = "tns:Version"/> 20
 <element ref = "tns:Maintainer"/> 21
 <element ref = "tns:Location"/> 22
 <element ref = "tns:PublishDate"/> 23
 <element ref = "tns:Status"/> 24
 </sequence> 25
 </complexType> 26
 </element> 27
 <element name = "Title" type = "string"/> 28
 <element name = "Description" type = "string"/> 29
 <element name = "Version" type = "string"/> 30
 <element name = "SourceControlInfo" type = "string "/> 31
 <element name = "Maintainer" type = "string"/> 32
 <element name = "Location" type = "anyURI"/> 33
 <element name = "PublishDate" type = "string"/> 34
 <element name = "Status" type = "tns:pubStatus.typ e"/> 35
 <simpleType name = "pubStatus.type"> 36
 <restriction base = "string"> 37
 <enumeration value = "DRAFT"/> 38
 <enumeration value = "FINAL"/> 39
 <enumeration value = "RETIRED"/> 40
 </restriction> 41
 </simpleType> 42
 <simpleType name = "requirement.type"> 43
 <restriction base = "string"> 44
 <enumeration value = "required"/> 45
 <enumeration value = "strongly recommended"/> 46
 <enumeration value = "recommended"/> 47
 <enumeration value = "optional"/> 48
 </restriction> 49
 </simpleType> 50
 <simpleType name = "testLevel.type"> 51
 <restriction base = "string"> 52
 <enumeration value = "full"/> 53
 <enumeration value = "most"/> 54
 <enumeration value = "partial"/> 55
 <enumeration value = "none"/> 56
 </restriction> 57
 </simpleType> 58
 <simpleType name = "functional.type"> 59
 <restriction base = "string"> 60
 <enumeration value = "security"/> 61
 <enumeration value = "reliable messaging"/> 62
 <enumeration value = "packaging"/> 63
 <enumeration value = "other"/> 64
 </restriction> 65
 </simpleType> 66
 <simpleType name = "layerList"> 67
 <list itemType = "string"/> 68
 </simpleType> 69
 <element name = "Requirements"> 70
 <complexType> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 131 of 214

 <sequence> 1
 <element ref = "tns:MetaData"/> 2
 <element ref = "tns:TestRequirement" maxOccurs = "unbounded"/> 3
 </sequence> 4
 </complexType> 5
 </element> 6
 <element name = "AssertionRef"> 7
 <complexType> 8
 <attribute name = "id" use = "required" type = " IDREF"/> 9
 </complexType> 10
 </element> 11
</schema> 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 132 of 214

Appendix C (Normative) (Normative) Test Suite 1

Schema 2

 3

 4

This schema defines the syntax for scripting Test Cases to be used by the IIC Test Framework. 5

 6

 <?xml version = "1.0" encoding = "UTF-8"?> 7
<!--Generated by XML Authority. Conforms to w3c htt p://www.w3.org/2001/XMLSchema--> 8
<schema xmlns = "http://www.w3.org/2001/XMLSchema" 9
 targetNamespace = "http://www.oasis-open.org/tc/e bxml-iic/tests" 10
 xmlns:ebTest = "http://www.oasis-open.org/tc/ebxm l-iic/tests" 11
 12
 version = "1.0" 13
 elementFormDefault = "unqualified" 14
 attributeFormDefault = "unqualified"> 15
 <!-- edited with XMLSPY v2004 rel. 3 U (http://www .xmlspy.com) by Michael Kass (NIST) 16
--> 17
 18
 19
 <!-- edited with XMLSPY v2004 rel. 4 U (http://www .xmlspy.com) by Mike Kass 20
(Personal) --> 21
 22
 23
 <!--<import namespace="http://www.oasis-open.org/t c/ebxml-iic/tests/xmldsig" 24
schemaLocation="xmldsig.xsd"/> --> 25
 26
 27
 <!-- <import namespace = "http://www.oasis-open.or g/tc/ebxml-iic/tests/xmldsig" 28
schemaLocation = "xmldsig.xsd"/> --> 29
 30
 31
 <!-- <import namespace = "http://www.oasis-open.or g/tc/ebxml-iic/tests/mime" 32
schemaLocation = "mime.xsd"/> --> 33
 34
 35
 <!-- edited with XML Spy v4.3 U (http://www.xmlspy .com) by Michael Kass (NIST) --> 36
 37
 38
 <!-- edited with XML Spy v4.3 U (http://www.xmlspy .com) by Michael Kass (NIST) --> 39
 40
 41
 <!-- edited with XML Spy v4.3 U (http://www.xmlspy .com) by Michael Kass (NIST) --> 42
 43
 44
 <!-- 45
Copyright (C) The Organization for the Advancement of Structured Information Standards 46
[OASIS] 47
January 2002. All Rights Reserved. 48
This document and translations of it may be copied and furnished to others, and 49
derivative works that comment on or otherwise expla in it or assist in its implementation 50
may be prepared, copied, published and distributed, in whole or in part, without 51
restriction of any kind, provided that the above co pyright notice and this paragraph are 52
included on all such copies and derivative works. H owever, this document itself may not 53
be modified in any way, such as by removing the cop yright notice or references to OASIS, 54
except as needed for the purpose of developing OASI S specifications, in which case the 55
procedures for copyrights defined in the OASIS Inte llectual Property Rights document 56
MUST be followed, or as required to translate it in to languages other than English. 57
The limited permissions granted above are perpetual and will not be revoked by OASIS or 58
its successors or assigns. 59
--> 60
 61
 <element name = "TestSuite"> 62

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 133 of 214

 <complexType> 1
 <sequence> 2
 <element ref = "ebTest:MetaData"/> 3
 <element ref = "ebTest:ConfigurationGroup" maxO ccurs = 4
"unbounded"/> 5
 <element ref = "ebTest:ThreadGroup" minOccurs = "0"/> 6
 <element ref = "ebTest:TestServiceConfigurator" minOccurs = 7
"0"/> 8
 <element ref = "ebTest:Message" minOccurs = "0" maxOccurs = 9
"unbounded"/> 10
 <element ref = "ebTest:TestCase" maxOccurs = "u nbounded"/> 11
 </sequence> 12
 <attribute name = "configurationGroupRef" use = "required" type = 13
"IDREF"/> 14
 </complexType> 15
 </element> 16
 <element name = "MetaData"> 17
 <complexType> 18
 <sequence> 19
 <element ref = "ebTest:Title"/> 20
 <element ref = "ebTest:Description"/> 21
 <element ref = "ebTest:Version"/> 22
 <element ref = "ebTest:Maintainer"/> 23
 <element ref = "ebTest:Location"/> 24
 <element ref = "ebTest:PublishDate"/> 25
 <element ref = "ebTest:Status"/> 26
 </sequence> 27
 </complexType> 28
 </element> 29
 <element name = "Description" type = "ebTest:non-e mpty-string"/> 30
 <element name = "Version" type = "ebTest:non-empty -string"/> 31
 <element name = "Maintainer" type = "ebTest:non-em pty-string"/> 32
 <element name = "Location" type = "anyURI"/> 33
 <element name = "PublishDate" type = "ebTest:non-e mpty-string"/> 34
 <element name = "Status" type = "ebTest:non-empty- string"/> 35
 <element name = "TestCase"> 36
 <complexType> 37
 <sequence> 38
 <element ref = "ebTest:ThreadGroup" minOccurs = "0"/> 39
 <choice maxOccurs = "unbounded"> 40
 <element ref = "ebTest:SetParameter"/> 41
 <element ref = "ebTest:SetXPathParameter"/> 42
 <element ref = "ebTest:LockParameter"/> 43
 <element ref = "ebTest:UnlockParameter"/> 44
 <element ref = "ebTest:PutMessage"/> 45
 <element ref = "ebTest:Initiator"/> 46
 <element ref = "ebTest:GetMessage"/> 47
 <element ref = "ebTest:TestAssertion"/> 48
 <element ref = "ebTest:ThreadRef"/> 49
 <element ref = "ebTest:Split"/> 50
 <element ref = "ebTest:Join"/> 51
 <element ref = "ebTest:Sleep"/> 52
 </choice> 53
 </sequence> 54
 <attribute name = "id" use = "required" type = " ID"/> 55
 <attribute name = "description" use = "required" type = "string"/> 56
 <attribute name = "author" use = "optional" type = "string"/> 57
 <attribute name = "version" use = "optional" typ e = "string"/> 58
 <attribute name = "requirementReferenceId" use = "optional" type = 59
"anyURI"/> 60
 <attribute name = "configurationGroupRef" use = "optional" type = 61
"IDREF"/> 62
 </complexType> 63
 </element> 64
 <element name = "ConfigurationGroup"> 65
 <complexType> 66
 <sequence> 67
 <element ref = "ebTest:Mode"/> 68
 <element ref = "ebTest:StepDuration"/> 69
 <element ref = "ebTest:Transport"/> 70
 <element ref = "ebTest:Envelope"/> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 134 of 214

 <element ref = "ebTest:StoreAttachments"/> 1
 <element ref = "ebTest:ValidationType"/> 2
 <element ref = "ebTest:MutatorType"/> 3
 <element ref = "ebTest:XMLDSIG" minOccurs = "0" /> 4
 <element ref = "ebTest:SetParameter" minOccurs = "0" maxOccurs 5
= "unbounded"/> 6
 <element ref = "ebTest:Namespaces"/> 7
 </sequence> 8
 <attribute name = "id" use = "required" type = " ID"/> 9
 </complexType> 10
 </element> 11
 <element name = "CPAId" type = "ebTest:non-empty-s tring"/> 12
 <element name = "Mode" type = "ebTest:mode.type"/> 13
 <element name = "SenderParty" type = "anyURI"/> 14
 <element name = "ReceiverParty" type = "anyURI"/> 15
 <element name = "Service" type = "anyURI"/> 16
 <element name = "Action" type = "ebTest:non-empty- string"/> 17
 <element name = "StepDuration" type = "integer"/> 18
 <element name = "Transport" type = "ebTest:transpo rt.type"/> 19
 <element name = "Envelope" type = "ebTest:non-empt y-string"/> 20
 <simpleType name = "mode.type"> 21
 <restriction base = "NMTOKEN"> 22
 <enumeration value = "local-service"/> 23
 <enumeration value = "remote-service"/> 24
 <enumeration value = "connection"/> 25
 </restriction> 26
 </simpleType> 27
 <simpleType name = "mimeHeader.type"> 28
 <restriction base = "NMTOKEN"> 29
 <enumeration value = "MIMEMessageContent-Type"/> 30
 <enumeration value = "MIMEMessageStart"/> 31
 <enumeration value = "Content-Type"/> 32
 <enumeration value = "start"/> 33
 <enumeration value = "charset"/> 34
 <enumeration value = "type"/> 35
 <enumeration value = "wildcard"/> 36
 </restriction> 37
 </simpleType> 38
 <simpleType name = "content.type"> 39
 <restriction base = "NMTOKEN"> 40
 <enumeration value = "XML"/> 41
 <enumeration value = "dateTime"/> 42
 <enumeration value = "URI"/> 43
 <enumeration value = "signature"/> 44
 <enumeration value = "XPointer"/> 45
 </restriction> 46
 </simpleType> 47
 <simpleType name = "method.type"> 48
 <restriction base = "NMTOKEN"> 49
 <enumeration value = "xpath"/> 50
 <enumeration value = "md5"/> 51
 </restriction> 52
 </simpleType> 53
 <simpleType name = "messageContext.type"> 54
 <restriction base = "NMTOKEN"> 55
 <enumeration value = "true"/> 56
 <enumeration value = "false"/> 57
 </restriction> 58
 </simpleType> 59
 <simpleType name = "requirement.type"> 60
 <restriction base = "NMTOKEN"> 61
 <enumeration value = "required"/> 62
 <enumeration value = "stronglyrecommended"/> 63
 <enumeration value = "recommended"/> 64
 <enumeration value = "optional"/> 65
 </restriction> 66
 </simpleType> 67
 <simpleType name = "non-empty-string"> 68
 <restriction base = "string"> 69
 <minLength value = "1"/> 70
 </restriction> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 135 of 214

 </simpleType> 1
 <simpleType name = "configAction.type"> 2
 <restriction base = "NMTOKEN"> 3
 <enumeration value = "query"/> 4
 <enumeration value = "replace"/> 5
 </restriction> 6
 </simpleType> 7
 <simpleType name = "action.type"> 8
 <restriction base = "NMTOKEN"> 9
 <enumeration value = "reset"/> 10
 <enumeration value = "modify"/> 11
 </restriction> 12
 </simpleType> 13
 <simpleType name = "configItem.type"> 14
 <restriction base = "NMTOKEN"/> 15
 </simpleType> 16
 <simpleType name = "parameter.type"> 17
 <restriction base = "NMTOKEN"> 18
 <enumeration value = "string"/> 19
 <enumeration value = "parameter"/> 20
 </restriction> 21
 </simpleType> 22
 <simpleType name = "connectivePredicate.type"> 23
 <restriction base = "NMTOKEN"> 24
 <enumeration value = "and"/> 25
 <enumeration value = "or"/> 26
 </restriction> 27
 </simpleType> 28
 <simpleType name = "thread.type"> 29
 <restriction base = "NMTOKEN"> 30
 <enumeration value = "synchronous"/> 31
 <enumeration value = "asynchronous"/> 32
 </restriction> 33
 </simpleType> 34
 <simpleType name = "matchResult.type"> 35
 <restriction base = "NMTOKEN"> 36
 <enumeration value = "pass"/> 37
 <enumeration value = "fail"/> 38
 </restriction> 39
 </simpleType> 40
 <simpleType name = "if.type"> 41
 <restriction base = "NMTOKEN"> 42
 <enumeration value = "andif"/> 43
 <enumeration value = "orif"/> 44
 </restriction> 45
 </simpleType> 46
 <simpleType name = "split.type"> 47
 <restriction base = "NMTOKEN"> 48
 <enumeration value = "andsplit"/> 49
 <enumeration value = "orsplit"/> 50
 </restriction> 51
 </simpleType> 52
 <simpleType name = "join.type"> 53
 <restriction base = "NMTOKEN"> 54
 <enumeration value = "andjoin"/> 55
 <enumeration value = "orjoin"/> 56
 </restriction> 57
 </simpleType> 58
 <simpleType name = "serviceMode.type"> 59
 <restriction base = "NMTOKEN"> 60
 <enumeration value = "loop"/> 61
 <enumeration value = "local-reporting"/> 62
 <enumeration value = "remote-reporting"/> 63
 </restriction> 64
 </simpleType> 65
 <simpleType name = "time.type"> 66
 <restriction base = "NMTOKEN"> 67
 <enumeration value = "timeToAcknowlegeReceipt"/> 68
 <enumeration value = "timeToAcknowledgeAcceptanc e"/> 69
 <enumeration value = "timeToPerform"/> 70
 <enumeration value = "other"/> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 136 of 214

 </restriction> 1
 </simpleType> 2
 <simpleType name = "operator.type"> 3
 <restriction base = "NMTOKEN"> 4
 <enumeration value = "equal"/> 5
 <enumeration value = "lessThan"/> 6
 <enumeration value = "lessThanOrEqual"/> 7
 <enumeration value = "greaterThan"/> 8
 <enumeration value = "greaterThanOrEqual"/> 9
 </restriction> 10
 </simpleType> 11
 <simpleType name = "assertionExit.type"> 12
 <restriction base = "NMTOKEN"> 13
 <enumeration value = "pass"/> 14
 <enumeration value = "fail"/> 15
 <enumeration value = "undetermined"/> 16
 </restriction> 17
 </simpleType> 18
 <simpleType name = "preconditionExit.type"> 19
 <restriction base = "NMTOKEN"> 20
 <enumeration value = "undetermined"/> 21
 </restriction> 22
 </simpleType> 23
 <simpleType name = "scope.type"> 24
 <restriction base = "NMTOKEN"> 25
 <enumeration value = "self"/> 26
 <enumeration value = "selfAndDescendents"/> 27
 <enumeration value = "parent"/> 28
 <enumeration value = "global"/> 29
 </restriction> 30
 </simpleType> 31
 <simpleType name = "transport.type"> 32
 <restriction base = "NMTOKEN"> 33
 <enumeration value = "FTP"/> 34
 <enumeration value = "SMTP"/> 35
 <enumeration value = "HTTP"/> 36
 <enumeration value = "SOAP"/> 37
 </restriction> 38
 </simpleType> 39
 <simpleType name = "envelope.type"> 40
 <restriction base = "NMTOKEN"> 41
 <enumeration value = "SOAP"/> 42
 <enumeration value = "ebXML"/> 43
 <enumeration value = "RNIF"/> 44
 </restriction> 45
 </simpleType> 46
 <simpleType name = "exception.type"> 47
 <restriction base = "NMTOKEN"> 48
 <enumeration value = "undetermined"/> 49
 </restriction> 50
 </simpleType> 51
 <simpleType name = "exitResult.type"> 52
 <restriction base = "NMTOKEN"> 53
 <enumeration value = "pass"/> 54
 <enumeration value = "fail"/> 55
 </restriction> 56
 </simpleType> 57
 <simpleType name = "validation.type"> 58
 <restriction base = "NMTOKEN"> 59
 <enumeration value = "XMLSchema"/> 60
 <enumeration value = "Schematron"/> 61
 </restriction> 62
 </simpleType> 63
 <simpleType name = "mutator.type"> 64
 <restriction base = "NMTOKEN"> 65
 <enumeration value = "XSLT"/> 66
 <enumeration value = "XUpdate"/> 67
 </restriction> 68
 </simpleType> 69
 <simpleType name = "keystore.type"> 70
 <restriction base = "NMTOKEN"> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 137 of 214

 <enumeration value = "jks"/> 1
 <enumeration value = "pkcs12"/> 2
 </restriction> 3
 </simpleType> 4
 <simpleType name = "lock.type"> 5
 <restriction base = "NMTOKEN"> 6
 <enumeration value = "readOnly"/> 7
 <enumeration value = "readWrite"/> 8
 </restriction> 9
 </simpleType> 10
 <element name = "MessageExpression"> 11
 <complexType> 12
 <sequence> 13
 <element ref = "ebTest:ErrorMessage"/> 14
 </sequence> 15
 </complexType> 16
 </element> 17
 <element name = "ErrorMessage" type = "ebTest:non- empty-string"/> 18
 <element name = "PutMessage"> 19
 <complexType> 20
 <sequence> 21
 <element ref = "ebTest:Packaging" minOccurs = " 0"/> 22
 <element ref = "ebTest:SetMessage"/> 23
 <element ref = "ebTest:SetPayload" minOccurs = "0" maxOccurs = 24
"unbounded"/> 25
 </sequence> 26
 <attribute name = "description" use = "required" type = "string"/> 27
 <attribute name = "repeatWithSameContext" use = "optional" type = 28
"integer"/> 29
 <attribute name = "repeatWithNewContext" use = " optional" type = 30
"integer"/> 31
 </complexType> 32
 </element> 33
 <element name = "GetPayload"> 34
 <complexType> 35
 <sequence> 36
 <choice> 37
 <element ref = "ebTest:Content-ID"/> 38
 <element ref = "ebTest:Content-Location"/> 39
 <element ref = "ebTest:Index"/> 40
 </choice> 41
 <element ref = "ebTest:SetXPathParameter" minOc curs = "0" 42
maxOccurs = "unbounded"/> 43
 </sequence> 44
 <attribute name = "description" use = "required" type = "string"/> 45
 </complexType> 46
 </element> 47
 <element name = "GetMessage"> 48
 <complexType> 49
 <sequence maxOccurs = "unbounded"> 50
 <element ref = "ebTest:Filter"/> 51
 </sequence> 52
 <attribute name = "description" use = "required" type = "string"/> 53
 <attribute name = "mask" use = "optional" type = "boolean"/> 54
 </complexType> 55
 </element> 56
 <element name = "Filter"> 57
 <complexType> 58
 <simpleContent> 59
 <extension base = "ebTest:non-empty-string"> 60
 <attribute name = "stepDuration" use = "option al" type 61
= "integer"/> 62
 </extension> 63
 </simpleContent> 64
 </complexType> 65
 </element> 66
 <element name = "SetMessage"> 67
 <complexType> 68
 <sequence> 69
 <element ref = "ebTest:Packaging" minOccurs = " 0"/> 70
 <element ref = "ebTest:Content"/> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 138 of 214

 <element ref = "ebTest:Mutator" minOccurs = "0" /> 1
 <element ref = "ebTest:DSignEnvelope" minOccurs = "0" 2
maxOccurs = "unbounded"/> 3
 </sequence> 4
 <attribute name = "description" use = "optional" type = "string"/> 5
 </complexType> 6
 </element> 7
 <element name = "SetPayload"> 8
 <complexType> 9
 <sequence> 10
 <element ref = "ebTest:Packaging"/> 11
 <element ref = "ebTest:Content"/> 12
 <element ref = "ebTest:Mutator" minOccurs = "0" /> 13
 <element ref = "ebTest:DSignPayload" minOccurs = "0"/> 14
 </sequence> 15
 <attribute name = "description" use = "optional" type = "string"/> 16
 </complexType> 17
 </element> 18
 <element name = "TestAssertion"> 19
 <complexType> 20
 <sequence> 21
 <choice> 22
 <element ref = "ebTest:VerifyContent"/> 23
 <element ref = "ebTest:ValidateContent"/> 24
 <element ref = "ebTest:VerifyTimeDifference"/> 25
 <element ref = "ebTest:VerifyParameter"/> 26
 </choice> 27
 <element ref = "ebTest:WhenTrue" minOccurs = "0 "/> 28
 <element ref = "ebTest:WhenFalse" minOccurs = " 0"/> 29
 </sequence> 30
 <attribute name = "description" use = "required" type = "string"/> 31
 </complexType> 32
 </element> 33
 <element name = "MimeHeader" type = "ebTest:mimeHe ader.type"/> 34
 <element name = "MimeHeaderValue" type = "ebTest:n on-empty-string"/> 35
 <element name = "Content-Location" type = "ebTest: non-empty-string"/> 36
 <element name = "Index" type = "integer"/> 37
 <element name = "FileURI" type = "anyURI"/> 38
 <element name = "PayloadRef" type = "ebTest:non-em pty-string"/> 39
 <element name = "Content-ID" type = "ebTest:non-em pty-string"/> 40
 <element name = "MessageDeclaration"> 41
 <complexType> 42
 <sequence> 43
 <any namespace = "##other" processContents = "l ax" minOccurs = 44
"0" maxOccurs = "unbounded"/> 45
 </sequence> 46
 </complexType> 47
 </element> 48
 <element name = "ValidateContent"> 49
 <complexType> 50
 <simpleContent> 51
 <extension base = "ebTest:non-empty-string"> 52
 <attribute name = "contentType" use = "require d" type = 53
"ebTest:content.type"/> 54
 <attribute name = "schemaLocation" use = "opti onal" 55
type = "anyURI"/> 56
 </extension> 57
 </simpleContent> 58
 </complexType> 59
 </element> 60
 <element name = "VerifyContent" type = "ebTest:non -empty-string"/> 61
 <element name = "Message"> 62
 <complexType> 63
 <sequence> 64
 <any namespace = "##other" processContents = "l ax" minOccurs = 65
"0" maxOccurs = "unbounded"/> 66
 </sequence> 67
 <attribute name = "id" use = "required" type = " ID"/> 68
 </complexType> 69
 </element> 70
 <element name = "SetParameter"> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 139 of 214

 <complexType> 1
 <sequence> 2
 <element ref = "ebTest:Name"/> 3
 <choice> 4
 <element ref = "ebTest:Value"/> 5
 <element ref = "ebTest:ParameterRef"/> 6
 </choice> 7
 </sequence> 8
 <attribute name = "scope" use = "optional" type = 9
"ebTest:scope.type"/> 10
 <attribute name = "lock" use = "optional" type = "ebTest:lock.type"/> 11
 </complexType> 12
 </element> 13
 <element name = "VerifyParameter"> 14
 <complexType> 15
 <sequence> 16
 <element ref = "ebTest:Name"/> 17
 <choice> 18
 <element ref = "ebTest:Value"/> 19
 <element ref = "ebTest:ParameterRef"/> 20
 </choice> 21
 </sequence> 22
 </complexType> 23
 </element> 24
 <element name = "Mutator"> 25
 <complexType> 26
 <sequence> 27
 <element ref = "ebTest:FileURI"/> 28
 </sequence> 29
 </complexType> 30
 </element> 31
 <element name = "XSL" type = "ebTest:non-empty-str ing"/> 32
 <element name = "XUpdate"> 33
 <complexType/> 34
 </element> 35
 <element name = "BooleanClause"> 36
 <complexType> 37
 <attribute name = "booleanPredicate" use = "requ ired" type = 38
"boolean"/> 39
 </complexType> 40
 </element> 41
 <element name = "Declaration"> 42
 <complexType> 43
 <sequence> 44
 <any namespace = "##other" processContents = "l ax" minOccurs = 45
"0" maxOccurs = "unbounded"/> 46
 </sequence> 47
 </complexType> 48
 </element> 49
 <element name = "Thread"> 50
 <complexType> 51
 <choice maxOccurs = "unbounded"> 52
 <element ref = "ebTest:SetParameter"/> 53
 <element ref = "ebTest:SetXPathParameter"/> 54
 <element ref = "ebTest:LockParameter"/> 55
 <element ref = "ebTest:UnlockParameter"/> 56
 <element ref = "ebTest:PutMessage"/> 57
 <element ref = "ebTest:Initiator"/> 58
 <element ref = "ebTest:GetMessage"/> 59
 <element ref = "ebTest:TestAssertion"/> 60
 <element ref = "ebTest:ThreadRef"/> 61
 <element ref = "ebTest:Split"/> 62
 <element ref = "ebTest:Join"/> 63
 <element ref = "ebTest:Sleep"/> 64
 </choice> 65
 <attribute name = "name" use = "required" type = "ID"/> 66
 <attribute name = "description" use = "optional" type = "string"/> 67
 </complexType> 68
 </element> 69
 <element name = "ThreadRef"> 70
 <complexType> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 140 of 214

 <attribute name = "nameRef" use = "required" typ e = "IDREF"/> 1
 <attribute name = "instanceId" use = "optional" type = "ID"/> 2
 <attribute name = "configurationGroupRef" use = "optional" type = 3
"IDREF"/> 4
 <attribute name = "loop" use = "optional" type = "string"/> 5
 </complexType> 6
 </element> 7
 <element name = "Pass"> 8
 <complexType/> 9
 </element> 10
 <element name = "Fail"> 11
 <complexType/> 12
 </element> 13
 <element name = "ThreadGroup"> 14
 <complexType> 15
 <sequence> 16
 <element ref = "ebTest:Thread" maxOccurs = "unb ounded"/> 17
 </sequence> 18
 </complexType> 19
 </element> 20
 <element name = "Sleep" type = "integer"/> 21
 <element name = "Split"> 22
 <complexType> 23
 <sequence maxOccurs = "unbounded"> 24
 <element ref = "ebTest:ThreadRef"/> 25
 </sequence> 26
 </complexType> 27
 </element> 28
 <element name = "Join"> 29
 <complexType> 30
 <sequence maxOccurs = "unbounded"> 31
 <element ref = "ebTest:ThreadRef"/> 32
 </sequence> 33
 <attribute name = "joinType" use = "optional" ty pe = 34
"ebTest:join.type"/> 35
 </complexType> 36
 </element> 37
 <element name = "Initiator"> 38
 <complexType> 39
 <sequence> 40
 <element ref = "ebTest:InitiateMessage"/> 41
 <element ref = "ebTest:InitiatePayload" minOccu rs = "0"/> 42
 </sequence> 43
 <attribute name = "description" use = "required" type = "string"/> 44
 </complexType> 45
 </element> 46
 <element name = "TestServiceConfigurator"> 47
 <complexType> 48
 <sequence> 49
 <element ref = "ebTest:ServiceMode"/> 50
 <element ref = "ebTest:ResponseURL"/> 51
 <element ref = "ebTest:NotificationURL"/> 52
 <element ref = "ebTest:PayloadDigests" minOccur s = "0"/> 53
 </sequence> 54
 </complexType> 55
 </element> 56
 <element name = "MessageRef" type = "IDREF"/> 57
 <element name = "ErrorURL" type = "anyURI"/> 58
 <element name = "NotificationURL" type = "anyURI"/ > 59
 <element name = "SetXPathParameter"> 60
 <complexType> 61
 <sequence> 62
 <element ref = "ebTest:Name"/> 63
 <element ref = "ebTest:Expression"/> 64
 </sequence> 65
 <attribute name = "scope" use = "optional" type = 66
"ebTest:scope.type"/> 67
 <attribute name = "lock" use = "optional" type = "ebTest:lock.type"/> 68
 </complexType> 69
 </element> 70
 <element name = "ResponseURL" type = "anyURI"/> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 141 of 214

 <element name = "StoreAttachments" type = "boolean "/> 1
 <element name = "OperationMode" type = "string"/> 2
 <element name = "PayloadDigests"> 3
 <complexType> 4
 <sequence> 5
 <element ref = "ebTest:Payload" maxOccurs = "un bounded"/> 6
 </sequence> 7
 </complexType> 8
 </element> 9
 <element name = "ServiceMode" type = "ebTest:servi ceMode.type"/> 10
 <element name = "Transaction"> 11
 <complexType> 12
 <sequence maxOccurs = "unbounded"> 13
 <choice maxOccurs = "unbounded"> 14
 <element ref = "ebTest:PutMessage"/> 15
 <element ref = "ebTest:Initiator"/> 16
 </choice> 17
 <element ref = "ebTest:GetMessage" minOccurs = "0" maxOccurs = 18
"unbounded"/> 19
 </sequence> 20
 <attribute name = "timeToPerform" use = "optiona l" type = "duration"/> 21
 </complexType> 22
 </element> 23
 <element name = "VerifyTimeDifference"> 24
 <complexType> 25
 <sequence> 26
 <element ref = "ebTest:ParamName"/> 27
 <element ref = "ebTest:ParamName"/> 28
 <element ref = "ebTest:Operator"/> 29
 <element ref = "ebTest:Difference"/> 30
 </sequence> 31
 </complexType> 32
 </element> 33
 <element name = "TimeToAcknowledgeReceipt"> 34
 <complexType> 35
 <sequence> 36
 <element ref = "ebTest:XPathExpression"/> 37
 </sequence> 38
 </complexType> 39
 </element> 40
 <element name = "TimeToAcknowledgeAcceptance"> 41
 <complexType> 42
 <sequence> 43
 <element ref = "ebTest:XPathExpression"/> 44
 </sequence> 45
 </complexType> 46
 </element> 47
 <element name = "Difference" type = "duration"/> 48
 <element name = "Operator" type = "ebTest:operator .type"/> 49
 <element name = "XPathExpression" type = "ebTest:n on-empty-string"/> 50
 <element name = "Continue"> 51
 <complexType/> 52
 </element> 53
 <element name = "ParamName" type = "ebTest:non-emp ty-string"/> 54
 <element name = "VerifyTimeToPerform"> 55
 <complexType> 56
 <sequence> 57
 <element ref = "ebTest:ThreadName" maxOccurs = "unbounded"/> 58
 </sequence> 59
 <attribute name = "maxTime" use = "required" typ e = "duration"/> 60
 </complexType> 61
 </element> 62
 <element name = "ThreadName" type = "IDREF"/> 63
 <element name = "Header"> 64
 <complexType> 65
 <sequence> 66
 <element ref = "ebTest:Name"/> 67
 <element ref = "ebTest:Value" minOccurs = "0"/> 68
 <element ref = "ebTest:Attribute" minOccurs = " 0" maxOccurs = 69
"unbounded"/> 70
 </sequence> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 142 of 214

 </complexType> 1
 </element> 2
 <element name = "Name" type = "ebTest:non-empty-st ring"/> 3
 <element name = "Value" type = "ebTest:non-empty-s tring"/> 4
 <element name = "Packaging"> 5
 <complexType> 6
 <sequence> 7
 <element ref = "ebTest:Header" minOccurs = "0" maxOccurs = 8
"unbounded"/> 9
 </sequence> 10
 </complexType> 11
 </element> 12
 <element name = "PackagingAPI" type = "string"/> 13
 <element name = "Content"> 14
 <complexType> 15
 <choice> 16
 <element ref = "ebTest:Declaration"/> 17
 <element ref = "ebTest:FileURI"/> 18
 <element ref = "ebTest:MessageRef"/> 19
 </choice> 20
 </complexType> 21
 </element> 22
 <element name = "Attribute"> 23
 <complexType> 24
 <sequence> 25
 <element ref = "ebTest:Name"/> 26
 <element ref = "ebTest:Value"/> 27
 </sequence> 28
 </complexType> 29
 </element> 30
 <element name = "ExitResult" type = "string"/> 31
 <element name = "ValidationType" type = "ebTest:va lidation.type"/> 32
 <element name = "MutatorType" type = "ebTest:mutat or.type"/> 33
 <element name = "Payload"> 34
 <complexType> 35
 <sequence> 36
 <element ref = "ebTest:Digest"/> 37
 <element ref = "ebTest:Id"/> 38
 </sequence> 39
 </complexType> 40
 </element> 41
 <element name = "Digest" type = "ebTest:non-empty- string"/> 42
 <element name = "Id" type = "ebTest:non-empty-stri ng"/> 43
 <element name = "ParameterRef" type = "ebTest:non- empty-string"/> 44
 <element name = "Expression" type = "ebTest:non-em pty-string"/> 45
 <element name = "WhenTrue"> 46
 <complexType> 47
 <choice maxOccurs = "unbounded"> 48
 <element ref = "ebTest:SetParameter"/> 49
 <element ref = "ebTest:SetXPathParameter"/> 50
 <element ref = "ebTest:PutMessage"/> 51
 <element ref = "ebTest:Initiator"/> 52
 <element ref = "ebTest:GetMessage"/> 53
 <element ref = "ebTest:TestAssertion"/> 54
 <element ref = "ebTest:Continue"/> 55
 <element ref = "ebTest:ThreadRef"/> 56
 <element ref = "ebTest:Split"/> 57
 <element ref = "ebTest:Join"/> 58
 <element ref = "ebTest:Sleep"/> 59
 <element ref = "ebTest:Exit"/> 60
 <element ref = "ebTest:Return"/> 61
 </choice> 62
 </complexType> 63
 </element> 64
 <element name = "WhenFalse"> 65
 <complexType> 66
 <choice maxOccurs = "unbounded"> 67
 <element ref = "ebTest:SetParameter"/> 68
 <element ref = "ebTest:SetXPathParameter"/> 69
 <element ref = "ebTest:PutMessage"/> 70
 <element ref = "ebTest:Initiator"/> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 143 of 214

 <element ref = "ebTest:GetMessage"/> 1
 <element ref = "ebTest:TestAssertion"/> 2
 <element ref = "ebTest:Continue"/> 3
 <element ref = "ebTest:ThreadRef"/> 4
 <element ref = "ebTest:Split"/> 5
 <element ref = "ebTest:Join"/> 6
 <element ref = "ebTest:Sleep"/> 7
 <element ref = "ebTest:Exit"/> 8
 <element ref = "ebTest:Return"/> 9
 </choice> 10
 </complexType> 11
 </element> 12
 <element name = "Exit"> 13
 <complexType> 14
 <simpleContent> 15
 <extension base = "ebTest:assertionExit.type"> 16
 <attribute name = "description" use = "require d" type = 17
"string"/> 18
 </extension> 19
 </simpleContent> 20
 </complexType> 21
 </element> 22
 <element name = "XMLDSIG"> 23
 <complexType> 24
 <sequence> 25
 <element ref = "ebTest:KeystoreFileURI"/> 26
 <element ref = "ebTest:KeystoreType"/> 27
 <element ref = "ebTest:KeystorePassword"/> 28
 <element ref = "ebTest:KeystoreAlias"/> 29
 <element ref = "ebTest:KeystoreAliasPassword" m inOccurs = 30
"0"/> 31
 </sequence> 32
 </complexType> 33
 </element> 34
 <element name = "Title" type = "string"/> 35
 <element name = "DSignEnvelope"> 36
 <complexType> 37
 <sequence> 38
 <element ref = "ebTest:CanonocalizationMethodAl gorithm" 39
minOccurs = "0"/> 40
 <element ref = "ebTest:DigestMethodAlgorithm" m inOccurs = 41
"0"/> 42
 <element ref = "ebTest:SignatureMethodAlgorighm " minOccurs = 43
"0"/> 44
 <element ref = "ebTest:TransformAlgorithm" minO ccurs = "0"/> 45
 <element ref = "ebTest:Transform" minOccurs = " 0"/> 46
 <element ref = "ebTest:ReferenceURI" minOccurs = "0"/> 47
 </sequence> 48
 </complexType> 49
 </element> 50
 <element name = "DSignPayload"> 51
 <complexType> 52
 <sequence> 53
 <element ref = "ebTest:CanonocalizationMethodAl gorithm" 54
minOccurs = "0"/> 55
 <element ref = "ebTest:DigestMethodAlgorithm" m inOccurs = 56
"0"/> 57
 <element ref = "ebTest:SignatureMethodAlgorighm " minOccurs = 58
"0"/> 59
 <element ref = "ebTest:TransformAlgorithm" minO ccurs = "0"/> 60
 <element ref = "ebTest:Transform" minOccurs = " 0"/> 61
 <element ref = "ebTest:ReferenceURI" minOccurs = "0"/> 62
 </sequence> 63
 </complexType> 64
 </element> 65
 <element name = "Abort"> 66
 <complexType/> 67
 </element> 68
 <element name = "Return"> 69
 <complexType/> 70
 </element> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 144 of 214

 <element name = "KeystoreFileURI" type = "anyURI"/ > 1
 <element name = "KeystoreType" type = "ebTest:keys tore.type"/> 2
 <element name = "KeystorePassword" type = "string" /> 3
 <element name = "KeystoreAlias" type = "string"/> 4
 <element name = "KeystoreAliasPassword" type = "st ring"/> 5
 <element name = "CanonocalizationMethodAlgorithm" type = "anyURI"/> 6
 <element name = "DigestMethod" type = "string"/> 7
 <element name = "SignatureMethodAlgorighm" type = "anyURI"/> 8
 <element name = "ReferenceURI" type = "anyURI"/> 9
 <element name = "TransformAlgorithm" type = "anyUR I"/> 10
 <element name = "Transform" type = "string"/> 11
 <element name = "DigestMethodAlgorithm" type = "an yURI"/> 12
 <element name = "SetMessageType" type = "string"/> 13
 <element name = "InitiateMessage"> 14
 <complexType> 15
 <sequence> 16
 <element ref = "ebTest:Content"/> 17
 <element ref = "ebTest:Mutator" minOccurs = "0" /> 18
 </sequence> 19
 </complexType> 20
 </element> 21
 <element name = "InitiatePayload"> 22
 <complexType> 23
 <sequence> 24
 <element ref = "ebTest:Packaging" minOccurs = " 0"/> 25
 <element ref = "ebTest:Content"/> 26
 <element ref = "ebTest:Mutator" minOccurs = "0" /> 27
 </sequence> 28
 </complexType> 29
 </element> 30
 <element name = "LockParameter"> 31
 <complexType> 32
 <sequence> 33
 <element ref = "ebTest:Name"/> 34
 </sequence> 35
 <attribute name = "lock" use = "required" type = "ebTest:lock.type"/> 36
 </complexType> 37
 </element> 38
 <element name = "UnlockParameter"> 39
 <complexType> 40
 <sequence> 41
 <element ref = "ebTest:Name"/> 42
 </sequence> 43
 </complexType> 44
 </element> 45
 <element name = "Namespaces"> 46
 <complexType> 47
 <sequence> 48
 <element ref = "ebTest:SetNamespace" maxOccurs = "unbounded"/> 49
 </sequence> 50
 </complexType> 51
 </element> 52
 <element name = "SetNamespace"> 53
 <complexType> 54
 <sequence> 55
 <element ref = "ebTest:Name"/> 56
 <element ref = "ebTest:Value"/> 57
 </sequence> 58
 </complexType> 59
 </element> 60
</schema> 61

 62

 63

 64

 65

 66

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 145 of 214

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 146 of 214

Appendix D (Normative) ebXML Message Declaration 1

Schema 2

 3

 4

The OASIS ebXML Implementation and Interoperability Committee has developed a version of the 5
ebXML message packaging and message declaration schemas that conform to the W3C XML Schema 6
Recommendation specification [XMLSchema]. It is HIGHLY RECOMMENDED that test writers use this 7
format to describe message envelope construction.. Doing so minimizes duplication of effort and 8
promotes a common declarative syntax for describing ebXML message envelope construction. 9
However, because an XSL or XUpdate Mutator can parse and generate an ebXML message envelope 10
from any syntax defined in a Declaration, this is not Mandatory. 11

 12

The purpose of this message Declaration schema is to provide a Test Driver, with the necessary 13
declarative information to construct an ebXML message (when in “connection” mode) or to construct a 14
modified ebXML message declaration (when in “service” mode) for conformance or interoperability testing 15
respectively. 16

When in connection mode, the Test Driver accomplishes this by transforming (or “mutating”) a basic 17
message declaration into an actual ebXML message or a modified declaration using XSLT or XUpdate to 18
perform the transformation. The resulting message can then be sent by the Test Driver. 19

 20

If the Test Driver is in “service mode”, the resulting ebXML message declaration is passed to the Test 21
Service via its “initiator” method. The Test Service must interpret the message declaration produced by 22
the Test Driver and (using its own MSH API) construct the equivalent message, adding its own unique 23
message Timestamp, ConversationId and message TimeToLive values to the resulting message. 24

Below is an illustration of the schema used to define the syntax necessary to instruct a Test Driver to 25
build an ebXML message (or modify the declaration to include “run-time” messaging content). The 26
semantic meaning of this schema is explained below: 27

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 147 of 214

 1
 2

 3

Figure 51-Graphical representation of ebXML Message Declaration content within a PutMessage 4
instruction 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

Message Envelope Packaging: 19

 20

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 148 of 214

Message envelope packaging is done by the Test Driver, normally in a transparent manner. However, if 1
a test writer wishes to manipulate the packaging of a message, they may do so by declaring those 2
packaging changes using one of the IIC schemas in this document that represent a generic, declarative 3
format for modifying a message package. In this particular case, the schema illustrated and defined 4
MUST be used to define MIME packaging changes to the message. A Test Driver MUST be able to 5
interpret the packaging declaration into the appropriate API calls necessary to modify package content. 6

NOTE: Message packaging is NOT performed by the Test Service, since packaging features are not 7
exposed at the application level. Therefore packaging declarations MUST NOT appear in Test Cases 8
where the Test Driver is in “service” mode. If a packaging declaration is present when a Test Driver is in 9
“service” mode, an exception MUST be generated by the Test Driver. 10

 11

 12

Figure 52- Graphical representation of the Packagin g element content for ebXML messages 13

 14

Name
Description Default Value Required/

Optional

Exception

Condition

Packaging
Container for declaration to be
interpreted by Test Driver into
message packaging API calls

 Optional

mime:Header
Instruction to Test Driver to create a
new MIME header, or if it already
exists, modify the existing one

 Required

Name MIME header name Required

Value
Mime header value. If not present,
this indicates header by this Name is
to be modified, not replaced.

 Required

Attribute
Instruction to Test Driver to create a
new attribute for this MIME header,
or if it already exists, modify the
existing one

 Optional

Name
Header attribute name Required

Value
Header attribute value Required

Table 36 – List of content for the Packaging eleme nt 15

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 149 of 214

 1

 2

The semantic meaning of the message envelop declaration is identical to both the Test Driver and the 3
Test Service. Both MUST interpret its content and generate a valid ebXML message. In the case of the 4
Test Driver, this is accomplished using a Mutator XSL or XUpdate document to generate the final 5
message envelope. In the case of the Test Service, the declaration is parsed, and the appropriate 6
Messaging Service API calls are made to construct the message. 7

 8

Below is a sample ebXML Declaration. When the Test Driver is in “connection” mode, it mutates the 9
Declaration (using an XSL stylesheet), inserting element and attribute content wherever it knows default 10
content should be, and declaring, or overriding default values where they are explicitly defined in the 11
Declaration. The result is a valid ebXML message to be sent to a candidate MSH. 12

 13

When the Test Driver is in “service” mode, the Test Driver mutates the declaration into a “modified” 14
declaration (not an actual message). The modified declaration contains additional information 15
(FromParty/Id, Service, Action) to be passed to the Test Service for interpretation into its own MS API 16
calls for message construction.. Certain run-time message content (such as message Timestamp and 17
message ConversationId) MUST be automatically generated by the Test Service “initiator” method. 18
However, these message content parameter values MAY be overridden if their values are explicitly 19
defined in the message Declaration. 20

 21

Below is a minimal message Declaration that can be transformed by the IIC Mutator stylesheet into a 22
valid ebXML message envelope for conformance testing, or a modified message declaration for 23
interoperability testing: 24

 25

 26

<ebTest:PutMessage xmlns:ebTest= "http://www.oasis-open.org/tc/ebxml-i ic/tests > 27
<ebTest:Declaration " > 28
 < soap:Envelope xmlns:soap= "http://www.oasis-open.or g/tc/ebxml-iic/tests/soap" > 29
 < soap:Header > 30
 < eb:MessageHeader xmlns:eb= "http://www.oasis-open.o rg/tc/ebxml-iic/tests/eb"/ > 31
 </ soap:Header > 32
 <soap:Body /> 33
 </ soap:Envelope > 34
</ ebTest:Declaration > 35
<ebTest:Mutator>ebXML.xsl</ebTest:Mutator> 36
</ebTest:PutMessage> 37

 38

The resulting “mutated” message can be represented by the example message below. The Test Driver, 39
after constructing a default MIME multipart package, would parse the simple Declaration above, and 40
mutate it through an XSL stylesheet. It would then generate the following MIME message with enclosed 41
SOAP/ebXML content. 42

 43

 44

 45

Content-Type: multipart/related ; type=" text/xml "; boundary="boundaryText"; 46
start=messagepackage@oasis.org 47

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 150 of 214

 1
--boundaryText 2
 3
Content-ID: <messagepackage@oasis.org> 4
Content-Type: text/xml ; charset=" UTF-8 " 5
 6
<soap:Envelope xmlns:xlink="http://www.w3.org/1999/ xlink" 7
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-insta nce" 8
 xmlns:SOAP="http://schemas.xmlsoap.org/soap/envel ope/" 9
 xmlns:eb="http://www.oasis-open.org/committees/eb xml-msg/schema/msg-header-10
2_0.xsd" xsi:schemaLocation="http://schemas.xmlsoa p.org/soap/envelope/ 11
 12
http://www.oasis-open.org/committees/ebxml-msg/sche ma/envelope.xsd 13
 14
http://www.oasis-open.org/committees/ebxml-msg/sche ma/msg-header-2_0.xsd 15
 16
http://www.oasis-open.org/committees/ebxml-msg/sche ma/msg-header-2_0.xsd "> 17
<soap:Header> 18
 <eb:MessageHeader soap:mustUnderstand=" 1" eb:version=" 2.0 "> 19
 <eb:From> 20
 <eb:PartyId >urn:oasis:iic:testdriver </eb:PartyId> 21
 </eb:From> 22
 <eb:To> 23
 <eb:PartyId> urn:oasis:iic:testservice </eb:PartyId> 24
 </eb:To> 25
 <eb:CPAId> mshc_basic </eb:CPAId> 26
 <eb:ConversationId> 987654321 </eb:ConversationId> 27
 <eb:Service> urn:ebXML:iic:test </eb:Service> 28
 <eb:Action> Dummy</eb:Action> 29
 <eb:MessageData> 30
 <eb:MessageId> 0123456789 </eb:MessageId> 31
 <eb:Timestamp> 2000-07-25T12:19:05 </eb:Timestamp> MessageData> 32
 </eb:MessageHeader> 33
</soap:Header> 34
</soap:Envelope> 35
 36

 37

 38

 39

 40

 41

Likewise, if the Test Driver is in “service mode”, the message envelope Declaration content would be 42
mutated into a “nearly complete” ebXML message declaration (not message) to be passed to the Test 43
Service “initiator” action. The Test Service would then make the appropriate API calls based upon this 44
declaration, and provide a valid MessageId and Timestamp (since none is has been explicitly provided in 45
the original Declaration content). Below is an example of a mutated ebXML message declaration to be 46
passed on to the Test Service “initiator” method. 47

 48

 49
<soap:Envelope xmlns:soap= "http://www.oasis-open.org/tc/ebxml-iic /tests/soap" > 50
<soap:Header> 51
 <eb:MessageHeader xmlns:eb= "http://www.oasis-open.org/tc/ebxml-iic/t ests/eb" 52
soap:mustUnderstand=" 1" eb:version=" 2.0 "> 53
 <eb:From> 54
 <eb:PartyId >urn:oasis:iic:testdriver </eb:PartyId> 55
 </eb:From> 56
 <eb:To> 57
 <eb:PartyId> urn:oasis:iic:testservice </eb:PartyId> 58
 </eb:To> 59
 <eb:CPAId> mshc_basic </eb:CPAId> 60

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 151 of 214

 <eb:Service> urn:ebXML:iic:test </eb:Service> 1
 <eb:Action> Dummy</eb:Action> 2
 </eb:MessageHeader> 3
</soap:Header> 4
</soap:Envelope> 5
 6

 7

 8

As illustrated above, dynamic ebXML message content values (highlighted above) are supplied by the 9
Mutator stylesheet 10

 11

 a Mutator XSL stylesheet is also provided in this appendix that “fills in” the remaining required content to 12
create a valid ebXML message. 13

The following sections describe the semantic rules for how a the Test Driver (for conformance testing) or 14
the Test Service (for interoperability testing) MUST interpret the ebXML Declaration content in order 15
generate a valid ebXML message. 16

 17

 18

Interpreting the SOAP portion of the ebXML Declaration 19

 20

The XML syntax interpreted by the Test Driver to construct the SOAP message content (or a modified 21
declaration if in “service” ‘mode) consists of the declaration of a SOAP Envelope element, which in turn is 22
a container for the SOAP Header, Body and non-SOAP XML content. Note: SOAP declarations MAY be 23
ignored by the Test Service initiator method, since SOAP message content is unlikely to be exposed at 24
the application of the Test Service. Construction of the SOAP Header and Body content is simple for the 25
Test Driver, requiring only the creation of the two container elements with their namespace properly 26
declared, and valid according to the [SOAP]. 27

 28

 29

Figure 53 - Graphic representation of expanded view of the soap:Envelope element declaration 30

 31

 32

 33

 34

Definition of Content 35

 36

Name
Declaration Default Value Schema Required or

Optional

soap:Envelope
Generate container element with its
proper namespace for SOAP Header
and Body elements and their content

 Required

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 152 of 214

soap:Header Generate SOAP Header extension
element

 Required

soap:Body
Generate the default Body element Required

#wildCard
Generate “inline” wildcard XML content
inside SOAP Envelope

 Optional

Table 37 - Graphic 1

 2

 3

 4

An Example of Minimal SOAP Declaration Content 5

 6

The following XML represents all the information necessary to permit a Test Driver to construct a minimal 7
SOAP message. The Test Service “initiator” method MUST ignore SOAP content declarations, since it is 8
unlikely that SOAP manipulation will be possible at the application level of the Test Service. 9

 10

<soap:Envelope > 11
 <soap:Header /> 12
 <soap:Body /> 13
 </ soap:Envelope > 14

 15

Interpreting the SOAP Header Extension Element Declaration 16

 17

The declarative syntax interpreted by the Test Driver to construct the ebXML Header extension element 18
content consists of the declaration of ebXML element and attribute content. The only extension element 19
that is required in the Declaration is the eb:MessageHeader element, which directs the Test Driver 20
Mutator to construct an actual ebXML MessageHeader element, along with its proper namespace 21
declaration, as defined in [EBMS]. 22

 23

 24

 25

 26

 27

 28

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 153 of 214

Figure 54 - Graphic representation of expanded view of the soap:Header element declaration 1

 2

 3

 4

 5

Definition of Content 6

 7

 8

Name
Description Default

Value
Schema Required
or Optional

Header
SOAP Header declaration and
container for ebXML ebXML Header
Extension Element declarations

 Required

eb:MessageHeader
Create an ebXML MessageHeader
element with namespace declaration

 Required

eb:ErrorList
Create an ebXML ErrorList element Optional

eb:SyncReply
Create an ebXML SyncReply element Optional

eb:MessageOrder
Create an ebXML MessageOrder
element

 Optional

eb:AckRequested
Create an ebXML AckRequested
element

 Optional

eb:Acknowledgment
Create an ebXML Acknowledgment
element

 Optional

 9

Table 38 – Declaration of ebxML message content of the SOAP Header 10

 11

 12

Interpreting the ebXML MessageHeader Element Declaration 13

 14

The XML syntax interpreted by the Test Driver to construct the ebXML MessageHeader extension content 15
consists of the declaration of a MessageHeader element. This is the ”minimum” declaration that a Test 16
Driver needs to generate an ebXML Message Header. All other required message content, as defined in 17
the schema in the ebXML MS v2.0 Specification, is provided by the Test Driver “Mutator” operation (to 18

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 154 of 214

generate mandatory message content) or by explicit declaration of content by the test writer in the 1
Declaration itself. The figure below illustrates the schema for an ebXML Message Header declaration to 2
be interpreted by the Test Driver. 3

 4

Likewise, when the Test Driver is in “service” mode, the Test Driver will construct a “complete” 5
MessageHeader declaration (containing required From/PartyId, To/PartyId and other values). However, 6
certain message values (Timestamp, MessageId, TimeToLive and ConversationId) are “optional” parts of 7
the declaration. Their values MUST NOT be generated by the Mutator when in “service” mode. It is 8
assumed that the Test Service “initiator” method will (by default) provide these values when it interprets 9
the declaration into its own MS API calls. 10

 11

 12

 13

 14
Figure 45 – Graphic representation of expanded view of the ebXML MessageHeader element declaration 15

 16

Definition of Content 17

 18

Name
Description Default Value

Mutator
Schema Required
or Optional

Test Driver
Exception
Condition

eb:MessageHea
der Generate

MessageHeader
element and all of its
default element/attribute
content

 Required

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 155 of 214

id Generate attribute with
declared value

 Optional

version
Modify default attribute
value

2.0 Optional

soap:mustUnder
stand

Modify default attribute
value

true Optional

From
Modify default From
message element
generated by Test Driver

Generated at run
time

Optional

PartyId
 Replace default
element value with new
value

Generated at run
time, using Test
Driver config
value,

Required

type
Generate a type
attribute with value

 Optional

Role
Generates a Role
element with its value

 Optional

To
Modify default To
message element
generated by Test Driver

Generated by
Test Driver at run
time

Optional

PartyId
Replace default element
value with new value

Generated at run
time, using Test
Driver config
value

Required

type
Generate type attribute
with value

 Optional

Role
Generates a Role
element with its value

 Optional

CPAId
Generate element with
its value

 Generated at run
time, using

Test Driver config
value

Optional

ConversationId
Modify default value
provided by Test Driver

Generated by
Mutator in
“connection
mode” only

Optional

Service
Modify default value
generated by Test Driver

Generated
Mutator using
config value

Optional

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 156 of 214

Action
 Replace default value
with specified Action
name

Generated by
Mutator using
config value

Optional

MessageData
Modify default container
generated by Test Driver

Generated run
time

Optional

MessageId
Modify default value
generated by Test Driver

Generated by
Mutator in
“connection
mode” only

Optional

Timestamp
Modify default value
generated by Test Driver

Generated or
Mutator in
“connection
mode” only

Optional

RefToMessageId
Generate element and
its value

 Optional

TimeToLive
Generate element and
its value

Generated by
Mutator in
“connection
mode” only

Optional

DuplicateEliminat
ion

Generate element Optional

Description
Generate element with
value

 Optional

#wildcard
Generate content inline Optional

Table 39 – List of content for the ebXML MessageHea der element declaration 1

 2

 3

An Example of a Minimal ebXML MessageHeader Content Declaration 4

 5

The following XML instance represents all the information necessary to permit a Test Driver (in 6
“connection” mode) to construct an ebXML MessageHeader element with all necessary content to 7
validate against the ebXML MS V2.0 schema. Alternatively, if the Test Driver is in “service mode”, the 8
resulting ebXML message envelope is passed to the Test Service “initiator” method so that it may build 9
the “actual” message, with the additional requirement that the Test Service provide its own generated 10
ConversationId, MessageId, TimeToLive and Timestamp to the message. 11

<eb:MessageHeader xmlns:eb= "http://www.oasis-open. org/tc/ebxml-iic/tests/eb" /> 12
 13

Interpreting the ebXML ErrorList Element Declaration 14

 15

The XML syntax interpreted by the Test Driver to construct the ebXML ErrorList extension content 16
consists of the declaration of an ErrorList element, and a required declaration of one or more Error 17

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 157 of 214

elements within it. All required content, as defined in the schema in the ebXML MS V2.0 Specification, is 1
provided through either default parameters defined in the Mutator XSL stylesheet or by explicit 2
declaration by the test writer. 3

 4

 5

 6

Figure 55 - Graphic representation of expanded view of the ebXML ErrorList element declaration 7

 8

 9

Definition of Content 10

 11

Name
Description Default Value Schema

Required or
Optional

Test Driver
Exception
Condition

eb:ErrorList
Generate container
element

 Optional

id Generate attribute and
its value

 Optional

version
Modify default value 2.0 Optional

soap:mustUnder
stand

Modify default value true Optional

highestSeverity
Generate required
attribute and value

 Required

Error
Generate new Error
container

 Required

id
Generate attribute with
declared value

 Optional

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 158 of 214

codeContext
Generate element with
declared value

 Optional

errorCode
Generate required
attribute and value

 Required

severity
Generate required
attribute and value

 Required

location
Generate attribute with
declared value

 Optional

Description
Generate element with
declared value

 Optional

#wildCard
Generate content “inline”
into message

 Optional

Table 40 – List of content for ErrorList declaratio n 1

 2

 3

 4

An Example of a Minimal ebXML ErrorList Content Declaration 5

 6

The following XML represents all the information necessary to permit a Test Driver (using the IIC ebXML 7
Mutator stylesheet) to construct an ebXML ErrorList element with all necessary content to validate 8
against the ebXML MS v2.0 schema. All required content not visible in the example would be generated 9
by the Mutator. Alternately, if the Test Driver is in “service mode”, the resulting ErrorList message 10
declaration could be passed to the Test Service “initiator” method to instruct the Test Service to build an 11
ErrorList with the same information. 12

 13

<eb:ErrorList eb:highestSeverity=Error"> 14
 <eb:Error eb:errorCode=”Inconsistent” eb:severity= ”Error”/> 15
</eb:ErrorList> 16

 17

 18

Interpreting the ebXML SyncReply Element Declaration 19

 20

The XML syntax interpreted by the Test Driver to construct the ebXML SyncReply extension content 21
consists of the declaration of a SyncReply element. All required content, as defined in the schema in 22
[EBMS], is provided through either default parameters provided by the Test Driver Mutator or through 23
explicit declaration by the test writer. 24

 25

 26

 27

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 159 of 214

 1

Figure 56 - Graphic representation of expanded view of the ebXML SyncReply element declaration 2

 3
 4
 5
 6
 7

Definition of Content 8

 9

Name
Description Default Value Schema

Required or
Optional

Test Driver
Exception
Condition

eb:SyncReply
Generate container
element and all default
content

Optional

id Generate attribute and
its value

 Optional

version
Modify default attribute
value

2.0 Optional

soap:mustUnder
stand

Modify default attribute
value

true Optional

soap:actor
Modify default attribute
value

http://schemas.xmls
oap.org/soap/actor/
next

Optional

#wildCard
Generate content “inline” Optional

 10

Table 41 - Content list for the SyncReply element i n a message declaration 11

 12

 13

 14

 15

An Example of a Minimal ebXML SyncReply Content Declaration 16

 17

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML 18
AckRequested element with all necessary content to validate against the [EBMS] schema. Alternately, 19
the same declaration will be “mutated” into a modified declaration that will be passed to the Test Service if 20
the Test Driver is in “service” mode. 21

 22

<eb:SyncReply/> 23

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 160 of 214

Interpreting the ebXML AckRequested Element Declaration 1

 2

The XML syntax interpreted by the Test Driver to construct the ebXML AckRequested extension content 3
consists of the declaration of an AckRequested element. All required content as defined in the [EBMS] 4
schema, is provided by the Test Driver or by explicit declaration. 5

 6

 7

 8

Figure 57 - Graphic representation of expanded view of the ebXML AckRequested element 9
declaration 10

 11

 12

Definition of Content 13

 14

Name
Declaration Default Value

From Mutator
Schema
Required or
Optional

Test Driver
Exception
Condition

eb:AckRequested
Generate container
element and all
default content

Optional

id Generate attribute
and its value

 Optional

version
Modify default value 2.0 Optional

soap:mustUndersta
nd

Modify default value true Optional

soap:actor
Modify default
attribute value with
new value

urn:oasis:names:t
c:ebxml-
msg:actor:toParty
MSH

Optional

signed
Modify default
attribute value

false Optional

#wildCard
Generate content
“inline”

 Optional

Table 42 - Content of the AckRequested element in a message declaration 15

 16

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 161 of 214

 1

An Example of a Minimal ebXML AckRequested Content Declaration 2

 3

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML 4
AckRequested element with all necessary content to validate against the [EBMS] schema. Alternately, 5
the same declaration will be “mutated” into a modified declaration that will be passed to the Test Service if 6
the Test Driver is in “service” mode. 7

 8

<eb:AckRequested/> 9

 10

Interpreting the ebXML Acknowledgment Element Declaration 11

 12

The XML syntax interpreted by the Test Driver to construct the ebXML Acknowledgment extension 13
content consists of the declaration of an Acknowledgment element. All required content, as defined in the 14
[EBMS] schema, is provided by the Test Driver Mutator or through explicit declaration. 15

 16

 17

 18

Figure 58 - Graphic representation of expanded view of the ebXML Acknowledgment element 19
declaration 20

 21

 22

Definition of Content 23

 24

Name
Description Default Value

From Mutator
Schema
Required or
Optional

Test Driver
Exception
Condition

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 162 of 214

eb:Acknowledgm
ent Generate container

element and all default
content

 Optional

id Generate attribute and
its value

 Optional

version
Modify default attribute
value

2.0 Optional

soap:mustUnder
stand

Modify default attribute
value

true Optional

soap:actor
Modify default attribute
value

urn:oasis:names:t
c:ebxml-
msg:actor:toParty
MSH

Optional

Timestamp
Modify default element
value

Generated by
Mutator at run
time, or by the
Test Service
“initiator” if in
“service” ‘mode

Optional

RefToMessageId
Modify default element
value

 Optional

From
Modify default container Generated by

Mutator at run
time using config
value

Optional

PartyId
Modify default value urn:ebxml:iic:testd

river
Required

type
Generate type attribute
with value

 Optional

Role
Generates a Role
element with its value

 Optional

ds:Reference
Generate container
element and all default
content

 Optional

Id
Generate attribute and
its value

 Optional

URI
Modify default attribute
value

“” Required

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 163 of 214

type
Generate attribute and
its value

 Optional

Transforms
Generate container
element

 Optional

Transform
Generate element with
its value

 Optional

Algorithm
Modify default attribute
value

http://www.w3.org
/TR/2001/REC-
xml-c14n-
20010315

Required

#wildCard
Generate content “inline” Optional

XPath
Generate element with
its value

 Optional

DigestMethod
Generate element with
its value

 Required

Algorithm
Modify default attribute
value

Generated by
Mutator using
config value

Required

#wildCard
Generate content “inline” Optional

DigestValue
Generate element with
its value

Computed by
Provided by
Mutator at run
time

Required

#wildCard
Generate content “inline” Optional

 1

Table 43 - Content of the Acknowledgment element in a message declaration 2

 3

 4

An Example of a Minimal “unsigned” ebXML Acknowledgment Content Declaration 5

 6

The following XML represents the minimum information necessary to permit a Test Driver to construct an 7
ebXML Acknowledgment element. Alternately, the same declaration will be “mutated” into a modified 8
declaration that will be passed to the Test Service if the Test Driver is in “service” mode. 9

 10

<eb:Acknowledgment/> 11

 12

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 164 of 214

 1

Interpreting the ebXML MessageOrder Element Declaration 2

 3

The XML syntax interpreted by the Test Driver Mutator to construct the ebXML MessageOrder extension 4
content consists of the declaration of a MessageOrder element. All required content, as defined in the 5
[EBMS] schema, is provided by the Test Driver Mutator or through explicit declaration. 6

 7

 8
 9

Figure 59 – Content list for the ebXML MessageOrder element declaration 10

 11

 12

Definition of Content 13

 14

Name
Description Default Value

From Mutator
Schema Required
or Optional

Test Driver
Exception
Condition

eb:MessageOrder
Generate container
element and all default
content

 Optional

id Generate attribute and
its value

 Optional

version
Modify default attribute
value

2.0 Optional

soap:mustUndersta
nd

Modify default attribute
value

true Optional

SequenceNumber
Generate element with
declared value

 Required

status
Generate attribute with
declared value

 Optional

#wildCard
Generate content “inline” Optional

Table 44 – List of content for the MessageOrder ele ment in a message declaration 15

 16

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 165 of 214

An Example of a Minimal ebXML MessageOrder Content Declaration 1

 2

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML 3
MessageOrder element. Alternately, the same declaration will be “mutated” into a modified declaration 4
that will be passed to the Test Service if the Test Driver is in “service” mode. 5

 6

<eb:MessageOrder> 7
<eb:SequenceNumber>1</eb:SequenceNumber> 8
</eb:MessageOrder> 9

 10

Interpreting the SOAP Body Extension Element Declaration 11

 12

The XML syntax used by the Test Driver to construct the ebXML Body extension message content 13
consists of the declaration of a SOAP Body element, which in turn is a container for the ebXML Manifest, 14
StatusRequest or StatusResponse elements. 15

The Test Driver Mutator does not construct any of these SOAP Body extension elements unless they are 16
explicitly declared as content in the SOAP Body Declaration. 17

 18

 19

 20
 21

Figure 60 - Graphic representation of expanded view of the soap:Body element declaration 22

 23

Interpreting the ebXML Manifest Element Declaration 24

 25

The XML syntax interpreted by the Mutator to construct the ebXML Manifest extension content consists of 26
the declaration of a Manifest element. All required content, as defined in the [EBMS] schema, is provided 27
by the Test Driver Mutator or through explicit declaration 28

 29

 30

 31
 32

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 166 of 214

Figure 61 - Graphic representation of expanded view of the ebXML Manifest element declaration 1

 2

 3

Definition of Content 4

 5

Name
Description Default Value

From Mutator
Schema
Required or
Optional

Test Driver
Exception
Condition

eb:Manifest
Generate container
element and all default
content

 Optional

id Generate attribute and
its value

 Optional

version
Modify default attribute
value

2.0 Optional

id
Modify default attribute
value

true Optional

xlink:type
Generate element with
declared value

 Optional

xlink:href
Generate attribute with
declared value

 Required

xlink:role
Generate attribute with
declared value

 Optional

contentId
Modify the Content-ID
MIME header of the
payload

 Optional

contentType
Set the Content-Type
MIME header of the
payload

 Optional

contentLocation
Set the Content-
Location MIME header
of the payload

 Optional

Schema
Generate schema
container element

 Optional

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 167 of 214

location
Generate URI attribute
and value of schema
location

 Required

version
Generate schema
version attribute and
value

 Optional

Description
Generate description
element and value

 Optional

xml:lang
Generate description
language attribute and
value

 Required

Table 45 - Content of the Manifest element in a mes sage declaration 1

 2

An Example of a Minimal ebXML Manifest Content Declaration 3

 4

The following XML represents the minimum information necessary to permit a Test Driver Mutator to 5
construct an ebXML Manifest element with all necessary content to validate against the ebXML MS v2.0 6
schema. Alternately, the same declaration will be “mutated” into a modified declaration that will be passed 7
to the Test Service if the Test Driver is in “service” mode. 8

<eb:Manifest> 9
<eb:Reference xlink:href=”cid:payload_1”/> 10
</eb:Manifest> 11

 12

 13

Interpreting the ebXML StatusRequest Element Declaration 14

 15

The XML syntax interpreted by the Test Driver to construct the ebXML StatusRequest extension content 16
consists of the declaration of a StatusRequest element. All required content, as defined in the [EBMS] 17
schema, is provided by the Test Driver Mutator or through explicit declaration 18

 19

 20

Figure 62 - Graphic representation of expanded view of the ebXML StatusRequest element 21
declaration 22

 23

 24

Definition of Content 25

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 168 of 214

 1

Name
Description Default Value Schema

Required or
Optional

Test Driver
Exception
Condition

eb:StatusRequest
Generate container
element and all
default content

 Optional

id Generate attribute
and its value

 Optional

version
Modify default value 2.0 Optional

RefToMessageId
Generate element and
its value

 Required

#wildCard
Generate content
“inline”

 Optional

Table 34 defines the content of the StatusRequest element in a message declaration 2

 3

An Example of a Minimal ebXML StatusRequest Content Declaration 4

 5

The following XML represents all the minimum information necessary to permit a Test Driver to construct 6
an ebXML StatusRequest element with all necessary content to validate against the [EBMS] schema. 7
Alternately, the same declaration will be “mutated” into a modified declaration that will be passed to the 8
Test Service if the Test Driver is in “service” mode. 9

 10

<eb:StatusRequest> 11
<eb:RefToMessageId>20001209-133003-28571@example.co m</eb:RefToMessageId> 12
</eb:StatusRequest> 13

 14

 15

Interpreting the ebXML StatusResponse Element Declaration 16

 17

The XML syntax used by the Test Driver to construct the ebXML StatusResponse extension content 18
consists of the declaration of a StatusResponse element with required and optional element/attribute 19
content. 20

 21

 22

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 169 of 214

Figure 63 - Graphic representation of expanded view of the ebXML StatusResponse element 1
declaration 2

 3

 4

Definition of Content 5

 6

Name
Description Default Value Schema

Required or
Optional

Test Driver
Exception
Condition

eb:StatusRespon
se Generate container

element and all default
content

 Optional

id Generate attribute and
its value

 Optional

version
Modify default attribute
value

2.0 Optional

messageStatus
Generate attribute and
its value

 Optional

RefToMessageId
Generate element and
its value

 Required

Timestamp
Modify default value Generated by

Test Driver at run
time

Optional

#wildCard
Generate content “inline” Optional

Table 46 - Content of the StatusResponse element in a message declaration 7

 8

An Example of a Minimal ebXML StatusResponse Content Declaration 9

 10

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML 11
StatusResponse element with all necessary content to validate against the [EBMX] schema. Alternately, 12
the same declaration will be “mutated” into a modified declaration that will be passed to the Test Service if 13
the Test Driver is in “service” mode. 14

 15

 16

<eb:StatusResponse messageStatus=”Processed”/> 17

 18

 19

SOAP Portion of the ebXML Declaration Schema (Normative) 20

 21

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 170 of 214

 1
<?xml version = "1.0" encoding = "UTF-8"?> 2
<!--Generated by XML Authority. Conforms to w3c htt p://www.w3.org/2001/XMLSchema--> 3
<schema xmlns = "http://www.w3.org/2001/XMLSchema" 4
 targetNamespace = "http://www.oasis-open.org/tc/e bxml-iic/tests/soap" 5
 xmlns:tns = "http://www.oasis-open.org/tc/ebxml-i ic/tests/soap" 6
 xmlns:xs = "http://www.w3.org/2001/XMLSchema" 7
 xmlns:eb = "http://www.oasis-open.org/tc/ebxml-ii c/tests/eb"> 8
 <import namespace = "http://www.oasis-open.org/tc/ ebxml-iic/tests/eb" schemaLocation 9
= "eb.xsd"/> 10
 11
 <group name = "optionElements"> 12
 <all minOccurs = "0"> 13
 <element ref = "eb:SyncReply" minOccurs = "0"/> 14
 <element ref = "eb:MessageOrder" minOccurs = "0" /> 15
 <element ref = "eb:AckRequested" minOccurs = "0" /> 16
 <element ref = "eb:Acknowledgment" minOccurs = " 0"/> 17
 <element ref = "eb:ErrorList" minOccurs = "0"/> 18
 </all> 19
 </group> 20
 <attributeGroup name = "encodingStyle"> 21
 <attribute name = "encodingStyle" type = "tns:enc odingStyle"/> 22
 </attributeGroup> 23
 24
 <!-- Schema for the SOAP/1.1 envelope 25
 26
 This schema has been produced using W3C's SOAP Version 1.2 schema 27
 found at: 28
 29
 http://www.w3.org/2001/06/soap-envelope 30
 31
 Copyright 2001 Martin Gudgin, Developmentor. 32
 33
 Changes made are the following: 34
 - reverted namespace to http://schemas.xmlsoap .org/soap/envelope/ 35
 - reverted mustUnderstand to only allow 0 and 1 as lexical values 36
 37
 38
 Copyright 2003 OASIS 39
 40
 Changes made are the following: 41
 - SOAP Header and Body element content models constrained to include ebXML content 42
 43
 44
 Original copyright: 45
 46
 Copyright 2001 W3C (Massachusetts Institute of Technology, 47
 Institut National de Recherche en Informatique et en Automatique, 48
 Keio University). All Rights Reserved. 49
 http://www.w3.org/Consortium/Legal/ 50
 51
 This document is governed by the W3C Software License [1] as 52
 described in the FAQ [2]. 53
 54
 [1] http://www.w3.org/Consortium/Legal/copyrig ht-software-19980720 55
 [2] http://www.w3.org/Consortium/Legal/IPR-FAQ -20000620.html#DTD 56
--> 57
 58
 59
 <!-- Envelope, header and body --> 60
 61
 <element name = "Envelope" type = "tns:Envelope"/> 62
 <complexType name = "Envelope"> 63
 <sequence> 64
 <element ref = "tns:Header"/> 65
 <element ref = "tns:Body"/> 66
 <any namespace = "##other" processContents = "la x" minOccurs = "0" 67
maxOccurs = "unbounded"/> 68
 </sequence> 69
 <anyAttribute namespace = "##other" processConten ts = "lax"/> 70
 </complexType> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 171 of 214

 <element name = "Header"> 1
 <complexType> 2
 <sequence> 3
 <element ref = "eb:MessageHeader"/> 4
 <group ref = "tns:optionElements"/> 5
 </sequence> 6
 </complexType> 7
 </element> 8
 <complexType name = "Header"> 9
 <sequence> 10
 <any namespace = "##other" processContents = "la x" minOccurs = "0" 11
maxOccurs = "unbounded"/> 12
 </sequence> 13
 <anyAttribute namespace = "##other" processConten ts = "lax"/> 14
 </complexType> 15
 <element name = "Body"> 16
 <complexType> 17
 <choice minOccurs = "0"> 18
 <element ref = "eb:Manifest"/> 19
 <element ref = "eb:StatusRequest"/> 20
 <element ref = "eb:StatusResponse"/> 21
 </choice> 22
 </complexType> 23
 </element> 24
 <complexType name = "Body"> 25
 <annotation> 26
 <documentation> 27
 Prose in the spec does not specify that attribu tes are allowed on the Body 28
element 29
 </documentation> 30
 </annotation> 31
 <sequence> 32
 <any namespace = "##any" processContents = "lax" minOccurs = "0" 33
maxOccurs = "unbounded"/> 34
 </sequence> 35
 <anyAttribute namespace = "##any" processContents = "lax"/> 36
 </complexType> 37
 38
 <!-- Global Attributes. The following attributes are intended to be usable via 39
qualified attribute names on any complex type refer encing them. --> 40
 41
 <attribute name = "mustUnderstand" default = "0"> 42
 <simpleType> 43
 <restriction base = "boolean"> 44
 <pattern value = "0|1"/> 45
 </restriction> 46
 </simpleType> 47
 </attribute> 48
 <attribute name = "actor" type = "anyURI"/> 49
 <simpleType name = "encodingStyle"> 50
 <annotation> 51
 <documentation> 52
 'encodingStyle' indicates any canonicalization conventions followed in the 53
contents of the containing element. For example, t he value 54
'http://schemas.xmlsoap.org/soap/encoding/' indicat es the pattern described in SOAP 55
specification 56
 </documentation> 57
 </annotation> 58
 <list itemType = "anyURI"/> 59
 </simpleType> 60
 <complexType name = "Fault" 61
 final = "extension"> 62
 <annotation> 63
 <documentation> 64
 Fault reporting structure 65
 </documentation> 66
 </annotation> 67
 <sequence> 68
 <element name = "faultcode" type = "QName"/> 69
 <element name = "faultstring" type = "string"/> 70
 <element name = "faultactor" type = "anyURI" min Occurs = "0"/> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 172 of 214

 <element name = "detail" type = "tns:detail" min Occurs = "0"/> 1
 </sequence> 2
 </complexType> 3
 <complexType name = "detail"> 4
 <sequence> 5
 <any namespace = "##any" processContents = "lax" minOccurs = "0" 6
maxOccurs = "unbounded"/> 7
 </sequence> 8
 <anyAttribute namespace = "##any" processContents = "lax"/> 9
 </complexType> 10
</schema> 11
 12

 13

 14

Schema for ebXML portion of Message Declaration content 15

 16

?xml version = "1.0" encoding = "UTF-8"?> 17
<!--Generated by XML Authority. Conforms to w3c htt p://www.w3.org/2001/XMLSchema--> 18
<schema xmlns = "http://www.w3.org/2001/XMLSchema" 19
 targetNamespace = "http://www.oasis-open.org/tc/e bxml-iic/tests/eb" 20
 xmlns:tns = "http://www.oasis-open.org/tc/ebxml-i ic/tests/eb" 21
 xmlns:xlink = "http://www.w3.org/1999/xlink" 22
 xmlns:ds = "http://www.oasis-open.org/tc/ebxml-ii c/tests/xmldsig" 23
 xmlns:soap = "http://www.oasis-open.org/tc/ebxml- iic/tests/soap" 24
 version = "1.0" 25
 elementFormDefault = "qualified" 26
 attributeFormDefault = "qualified"> 27
 <import namespace = "http://www.w3.org/1999/xlink" schemaLocation = 28
"http://www.oasis-open.org/committees/ebxml-msg/sch ema/xlink.xsd"/> 29
 <import namespace = "http://www.oasis-open.org/tc/ ebxml-iic/tests/xmldsig" 30
schemaLocation = "xmldsig.xsd"/> 31
 <import namespace = "http://www.oasis-open.org/tc/ ebxml-iic/tests/soap" 32
schemaLocation = "soap.xsd"/> 33
 <import namespace = "http://www.w3.org/XML/1998/na mespace" schemaLocation = 34
"http://www.oasis-open.org/committees/ebxml-msg/sch ema/xml_lang.xsd"/> 35
 <attributeGroup name = "headerExtension.grp"> 36
 <attribute ref = "tns:id"/> 37
 <attribute ref = "tns:version" use = "optional"/> 38
 <attribute ref = "soap:mustUnderstand" use = "opt ional"/> 39
 </attributeGroup> 40
 <attributeGroup name = "bodyExtension.grp"> 41
 <attribute ref = "tns:id"/> 42
 <attribute ref = "tns:version" use = "optional"/> 43
 </attributeGroup> 44
 45
 <!-- 46
Copyright (C) The Organization for the Advancement of Structured Information Standards 47
[OASIS] 48
January 2002. All Rights Reserved. 49
This document and translations of it may be copied and furnished to others, and 50
derivative works that comment on or otherwise expla in it or assist in its implementation 51
may be prepared, copied, published and distributed, in whole or in part, without 52
restriction of any kind, provided that the above co pyright notice and this paragraph are 53
included on all such copies and derivative works. H owever, this document itself may not 54
be modified in any way, such as by removing the cop yright notice or references to OASIS, 55
except as needed for the purpose of developing OASI S specifications, in which case the 56
procedures for copyrights defined in the OASIS Inte llectual Property Rights document 57
MUST be followed, or as required to translate it in to languages other than English. 58
The limited permissions granted above are perpetual and will not be revoked by OASIS or 59
its successors or assigns. 60
--> 61
 62
 63
 <!-- MANIFEST, for use in soap:Body element --> 64
 65
 <element name = "Manifest"> 66
 <complexType> 67

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 173 of 214

 <sequence> 1
 <element ref = "tns:Reference" maxOccurs = "unb ounded"/> 2
 <any namespace = "##other" processContents = "l ax" minOccurs = 3
"0" maxOccurs = "unbounded"/> 4
 </sequence> 5
 <attributeGroup ref = "tns:bodyExtension.grp"/> 6
 </complexType> 7
 </element> 8
 <element name = "Reference"> 9
 <complexType> 10
 <sequence> 11
 <element ref = "tns:Schema" minOccurs = "0" max Occurs = 12
"unbounded"/> 13
 <element ref = "tns:Description" minOccurs = "0 " maxOccurs = 14
"unbounded"/> 15
 </sequence> 16
 <attribute ref = "tns:id"/> 17
 <attribute ref = "xlink:type" fixed = "simple"/> 18
 <attribute ref = "xlink:href" use = "required"/> 19
 <attribute ref = "xlink:role"/> 20
 <attribute name = "contentId" use = "optional" t ype = "string"/> 21
 <attribute name = "contentType" use = "optional" type = "string"/> 22
 <attribute name = "contentLocation" use = "optio nal" type = "anyURI"/> 23
 </complexType> 24
 </element> 25
 <element name = "Schema"> 26
 <complexType> 27
 <attribute name = "location" use = "required" ty pe = "anyURI"/> 28
 <attribute name = "version" type = "tns:non-empt y-string"/> 29
 </complexType> 30
 </element> 31
 32
 <!-- MESSAGEHEADER, for use in soap:Header element --> 33
 34
 <element name = "MessageHeader"> 35
 <complexType> 36
 <sequence> 37
 <element ref = "tns:From" minOccurs = "0"/> 38
 <element ref = "tns:To" minOccurs = "0"/> 39
 <element ref = "tns:CPAId" minOccurs = "0"/> 40
 <element ref = "tns:ConversationId" minOccurs = "0"/> 41
 <element ref = "tns:Service" minOccurs = "0"/> 42
 <element ref = "tns:Action" minOccurs = "0"/> 43
 <element ref = "tns:MessageData" minOccurs = "0 "/> 44
 <element ref = "tns:DuplicateElimination" minOc curs = "0"/> 45
 <element ref = "tns:Description" minOccurs = "0 " maxOccurs = 46
"unbounded"/> 47
 <any namespace = "##other" processContents = "l ax" minOccurs = 48
"0" maxOccurs = "unbounded"/> 49
 </sequence> 50
 <attributeGroup ref = "tns:headerExtension.grp"/ > 51
 </complexType> 52
 </element> 53
 <element name = "CPAId" type = "tns:non-empty-stri ng"/> 54
 <element name = "ConversationId" type = "tns:non-e mpty-string"/> 55
 <element name = "Service"> 56
 <complexType> 57
 <simpleContent> 58
 <extension base = "tns:non-empty-string"> 59
 <attribute name = "type" type = "tns:non-empty -60
string"/> 61
 </extension> 62
 </simpleContent> 63
 </complexType> 64
 </element> 65
 <element name = "Action" type = "tns:non-empty-str ing"/> 66
 <element name = "MessageData"> 67
 <complexType> 68
 <sequence> 69
 <element ref = "tns:MessageId" minOccurs = "0"/ > 70
 <element ref = "tns:Timestamp" minOccurs = "0"/ > 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 174 of 214

 <element ref = "tns:RefToMessageId" minOccurs = "0"/> 1
 <element ref = "tns:TimeToLive" minOccurs = "0" /> 2
 </sequence> 3
 </complexType> 4
 </element> 5
 <element name = "MessageId" type = "tns:non-empty- string"/> 6
 <element name = "TimeToLive" type = "dateTime"/> 7
 <element name = "DuplicateElimination"/> 8
 9
 <!-- SYNC REPLY, for use in soap:Header element -- > 10
 11
 <element name = "SyncReply"> 12
 <complexType> 13
 <sequence> 14
 <any namespace = "##other" processContents = "l ax" minOccurs = 15
"0" maxOccurs = "unbounded"/> 16
 </sequence> 17
 <attributeGroup ref = "tns:headerExtension.grp"/ > 18
 <attribute ref = "soap:actor" default = "urn:oas is:names:tc:ebxml-19
msg:actor:toPartyMSH"/> 20
 </complexType> 21
 </element> 22
 23
 <!-- MESSAGE ORDER, for use in soap:Header element --> 24
 25
 <element name = "MessageOrder"> 26
 <complexType> 27
 <sequence> 28
 <element ref = "tns:SequenceNumber"/> 29
 <any namespace = "##other" processContents = "l ax" minOccurs = 30
"0" maxOccurs = "unbounded"/> 31
 </sequence> 32
 <attributeGroup ref = "tns:headerExtension.grp"/ > 33
 </complexType> 34
 </element> 35
 <element name = "SequenceNumber" type = "tns:seque nceNumber.type"/> 36
 37
 <!-- ACK REQUESTED, for use in soap:Header element --> 38
 39
 <element name = "AckRequested"> 40
 <complexType> 41
 <sequence> 42
 <any namespace = "##other" processContents = "l ax" minOccurs = 43
"0" maxOccurs = "unbounded"/> 44
 </sequence> 45
 <attributeGroup ref = "tns:headerExtension.grp"/ > 46
 <attribute ref = "soap:actor"/> 47
 <attribute name = "signed" use = "optional" type = "boolean"/> 48
 </complexType> 49
 </element> 50
 51
 <!-- ACKNOWLEDGMENT, for use in soap:Header elemen t --> 52
 53
 <element name = "Acknowledgment"> 54
 <complexType> 55
 <sequence> 56
 <element ref = "tns:Timestamp" minOccurs = "0"/ > 57
 <element ref = "tns:RefToMessageId" minOccurs = "0"/> 58
 <element ref = "tns:From" minOccurs = "0"/> 59
 <element name = "Reference" minOccurs = "0" max Occurs = 60
"unbounded"/> 61
 <any namespace = "##other" processContents = "l ax" minOccurs = 62
"0"/> 63
 <element ref = "ds:Reference" minOccurs = "0" m axOccurs = 64
"unbounded"/> 65
 </sequence> 66
 <attributeGroup ref = "tns:headerExtension.grp"/ > 67
 <attribute ref = "soap:actor" default = "urn:oas is:names:tc:ebxml-68
msg:actor:toPartyMSH"/> 69
 </complexType> 70
 </element> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 175 of 214

 1
 <!-- ERROR LIST, for use in soap:Header element -- > 2
 3
 <element name = "ErrorList"> 4
 <complexType> 5
 <sequence> 6
 <element ref = "tns:Error" maxOccurs = "unbound ed"/> 7
 <any namespace = "##other" processContents = "l ax" minOccurs = 8
"0" maxOccurs = "unbounded"/> 9
 </sequence> 10
 <attributeGroup ref = "tns:headerExtension.grp"/ > 11
 <attribute name = "highestSeverity" use = "requi red" type = 12
"tns:severity.type"/> 13
 </complexType> 14
 </element> 15
 <element name = "Error"> 16
 <complexType> 17
 <sequence> 18
 <element ref = "tns:Description" minOccurs = "0 "/> 19
 <any namespace = "##other" processContents = "l ax" minOccurs = 20
"0" maxOccurs = "unbounded"/> 21
 </sequence> 22
 <attribute ref = "tns:id"/> 23
 <attribute name = "codeContext" default = "urn:o asis:names:tc:ebxml-24
msg:service:errors" type = "anyURI"/> 25
 <attribute name = "errorCode" use = "required" t ype = "tns:non-empty-26
string"/> 27
 <attribute name = "severity" use = "required" ty pe = 28
"tns:severity.type"/> 29
 <attribute name = "location" type = "tns:non-emp ty-string"/> 30
 </complexType> 31
 </element> 32
 33
 <!-- STATUS RESPONSE, for use in soap:Body element --> 34
 35
 <element name = "StatusResponse"> 36
 <complexType> 37
 <sequence> 38
 <element ref = "tns:RefToMessageId"/> 39
 <element ref = "tns:Timestamp" minOccurs = "0"/ > 40
 <any namespace = "##other" processContents = "l ax" minOccurs = 41
"0" maxOccurs = "unbounded"/> 42
 </sequence> 43
 <attributeGroup ref = "tns:bodyExtension.grp"/> 44
 <attribute name = "messageStatus" use = "require d" type = 45
"tns:messageStatus.type"/> 46
 </complexType> 47
 </element> 48
 49
 <!-- STATUS REQUEST, for use in soap:Body element --> 50
 51
 <element name = "StatusRequest"> 52
 <complexType> 53
 <sequence> 54
 <element ref = "tns:RefToMessageId"/> 55
 <any namespace = "##other" processContents = "l ax" minOccurs = 56
"0" maxOccurs = "unbounded"/> 57
 </sequence> 58
 <attributeGroup ref = "tns:bodyExtension.grp"/> 59
 </complexType> 60
 </element> 61
 62
 <!-- COMMON TYPES --> 63
 64
 <complexType name = "sequenceNumber.type"> 65
 <simpleContent> 66
 <extension base = "positiveInteger"> 67
 <attribute name = "status" default = "Continue" type = 68
"tns:status.type"/> 69
 </extension> 70
 </simpleContent> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 176 of 214

 </complexType> 1
 <simpleType name = "status.type"> 2
 <restriction base = "NMTOKEN"> 3
 <enumeration value = "Reset"/> 4
 <enumeration value = "Continue"/> 5
 </restriction> 6
 </simpleType> 7
 <simpleType name = "messageStatus.type"> 8
 <restriction base = "NMTOKEN"> 9
 <enumeration value = "UnAuthorized"/> 10
 <enumeration value = "NotRecognized"/> 11
 <enumeration value = "Received"/> 12
 <enumeration value = "Processed"/> 13
 <enumeration value = "Forwarded"/> 14
 </restriction> 15
 </simpleType> 16
 <simpleType name = "non-empty-string"> 17
 <restriction base = "string"> 18
 <minLength value = "1"/> 19
 </restriction> 20
 </simpleType> 21
 <simpleType name = "severity.type"> 22
 <restriction base = "NMTOKEN"> 23
 <enumeration value = "Warning"/> 24
 <enumeration value = "Error"/> 25
 </restriction> 26
 </simpleType> 27
 28
 <!-- COMMON ATTRIBUTES and ATTRIBUTE GROUPS --> 29
 30
 <attribute name = "id" type = "ID"/> 31
 <attribute name = "version" type = "tns:non-empty- string"/> 32
 33
 <!-- COMMON ELEMENTS --> 34
 35
 <element name = "PartyId"> 36
 <complexType> 37
 <simpleContent> 38
 <extension base = "tns:non-empty-string"> 39
 <attribute name = "type" type = "tns:non-empty -40
string"/> 41
 </extension> 42
 </simpleContent> 43
 </complexType> 44
 </element> 45
 <element name = "To"> 46
 <complexType> 47
 <sequence> 48
 <element ref = "tns:PartyId"/> 49
 <element name = "Role" type = "tns:non-empty-st ring" minOccurs 50
= "0"/> 51
 </sequence> 52
 </complexType> 53
 </element> 54
 <element name = "From"> 55
 <complexType> 56
 <sequence> 57
 <element ref = "tns:PartyId"/> 58
 <element name = "Role" type = "tns:non-empty-st ring" minOccurs 59
= "0"/> 60
 </sequence> 61
 </complexType> 62
 </element> 63
 <element name = "Description"> 64
 <complexType> 65
 <simpleContent> 66
 <extension base = "tns:non-empty-string"> 67
 <attribute ref = "xml:lang" use = "required"/> 68
 </extension> 69
 </simpleContent> 70
 </complexType> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 177 of 214

 </element> 1
 <element name = "RefToMessageId" type = "tns:non-e mpty-string"/> 2
 <element name = "Timestamp" type = "dateTime"/> 3
 <element name = "FileName" type = "tns:non-empty-s tring"/> 4
 <element name = "MessageRef" type = "tns:non-empty -string"/> 5
</schema> 6
 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 178 of 214

Appendix E (Normative) Message Store and Filter 1

Result Schema 2

 3

The Message Store content schema below is a representation of the ebXML message envelope and any 4
XML payload content that accompanies the message. Although the schema for the Message Store is 5
generic in design, allowing any XML packaging, envelope and payload to be stored; in order to use a 6
particular executable test suite, the structure of the packaging, message envelope within the Message 7
Store MUST have an “agreed upon” syntax [XMLSchema] by the testing community. By defining a 8
standard packaging and envelope syntax, test case material is reusable by any IIC compliant Test 9
Framework. 10

 11

Below is a graphic representation of the “generic” IIC MessageStore schema, capable of storing XML 12
message and payload content for any type of XML based messaging service. The “wildcard” content of 13
the schema permits storage and query of any user-defined XML messaging content. 14

 15

 16

 17
Figure 55 – Graphic representation of the “generic” IIC Test Framework Message Store schema 18

 19

A particular testing community (e.g. RNIF or ebXML) MAY define a particular schema for the message 20
Packaging and message Content, thereby facilitating universal use of any executable test suites and test 21

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 179 of 214

suite material based on the IIC Test Framework, and those packaging and content schemas. Below is 1
the normative schema for the IIC Test Framework Message Store. 2

 3

 4

 Below is a graphic representation and the IIC normative schema for representing ebXML MS v2.0 5
message envelope content within the Message Store. The Message Store schema permits ANY type of 6
XML message content. This means that any “standard” XML format, such as SOAP or ebXML content (7
with their own schemas used to represent the message envelope), may be used to define the structure of 8
the message store Content element. Message envelope XML content stored in an IIC Test Driver 9
Message Store MUST conform to this schema in order to execute the IIC MS 2.0 Conformance Test 10
Suite using the IIC Test Framework V2.0. 11

 12

The SOAP Envelope Content Sub-Schema used to represent message envelope content is identical to 13
that defined in [SOAP]. 14

 15

The ebXML Content Sub-Schema used to represent ebXML message content in the Message Store is 16
identical to that defined in [ebMS]. 17

 18

 19

 20

Figure 56 - Graphic representation of normative ebXML Message Content in the IIC Test Framework 21
Message Store 22

 23

 24

<?xml version = "1.0" encoding = "UTF-8"?> 25
<!--Generated by XML Authority. Conforms to w3c htt p://www.w3.org/2001/XMLSchema--> 26
<xsd:schema xmlns = "http://www.oasis-open.org/tc/e bxml-iic/testing/messageStore" 27
 targetNamespace = "http://www.oasis-open.org/tc/e bxml-iic/testing/messageStore" 28
 xmlns:xsd = "http://www.w3.org/2001/XMLSchema"> 29
 <!-- edited with XML Spy v4.3 U (http://www.xmlspy .com) by Michael Kass (NIST) --> 30
 31
 32
 <!-- edited with XML Spy v4.3 U (http://www.xmlspy .com) by Michael Kass (NIST) --> 33
 34
 35
 <!-- 36
Copyright (C) The Organization for the Advancement of Structured Information Standards 37
[OASIS] 38
January 2002. All Rights Reserved. 39
This document and translations of it may be copied and furnished to others, and 40
derivative works that comment on or otherwise expla in it or assist in its implementation 41
may be prepared, copied, published and distributed, in whole or in part, without 42
restriction of any kind, provided that the above co pyright notice and this paragraph are 43
included on all such copies and derivative works. H owever, this document itself may not 44
be modified in any way, such as by removing the cop yright notice or references to OASIS, 45
except as needed for the purpose of developing OASI S specifications, in which case the 46
procedures for copyrights defined in the OASIS Inte llectual Property Rights document 47
MUST be followed, or as required to translate it in to languages other than English. 48
The limited permissions granted above are perpetual and will not be revoked by OASIS or 49
its successors or assigns. 50
--> 51
 52
 <xsd:element name = "MessageStore"> 53
 <xsd:complexType> 54
 <xsd:sequence> 55
 <xsd:element ref = "Message" minOccurs = "0" ma xOccurs = 56
"unbounded"/> 57
 <xsd:element ref = "Notification" minOccurs = " 0" maxOccurs = 58
"unbounded"/> 59

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 180 of 214

 </xsd:sequence> 1
 </xsd:complexType> 2
 </xsd:element> 3
 <xsd:simpleType name = "synch.type"> 4
 <xsd:restriction base = "xsd:string"> 5
 <xsd:enumeration value = "synchronous"/> 6
 <xsd:enumeration value = "asynchronous"/> 7
 </xsd:restriction> 8
 </xsd:simpleType> 9
 <xsd:simpleType name = "parameter.type"> 10
 <xsd:restriction base = "xsd:NMTOKEN"> 11
 <xsd:enumeration value = "string"/> 12
 <xsd:enumeration value = "namespace"/> 13
 </xsd:restriction> 14
 </xsd:simpleType> 15
 <xsd:simpleType name = "notification.type"> 16
 <xsd:restriction base = "xsd:NMTOKEN"> 17
 <xsd:enumeration value = "message"/> 18
 <xsd:enumeration value = "errorURL"/> 19
 <xsd:enumeration value = "errorApp"/> 20
 </xsd:restriction> 21
 </xsd:simpleType> 22
 <xsd:element name = "Message"> 23
 <xsd:complexType> 24
 <xsd:sequence> 25
 <xsd:element ref = "Packaging" minOccurs = "0"/ > 26
 <xsd:element ref = "Part" minOccurs = "0" maxOc curs = 27
"unbounded"/> 28
 </xsd:sequence> 29
 <xsd:attribute name = "synchType" use = "require d" type = 30
"synch.type"/> 31
 <xsd:attribute name = "id" use = "required" type = "xsd:string"/> 32
 </xsd:complexType> 33
 </xsd:element> 34
 <xsd:element name = "Parameter"> 35
 <xsd:complexType> 36
 <xsd:sequence> 37
 <xsd:element name = "Name" type = "xsd:string"/ > 38
 <xsd:element name = "Value" type = "xsd:string" /> 39
 </xsd:sequence> 40
 </xsd:complexType> 41
 </xsd:element> 42
 <xsd:element name = "Notification"> 43
 <xsd:complexType> 44
 <xsd:sequence> 45
 <xsd:element ref = "Packaging" minOccurs = "0"/ > 46
 <xsd:element ref = "Part" minOccurs = "0" maxOc curs = 47
"unbounded"/> 48
 </xsd:sequence> 49
 <xsd:attribute name = "notificationType" use = " required" type = 50
"notification.type"/> 51
 <xsd:attribute name = "synchType" use = "require d" type = 52
"synch.type"/> 53
 <xsd:attribute name = "id" use = "required" type = "xsd:string"/> 54
 <xsd:attribute name = "serviceInstanceId" use = "optional" type = 55
"xsd:string"/> 56
 <xsd:attribute name = "serviceName" use = "optio nal" type = 57
"xsd:string"/> 58
 <xsd:attribute name = "reportingAction" use = "o ptional" type = 59
"xsd:string"/> 60
 </xsd:complexType> 61
 </xsd:element> 62
 <xsd:element name = "Part"> 63
 <xsd:complexType> 64
 <xsd:sequence> 65
 <xsd:element ref = "Packaging" minOccurs = "0"/ > 66
 <xsd:element ref = "Content" minOccurs = "0"/> 67
 </xsd:sequence> 68
 </xsd:complexType> 69
 </xsd:element> 70
 <xsd:element name = "Content"> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 181 of 214

 <xsd:complexType> 1
 <xsd:sequence> 2
 <xsd:any namespace = "##other" processContents = "lax" 3
minOccurs = "0" maxOccurs = "unbounded"/> 4
 </xsd:sequence> 5
 </xsd:complexType> 6
 </xsd:element> 7
 <xsd:element name = "Packaging"> 8
 <xsd:complexType> 9
 <xsd:sequence> 10
 <xsd:element ref = "Header"/> 11
 </xsd:sequence> 12
 </xsd:complexType> 13
 </xsd:element> 14
 <xsd:element name = "Header"> 15
 <xsd:complexType> 16
 <xsd:sequence> 17
 <xsd:element ref = "Name"/> 18
 <xsd:element ref = "Value"/> 19
 <xsd:element ref = "Attribute" minOccurs = "0" maxOccurs = 20
"unbounded"/> 21
 </xsd:sequence> 22
 </xsd:complexType> 23
 </xsd:element> 24
 <xsd:element name = "Attribute"> 25
 <xsd:complexType> 26
 <xsd:sequence> 27
 <xsd:element ref = "Name"/> 28
 <xsd:element ref = "Value"/> 29
 </xsd:sequence> 30
 </xsd:complexType> 31
 </xsd:element> 32
 <xsd:element name = "Name" type = "xsd:string"/> 33
 <xsd:element name = "Value" type = "xsd:string"/> 34
</xsd:schema> 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

Generic FilterResult Schema 51

 52

The FilterResult is an XML fragment constructed from the result of an XPath query on the MessageStore. 53
The content of a FilterResult document object constructed from the fragment is then queried in a 54
TestAssertion test operation to verify or validate message content. Its content can be any element 55
content, whose root element is <FilterResult>. 56

 57

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 182 of 214

 1
Figure 57 – Graphical representation of the FilterResult schema 2

 3

<?xml version = "1.0" encoding = "UTF-8"?> 4
<!--Generated by XML Authority. Conforms to w3c htt p://www.w3.org/2001/XMLSchema--> 5
<xsd:schema xmlns = "http://www.oasis-open.org/tc/e bxml-iic/testing/messageStore" 6
 targetNamespace = "http://www.oasis-open.org/tc/e bxml-iic/testing/messageStore" 7
 xmlns:xsd = "http://www.w3.org/2001/XMLSchema"> 8
 <!-- edited with XML Spy v4.3 U (http://www.xmlspy .com) by Michael Kass (NIST) --> 9
 10
 11
 <!-- edited with XML Spy v4.3 U (http://www.xmlspy .com) by Michael Kass (NIST) --> 12
 13
 14
 <!-- 15
Copyright (C) The Organization for the Advancement of Structured Information Standards 16
[OASIS] 17
January 2002. All Rights Reserved. 18
This document and translations of it may be copied and furnished to others, and 19
derivative works that comment on or otherwise expla in it or assist in its implementation 20
may be prepared, copied, published and distributed, in whole or in part, without 21
restriction of any kind, provided that the above co pyright notice and this paragraph are 22
included on all such copies and derivative works. H owever, this document itself may not 23
be modified in any way, such as by removing the cop yright notice or references to OASIS, 24
except as needed for the purpose of developing OASI S specifications, in which case the 25
procedures for copyrights defined in the OASIS Inte llectual Property Rights document 26
MUST be followed, or as required to translate it in to languages other than English. 27
The limited permissions granted above are perpetual and will not be revoked by OASIS or 28
its successors or assigns. 29
--> 30
 31
 <xsd:element name = "FilterResult"> 32
 <xsd:complexType> 33
 <xsd:sequence> 34
 <xsd:any namespace = "##other" processContents = "lax" 35
minOccurs = "0" maxOccurs = "unbounded"/> 36
 </xsd:sequence> 37
 </xsd:complexType> 38
 </xsd:element> 39
</xsd:schema> 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 183 of 214

Appendix F (Normative) Test Report Schema 1

 2

 3

The Test Report Schema provides a uniform way for all IIC Test Framework implementations to report 4
their testing results. It is essentially a “trace” of all test operations as logged by the Test Driver. Certain 5
operations will return a “result” attribute if a Test Case execution ends due to failure of that testing 6
operation, or because of any exception condition. The XML format of the Test Report permits HTML 7
rendering by the Test Driver implementer to any format that visually conveys the meaning of the report in 8
the best manner. 9

 10

<?xml version = "1.0" encoding = "UTF-8"?> 11
<!--Generated by XML Authority. Conforms to w3c htt p://www.w3.org/2001/XMLSchema--> 12
<schema xmlns = "http://www.w3.org/2001/XMLSchema" 13
 targetNamespace = "http://www.oasis-open.org/tc/e bxml-iic/tests" 14
 xmlns:ebTest = "http://www.oasis-open.org/tc/ebxm l-iic/tests" 15
 16
 version = "1.0" 17
 elementFormDefault = "unqualified" 18
 attributeFormDefault = "unqualified"> 19
 <!-- edited with XMLSPY v2004 rel. 3 U (http://www .xmlspy.com) by Michael Kass (NIST) 20
--> 21
 22
 23
 <!-- edited with XMLSPY v2004 rel. 4 U (http://www .xmlspy.com) by Mike Kass 24
(Personal) --> 25
 26
 27
 <!--<import namespace="http://www.oasis-open.org/t c/ebxml-iic/tests/xmldsig" 28
schemaLocation="xmldsig.xsd"/> --> 29
 30
 31
 <!-- <import namespace = "http://www.oasis-open.or g/tc/ebxml-iic/tests/xmldsig" 32
schemaLocation = "xmldsig.xsd"/> --> 33
 34
 35
 <!-- <import namespace = "http://www.oasis-open.or g/tc/ebxml-iic/tests/mime" 36
schemaLocation = "mime.xsd"/> --> 37
 38
 39
 <!-- edited with XML Spy v4.3 U (http://www.xmlspy .com) by Michael Kass (NIST) --> 40
 41
 42
 <!-- edited with XML Spy v4.3 U (http://www.xmlspy .com) by Michael Kass (NIST) --> 43
 44
 45
 <!-- edited with XML Spy v4.3 U (http://www.xmlspy .com) by Michael Kass (NIST) --> 46
 47
 48
 <!-- 49
Copyright (C) The Organization for the Advancement of Structured Information Standards 50
[OASIS] 51
January 2002. All Rights Reserved. 52
This document and translations of it may be copied and furnished to others, and 53
derivative works that comment on or otherwise expla in it or assist in its implementation 54
may be prepared, copied, published and distributed, in whole or in part, without 55
restriction of any kind, provided that the above co pyright notice and this paragraph are 56
included on all such copies and derivative works. H owever, this document itself may not 57
be modified in any way, such as by removing the cop yright notice or references to OASIS, 58
except as needed for the purpose of developing OASI S specifications, in which case the 59
procedures for copyrights defined in the OASIS Inte llectual Property Rights document 60
MUST be followed, or as required to translate it in to languages other than English. 61

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 184 of 214

The limited permissions granted above are perpetual and will not be revoked by OASIS or 1
its successors or assigns. 2
--> 3
 4
 <element name = "TestSuite"> 5
 <complexType> 6
 <sequence> 7
 <element ref = "ebTest:MetaData"/> 8
 <element ref = "ebTest:ConfigurationGroup" maxO ccurs = 9
"unbounded"/> 10
 <element ref = "ebTest:ThreadGroup" minOccurs = "0"/> 11
 <element ref = "ebTest:TestServiceConfigurator" minOccurs = 12
"0"/> 13
 <element ref = "ebTest:Message" minOccurs = "0" maxOccurs = 14
"unbounded"/> 15
 <element ref = "ebTest:TestCase" maxOccurs = "u nbounded"/> 16
 </sequence> 17
 <attribute name = "configurationGroupRef" use = "required" type = 18
"IDREF"/> 19
 </complexType> 20
 </element> 21
 <element name = "MetaData"> 22
 <complexType> 23
 <sequence> 24
 <element ref = "ebTest:Title"/> 25
 <element ref = "ebTest:Description"/> 26
 <element ref = "ebTest:Version"/> 27
 <element ref = "ebTest:Maintainer"/> 28
 <element ref = "ebTest:Location"/> 29
 <element ref = "ebTest:PublishDate"/> 30
 <element ref = "ebTest:Status"/> 31
 </sequence> 32
 </complexType> 33
 </element> 34
 <element name = "Description" type = "ebTest:non-e mpty-string"/> 35
 <element name = "Version" type = "ebTest:non-empty -string"/> 36
 <element name = "Maintainer" type = "ebTest:non-em pty-string"/> 37
 <element name = "Location" type = "anyURI"/> 38
 <element name = "PublishDate" type = "ebTest:non-e mpty-string"/> 39
 <element name = "Status" type = "ebTest:non-empty- string"/> 40
 <element name = "TestCase"> 41
 <complexType> 42
 <sequence> 43
 <element ref = "ebTest:ThreadGroup" minOccurs = "0"/> 44
 <choice maxOccurs = "unbounded"> 45
 <element ref = "ebTest:SetParameter"/> 46
 <element ref = "ebTest:SetXPathParameter"/> 47
 <element ref = "ebTest:LockParameter"/> 48
 <element ref = "ebTest:UnlockParameter"/> 49
 <element ref = "ebTest:PutMessage"/> 50
 <element ref = "ebTest:Initiator"/> 51
 <element ref = "ebTest:GetMessage"/> 52
 <element ref = "ebTest:TestAssertion"/> 53
 <element ref = "ebTest:ThreadRef"/> 54
 <element ref = "ebTest:Split"/> 55
 <element ref = "ebTest:Join"/> 56
 <element ref = "ebTest:Sleep"/> 57
 </choice> 58
 <element ref = "ebTest:Result"/> 59
 </sequence> 60
 <attribute name = "id" use = "required" type = " ID"/> 61
 <attribute name = "description" use = "required" type = "string"/> 62
 <attribute name = "author" use = "optional" type = "string"/> 63
 <attribute name = "version" use = "optional" typ e = "string"/> 64
 <attribute name = "requirementReferenceId" use = "optional" type = 65
"anyURI"/> 66
 <attribute name = "configurationGroupRef" use = "optional" type = 67
"IDREF"/> 68
 </complexType> 69
 </element> 70
 <element name = "ConfigurationGroup"> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 185 of 214

 <complexType> 1
 <sequence> 2
 <element ref = "ebTest:Mode"/> 3
 <element ref = "ebTest:StepDuration"/> 4
 <element ref = "ebTest:Transport"/> 5
 <element ref = "ebTest:Envelope"/> 6
 <element ref = "ebTest:StoreAttachments"/> 7
 <element ref = "ebTest:ValidationType"/> 8
 <element ref = "ebTest:MutatorType"/> 9
 <element ref = "ebTest:XMLDSIG" minOccurs = "0" /> 10
 <element ref = "ebTest:SetParameter" minOccurs = "0" maxOccurs 11
= "unbounded"/> 12
 </sequence> 13
 <attribute name = "id" use = "required" type = " ID"/> 14
 </complexType> 15
 </element> 16
 <element name = "CPAId" type = "ebTest:non-empty-s tring"/> 17
 <element name = "Mode" type = "ebTest:mode.type"/> 18
 <element name = "SenderParty" type = "anyURI"/> 19
 <element name = "ReceiverParty" type = "anyURI"/> 20
 <element name = "Service" type = "anyURI"/> 21
 <element name = "Action" type = "ebTest:non-empty- string"/> 22
 <element name = "StepDuration" type = "integer"/> 23
 <element name = "Transport" type = "ebTest:transpo rt.type"/> 24
 <element name = "Envelope" type = "ebTest:non-empt y-string"/> 25
 <simpleType name = "mode.type"> 26
 <restriction base = "NMTOKEN"> 27
 <enumeration value = "local-service"/> 28
 <enumeration value = "remote-service"/> 29
 <enumeration value = "connection"/> 30
 </restriction> 31
 </simpleType> 32
 <simpleType name = "mimeHeader.type"> 33
 <restriction base = "NMTOKEN"> 34
 <enumeration value = "MIMEMessageContent-Type"/> 35
 <enumeration value = "MIMEMessageStart"/> 36
 <enumeration value = "Content-Type"/> 37
 <enumeration value = "start"/> 38
 <enumeration value = "charset"/> 39
 <enumeration value = "type"/> 40
 <enumeration value = "wildcard"/> 41
 </restriction> 42
 </simpleType> 43
 <simpleType name = "content.type"> 44
 <restriction base = "NMTOKEN"> 45
 <enumeration value = "XML"/> 46
 <enumeration value = "dateTime"/> 47
 <enumeration value = "URI"/> 48
 <enumeration value = "signature"/> 49
 <enumeration value = "XPointer"/> 50
 </restriction> 51
 </simpleType> 52
 <simpleType name = "method.type"> 53
 <restriction base = "NMTOKEN"> 54
 <enumeration value = "xpath"/> 55
 <enumeration value = "md5"/> 56
 </restriction> 57
 </simpleType> 58
 <simpleType name = "messageContext.type"> 59
 <restriction base = "NMTOKEN"> 60
 <enumeration value = "true"/> 61
 <enumeration value = "false"/> 62
 </restriction> 63
 </simpleType> 64
 <simpleType name = "requirement.type"> 65
 <restriction base = "NMTOKEN"> 66
 <enumeration value = "required"/> 67
 <enumeration value = "stronglyrecommended"/> 68
 <enumeration value = "recommended"/> 69
 <enumeration value = "optional"/> 70
 </restriction> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 186 of 214

 </simpleType> 1
 <simpleType name = "non-empty-string"> 2
 <restriction base = "string"> 3
 <minLength value = "1"/> 4
 </restriction> 5
 </simpleType> 6
 <simpleType name = "configAction.type"> 7
 <restriction base = "NMTOKEN"> 8
 <enumeration value = "query"/> 9
 <enumeration value = "replace"/> 10
 </restriction> 11
 </simpleType> 12
 <simpleType name = "action.type"> 13
 <restriction base = "NMTOKEN"> 14
 <enumeration value = "reset"/> 15
 <enumeration value = "modify"/> 16
 </restriction> 17
 </simpleType> 18
 <simpleType name = "configItem.type"> 19
 <restriction base = "NMTOKEN"/> 20
 </simpleType> 21
 <simpleType name = "parameter.type"> 22
 <restriction base = "NMTOKEN"> 23
 <enumeration value = "string"/> 24
 <enumeration value = "parameter"/> 25
 </restriction> 26
 </simpleType> 27
 <simpleType name = "connectivePredicate.type"> 28
 <restriction base = "NMTOKEN"> 29
 <enumeration value = "and"/> 30
 <enumeration value = "or"/> 31
 </restriction> 32
 </simpleType> 33
 <simpleType name = "thread.type"> 34
 <restriction base = "NMTOKEN"> 35
 <enumeration value = "synchronous"/> 36
 <enumeration value = "asynchronous"/> 37
 </restriction> 38
 </simpleType> 39
 <simpleType name = "matchResult.type"> 40
 <restriction base = "NMTOKEN"> 41
 <enumeration value = "pass"/> 42
 <enumeration value = "fail"/> 43
 </restriction> 44
 </simpleType> 45
 <simpleType name = "if.type"> 46
 <restriction base = "NMTOKEN"> 47
 <enumeration value = "andif"/> 48
 <enumeration value = "orif"/> 49
 </restriction> 50
 </simpleType> 51
 <simpleType name = "split.type"> 52
 <restriction base = "NMTOKEN"> 53
 <enumeration value = "andsplit"/> 54
 <enumeration value = "orsplit"/> 55
 </restriction> 56
 </simpleType> 57
 <simpleType name = "join.type"> 58
 <restriction base = "NMTOKEN"> 59
 <enumeration value = "andjoin"/> 60
 <enumeration value = "orjoin"/> 61
 </restriction> 62
 </simpleType> 63
 <simpleType name = "serviceMode.type"> 64
 <restriction base = "NMTOKEN"> 65
 <enumeration value = "loop"/> 66
 <enumeration value = "local-reporting"/> 67
 <enumeration value = "remote-reporting"/> 68
 </restriction> 69
 </simpleType> 70
 <simpleType name = "time.type"> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 187 of 214

 <restriction base = "NMTOKEN"> 1
 <enumeration value = "timeToAcknowlegeReceipt"/> 2
 <enumeration value = "timeToAcknowledgeAcceptanc e"/> 3
 <enumeration value = "timeToPerform"/> 4
 <enumeration value = "other"/> 5
 </restriction> 6
 </simpleType> 7
 <simpleType name = "operator.type"> 8
 <restriction base = "NMTOKEN"> 9
 <enumeration value = "equal"/> 10
 <enumeration value = "lessThan"/> 11
 <enumeration value = "lessThanOrEqual"/> 12
 <enumeration value = "greaterThan"/> 13
 <enumeration value = "greaterThanOrEqual"/> 14
 </restriction> 15
 </simpleType> 16
 <simpleType name = "assertionExit.type"> 17
 <restriction base = "NMTOKEN"> 18
 <enumeration value = "pass"/> 19
 <enumeration value = "fail"/> 20
 <enumeration value = "undetermined"/> 21
 </restriction> 22
 </simpleType> 23
 <simpleType name = "preconditionExit.type"> 24
 <restriction base = "NMTOKEN"> 25
 <enumeration value = "undetermined"/> 26
 </restriction> 27
 </simpleType> 28
 <simpleType name = "scope.type"> 29
 <restriction base = "NMTOKEN"> 30
 <enumeration value = "self"/> 31
 <enumeration value = "selfAndDescendents"/> 32
 <enumeration value = "parent"/> 33
 <enumeration value = "global"/> 34
 </restriction> 35
 </simpleType> 36
 <simpleType name = "transport.type"> 37
 <restriction base = "NMTOKEN"> 38
 <enumeration value = "FTP"/> 39
 <enumeration value = "SMTP"/> 40
 <enumeration value = "HTTP"/> 41
 <enumeration value = "JMS"/> 42
 </restriction> 43
 </simpleType> 44
 <simpleType name = "envelope.type"> 45
 <restriction base = "NMTOKEN"> 46
 <enumeration value = "SOAP"/> 47
 <enumeration value = "ebXML"/> 48
 <enumeration value = "RNIF"/> 49
 <enumeration value = "JMS"/> 50
 </restriction> 51
 </simpleType> 52
 <simpleType name = "exception.type"> 53
 <restriction base = "NMTOKEN"> 54
 <enumeration value = "undetermined"/> 55
 </restriction> 56
 </simpleType> 57
 <simpleType name = "exitResult.type"> 58
 <restriction base = "NMTOKEN"> 59
 <enumeration value = "pass"/> 60
 <enumeration value = "fail"/> 61
 </restriction> 62
 </simpleType> 63
 <simpleType name = "validation.type"> 64
 <restriction base = "NMTOKEN"> 65
 <enumeration value = "XMLSchema"/> 66
 <enumeration value = "Schematron"/> 67
 </restriction> 68
 </simpleType> 69
 <simpleType name = "mutator.type"> 70
 <restriction base = "NMTOKEN"> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 188 of 214

 <enumeration value = "XSLT"/> 1
 <enumeration value = "XUpdate"/> 2
 </restriction> 3
 </simpleType> 4
 <simpleType name = "keystore.type"> 5
 <restriction base = "NMTOKEN"> 6
 <enumeration value = "jks"/> 7
 <enumeration value = "pkcs12"/> 8
 </restriction> 9
 </simpleType> 10
 <simpleType name = "lock.type"> 11
 <restriction base = "NMTOKEN"> 12
 <enumeration value = "readOnly"/> 13
 <enumeration value = "readWrite"/> 14
 </restriction> 15
 </simpleType> 16
 <element name = "MessageExpression"> 17
 <complexType> 18
 <sequence> 19
 <element ref = "ebTest:ErrorMessage"/> 20
 </sequence> 21
 </complexType> 22
 </element> 23
 <element name = "ErrorMessage" type = "ebTest:non- empty-string"/> 24
 <element name = "PutMessage"> 25
 <complexType> 26
 <sequence> 27
 <element ref = "ebTest:Packaging" minOccurs = " 0"/> 28
 <element ref = "ebTest:SetMessage"/> 29
 <element ref = "ebTest:SetPayload" minOccurs = "0" maxOccurs = 30
"unbounded"/> 31
 </sequence> 32
 <attribute name = "description" use = "required" type = "string"/> 33
 <attribute name = "repeatWithSameContext" use = "optional" type = 34
"integer"/> 35
 <attribute name = "repeatWithNewContext" use = " optional" type = 36
"integer"/> 37
 </complexType> 38
 </element> 39
 <element name = "GetMessage"> 40
 <complexType> 41
 <sequence> 42
 <element ref = "ebTest:Filter" maxOccurs = "unb ounded"/> 43
 <element ref = "ebTest:Result" minOccurs = "0"/ > 44
 </sequence> 45
 <attribute name = "description" use = "required" type = "string"/> 46
 <attribute name = "mask" use = "optional" type = "boolean"/> 47
 </complexType> 48
 </element> 49
 <element name = "Filter"> 50
 <complexType mixed = "true"> 51
 <choice> 52
 <element ref = "ebTest:Result" minOccurs = "0"/ > 53
 </choice> 54
 <attribute name = "stepDuration" use = "optional " type = "integer"/> 55
 </complexType> 56
 </element> 57
 <element name = "SetMessage"> 58
 <complexType> 59
 <sequence> 60
 <element ref = "ebTest:Packaging" minOccurs = " 0"/> 61
 <element ref = "ebTest:Content"/> 62
 <element ref = "ebTest:Mutator" minOccurs = "0" /> 63
 <element ref = "ebTest:DSignEnvelope" minOccurs = "0" 64
maxOccurs = "unbounded"/> 65
 </sequence> 66
 <attribute name = "description" use = "optional" type = "string"/> 67
 </complexType> 68
 </element> 69
 <element name = "SetPayload"> 70
 <complexType> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 189 of 214

 <sequence> 1
 <element ref = "ebTest:Packaging"/> 2
 <element ref = "ebTest:Content"/> 3
 <element ref = "ebTest:Mutator" minOccurs = "0" /> 4
 <element ref = "ebTest:DSignPayload" minOccurs = "0"/> 5
 </sequence> 6
 <attribute name = "description" use = "optional" type = "string"/> 7
 </complexType> 8
 </element> 9
 <element name = "TestAssertion"> 10
 <complexType> 11
 <sequence> 12
 <choice> 13
 <element ref = "ebTest:VerifyContent"/> 14
 <element ref = "ebTest:ValidateContent"/> 15
 <element ref = "ebTest:VerifyTimeDifference"/> 16
 <element ref = "ebTest:VerifyParameter"/> 17
 </choice> 18
 <element ref = "ebTest:WhenTrue" minOccurs = "0 "/> 19
 <element ref = "ebTest:WhenFalse" minOccurs = " 0"/> 20
 </sequence> 21
 <attribute name = "description" use = "required" type = "string"/> 22
 </complexType> 23
 </element> 24
 <element name = "MimeHeader" type = "ebTest:mimeHe ader.type"/> 25
 <element name = "MimeHeaderValue" type = "ebTest:n on-empty-string"/> 26
 <element name = "Content-Location" type = "ebTest: non-empty-string"/> 27
 <element name = "Index" type = "integer"/> 28
 <element name = "FileURI" type = "anyURI"/> 29
 <element name = "PayloadRef" type = "ebTest:non-em pty-string"/> 30
 <element name = "Content-ID" type = "ebTest:non-em pty-string"/> 31
 <element name = "MessageDeclaration"> 32
 <complexType> 33
 <sequence> 34
 <any namespace = "##other" processContents = "l ax" minOccurs = 35
"0" maxOccurs = "unbounded"/> 36
 </sequence> 37
 </complexType> 38
 </element> 39
 <element name = "ValidateContent"> 40
 <complexType mixed = "true"> 41
 <choice> 42
 <element ref = "ebTest:Result" minOccurs = "0"/ > 43
 </choice> 44
 <attribute name = "contentType" use = "required" type = 45
"ebTest:content.type"/> 46
 <attribute name = "schemaLocation" use = "option al" type = "anyURI"/> 47
 </complexType> 48
 </element> 49
 <element name = "VerifyContent"> 50
 <complexType mixed = "true"> 51
 <choice> 52
 <element ref = "ebTest:Result" minOccurs = "0"/ > 53
 </choice> 54
 </complexType> 55
 </element> 56
 <element name = "Message"> 57
 <complexType> 58
 <sequence> 59
 <any namespace = "##other" processContents = "l ax" minOccurs = 60
"0" maxOccurs = "unbounded"/> 61
 </sequence> 62
 <attribute name = "id" use = "required" type = " ID"/> 63
 </complexType> 64
 </element> 65
 <element name = "SetParameter"> 66
 <complexType> 67
 <sequence> 68
 <element ref = "ebTest:Name"/> 69
 <choice> 70
 <element ref = "ebTest:Value"/> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 190 of 214

 <element ref = "ebTest:ParameterRef"/> 1
 </choice> 2
 <element ref = "ebTest:Result" minOccurs = "0"/ > 3
 </sequence> 4
 <attribute name = "scope" use = "optional" type = 5
"ebTest:scope.type"/> 6
 <attribute name = "lockType" use = "optional" ty pe = 7
"ebTest:lock.type"/> 8
 </complexType> 9
 </element> 10
 <element name = "VerifyParameter"> 11
 <complexType> 12
 <sequence> 13
 <element ref = "ebTest:Name"/> 14
 <choice> 15
 <element ref = "ebTest:Value"/> 16
 <element ref = "ebTest:ParameterRef"/> 17
 </choice> 18
 <element ref = "ebTest:Result" minOccurs = "0"/ > 19
 </sequence> 20
 </complexType> 21
 </element> 22
 <element name = "Mutator"> 23
 <complexType> 24
 <sequence> 25
 <element ref = "ebTest:FileURI"/> 26
 <element ref = "ebTest:Result" minOccurs = "0"/ > 27
 </sequence> 28
 </complexType> 29
 </element> 30
 <element name = "XSL" type = "ebTest:non-empty-str ing"/> 31
 <element name = "XUpdate" type = "ebTest:non-empty -string"/> 32
 <element name = "BooleanClause"> 33
 <complexType> 34
 <attribute name = "booleanPredicate" use = "requ ired" type = 35
"boolean"/> 36
 </complexType> 37
 </element> 38
 <element name = "Declaration"> 39
 <complexType> 40
 <sequence> 41
 <any namespace = "##other" processContents = "l ax" minOccurs = 42
"0" maxOccurs = "unbounded"/> 43
 </sequence> 44
 </complexType> 45
 </element> 46
 <element name = "Thread"> 47
 <complexType> 48
 <choice maxOccurs = "unbounded"> 49
 <element ref = "ebTest:SetParameter"/> 50
 <element ref = "ebTest:SetXPathParameter"/> 51
 <element ref = "ebTest:LockParameter"/> 52
 <element ref = "ebTest:UnlockParameter"/> 53
 <element ref = "ebTest:PutMessage"/> 54
 <element ref = "ebTest:Initiator"/> 55
 <element ref = "ebTest:GetMessage"/> 56
 <element ref = "ebTest:TestAssertion"/> 57
 <element ref = "ebTest:ThreadRef"/> 58
 <element ref = "ebTest:Split"/> 59
 <element ref = "ebTest:Join"/> 60
 <element ref = "ebTest:Sleep"/> 61
 </choice> 62
 <attribute name = "name" use = "required" type = "ID"/> 63
 <attribute name = "description" use = "optional" type = "string"/> 64
 </complexType> 65
 </element> 66
 <element name = "ThreadRef"> 67
 <complexType> 68
 <sequence> 69
 <element ref = "ebTest:Result" minOccurs = "0"/ > 70
 </sequence> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 191 of 214

 <attribute name = "nameRef" use = "required" typ e = "IDREF"/> 1
 <attribute name = "instanceId" use = "optional" type = "ID"/> 2
 <attribute name = "configurationGroupRef" use = "optional" type = 3
"IDREF"/> 4
 <attribute name = "loop" use = "optional" type = "string"/> 5
 </complexType> 6
 </element> 7
 <element name = "Pass"> 8
 <complexType/> 9
 </element> 10
 <element name = "Fail"> 11
 <complexType/> 12
 </element> 13
 <element name = "ThreadGroup"> 14
 <complexType> 15
 <sequence> 16
 <element ref = "ebTest:Thread" maxOccurs = "unb ounded"/> 17
 </sequence> 18
 </complexType> 19
 </element> 20
 <element name = "Sleep" type = "integer"/> 21
 <element name = "Split"> 22
 <complexType> 23
 <sequence> 24
 <element ref = "ebTest:ThreadRef" maxOccurs = " unbounded"/> 25
 <element ref = "ebTest:Result" minOccurs = "0"/ > 26
 </sequence> 27
 </complexType> 28
 </element> 29
 <element name = "Join"> 30
 <complexType> 31
 <sequence> 32
 <element ref = "ebTest:ThreadRef" maxOccurs = " unbounded"/> 33
 <element ref = "ebTest:Result" minOccurs = "0"/ > 34
 </sequence> 35
 <attribute name = "joinType" use = "optional" ty pe = 36
"ebTest:join.type"/> 37
 </complexType> 38
 </element> 39
 <element name = "Initiator"> 40
 <complexType> 41
 <sequence> 42
 <element ref = "ebTest:InitiateMessage"/> 43
 <element ref = "ebTest:InitiatePayload" minOccu rs = "0"/> 44
 <element ref = "ebTest:Result" minOccurs = "0"/ > 45
 </sequence> 46
 <attribute name = "description" use = "required" type = "string"/> 47
 </complexType> 48
 </element> 49
 <element name = "TestServiceConfigurator"> 50
 <complexType> 51
 <sequence> 52
 <element ref = "ebTest:ServiceMode"/> 53
 <element ref = "ebTest:ResponseURL"/> 54
 <element ref = "ebTest:NotificationURL"/> 55
 <element ref = "ebTest:PayloadDigests" minOccur s = "0"/> 56
 </sequence> 57
 </complexType> 58
 </element> 59
 <element name = "MessageRef" type = "IDREF"/> 60
 <element name = "ErrorURL" type = "anyURI"/> 61
 <element name = "NotificationURL" type = "anyURI"/ > 62
 <element name = "SetXPathParameter"> 63
 <complexType> 64
 <sequence> 65
 <element ref = "ebTest:Name"/> 66
 <element ref = "ebTest:Expression"/> 67
 <element ref = "ebTest:Result" minOccurs = "0"/ > 68
 </sequence> 69
 <attribute name = "scope" use = "optional" type = 70
"ebTest:scope.type"/> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 192 of 214

 <attribute name = "lockType" use = "optional" ty pe = 1
"ebTest:lock.type"/> 2
 </complexType> 3
 </element> 4
 <element name = "ResponseURL" type = "anyURI"/> 5
 <element name = "StoreAttachments" type = "boolean "/> 6
 <element name = "OperationMode" type = "string"/> 7
 <element name = "PayloadDigests"> 8
 <complexType> 9
 <sequence> 10
 <element ref = "ebTest:Payload" maxOccurs = "un bounded"/> 11
 </sequence> 12
 </complexType> 13
 </element> 14
 <element name = "ServiceMode" type = "ebTest:servi ceMode.type"/> 15
 <element name = "Transaction"> 16
 <complexType> 17
 <sequence maxOccurs = "unbounded"> 18
 <choice maxOccurs = "unbounded"> 19
 <element ref = "ebTest:PutMessage"/> 20
 <element ref = "ebTest:Initiator"/> 21
 </choice> 22
 <element ref = "ebTest:GetMessage" minOccurs = "0" maxOccurs = 23
"unbounded"/> 24
 </sequence> 25
 <attribute name = "timeToPerform" use = "optiona l" type = "duration"/> 26
 </complexType> 27
 </element> 28
 <element name = "VerifyTimeDifference"> 29
 <complexType> 30
 <sequence> 31
 <element ref = "ebTest:ParamName"/> 32
 <element ref = "ebTest:ParamName"/> 33
 <element ref = "ebTest:Operator"/> 34
 <element ref = "ebTest:Difference"/> 35
 <element ref = "ebTest:Result" minOccurs = "0"/ > 36
 </sequence> 37
 </complexType> 38
 </element> 39
 <element name = "TimeToAcknowledgeReceipt"> 40
 <complexType> 41
 <sequence> 42
 <element ref = "ebTest:XPathExpression"/> 43
 </sequence> 44
 </complexType> 45
 </element> 46
 <element name = "TimeToAcknowledgeAcceptance"> 47
 <complexType> 48
 <sequence> 49
 <element ref = "ebTest:XPathExpression"/> 50
 </sequence> 51
 </complexType> 52
 </element> 53
 <element name = "Difference" type = "duration"/> 54
 <element name = "Operator" type = "ebTest:operator .type"/> 55
 <element name = "XPathExpression" type = "ebTest:n on-empty-string"/> 56
 <element name = "Continue"> 57
 <complexType/> 58
 </element> 59
 <element name = "ParamName" type = "ebTest:non-emp ty-string"/> 60
 <element name = "VerifyTimeToPerform"> 61
 <complexType> 62
 <sequence> 63
 <element ref = "ebTest:ThreadName" maxOccurs = "unbounded"/> 64
 </sequence> 65
 <attribute name = "maxTime" use = "required" typ e = "duration"/> 66
 </complexType> 67
 </element> 68
 <element name = "ThreadName" type = "IDREF"/> 69
 <element name = "Header"> 70
 <complexType> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 193 of 214

 <sequence> 1
 <element ref = "ebTest:Name"/> 2
 <element ref = "ebTest:Value" minOccurs = "0"/> 3
 <element ref = "ebTest:Attribute" minOccurs = " 0" maxOccurs = 4
"unbounded"/> 5
 </sequence> 6
 </complexType> 7
 </element> 8
 <element name = "Name" type = "ebTest:non-empty-st ring"/> 9
 <element name = "Value" type = "ebTest:non-empty-s tring"/> 10
 <element name = "Packaging"> 11
 <complexType> 12
 <sequence> 13
 <element ref = "ebTest:Header" minOccurs = "0" maxOccurs = 14
"unbounded"/> 15
 <element ref = "ebTest:Result" minOccurs = "0"/ > 16
 </sequence> 17
 </complexType> 18
 </element> 19
 <element name = "Content"> 20
 <complexType> 21
 <sequence> 22
 <choice> 23
 <element ref = "ebTest:Declaration"/> 24
 <element ref = "ebTest:FileURI"/> 25
 <element ref = "ebTest:MessageRef"/> 26
 </choice> 27
 <element ref = "ebTest:Result" minOccurs = "0"/ > 28
 </sequence> 29
 </complexType> 30
 </element> 31
 <element name = "Attribute"> 32
 <complexType> 33
 <sequence> 34
 <element ref = "ebTest:Name"/> 35
 <element ref = "ebTest:Value"/> 36
 </sequence> 37
 </complexType> 38
 </element> 39
 <element name = "ExitResult" type = "string"/> 40
 <element name = "ValidationType" type = "ebTest:va lidation.type"/> 41
 <element name = "MutatorType" type = "ebTest:mutat or.type"/> 42
 <element name = "Payload"> 43
 <complexType> 44
 <sequence> 45
 <element ref = "ebTest:Digest"/> 46
 <element ref = "ebTest:Id"/> 47
 </sequence> 48
 </complexType> 49
 </element> 50
 <element name = "Digest" type = "ebTest:non-empty- string"/> 51
 <element name = "Id" type = "ebTest:non-empty-stri ng"/> 52
 <element name = "ParameterRef" type = "ebTest:non- empty-string"/> 53
 <element name = "Expression" type = "ebTest:non-em pty-string"/> 54
 <element name = "WhenTrue"> 55
 <complexType> 56
 <choice maxOccurs = "unbounded"> 57
 <element ref = "ebTest:SetParameter"/> 58
 <element ref = "ebTest:SetXPathParameter"/> 59
 <element ref = "ebTest:PutMessage"/> 60
 <element ref = "ebTest:Initiator"/> 61
 <element ref = "ebTest:GetMessage"/> 62
 <element ref = "ebTest:TestAssertion"/> 63
 <element ref = "ebTest:Continue"/> 64
 <element ref = "ebTest:ThreadRef"/> 65
 <element ref = "ebTest:Split"/> 66
 <element ref = "ebTest:Join"/> 67
 <element ref = "ebTest:Sleep"/> 68
 <element ref = "ebTest:Exit"/> 69
 <element ref = "ebTest:Return"/> 70
 </choice> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 194 of 214

 </complexType> 1
 </element> 2
 <element name = "WhenFalse"> 3
 <complexType> 4
 <choice maxOccurs = "unbounded"> 5
 <element ref = "ebTest:SetParameter"/> 6
 <element ref = "ebTest:SetXPathParameter"/> 7
 <element ref = "ebTest:PutMessage"/> 8
 <element ref = "ebTest:Initiator"/> 9
 <element ref = "ebTest:GetMessage"/> 10
 <element ref = "ebTest:TestAssertion"/> 11
 <element ref = "ebTest:Continue"/> 12
 <element ref = "ebTest:ThreadRef"/> 13
 <element ref = "ebTest:Split"/> 14
 <element ref = "ebTest:Join"/> 15
 <element ref = "ebTest:Sleep"/> 16
 <element ref = "ebTest:Exit"/> 17
 <element ref = "ebTest:Return"/> 18
 </choice> 19
 </complexType> 20
 </element> 21
 <element name = "Exit"> 22
 <complexType> 23
 <simpleContent> 24
 <extension base = "ebTest:assertionExit.type"> 25
 <attribute name = "description" use = "require d" type = 26
"string"/> 27
 </extension> 28
 </simpleContent> 29
 </complexType> 30
 </element> 31
 <element name = "XMLDSIG"> 32
 <complexType> 33
 <sequence> 34
 <element ref = "ebTest:KeystoreFileURI"/> 35
 <element ref = "ebTest:KeystoreType"/> 36
 <element ref = "ebTest:KeystorePassword"/> 37
 <element ref = "ebTest:KeystoreAlias"/> 38
 <element ref = "ebTest:KeystoreAliasPassword" m inOccurs = 39
"0"/> 40
 </sequence> 41
 </complexType> 42
 </element> 43
 <element name = "Title" type = "string"/> 44
 <element name = "DSignEnvelope"> 45
 <complexType> 46
 <sequence> 47
 <element ref = "ebTest:CanonocalizationMethodAl gorithm" 48
minOccurs = "0"/> 49
 <element ref = "ebTest:DigestMethodAlgorithm" m inOccurs = 50
"0"/> 51
 <element ref = "ebTest:SignatureMethodAlgorighm " minOccurs = 52
"0"/> 53
 <element ref = "ebTest:TransformAlgorithm" minO ccurs = "0"/> 54
 <element ref = "ebTest:Transform" minOccurs = " 0"/> 55
 <element ref = "ebTest:ReferenceURI" minOccurs = "0"/> 56
 <element ref = "ebTest:Result" minOccurs = "0"/ > 57
 </sequence> 58
 </complexType> 59
 </element> 60
 <element name = "DSignPayload"> 61
 <complexType> 62
 <sequence> 63
 <element ref = "ebTest:CanonocalizationMethodAl gorithm" 64
minOccurs = "0"/> 65
 <element ref = "ebTest:DigestMethodAlgorithm" m inOccurs = 66
"0"/> 67
 <element ref = "ebTest:SignatureMethodAlgorighm " minOccurs = 68
"0"/> 69
 <element ref = "ebTest:TransformAlgorithm" minO ccurs = "0"/> 70
 <element ref = "ebTest:Transform" minOccurs = " 0"/> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 195 of 214

 <element ref = "ebTest:ReferenceURI" minOccurs = "0"/> 1
 <element ref = "ebTest:Result" minOccurs = "0"/ > 2
 </sequence> 3
 </complexType> 4
 </element> 5
 <element name = "Return"> 6
 <complexType/> 7
 </element> 8
 <element name = "KeystoreFileURI" type = "anyURI"/ > 9
 <element name = "KeystoreType" type = "ebTest:keys tore.type"/> 10
 <element name = "KeystorePassword" type = "string" /> 11
 <element name = "KeystoreAlias" type = "string"/> 12
 <element name = "KeystoreAliasPassword" type = "st ring"/> 13
 <element name = "CanonocalizationMethodAlgorithm" type = "anyURI"/> 14
 <element name = "DigestMethod" type = "string"/> 15
 <element name = "SignatureMethodAlgorighm" type = "anyURI"/> 16
 <element name = "ReferenceURI" type = "anyURI"/> 17
 <element name = "TransformAlgorithm" type = "anyUR I"/> 18
 <element name = "Transform" type = "string"/> 19
 <element name = "DigestMethodAlgorithm" type = "an yURI"/> 20
 <element name = "SetMessageType" type = "string"/> 21
 <element name = "InitiateMessage"> 22
 <complexType> 23
 <sequence> 24
 <element ref = "ebTest:Content"/> 25
 <element ref = "ebTest:Mutator" minOccurs = "0" /> 26
 <element ref = "ebTest:Result" minOccurs = "0"/ > 27
 </sequence> 28
 </complexType> 29
 </element> 30
 <element name = "InitiatePayload"> 31
 <complexType> 32
 <sequence> 33
 <element ref = "ebTest:Packaging" minOccurs = " 0"/> 34
 <element ref = "ebTest:Content"/> 35
 <element ref = "ebTest:Mutator" minOccurs = "0" /> 36
 <element ref = "ebTest:Result" minOccurs = "0"/ > 37
 </sequence> 38
 </complexType> 39
 </element> 40
 <element name = "Result"> 41
 <complexType> 42
 <sequence> 43
 <element ref = "ebTest:ExitResult"/> 44
 <element ref = "ebTest:Description"/> 45
 </sequence> 46
 </complexType> 47
 </element> 48
 <element name = "LockParameter"> 49
 <complexType> 50
 <sequence> 51
 <element ref = "ebTest:Name"/> 52
 <element ref = "ebTest:Result" minOccurs = "0"/ > 53
 </sequence> 54
 <attribute name = "lockType" use = "required" ty pe = 55
"ebTest:lock.type"/> 56
 </complexType> 57
 </element> 58
 <element name = "UnlockParameter"> 59
 <complexType> 60
 <sequence> 61
 <element ref = "ebTest:Name"/> 62
 <element ref = "ebTest:Result" minOccurs = "0"/ > 63
 </sequence> 64
 </complexType> 65
 </element> 66
</schema> 67

 68

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 196 of 214

Appendix G (Normative) WSDL Test Service 1

Definitions 2

 3

 4

WSDL Definition of the Test Service initiator SOAP method 5

 6

<?xml version="1.0" encoding="UTF-8"?> 7
<!-- edited with XMLSPY v2004 rel. 4 U (http://www. xmlspy.com) by Mike Kass (Personal) -8
-> 9
<wsdl:definitions xmlns="http://schemas.xmlsoap.org /wsdl/" 10
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="urn:oasis:names:tc:ebxml-11
iic:testservice:wsdl:2.0" xmlns:wsdl="http://schema s.xmlsoap.org/wsdl/" 12
xmlns:xsd1="http://www.oasis-open.org/tc/ebxml-iic/ tests/messages" 13
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" 14
targetNamespace="urn:oasis:names:tc:ebxml-iic:tests ervice:wsdl:2.0" 15
name="RegistryService"> 16
 <wsdl:import namespace="http://www.oasis-open.org/ tc/ebxml-iic/tests/messages" 17
location="schemas/TestServiceMessages.xsd"/> 18
 <wsdl:message name="InitiatorRequest"> 19
 <wsdl:part name="InitiatorRequest" element="xsd1: InitiatorRequest"/> 20
 </wsdl:message> 21
 <wsdl:message name="InitiatorResponse"> 22
 <wsdl:part name="InitiatorResponse" element="xsd1 :InitiatorResponse"/> 23
 </wsdl:message> 24
 <wsdl:portType name="SendPortType"> 25
 <documentation>Maps to the Initiator interface of Test Framework 26
spec.</documentation> 27
 <wsdl:operation name="initiator"> 28
 <wsdl:input message="tns:InitiatorRequest"/> 29
 <wsdl:output message="tns:InitiatorResponse"/> 30
 </wsdl:operation> 31
 </wsdl:portType> 32
 <wsdl:binding name="InitiatorSOAPBinding" type="tn s:SendPortType"> 33
 <soap:binding style="document" 34
transport="http://schemas.xmlsoap.org/soap/http"/> 35
 <wsdl:operation name="initiator"> 36
 <soap:operation 37
soapAction="uri:oasis:ebxml:iic:testservice:Send:in itiator"/> 38
 <wsdl:input> 39
 <mime:multipartRelated> 40
 <mime:part> 41
 <soap:body use="literal"/> 42
 </mime:part> 43
 </mime:multipartRelated> 44
 </wsdl:input> 45
 <wsdl:output> 46
 <mime:multipartRelated> 47
 <mime:part> 48
 <soap:body use="literal"/> 49
 </mime:part> 50
 </mime:multipartRelated> 51
 </wsdl:output> 52
 </wsdl:operation> 53
 </wsdl:binding> 54
 <wsdl:service name="TestService"> 55
 <documentation>The QueryManager service of OASIS ebXML Test Framework version 56
1.1</documentation> 57
 <wsdl:port name="InitiatorSOAPBinding" binding="t ns:InitiatorSOAPBinding"> 58
 <soap:address 59
location="http://your_URL_to_your_ConfigurationServ ice"/> 60
 </wsdl:port> 61
 </wsdl:service> 62

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 197 of 214

 <documentation>This is the the normative abstract WSDL service definition for the 1
OASIS ebXML Test Service</documentation> 2
</wsdl:definitions> 3

 4

 5

 6

 7

 8

WSDL Definitnion of the Test Service configure method 9

 10

 11

<?xml version="1.0" encoding="UTF-8"?> 12
<!-- edited with XMLSPY v2004 rel. 4 U (http://www. xmlspy.com) by Mike Kass (Personal) -13
-> 14
<wsdl:definitions xmlns="http://schemas.xmlsoap.org /wsdl/" 15
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="urn:oasis:names:tc:ebxml-16
iic:testservice:wsdl:2.0" xmlns:wsdl="http://schema s.xmlsoap.org/wsdl/" 17
xmlns:xsd1="http://www.oasis-open.org/tc/ebxml-iic/ tests/messages" 18
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" 19
targetNamespace="urn:oasis:names:tc:ebxml-iic:tests ervice:wsdl:2.0" 20
name="RegistryService"> 21
 <wsdl:import namespace="http://www.oasis-open.org/ tc/ebxml-iic/tests/messages" 22
location="schemas/TestServiceMessages.xsd"/> 23
 <wsdl:message name="TestServiceConfiguratorRequest "> 24
 <wsdl:part name="TestServiceConfiguratorRequest" 25
element="xsd1:TestServiceConfiguratorRequest"/> 26
 </wsdl:message> 27
 <wsdl:message name="TestServiceConfiguratorRespons e"> 28
 <wsdl:part name="TestServiceConfiguratorResponse" 29
element="xsd1:TestServiceConfiguratorResponse"/> 30
 </wsdl:message> 31
 <wsdl:portType name="ConfigurationPortType"> 32
 <documentation>Maps to the Configurator interface of Test Framework 33
spec.</documentation> 34
 <wsdl:operation name="configurator"> 35
 <wsdl:input message="tns:TestServiceConfigurator Request"/> 36
 <wsdl:output message="tns:TestServiceConfigurato rResponse"/> 37
 </wsdl:operation> 38
 </wsdl:portType> 39
 <wsdl:binding name="ConfiguratorSOAPBinding" type= "tns:ConfigurationPortType"> 40
 <soap:binding style="document" 41
transport="http://schemas.xmlsoap.org/soap/http"/> 42
 <wsdl:operation name="configurator"> 43
 <soap:operation 44
soapAction="uri:oasis:ebxml:iic:testservice:Configu ration:configurator"/> 45
 <wsdl:input> 46
 <mime:multipartRelated> 47
 <mime:part> 48
 <soap:body/> 49
 </mime:part> 50
 </mime:multipartRelated> 51
 </wsdl:input> 52
 <wsdl:output> 53
 <mime:multipartRelated> 54
 <mime:part> 55
 <soap:body/> 56
 </mime:part> 57
 </mime:multipartRelated> 58
 </wsdl:output> 59
 </wsdl:operation> 60
 </wsdl:binding> 61
 <wsdl:service name="TestService"> 62
 <documentation>The QueryManager service of OASIS ebXML Test Framework version 63
1.1</documentation> 64

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 198 of 214

 <wsdl:port name="ConfiguratorSOAPBinding" 1
binding="tns:ConfiguratorSOAPBinding"> 2
 <soap:address 3
location="http://your_URL_to_your_ConfigurationServ ice"/> 4
 </wsdl:port> 5
 </wsdl:service> 6
 <documentation>This is the the normative abstract WSDL service definition for the 7
OASIS ebXML Test Service</documentation> 8
</wsdl:definitions> 9

 10

 11

 12

 13

 14

WSDL Definition of the Test Driver notify method 15

 16

<?xml version="1.0" encoding="UTF-8"?> 17
<!-- edited with XMLSPY v2004 rel. 3 U (http://www. xmlspy.com) by Mike Kass (Personal) -18
-> 19
<wsdl:definitions xmlns="http://schemas.xmlsoap.org /wsdl/" 20
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="urn:oasis:names:tc:ebxml-21
iic:testservice:wsdl:2.0" xmlns:wsdl="http://schema s.xmlsoap.org/wsdl/" 22
xmlns:xsd1="http://www.oasis-open.org/tc/ebxml-iic/ tests/messages" 23
targetNamespace="urn:oasis:names:tc:ebxml-iic:tests ervice:wsdl:2.0" 24
name="RegistryService"> 25
 <wsdl:import namespace="http://www.oasis-open.org/ tc/ebxml-iic/tests/messages" 26
location="schemas/TestServiceMessages.xsd"/> 27
 <wsdl:message name="NotificationRequest"> 28
 <wsdl:part name="NotificationRequest" element="xs d1:NotificationRequest"/> 29
 </wsdl:message> 30
 <wsdl:message name="NotificationResponse"> 31
 <wsdl:part name="NotificationResponse" element="x sd1:NotificationResponse"/> 32
 </wsdl:message> 33
 <wsdl:portType name="NotificationPortType"> 34
 <documentation>Maps to the Notification interface of Test Framework 35
spec.</documentation> 36
 <wsdl:operation name="Notify"> 37
 <wsdl:input message="tns:NotificationRequest"/> 38
 <wsdl:output message="tns:NotificationResponse"/ > 39
 </wsdl:operation> 40
 </wsdl:portType> 41
 <wsdl:binding name="NotificationSOAPBinding" type= "tns:NotificationPortType"> 42
 <soap:binding style="document" 43
transport="http://schemas.xmlsoap.org/soap/http"/> 44
 <wsdl:operation name="Notify"> 45
 <soap:operation 46
soapAction="uri:oasis:ebxml:iic:testservice:Receive :Notification"/> 47
 <wsdl:input> 48
 <mime:multipartRelated> 49
 <mime:part> 50
 <soap:body use="literal"/> 51
 </mime:part> 52
 </mime:multipartRelated> 53
 </wsdl:input> 54
 <wsdl:output> 55
 <mime:multipartRelated> 56
 <mime:part> 57
 <soap:body use="literal"/> 58
 </mime:part> 59
 </mime:multipartRelated> 60
 </wsdl:output> 61
 </wsdl:operation> 62
 </wsdl:binding> 63
 <wsdl:service name="TestDriverReceiveService"> 64

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 199 of 214

 <documentation>The Receive service of OASIS ebXML Test Framework version 1
1.1</documentation> 2
 <wsdl:port name="NotifySOAPBinding" binding="tns: NotificationSOAPBinding"> 3
 <soap:address location="http://your_URL_to_your_ ReceiveService"/> 4
 </wsdl:port> 5
 </wsdl:service> 6
 <documentation>This is the the normative abstract WSDL service definition for the 7
OASIS ebXML Test Service</documentation> 8
</wsdl:definitions> 9
 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 200 of 214

Appendix H (Normative) Sample Test Cases 1

 2

 3

The XML document below is the normative representation of Test Case #1 found in section XX.X 4

 5

<?xml version = "1.0" encoding = "UTF-8"?> 6
<?xml-stylesheet type="text/xsl" href="xslt\ebXMLTe stsuite.xsl"?> 7
<ebTest:TestSuite xmlns:ebTest = "http://www.oasis- open.org/tc/ebxml-iic/tests" 8
configurationGroupRef = "mshc_Basic" xmlns:ds = "ht tp://www.oasis-open.org/tc/ebxml-9
iic/tests/xmldsig" xmlns:xlink = "http://www.w3.org /1999/xlink" xmlns:xsi = 10
"http://www.w3.org/2001/XMLSchema-instance" xsi:sch emaLocation = "http://www.oasis-11
open.org/tc/ebxml-iic/tests schemas\ebTest.xsd"> 12
 <ebTest:MetaData> 13
 <ebTest:Title>Use Case 1</ebTest:Title> 14
 <ebTest:Description>POC for BPSS testing: Case 1 - Basic Business Transaction 15
(e.g. PIP 3A4) with TimeToPerform and TimeToAcknowl edgeReceipt</ebTest:Description> 16
 <ebTest:Version>0.1</ebTest:Version> 17
 <ebTest:Maintainer>Michael Kass</ebTest:Maintaine r> 18
 <ebTest:Location>ScriptingTestSuite.xml</ebTest:L ocation> 19
 <ebTest:PublishDate>05/20/2004</ebTest:PublishDat e> 20
 <ebTest:Status>DRAFT</ebTest:Status> 21
 </ebTest:MetaData> 22
 <ebTest:ConfigurationGroup id = "mshc_Basic"> 23
 <ebTest:Mode>connection</ebTest:Mode> 24
 <ebTest:StepDuration>300</ebTest:StepDuration> 25
 <ebTest:Transport>HTTP</ebTest:Transport> 26
 <ebTest:Envelope>ebXML</ebTest:Envelope> 27
 <ebTest:StoreAttachments>true</ebTest:StoreAttach ments> 28
 <ebTest:ValidationType>XMLSchema</ebTest:Validati onType> 29
 <ebTest:MutatorType>XSLT</ebTest:MutatorType> 30
 <ebTest:SetParameter> 31
 <ebTest:Name>SenderParty</ebTest:Name> 32
 <ebTest:Value>TestDriver</ebTest:Value> 33
 </ebTest:SetParameter> 34
 <ebTest:SetParameter> 35
 <ebTest:Name>ReceiverParty</ebTest:Name> 36
 <ebTest:Value>TestService</ebTest:Value> 37
 </ebTest:SetParameter> 38
 <ebTest:SetParameter> 39
 <ebTest:Name>Service</ebTest:Name> 40
 <ebTest:Value>urn:ebxml:iic:test</ebTest:Value> 41
 </ebTest:SetParameter> 42
 <ebTest:SetParameter> 43
 <ebTest:Name>Action</ebTest:Name> 44
 <ebTest:Value>Dummy</ebTest:Value> 45
 </ebTest:SetParameter> 46
 <ebTest:SetParameter> 47
 <ebTest:Name>CPAId</ebTest:Name> 48
 <ebTest:Value>mshc_Basic</ebTest:Value> 49
 </ebTest:SetParameter> 50
 <ebTest:Namespaces> 51
 <ebTest:SetNamespace> 52
 <ebTest:Name>eb</ebTest:Name> 53
 <ebTest:Value>http://www.oasis-open.org/committ ees/ebxml-54
msg/schema/msg-header-2_0.xsd</ebTest:Value> 55
 </ebTest:SetNamespace> 56
 <ebTest:SetNamespace> 57
 <ebTest:Name>soap</ebTest:Name> 58
 59
 <ebTest:Value>http://schemas.xmlsoap.org/soap/enve lope/</ebTest:Value> 60
 </ebTest:SetNamespace> 61
 <ebTest:SetNamespace> 62
 <ebTest:Name>TEST</ebTest:Name> 63

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 201 of 214

 <ebTest:Value>http://www.oasis-open.org/tc/ebxm l-1
iic/testing/messageStore</ebTest:Value> 2
 </ebTest:SetNamespace> 3
 </ebTest:Namespaces> 4
 </ebTest:ConfigurationGroup> 5
 <ebTest:TestCase id = "testcase_3" description = " Basic Business Transaction with 6
TimeToPerform and TimeToAcknowledge" requirementRef erenceId = "req_1"> 7
 <ebTest:ThreadGroup> 8
 <ebTest:Thread name = "thread_01"> 9
 <ebTest:Sleep>180</ebTest:Sleep> 10
 </ebTest:Thread> 11
 </ebTest:ThreadGroup> 12
 <ebTest:PutMessage description = "Send a message containing a Purchase Order 13
attachment"> 14
 <ebTest:SetMessage> 15
 <ebTest:Packaging/> 16
 <ebTest:Content> 17
 <ebTest:Declaration> 18
 <soap:Envelope xmlns:soap = "http://www.oasis -19
open.org/tc/ebxml-iic/tests/soap" xmlns:eb = "http: //www.oasis-open.org/tc/ebxml-20
iic/tests/eb"> 21
 <soap:Header> 22
 <eb:MessageHeader> 23
 24
 <eb:Action>Purchase</eb:Action> 25
 </eb:MessageHeader> 26
 </soap:Header> 27
 <soap:Body> 28
 <eb:Manifest> 29
 <eb:Reference xlink:href 30
= "cid:Pip34APurchaseOrderRequest"/> 31
 </eb:Manifest> 32
 </soap:Body> 33
 </soap:Envelope> 34
 </ebTest:Declaration> 35
 </ebTest:Content> 36
 <ebTest:Mutator> 37
 <ebTest:FileURI>ebXMLEnvelope.xsl</ebTest:File URI> 38
 </ebTest:Mutator> 39
 </ebTest:SetMessage> 40
 <ebTest:SetPayload description = "Add content-id and payload to MIME 41
message"> 42
 <ebTest:Packaging/> 43
 <ebTest:Content> 44
 45
 <ebTest:FileURI>Pip34APurchaseOrderRequest.xml</eb Test:FileURI> 46
 </ebTest:Content> 47
 </ebTest:SetPayload> 48
 </ebTest:PutMessage> 49
 <ebTest:SetParameter> 50
 <ebTest:Name>RequestTimestamp</ebTest:Name> 51
 <ebTest:ParameterRef>Timestamp</ebTest:Parameter Ref> 52
 </ebTest:SetParameter> 53
 <ebTest:Split> 54
 <ebTest:ThreadRef nameRef = "thread_01"/> 55
 </ebTest:Split> 56
 <ebTest:GetMessage description = "Retrieve busine ss Acknowledgment "> 57
 58
 <ebTest:Filter>/TEST:MessageStore/TEST:Message/TES T:Part[1]/TEST:Content/soap:Envelop59
e/soap:Header[eb:MessageHeader[eb:ConversationId=$C onversationId and eb:Action="Mute"] 60
and [eb:Manifest/eb:Reference/xlink:href="cid:Recei ptAcknowledgment"]]</ebTest:Filter> 61
 </ebTest:GetMessage> 62
 <ebTest:SetXPathParameter> 63
 <ebTest:Name>BusinessTimeStamp</ebTest:Name> 64
 65
 <ebTest:Expression>TEST:FilterResult/TEST:Message/ TEST:Part/TEST:Content//ReceiptAckn66
owledgment//Timestamp</ebTest:Expression> 67
 </ebTest:SetXPathParameter> 68
 <ebTest:TestAssertion description = "Verify that message is an 69
'ReceiptAcknowledgment with a Purchase order Refere nce corresponding to the 70
ConversationId'"> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 202 of 214

 1
 <ebTest:VerifyContent>TEST:FilterResult/TEST:Messa ge/TEST:Part[TEST:Packaging/TEST:He2
ader[TEST:Name="Content-Id" and TEST:Value="cid:Rec eiptAcknowledgment"]and 3
[TEST:Content//ReceiptAcknowledgment[Reference=$Con versationId]]</ebTest:VerifyContent> 4
 </ebTest:TestAssertion> 5
 <ebTest:TestAssertion description = "Verify that Receipt Acknowledgment 6
occured within specified 'TimeToAcknowledgeReceipt' "> 7
 <ebTest:VerifyTimeDifference> 8
 <ebTest:ParamName>BusinessTimeStamp</ebTest:Par amName> 9
 <ebTest:ParamName>RequestTimestamp</ebTest:Para mName> 10
 <ebTest:Operator>lessThanOrEqual</ebTest:Operat or> 11
 <ebTest:Difference>PT120S</ebTest:Difference> 12
 </ebTest:VerifyTimeDifference> 13
 </ebTest:TestAssertion> 14
 <ebTest:Join> 15
 <ebTest:ThreadRef nameRef = "thread_01"/> 16
 </ebTest:Join> 17
 <ebTest:GetMessage description = "Retrieve Respon se message(s) "> 18
 19
 <ebTest:Filter>/TEST:MessageStore/TEST:Message/TES T:Part/TEST:Content/TEST:soap:Heade20
r[eb:MessageHeader[eb:ConversationId=$ConversationI d and eb:Action="Mute"] and 21
[eb:Manifest/eb:Reference/xlink:href="cid:Pip34Purc haseOrderResponse"]]</ebTest:Filter> 22
 23
 </ebTest:GetMessage> 24
 <ebTest:SetXPathParameter> 25
 <ebTest:Name>RefToMessageId</ebTest:Name> 26
 27
 <ebTest:Expression>TEST:FilterResult/TEST:MessageT EST:Part/TEST:Content/TEST:soap:Hea28
der/eb:MessageHeader/eb:MessageData/eb:RefToMessage Id</ebTest:Expression> 29
 </ebTest:SetXPathParameter> 30
 <ebTest:TestAssertion description = "Verify that result contains either a 31
single Confirmation or Rejection"> 32
 33
 <ebTest:VerifyContent>TEST:FilterResult/TEST:Messa ge/TEST:Part/TEST:Content//*[Confir34
mation or Rejection]]</ebTest:VerifyContent> 35
 </ebTest:TestAssertion> 36
 <ebTest:PutMessage description = "Send a message containing a 37
BusinessAcknowledgment attachment"> 38
 <ebTest:SetMessage> 39
 <ebTest:Packaging/> 40
 <ebTest:Content> 41
 <ebTest:Declaration> 42
 <soap:Envelope xmlns:soap = "http://www.oasis -43
open.org/tc/ebxml-iic/tests/soap" xmlns:eb = "http: //www.oasis-open.org/tc/ebxml-44
iic/tests/eb"> 45
 <soap:Header> 46
 <eb:MessageHeader> 47
 48
 <eb:Action>Purchase</eb:Action> 49
 </eb:MessageHeader> 50
 </soap:Header> 51
 <soap:Body> 52
 <eb:Manifest> 53
 <eb:Reference xlink:href 54
= "cid:BusinessAcknowledgmentt"/> 55
 </eb:Manifest> 56
 </soap:Body> 57
 </soap:Envelope> 58
 </ebTest:Declaration> 59
 </ebTest:Content> 60
 <ebTest:Mutator> 61
 <ebTest:FileURI>ebXMLEnvelope.xsl</ebTest:File URI> 62
 </ebTest:Mutator> 63
 </ebTest:SetMessage> 64
 <ebTest:SetPayload description = "Add content-id and payload to MIME 65
message"> 66
 <ebTest:Packaging/> 67
 <ebTest:Content> 68
 69
 <ebTest:FileURI>BusinessAcknowledgment.xml</ebTest :FileURI> 70
 </ebTest:Content> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 203 of 214

 </ebTest:SetPayload> 1
 </ebTest:PutMessage> 2
 </ebTest:TestCase> 3
</ebTest:TestSuite> 4

 5

The XML document below is the normative representation of Test Case #2 in section 4.2 6

 7

<?xml version = "1.0" encoding = "UTF-8"?> 8
<?xml-stylesheet type="text/xsl" href="xslt\ebXMLTe stsuite.xsl"?> 9
<ebTest:TestSuite xmlns:ebTest = "http://www.oasis- open.org/tc/ebxml-iic/tests" 10
configurationGroupRef = "mshc_Basic" xmlns:ds = "ht tp://www.oasis-open.org/tc/ebxml-11
iic/tests/xmldsig" xmlns:xlink = "http://www.w3.org /1999/xlink" xmlns:xsi = 12
"http://www.w3.org/2001/XMLSchema-instance" xsi:sch emaLocation = "http://www.oasis-13
open.org/tc/ebxml-iic/tests schemas\ebTest.xsd"> 14
 <ebTest:MetaData> 15
 <ebTest:Title>Use Case 2</ebTest:Title> 16
 <ebTest:Description>POC for BPSS testing: Case 2: Catching unexpected ebXML 17
Error messages</ebTest:Description> 18
 <ebTest:Version>0.1</ebTest:Version> 19
 <ebTest:Maintainer>Michael Kass</ebTest:Maintaine r> 20
 <ebTest:Location>ScriptingTestSuite.xml</ebTest:L ocation> 21
 <ebTest:PublishDate>05/20/2004</ebTest:PublishDat e> 22
 <ebTest:Status>DRAFT</ebTest:Status> 23
 </ebTest:MetaData> 24
 <ebTest:ConfigurationGroup id = "mshc_Basic"> 25
 <ebTest:Mode>connection</ebTest:Mode> 26
 <ebTest:StepDuration>300</ebTest:StepDuration> 27
 <ebTest:Transport>HTTP</ebTest:Transport> 28
 <ebTest:Envelope>ebXML</ebTest:Envelope> 29
 <ebTest:StoreAttachments>true</ebTest:StoreAttach ments> 30
 <ebTest:ValidationType>XMLSchema</ebTest:Validati onType> 31
 <ebTest:MutatorType>XSLT</ebTest:MutatorType> 32
 <ebTest:SetParameter> 33
 <ebTest:Name>SenderParty</ebTest:Name> 34
 <ebTest:Value>TestDriver</ebTest:Value> 35
 </ebTest:SetParameter> 36
 <ebTest:SetParameter> 37
 <ebTest:Name>ReceiverParty</ebTest:Name> 38
 <ebTest:Value>TestService</ebTest:Value> 39
 </ebTest:SetParameter> 40
 <ebTest:SetParameter> 41
 <ebTest:Name>Service</ebTest:Name> 42
 <ebTest:Value>urn:ebxml:iic:test</ebTest:Value> 43
 </ebTest:SetParameter> 44
 <ebTest:SetParameter> 45
 <ebTest:Name>Action</ebTest:Name> 46
 <ebTest:Value>Dummy</ebTest:Value> 47
 </ebTest:SetParameter> 48
 <ebTest:SetParameter> 49
 <ebTest:Name>CPAId</ebTest:Name> 50
 <ebTest:Value>mshc_Basic</ebTest:Value> 51
 </ebTest:SetParameter> 52
 <ebTest:Namespaces> 53
 <ebTest:SetNamespace> 54
 <ebTest:Name>eb</ebTest:Name> 55
 <ebTest:Value>http://www.oasis-open.org/committ ees/ebxml-56
msg/schema/msg-header-2_0.xsd</ebTest:Value> 57
 </ebTest:SetNamespace> 58
 <ebTest:SetNamespace> 59
 <ebTest:Name>soap</ebTest:Name> 60
 61
 <ebTest:Value>http://schemas.xmlsoap.org/soap/enve lope/</ebTest:Value> 62
 </ebTest:SetNamespace> 63
 <ebTest:SetNamespace> 64
 <ebTest:Name>TEST</ebTest:Name> 65
 <ebTest:Value>http://www.oasis-open.org/tc/ebxm l-66
iic/testing/messageStore</ebTest:Value> 67
 </ebTest:SetNamespace> 68

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 204 of 214

 </ebTest:Namespaces> 1
 </ebTest:ConfigurationGroup> 2
 <ebTest:TestCase id = "testcase_1" description = " Catching unexpected ebXML Error 3
messages" requirementReferenceId = "req_1"> 4
 <ebTest:ThreadGroup> 5
 <ebTest:Thread name = "thread_01"> 6
 <ebTest:Sleep>180</ebTest:Sleep> 7
 </ebTest:Thread> 8
 <ebTest:Thread name = "thread_02"> 9
 <ebTest:Sleep>300</ebTest:Sleep> 10
 <ebTest:GetMessage description = "Get any recei ved error 11
messages from the MessageStore"> 12
 13
 <ebTest:Filter>/TEST:MessageStore/Message/TEST:Mes sage/TEST:Part[1]/TEST:Content/soap14
:Envelope/soap:Header[[eb:MessageHeader[eb:CPAId="$ CPAId" and 15
eb:ConversationId=$ConversationId] and eb:ErrorList]</ebTest:Filter> 16
 </ebTest:GetMessage> 17
 <ebTest:TestAssertion description = "Verify No Error is 18
present"> 19
 20
 <ebTest:VerifyContent>/TEST:FilterResult/TEST:Mess age/TEST:Part[1]/TEST:Content/soap:21
Envelope/soap:Header/eb:ErrorList</ebTest:VerifyCon tent> 22
 <ebTest:WhenTrue> 23
 <ebTest:Exit description = "ErrorList was 24
found">fail</ebTest:Exit> 25
 </ebTest:WhenTrue> 26
 </ebTest:TestAssertion> 27
 </ebTest:Thread> 28
 </ebTest:ThreadGroup> 29
 <ebTest:PutMessage description = "Send a message m1"> 30
 <ebTest:SetMessage> 31
 <ebTest:Packaging/> 32
 <ebTest:Content> 33
 <ebTest:Declaration> 34
 <soap:Envelope xmlns:soap = "http://www.oasis -35
open.org/tc/ebxml-iic/tests/soap" xmlns:eb = "http: //www.oasis-open.org/tc/ebxml-36
iic/tests/eb"> 37
 <soap:Header> 38
 <eb:MessageHeader> 39
 40
 <eb:Action>Purchase</eb:Action> 41
 </eb:MessageHeader> 42
 </soap:Header> 43
 <soap:Body> 44
 <eb:Manifest> 45
 <eb:Reference xlink:href 46
= "cid:Pip34APurchaseOrderRequest"/> 47
 </eb:Manifest> 48
 </soap:Body> 49
 </soap:Envelope> 50
 </ebTest:Declaration> 51
 </ebTest:Content> 52
 <ebTest:Mutator> 53
 <ebTest:FileURI>ebXMLEnvelope.xsl</ebTest:File URI> 54
 </ebTest:Mutator> 55
 </ebTest:SetMessage> 56
 </ebTest:PutMessage> 57
 <ebTest:Split> 58
 <ebTest:ThreadRef nameRef = "thread_01"/> 59
 </ebTest:Split> 60
 <ebTest:Split> 61
 <ebTest:ThreadRef nameRef = "thread_02"/> 62
 </ebTest:Split> 63
 <ebTest:Join> 64
 <ebTest:ThreadRef nameRef = "thread_01"/> 65
 </ebTest:Join> 66
 <ebTest:GetMessage description = "Retrieve Respon se message M2"> 67
 68
 <ebTest:Filter>/TEST:MessageStore/TEST:Message/TES T:Part[1]/TEST:Content/soap:Envelop69
e/soap:Header[eb:MessageHeader[eb:ConversationId=$C onversationId and 70
eb:Action="PurchaseOrderResponse"]]</ebTest:Filter> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 205 of 214

 </ebTest:GetMessage> 1
 <ebTest:TestAssertion description = "Verify Respo nse is present"> 2
 3
 <ebTest:VerifyContent>/TEST:FilterResult//TEST:Mes sage(count()=1)></ebTest:VerifyCont4
ent> 5
 </ebTest:TestAssertion> 6
 <ebTest:Join> 7
 <ebTest:ThreadRef nameRef = "thread_02"/> 8
 </ebTest:Join> 9
 </ebTest:TestCase> 10
</ebTest:TestSuite> 11

 12

The XML document below is the normative representation of Test Case #3 in section 4.2 13

 14

<?xml version = "1.0" encoding = "UTF-8"?> 15
<?xml-stylesheet type="text/xsl" href="xslt\ebXMLTe stsuite.xsl"?> 16
<ebTest:TestSuite xmlns:ebTest = "http://www.oasis- open.org/tc/ebxml-iic/tests" 17
configurationGroupRef = "mshc_Basic" xmlns:ds = "ht tp://www.oasis-open.org/tc/ebxml-18
iic/tests/xmldsig" xmlns:xlink = "http://www.w3.org /1999/xlink" xmlns:xsi = 19
"http://www.w3.org/2001/XMLSchema-instance" xsi:sch emaLocation = "http://www.oasis-20
open.org/tc/ebxml-iic/tests schemas\ebTest.xsd"> 21
 <ebTest:MetaData> 22
 <ebTest:Title>Use Case 3</ebTest:Title> 23
 <ebTest:Description>POC for BPSS testing: Case 3: Conditional 24
Branching</ebTest:Description> 25
 <ebTest:Version>0.1</ebTest:Version> 26
 <ebTest:Maintainer>Michael Kass</ebTest:Maintaine r> 27
 <ebTest:Location>ScriptingTestSuite.xml</ebTest:L ocation> 28
 <ebTest:PublishDate>05/20//2004</ebTest:PublishDa te> 29
 <ebTest:Status>DRAFT</ebTest:Status> 30
 </ebTest:MetaData> 31
 <ebTest:ConfigurationGroup id = "mshc_Basic"> 32
 <ebTest:Mode>connection</ebTest:Mode> 33
 <ebTest:StepDuration>300</ebTest:StepDuration> 34
 <ebTest:Transport>HTTP</ebTest:Transport> 35
 <ebTest:Envelope>ebXML</ebTest:Envelope> 36
 <ebTest:StoreAttachments>true</ebTest:StoreAttach ments> 37
 <ebTest:ValidationType>XMLSchema</ebTest:Validati onType> 38
 <ebTest:MutatorType>XSLT</ebTest:MutatorType> 39
 <ebTest:SetParameter> 40
 <ebTest:Name>SenderParty</ebTest:Name> 41
 <ebTest:Value>TestDriver</ebTest:Value> 42
 </ebTest:SetParameter> 43
 <ebTest:SetParameter> 44
 <ebTest:Name>ReceiverParty</ebTest:Name> 45
 <ebTest:Value>TestService</ebTest:Value> 46
 </ebTest:SetParameter> 47
 <ebTest:SetParameter> 48
 <ebTest:Name>Service</ebTest:Name> 49
 <ebTest:Value>urn:ebxml:iic:test</ebTest:Value> 50
 </ebTest:SetParameter> 51
 <ebTest:SetParameter> 52
 <ebTest:Name>Action</ebTest:Name> 53
 <ebTest:Value>Dummy</ebTest:Value> 54
 </ebTest:SetParameter> 55
 <ebTest:SetParameter> 56
 <ebTest:Name>CPAId</ebTest:Name> 57
 <ebTest:Value>mshc_Basic</ebTest:Value> 58
 </ebTest:SetParameter> 59
 <ebTest:Namespaces> 60
 <ebTest:SetNamespace> 61
 <ebTest:Name>eb</ebTest:Name> 62
 <ebTest:Value>http://www.oasis-open.org/committ ees/ebxml-63
msg/schema/msg-header-2_0.xsd</ebTest:Value> 64
 </ebTest:SetNamespace> 65
 <ebTest:SetNamespace> 66
 <ebTest:Name>soap</ebTest:Name> 67

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 206 of 214

 1
 <ebTest:Value>http://schemas.xmlsoap.org/soap/enve lope/</ebTest:Value> 2
 </ebTest:SetNamespace> 3
 <ebTest:SetNamespace> 4
 <ebTest:Name>TEST</ebTest:Name> 5
 <ebTest:Value>http://www.oasis-open.org/tc/ebxm l-6
iic/testing/messageStore</ebTest:Value> 7
 </ebTest:SetNamespace> 8
 </ebTest:Namespaces> 9
 </ebTest:ConfigurationGroup> 10
 <ebTest:TestCase id = "testcase_3" description = " Conditional Branching" 11
requirementReferenceId = "req_1"> 12
 <ebTest:ThreadGroup> 13
 <ebTest:Thread name = "_01"> 14
 <ebTest:Sleep>300</ebTest:Sleep> 15
 <ebTest:GetMessage description = "Get all recei ved messages 16
from the MessageStore"> 17
 18
 <ebTest:Filter>/TEST:MessageStore/Message/TEST:Mes sage/TEST:Part[1]/TEST:Content/soap19
:Envelope/soap:Header[eb:CPAId="$CPAId" and 20
eb:ConversationId=$ConversationId]</ebTest:Filter> 21
 </ebTest:GetMessage> 22
 <ebTest:TestAssertion description = "Verify No Error is 23
present"> 24
 25
 <ebTest:VerifyContent>/TEST:FilterResult/Message/T EST:Message/TEST:Part[1]/TEST:Conte26
nt/soap:Envelope/soap:Header[not(eb:ErrorList)]</eb Test:VerifyContent> 27
 </ebTest:TestAssertion> 28
 </ebTest:Thread> 29
 <ebTest:Thread name = "_02"> 30
 <ebTest:TestAssertion description = "Validate a pproval 31
document'"> 32
 <ebTest:ValidateContent contentType = "XML" 33
schemaLocation = 34
"http://www.eBusines.org/approval.xsd">/FilterResul t/Message/Payload/Approval</ebTest:Va35
lidateContent> 36
 </ebTest:TestAssertion> 37
 <ebTest:GetMessage description = "Retrieve mes sage m3 38
(quotation)"> 39
 40
 <ebTest:Filter>/TEST:MessageStore/Message/TEST:Mes sage/TEST:Part[1]/TEST:Content/soap41
:Envelope/soap:Header[eb:MessageHeader[eb:Conversat ionId=$ConversationId and 42
eb:Action="Mute" and eb:MessageData/eb:RefToMessage Id=$MessageId] and 43
[eb:Manifest/eb:Reference@xlink:href="cid:Quote"]]< /ebTest:Filter> 44
 </ebTest:GetMessage> 45
 <ebTest:TestAssertion description = "Verify tha t message is a 46
'quote'"> 47
 48
 <ebTest:VerifyContent>/TEST:FilterResult//Message/ TEST:Message/TEST:Part[TEST:Packagi49
ng/Test:Header[TEST:Name='Content-Id' and TEST:Valu e='cid:quote'] and 50
TEST:Content//*Quote] </ebTest:VerifyContent> 51
 </ebTest:TestAssertion> 52
 <ebTest:TestAssertion description = "Validate m essage"> 53
 <ebTest:ValidateContent contentType = "XML" 54
schemaLocation = 55
"http://http://www.eBusines.org/quote.xsd">/TEST:Fi lterResult//Message/TEST:Message/TEST56
:Part[TEST:Packaging/Test:Header[TEST:Name='Content -Id' and 57
TEST:Value='cid:quote']/TEST:Content </ebTest:Valid ateContent> 58
 </ebTest:TestAssertion> 59
 <ebTest:PutMessage description = "Send message (m4), approval 60
of quote"> 61
 <ebTest:SetMessage> 62
 <ebTest:Packaging/> 63
 <ebTest:Content> 64
 <ebTest:Declaration> 65
 <soap:Envelope xmlns:soap = 66
"http://www.oasis-open.org/tc/ebxml-iic/tests/soap" xmlns:eb = "http://www.oasis-67
open.org/tc/ebxml-iic/tests/eb"> 68
 <soap:Header> 69
 70
 <eb:MessageHeader> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 207 of 214

 1
 <eb:Action>ApproveQuote</eb:Action> 2
 3
 </eb:MessageHeader> 4
 </soap:Header> 5
 <soap:Body> 6
 <eb:Manifest> 7
 8
 <eb:Reference href = "cid:ApproveQuote"/> 9
 </eb:Manifest> 10
 </soap:Body> 11
 </soap:Envelope> 12
 </ebTest:Declaration> 13
 </ebTest:Content> 14
 <ebTest:Mutator> 15
 16
 <ebTest:FileURI>ebXMLEnvelope.xsl</ebTest:FileURI> 17
 </ebTest:Mutator> 18
 </ebTest:SetMessage> 19
 <ebTest:SetPayload description = "'Add content -id and 20
payload to MIME message"> 21
 <ebTest:Packaging> 22
 <ebTest:Header> 23
 <ebTest:Name>Content-24
ID</ebTest:Name> 25
 26
 <ebTest:Value>ApproveQuote</ebTest:Value> 27
 </ebTest:Header> 28
 </ebTest:Packaging> 29
 <ebTest:Content> 30
 31
 <ebTest:FileURI>file:ApproveQuote.xml</ebTest:File URI> 32
 </ebTest:Content> 33
 </ebTest:SetPayload> 34
 </ebTest:PutMessage> 35
 </ebTest:Thread> 36
 <ebTest:Thread name = "_03"> 37
 <ebTest:GetMessage description = "Retrieve Resp onse message 38
m2 "> 39
 40
 <ebTest:Filter>/TEST:MessageStore/Message/TEST:Mes sage[TEST:Part[1]/TEST:Content/soap41
:Envelope/soap:Header(eb:MessageHeader[eb:Conversat ionId=$ConversationId and 42
eb:Action="Mute" and eb:MessageData/eb:MessageId="m 2"]</ebTest:Filter> 43
 </ebTest:GetMessage> 44
 <ebTest:TestAssertion description = "Verify tha t message is an 45
'alternative' (not a Quote)"> 46
 47
 <ebTest:VerifyContent>/TEST:FilterResult/TEST:Mess age/TEST:Part[1]/TEST:Packaging/Tes48
t:Header[not(TEST:Name='Content-Id' and TEST:Value= 'cid:quote')]]</ebTest:VerifyContent> 49
 </ebTest:TestAssertion> 50
 </ebTest:Thread> 51
 </ebTest:ThreadGroup> 52
 <ebTest:PutMessage description = "Construct a bas ic message header with 53
manifest reference to payload containing a Request for Quote"> 54
 <ebTest:SetMessage> 55
 <ebTest:Packaging/> 56
 <ebTest:Content> 57
 <ebTest:Declaration> 58
 <soap:Envelope xmlns:soap = "http://www.oasis -59
open.org/tc/ebxml-iic/tests/soap" xmlns:eb = "http: //www.oasis-open.org/tc/ebxml-60
iic/tests/eb"> 61
 <soap:Header> 62
 <eb:MessageHeader> 63
 64
 <eb:Action>RequestQuote</eb:Action> 65
 </eb:MessageHeader> 66
 </soap:Header> 67
 <soap:Body> 68
 <eb:Manifest> 69
 <eb:Reference href = 70
"cid:RequestQuote"/> 71

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 208 of 214

 </eb:Manifest> 1
 </soap:Body> 2
 </soap:Envelope> 3
 </ebTest:Declaration> 4
 </ebTest:Content> 5
 <ebTest:Mutator> 6
 <ebTest:FileURI>ebXMLEnvelope.xsl</ebTest:File URI> 7
 </ebTest:Mutator> 8
 </ebTest:SetMessage> 9
 <ebTest:SetPayload description = "'Add content-i d and payload to MIME 10
message"> 11
 <ebTest:Packaging> 12
 <ebTest:Header> 13
 <ebTest:Name>Content-ID</ebTest:Name> 14
 <ebTest:Value>RequestQuote</ebTest:Value> 15
 </ebTest:Header> 16
 </ebTest:Packaging> 17
 <ebTest:Content> 18
 <ebTest:FileURI>file:RequestQuote.xml</ebTest: FileURI> 19
 </ebTest:Content> 20
 </ebTest:SetPayload> 21
 </ebTest:PutMessage> 22
 <ebTest:Split> 23
 <ebTest:ThreadRef nameRef = "_01"/> 24
 </ebTest:Split> 25
 <ebTest:GetMessage description = "Retrieve Respon se message m2 "> 26
 27
 <ebTest:Filter>/TEST:MessageStore/Message/TEST:Mes sage/TEST:Part[1]/TEST:Content/soap28
:Envelope/soap:Header[eb:MessageHeader[eb:Conversat ionId=$ConversationId and 29
eb:Action="Mute" and eb:MessageData/eb:RefToMessage Id=$MessageId] and 30
[eb:Manifest/eb:Reference/xlink:href="cid:response"]]</ebTest:Filter> 31
 </ebTest:GetMessage> 32
 <ebTest:TestAssertion description = "Verify that message is an 'approval"> 33
 34
 <ebTest:VerifyContent>/TEST:FilterResult//Message/ TEST:Message/TEST:Part[TEST:Packagi35
ng/Test:Header[TEST:Name='Content-Id' and TEST:Valu e='cid:response'] and 36
TEST:Content//*Approval] </ebTest:VerifyContent> 37
 <ebTest:WhenTrue> 38
 <ebTest:ThreadRef nameRef = "_02"/> 39
 </ebTest:WhenTrue> 40
 </ebTest:TestAssertion> 41
 <ebTest:TestAssertion description = "If it is a r ejection"> 42
 43
 <ebTest:VerifyContent>/TEST:FilterResult//Message/ TEST:Message/TEST:Part[TEST:Packagi44
ng/Test:Header[TEST:Name='Content-Id' and TEST:Valu e='cid:response'] and 45
TEST:Content//*Rejection] </ebTest:VerifyContent> 46
 <ebTest:WhenTrue> 47
 <ebTest:ThreadRef nameRef = "_03"/> 48
 </ebTest:WhenTrue> 49
 </ebTest:TestAssertion> 50
 <ebTest:Join joinType = "orjoin"> 51
 <ebTest:ThreadRef nameRef = "_02"/> 52
 <ebTest:ThreadRef nameRef = "_03"/> 53
 </ebTest:Join> 54
 <ebTest:Join> 55
 <ebTest:ThreadRef nameRef = "_01"/> 56
 </ebTest:Join> 57
 </ebTest:TestCase> 58
</ebTest:TestSuite> 59

 60

 61

62

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 209 of 214

Appendix I Terminology 1

 2

Several terms used in this specification are borrowed from the Conformance Glossary (OASIS, 3
[ConfGlossary]) and also from the Standards and Conformance Testing Group at NIST. 4
[ConfCertModelNIST]. They are not reported in this glossary, which only reflects (1) terms that are 5
believed to be specific to – and introduced by - the ebXML Test Framework, or (2) terms that have a well 6
understood meaning in testing literature (see above references) and may have additional properties in the 7
context of the Test Framework that is worth mentioning. 8

 9

Term Definition

Asymmetric testing Interoperability testing where all parties are not equally tested for the
same features. An asymmetric interoperability test suite is typically
driven from one party, and will need to be executed from every other
party in order to evenly test for all interoperability features between
candidate parties.

Base CPA Required by both the conformance and interoperability test suites
that describe both the Test Driver and Test Service Collaboration
Protocol Profile Agreement. This is the “bootstrap” configuration for
all messaging between the testing and candidate ebXML
applications. Each test suite will define additional CPAs. How the
base CPA is represented to applications is implementation specific.

Candidate Implementation (or Implementation Under test): The implementation (realization of a
specification) used as a target of the testing (e.g. conformance
testing).

Conformance Fulfillment of an implementation of all requirements specified;
adherence of an implementation to the requirements of one or more
specific standards or specifications.

Connection mode (Test Driver in) In connection mode and depending on the test harness, the test
driver will interact with other components by directly generating
ebXML messages at transport level (e.g. generates HTTP
envelopes).

Interoperability profile A set of test requirements for interoperability which is a subset of all
possible interoperability requirements, and which usually exercises
features that correspond to specific user needs.

Interoperability Testing Process of verifying that two implementations of the same
specification, or that an implementation and its operational
environment, can interoperate according to the requirements of an
assumed agreement or contract. This contract does not belong
necessarily to the specification, but its terms and elements should be
defined in it with enough detail, so that such a contract, combined
with the specification, will be sufficient to determine precisely the
expected behavior of an implementation, and to test it.

Local Reporting mode (Test
Service in)

In this mode (a sub-mode of Reporting), the Test Service is installed
on the same host as the Test Driver it reports to, and executes in the
same process space. The notification uses the Receive interface of
the Test Driver, which must be operating in service mode.

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 210 of 214

Loop mode (Test Service in) When a test service is in loop mode, it does not generate
notifications to the test driver. The test service only communicates
with external parties via the message handler.

MSH Message Service Handler, an implementation of ebXML Messaging
Services

Reporting mode (Test Service in) A test service is deployed in reporting mode, when it notifies the test
driver of invoked actions. This notification usually contains material
from received messages.

Profile A profile is used as a method for defining subsets of a specification
by identifying the functionality, parameters, options, and/or
implementation requirements necessary to satisfy the requirements
of a particular community of users. Specifications that explicitly
recognize profiles should provide rules for profile creation,
maintenance, registration, and applicability.

Remote Reporting mode (Test
Service in)

In this mode (a sub-mode of Reporting), the Test Service is
deployed on a different host than the Test Driver it reports to. The
notification is done via messages to the Test Driver, which is
operating in connection mode.

Service mode (Test Driver in) The Test Driver invokes actions in the test service via a
programmatic interface (as opposed to via messages). The Test
Service must be in local reporting mode.

Specification coverage Specifies the degree that the specification requirements are satisfied
by the set of test requirements included in the test suite document.
Coverage can be full, partial or none.

Test actions (Or Test Service actions). Standard functions available in the test
service to support most test cases.

Test case In the Test Framework, a test case is a sequence of discrete
Threads, aimed at verifying a test requirement.

Test Requirements coverage Specifies the degree that the test requirements are satisfied by the
set of test cases listed in the test suite document. Coverage can be
full, contingent, partial or none.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 211 of 214

Appendix J References 1

 2

Normative References 3

 4

[ConfCertModelNIST] Conformance Testing and Certification Model for Software Specifications. L. 5
Carnahan, L. Rosenthal, M. Skall. ISACC '98 Conference. March 1998 6

[ConfCertTestFrmk] Conformance Testing and Certification Framework. L. Rosenthal, M. Skall, L. Carnahan. 7
April 2001 8

[ConfReqOASIS] Conformance Requirements for Specifications. OASIS Conformance Technical 9
Committee. March 2002. 10

 [ConfGlossary] Conformance Glossary. OASIS Conformance TC, L. Rosenthal. September 2000. 11

[RFC2119] Key Words for use in RFCs to Indicate Requirement Levels, Internet Engineering Task 12
Force, March 1997 13

[RFC2045] Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message 14
Bodies, N Freed & N Borenstein, Published November 1996 15

[RFC2046] Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types. N. Freed, N. 16
Borenstein. November 1996. 17

[RFC2387] The MIME Multipart/Related Content-type. E. Levinson. August 1998. 18

[RFC2392] Content-ID and Message-ID Uniform Resource Locators. E. Levinson, August 1998 19

[RFC2396] Uniform Resource Identifiers (URI): Generic Syntax. T Berners-Lee, August 1998 20

[RFC2821] Simple Mail Transfer Protocol, J. Klensin, Editor, April 2001 Obsoletes RFC 821 21

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and T. Berners-Lee, 22
"Hypertext Transfer Protocol, HTTP/1.1", June 1999. 23

[SOAP] W3C-Draft-Simple Object Access Protocol (SOAP) v1.1, Don Box, DevelopMentor; David 24
Ehnebuske, IBM; Gopal Kakivaya, Andrew Layman, Henrik Frystyk Nielsen, Satish 25
Thatte, Microsoft; Noah Mendelsohn, Lotus Development Corp.; Dave Winer, UserLand 26
Software, Inc.; W3C Note 08 May 2000, 27
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/ 28

[SOAPAttach] SOAP Messages with Attachments, John J. Barton, Hewlett Packard Labs; Satish Thatte 29
and Henrik Frystyk Nielsen, Microsoft, Published Oct 09 2000 30
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211 31

[XLINK] W3C XML Linking Recommendation, http://www.w3.org/TR/2001/REC-xlink-20010627/ 32

[XML] W3C Recommendation: Extensible Markup Language (XML) 1.0 (Second Edition), 33
October 2000, http://www.w3.org/TR/2000/REC-xml-20001006 34

[XMLC14N] W3C Recommendation Canonical XML 1.0, 35
http://www.w3.org/TR/2001/REC-xml-c14n-20010315 36

 [XMLNS] W3C Recommendation for Namespaces in XML, World Wide Web Consortium, 14 37
January 1999, http://www.w3.org/TR/1999/REC-xml-names-19990114/ 38

[XMLDSIG] Joint W3C/IETF XML-Signature Syntax and Processing specification, 39
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/. 40

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 212 of 214

[XPointer] XML Pointer Language (XPointer) Version 1.0, W3C Candidate Recommendation 11 1
September 2001, http://www.w3.org/TR/2001/CR-xptr-20010911/ 2

 3

Non-Normative References 4

[ebTestFramework] ebXML Test Framework specification, Version 1.0, Technical Committee 5
Specification, March 4, 2003, 6
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ebxml-iic 7

[ebMS] ebXML Messaging Service Specification, Version 2.0, 8
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ebxml-msg 9

[ebMSInteropTests] ebXML MS V2.0 Basic Interoperability Profile Test Cases, 10
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ebxml-iic 11

[ebMSConfTestSuite] ebXML MS V2.0 Conformance Test Suite, 12
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ebxml-iic 13

[ebMSInteropReqs] ebXML MS V2.0 Interoperability Test Requirements, 14
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ebxml-iic 15

 16

[XMLSchema] W3C XML Schema Recommendation, 17
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/ 18
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/ 19
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/ 20

[ebCPP] ebXML Collaboration Protocol Profile and Agreement specification, Version 1.0, 21
published 10 May, 2001, 22
http://www.ebxml.org/specs/ebCCP.doc 23

[ebBPSS] ebXML Business Process Specification Schema, version 1.0, published 27 April 2001, 24
http://www.ebxml.org/specs/ebBPSS.pdf. 25

[ebRS] ebXML Registry Services Specification, version 2.0, published 6 December 2001 26
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf, 27
published, 5 December 2001. 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 213 of 214

Appendix K Acknowledgments 1

The authors wish to acknowledge the support of the members of the OASIS ebXML IIC TC who 2
contributed ideas, comments and text to this specification by the group’s discussion eMail list, on 3
conference calls and during face-to-face meetings. 4

IIC Committee Members 5

Jacques Durand, Fujitsu <jdurand@fsw.fujitsu.com> 6
Jeffery Eck, Global Exchange Services <Jeffery.Eck@gxs.ge.com> 7
Hatem El Sebaaly, IPNet Solutions <hatem@ipnetsolutions.com> 8
Aaron Gomez, Drummond Group Inc. <aaron@drummondgroup.com> 9
Michael Kass, NIST <michael.kass@nist.gov> 10
Matthew MacKenzie, Individual <matt@mac-kenzie.net> 11
Monica Martin, Sun Microsystems <monica.martin@sun.com> 12
Tim Sakach, Drake Certivo <tsakach@certivo.net> 13
Jeff Turpin, Cyclone Commerce <jturpin@cyclonecommerce.com> 14
Eric van Lydegraf, Kinzan <ericv@kinzan.com> 15
Pete Wenzel, SeeBeyond <pete@seebeyond.com> 16
Steven Yung, Sun Microsystems <steven.yung@sun.com> 17
Boonserm Kulvatunyou, NIST <serm@nist.gov> 18
Han Kim Ngo, NIST han.ngo@nist.gov19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 214 of 214

Appendix L Revision History 1

 2

 3

 4

Rev Date By Whom What

cs-10 2003-03-07 Michael Kass Initial version

cs-11 2004-03-30 Michael Kass First revision (DRAFT)

cs-12 2004-04-12 Michael Kass Second revision (DRAFT)

Cs-13 2004-04-27 Michael Kass Third revision (DRAFT)

Cs14 2004-10-11 Michael Kass Fourth revision (DRAFT)

 5

 6

 7

