IEEE P1671 /D2, December 2005

IEEE P1671 ™/D2

Draft Trial-Use Standard for Automatic Test
Markup Language (ATML) for Exchanging
Automatic Test Equipment and Test Information
via XML

Prepared by the Test Information Integration (Bilibocommittee of the

IEEE Standards Coordinating Committee 20 on Tedtziagnosis for Electronic Systems

Copyright © 2005 by the Institute of Electrical aBlkctronics Engineers, Inc.
Three Park Avenue

New York, New York 10016-5997, USA

All rights reserved.

This document is an unapproved draft of a propdE&dE Standard. As such, this document is subject t
change. USE AT YOUR OWN RISK! Because this is aapproved draft, this document must not be
utilized for any conformance/compliance purposestnission is hereby granted for IEEE Standards
Committee participants to reproduce this documentpfirposes of IEEE standardization activities only
Prior to submitting this document to another stadsladevelopment organization for standardization
activities, permission must first be obtained frtre Manager, Standards Licensing and Contractsk IEE
Standards Activities Department. Other entitieksggpermission to reproduce this document, in \whal

in part, must obtain permission from the Managean8ards Licensing and Contracts, IEEE Standards
Activities Department.

A patent holder or patent applicant has filed #&est@nt of assurance that it will grant licensesenriiese
rights without compensation or under reasonablesrand nondiscriminatory, reasonable terms and
conditions to applicants desiring to obtain sudenses. The IEEE makes no representation as to the
reasonableness of rates, terms, and conditionsedfdense agreements offered by patent holdepaiant
applicants. Further information may be obtainednftbe IEEE Standards Department.

IEEE Standards Activities Department
Standards Licensing and Contracts
445 Hoes Lane, P.O. Box 1331
Piscataway, NJ 08855-1331, USA

Copyright © 2005 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

IEEE 1671 /D2, December 2005

Abstract: This document specifies the framework for the family of ATML standards. ATML
defines a standard exchange medium for sharing information between components of an
automatic test system (ATS), utilizing the extensible markup language (XML).

Keywords: Automatic Test Markup Language (ATML), XML Schema, ATML Instance Document,
Automatic Test Equipment (ATE), Automatic Test System (ATS).

Copyright © 2005 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

IEEE 1671 /D2, December 2005

Introduction

(This introduction is not part of IEEE P1671 /D2ra? Trial-Use Standard for Automatic Test Markup
Language (ATML) for Exchanging Automatic Test Equignt and Test Information via XML.)

The benefits of using standards in test-relatedi@ons have long been recognized. The scope for
standardization extends from low-level standardso@ated with test instrument control to high-level
standards associated with specifying tests in qabeimentation-independent manner.

In the 1960s, Aeronautical Radio, Incorporated (W) started the development of the Abbreviated Test
Language for Avionics Systems (ATLAS). In 1976, mgement of the ATLAS standard was passed to the
IEEE, and the ATLAS acronym was changed to Abbrteddl est Language for All Systems to reflect its
broader field of applications.

Within the IEEE, development of ATLAS and ATLAS-a¢dd standards was vested in an ad hoc
committee, which later became the IEEE Standardsrddaating Committee 20 (SCC20). In the mid-
1980s, SCC20 broadened the scope of its actiitiesnbrace other standards projects related taatebt
diagnosis, including Automatic Test Program GenenafATPG), Test Equipment Description Language
(TEDL), Artificial Intelligence Exchange and SergicTie to All Test Environments (AI-ESTATE), A
Broad Based Environment for Test (ABBET), Softwdregerface to Maintenance Information and
Collection Analysis (SIMICA), Receiver Fixture Imface (RFI), Signal and Test Definition (STD), ahd
Automatic Test Markup Language (ATML).

This standard provides the framework for a famifystandards providing specifications for test-redat
applications and environments. This family incogies object-oriented technology and information
modeling to specify language-independent elemeittirnwa wide variety of test environments, incluglin
Built-In Test (BIT) systems, Automatic Test SystefA3'S), and manual test environments. Each of these
interfaces is specified in the form of a XML Schema

XML Schemas define the basic information requirgthiw any test application and provides a vehicle f
formally defining the test environment by definireg class hierarchy corresponding to these basic
information entities and provides several methodhia each to enable basic operations to be peddrm
on these entities. ATML component standards witthhie ATML framework define the particular
requirements within the test environment.

Patents

Attention is called to the possibility that implemation of this trial-use standard may require o$e
subject matter covered by patent rights. By pulibcaof this trial-use standard, no position iseakvith
respect to the existence or validity of any pategitts in connection therewith. The IEEE shall het
responsible for identifying patents or patent aggilons for which a license may be required to enpnt
an IEEE standard or for conducting inquiries inte fegal validity or scope of those patents that ar
brought to its attention.

Copyright © 2005 IEEE. All rights reserved. iii
This is an unapproved IEEE Standards Draft, subject to change.

Participants

IEEE 1671 /D2, December 2005

At the time this draft trial-use standard was caetgd, the Test Information Integration (TII)
Subcommittee had the following membership:

Nasir Ahmed
Steve Allen

Peter Allum

Tony Alwart
Michael Araiza
Hagay Azar
Charles Barker
Keith Beard
Malcolm Brown
Antonius Bunson
Giampiero Casalegno
Kevin Coggins
Bernard Dathy
Tim Davis

David Droste
James Dumser
Tamara Einspanjer
Crocket Ellis Jr.
Keith Ellis

Leo Errico

Oscar Fandino
Robert Fox
William Frank
Thomas Gaudette
Scott Gearhart
George Geathers

Chris Gorringe , Co-Chair

Mike Seavey, Co-Chair

Anthony Geneva
William Gerstein
Arnold Greenspan
Kyle Gupton
Arthur Hann
Susan Harbour
Michelle Harris
Michael Harrison
Robert Hayes
Hans Hopf
Ashley Hulme
David Hunter
Ivor Isaacs
Anand Jain

Gary Jones
Patrick Kalgren
Mark Kaufman
Bernhard Kausler
Michael Keller
John Knowles
Arthur Larsen
Teresa Lopes
Tracy McQuillen
David Mills
Scott Misha
Mukund Modi

lon Neag

Travoris Nunn

Les Orlidge

Steve Osella
Cedric Pendelton
Henry Perry 11l
Duy-Huan Pham
Dan Pleasant
Dave Ptacek
Narayanan Ramachandran
Rabindranath Raul
Peter Richardson
Lou Roberts
Robert Robinson
David Rohacek
Paul Salopek
Howard Savage
John Sheppard
Joe Stanco

John Stratton
Walter Struppler
David Thomas
Sylvain Tourangeau
Jeorg Urban

Tim Wilmering

The following members of the balloting committeetedb on this trial-use standard. Balloters may have
voted for approval, disapproval, or abstention.

(to be supplied by IEEE)

Copyright © 2005 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

CONTENTS

O YT = PP PP PRRR 1
s o o o1 1
L2 PUIPOSE ..ttt ettt e+ e oo oottt ettt e oo 4o 42224 e e e et et eeee e be b aa e e e e e e e et e e e eeanebnbana e eeas 1
R Y o] o] o= 11T] o SOOI 1.
1.4 Conventions used within this dOCUMENtiiiii i 2

2. NOIMALIVE FEIEIBICES.oeitiiiiee e ettt et e e e e e e e e et et e ee e e e e e e s eeeaeaeeesesesbs b e eaeaaaaes 2.

T B 1= {1 0T 1o 1SR 3

A, ATIMIL OVEIVIEWttt et ettt ettt et e e e e e e e e e e et eee e et e e e seeeeaeeeeeesesbs b seaeeaaaaaeennes 8
7= Tod (o | o 11 T PP 8
0T 1= U 8
4.3 ATML and the Product Life CYCIEcviiiieeeceee ettt e e e 8
A4 ATML FTAMEWOTKveiiiieiiiieiiee et ettt e e e ettt e e e e s sttt e e e e s sttt et eessabbeeeeeesanbbbeeeeesssnbaeeeeeenns 12
4.5 SpecCification TECHNIQUES........cc.. et eeemmmr et e e et e e e e e e e e e e s s s s e e re e e e eeeaeeaeeeeseesaesnnnsnnrrnnensneees 15
4.6 ATML Component StANAAIAS.............ues e eeeeeeesnnsrnrranieeerrerrreeaeeeesessaaassnnnnsrnrrerrrrrrreraaeeees 17
4.7 XML Schema Names and LOCALIONScccceeeeiiiiiee e e e e 19

T OTo 10 {014 1 T= 1o (o1 = TSR 19

Lo (=] 0 7 o 11 PP TR T PSRRI 20

Annex A (informative) XML Schema Style GUIAEliNeS............uueiiiiiiiiiiiiiie e 21
AL NamMING CONVENTIONSoeiiiiieiie i ceeeee ettt e e e e ettt e et e aaaeaaaaeaaasaaannnnnbanbeneeeeneees 21
A.2 XML DECIAIAtIONcoeeiiiiiiiie et e et e et s s e e e e e e e e e e e eeeeeesbs b e e e eeeeeaaeeeeesseenranas 22
A3 ATML NAMESPACES ... e e eeiieeeeeeeiiiiseeeeeetat i aas s e s e e e eeeeteeeaaeta s s saaeaeeaaaaeeteenesesssnnnaaaaeeeeeeerenenes 22
Y Y=Y 7T 1V USSP 24
YN B o Lo U] 0 =T o1 v= 1o o DO PTP PSPPI 25
AL ElEMENT VEISUS TYPE.uuutttieeieeiieeeeesimmmmms s e s ssesaateetessessseeeseaaaaaaeaaasaaaaaassssesssssasseeereaataaaeeeeasesanns 25
N A 0= T | P EUEERURRR 25
A.8 Element VErsUS ALIIDULEoooiiiiii e e e e e e e e e e e 26
F N B (=] 1= o 1 2P PUUURURRTR 26
A.10 Defining Uniqueness and ReferenCes ... 26
A.11 Default and FIXed VAIUESoooiiiiceeee it e e e e e e e 26
N B O] 1Yo 1o 1 SR 26
A.13 MINOCCUrS and MAXOCCUISuuuuiiuiteereeeetiuiiaaeseeeeeeeeeererstar e aaaaaaaeeeeerrsrnraaaaaseees 27

Annex B (informative) ArchiteCture EXamMPIES ..ooeeeeeeeeieiii it e e e e e e e 28
2 I T Vo [T 1) P 28
B2 INSITUMEINTSceeiiiiiiiei e eeeeee ettt e e oo oot r e e e e e e e e e e e e e s e e s e e s bb bbb e b b e s reeeeeeeeeeas 30
R =) A D= Tod o1 T LSRR 31
B.4 RUNLIME SEIVICES ...eeiiiiiiiitiiiie et eee ettt e bttt e e e e st e e e s s st e e e e e s bbb et e e e e e anabbeeeeeeannbneas 32

ANNEX C (INfOrMativVe) ACTONYIMSuuuuiiiiieieieeeieteeeteeee e e e e s et iassss st e e eeeeaaaeeasessasaanasnnsnsnrnrnnnneees 34

Copyright © 2005 IEEE. All rights reserved. iv
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

Annex D (informative) Bibliographyc.eeri i

Copyright © 2005 IEEE. All rights reserved. Y,
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

Draft Trial-Use Standard for Automatic Test
Markup Language (ATML) for Exchanging
Automatic Test Equipment and Test Information
via XML

1. Overview

The family of Automatic Test Markup Language (ATMéfandards is being developed under the guidance
of the Test Information Integration (TIl) subcomtaé of the IEEE Standards Coordinating Committee 20
(SCC20) to serve as standards for product test. AMEL family of standards specifies a comprehensive
environment for integrating design data, test sgigs and requirements, test procedures, testtgesul
management, and test system implementations. Thiéyfaf ATML standards includes reference to IEEE
Std. 1232 (AI-ESTATE), IEEE P1636 (SIMICA) and IEERd. 1641 (STD). These referenced IEEE
standards are therefore part of the ATML family.

1.1 Scope

ATML defines a standard exchange medium for sharifgymation between components of automatic test
systems. This information includes test data, resodata, diagnostic data, and historic data. Kebange
medium is defined using the extensible markup laggu(XML). This document specifies the framework
for the family of ATML standards.

1.2 Purpose

The purpose of ATML is to support test programf &sset, and Unit Under Test (UUT) interoperability
within an automatic test environment. ATML accorapés this through a standard medium for exchanging
UUT, test and diagnostic information between congmi® of the test system. The purpose of this
document is to provide an overview of ATML goalsvel as to provide guidance for usage of the ATML
family of standards.

1.3 Application

This trial-use standard provides an overview of &EML family of standards for developing the
following:

0 ATML-conformant systems.

O Design data for use in test.

Copyright © 2005 IEEE. All rights reserved. 1
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

0 ATML environment for tools.

O Shared usage of maintenance data and the resuitstiofg.

Anticipated users of the ATML family of standaradslude the following:

Unit Under Test (UUT) developers.
UUT maintainers.
Test Program Set (TPS) developers.

TPS maintainers.

O
O
O
O
O Automatic Test Equipment (ATE) system developers.
0 ATE system maintainers.

0 Testinstrument developers.

O Developers of ATML-based tools and systems.

d

Developers of prime mission equipment that usesthpported UUT as a component.
1.4 Conventions used within this document

The sub-clauses present an overview (backgroundpangose) of ATML, how ATML applies to the
lifecycle of a product, and defines the ATML framark:

This trial-use standard uses the vocabulary anditiehs of relevant IEEE standards. In case offlactrof
definitions, except for those portions quoted fretandards, the following precedence shall be okserv
(1) Clause 3; (2) SCC20 documentation and stangdamid (3) The Authoritative Dictionary of |IEEE
Sandards, Seventh Edition.

For clarity, portions of IEEE Std. 1232, IEEE Si®#41, and IEEE P1636 have been repeated within this
trial-use standard. In the event of revision to BEE&d. 1232, IEEE Std. 1641, or IEEE P1636, theetiiy
approved version of that IEEE Standard takes pesoesl

2. Normative references

The following referenced documents are indispersddt the application of this document. For dated
references, only the edition cited applies. Forated references, the latest edition of the refer@nc
document (including any amendments or corrigengplies.

O IEEE Std. 1232-2002, IEEE Standard for Artificiatdlligence Exchange and Service Tie to All Test
Environments (AI-ESTATE).

0O |EEE P1636, IEEE Standard for Software InterfaceMaintenance Information and Collection
Analysis (SIMICA).

O IEEE Std. 1641-2004, IEEE Standard for Signal aest Definition (STD).

Copyright © 2005 IEEE. All rights reserved. 2
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

3. Definitions

For the purposes of this draft trial-use standdt® following terms and definitions applythe
Authoritative Dictionary of IEEE Standards, Seventh Edition, should be referenced for terms not defined in
this clause. In the event a term is explicitly fgusd, or further defined in an ATML component stard,
the component standards definition shall be noredtr that ATML component standard.

3.1 Abbreviated Test Language for All Systems (ATLAS): A standard abbreviated English language
used in the preparation (and documentation) ofpestedures or test programs. The test proceduresto
programs are implemented either manually or witlo@atic or semiautomatic test equipment.

3.2 adapter: A device or series of devices designed to progidempatible connection between the test
subject and the test equipmegnonyms: interface device; interface test adapter; teapteat.

3.3 anomaly: Deviation from the normal behavior of a test sabj€aults (e.qg.; output stuck high, gain
low) and manufacturing defects (e,g,; missing eoinect components, incorrectly installed composent
are kinds of anomalies.

3.4 Application: (A) The use to which a system is p{8) The use of capabilities provided for by a system
specific to the satisfaction of a set of users iregoents.

3.5 ATML instance document: See: instance document.
3.6 Automatic Test Equipment (ATE): Equipment that is designed to conduct analysfsmdtional or
static parameters to evaluate the degree of pesafiocendegradation and that may be designed to perfor

fault isolation of unit malfunctions.

3.7 Automatic Test System (ATYS): Includes the Automatic Test Equipment (ATE) aslaslall support
equipment, software, Test Program (TP), and adapter

3.8 behavior: A formal representation of the characteristicd tescribe the operation, function,
relationships, control, or static properties oést entity.

3.9 class: A template for the creation of an object instaridee class defines the properties of an object.
3.10 classification: A grouping of objects on the basis of common cttaréstics.

3.11 context: Reflects the intended scope of a set of testsmkes of context include manufacturing
process test, maintenance test, design verificégisty screening test, etc.

3.12 corrective action: Intended to eliminate anomalies. Corrective agtimclude repair, replacement,
calibration, alignment, and other servicgs also: maintenance.

3.13 diagnosis: The conclusion(s) resulting from tasks, testsgolations, or other information.

3.14 diagnostic controller: The agent (this could be from an expert/reasoysesm or from an operator)
that invokes test procedures in the sequence estjtorachieve test goals.

3.15 diagnostic data: That information which supports the investigatéord analysis of the cause or nature
of a condition, situation, or problem through dibgges of a system life cycle.

3.16 diagnostic knowledge: Provides the information required to support tlagdostic process. This
knowledge defines the relationships between passésit outcomes and anomalies that may cause these
outcomes.

Copyright © 2005 IEEE. All rights reserved. 3
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

3.17 diagnostic process. A structured combination of tasks, tests, obséraat and other information used
to localize a fault or faults.

3.18 diagnostic procedures. See: diagnostic process.

3.19 element: A bounded component of the logical structure oKafl document that has a type and that
may have XML attributes and content [adapted frolkhXL.0 Recommendation].

3.20 encapsulation: The grouping of data, and operations upon that, diaio a single object.

3.21 entity: A distinct thing, object, or concept. (The Artifit Intelligence Dictionary, Ellen Thro,
MICROTREND Books, San Marco, CA.)

3.22 error logging: The recording of an error condition detected dythe execution of a service.

3.23 fault: A degradation in performance due to detuning, adigstment, mis-alignment, or failure of
part(s).

3.24 framework: A collection of classes created specifically toveghe needs of an application area.

3.25 functional parameters. Any specific quantity or value affecting or debiamg the measureable
characteristics of a unit being considered whidhaves as an independent variable or which depemnds o
some functional interaction of other quantitiesei®ed from MIL-STD-1309D)

3.26 functional partitioning: The logical separation of system or unit elemaitudag interfaces that define
and isolate these elements on the basis of funotigurpose.

3.27 functional test: A test that is intended to verify that a test sabjs behaving as specified.

3.28 global attribute: An attribute declaration that is a child of theschema element. A global attribute
can be applied to any element.

3.29 Go/NoGo Test: Terms referring to the condition or state of @dity of a unit that can only have
two outcomes, GO, functioning properly, or NO-G@t functioning properly. (Adapted from MIL-STD-
1309D)

3.30 handler: A program or routine that performs or controls task. (e.g.; error detection)

3.31 historical data: All relevant information available concerning tduct, tests, and test equipment.
This includes test observations (raw measuremea) derived test outcomes (i.e.; LO, HI, GO),
diagnostic conclusions derived from performinggsestd the knowledge base, test subject mission and
configuration history, test resources mission aistbhy, etc.

3.32 infor mation modeling: An information model is a formal description opés of ideas, facts, and
processes, which together form a model of a podifdnterest of the real world and which provides a
explicit set of interpretation ruleSee also: corrective action. (Information modeling the EXPES way,
D. Schenck and P. Wilson, New York: Oxford Univer$tress, 1994)

3.33instance document: An information set, grouped for some purpose, igbverned by a single XML
Schema.

3.34instrument: A device whose purpose is usually the generatianeasurement of a class of signal.

Copyright © 2005 IEEE. All rights reserved. 4
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

3.35integrated diagnostics: A structured process that maximizes the effecegsrof diagnostics by
integrating testability, automatic and manual tegtiraining and technical information to providecest
effective capability to detect and isolate faulithvthe ultimate goal of maximizing equipment aghility
and minimizing total user cost.

3.36 interface: A shared boundary that specifies the interconordietween two units or systems,
hardware or software. In hardware, the specificaiticludes the type, quantity, and function of the
interconnection circuits and the type and formighals to be interchanged via those circuits. litvgare,
the specification includes the object type and,r@heecessary, the name or instance handle of 8pecif
objects copied or shared between the two systems.

3.37 Interface Definition Language (IDL): A machine-compatible language used to descrileefates
that clients call and implementations provide. I@ovides a neutral way to define an interface. [iBlan
Object Management Group (OMG) product.]

3.38 Interface Device (1D): See: adapter.

3.39 Interface Test Adapter (ITA): See: adapter.

3.40 knowledge-based test: A test based in part on previously acquired infation. (Adapted from MIL-
STD-1309D)

3.41 language-independent specification: The format for describing services that is nad tie any
specific computer language.

3.42 maintenance: Activity intended to keep equipment (hardwarepaygrams (software) in satisfactory
working condition, including replacements, adjusttserepairs, software/firmware updates, and progra
improvements. Maintenance can be preventative wective. (Adapted from MIL-STD-1309D)

3.43 manual testing: Testing that requires a human to execute soradl of a test procedure.

3.44 manufacturing defect: (A) A product anomaly(B) Any non-conformance with the specified
requirements of the product.

3.45 mapping: Process of correspondence between the elemeateafet and the elements of another set.

3.46 markup declarations: XML element type, XML attribute-list, XML entityrad XML notation
declarations that provide a grammar for a classME documents.

3.47 method: A property of a class that defines a specific baira

3.48 object: A member (instance) of a class that encapsuldtesiata (state) and the behavior (methods)
of the object. (The Artificial Intelligence Dictiany, Ellen Thro, MICROTREND Books, San Marco, CA.)

3.49 object instance: An specific occurrence of an object.

3.50 observation: The raw data acquired by executing a test proeedurepresents the observed

characteristics of a specific signal (e.g.; theaged peak of a sinusoid wave form), the observed

characteristics of the environment (e.g.; the antiiiemperature), or the derived value of product
characteristics (e.g.; the measured value of gain).

3.51 open architecture: An architecture from which a system can be assednipbm multiple vendor-
supplied interface components. The resulting syst@mexecute applications written by arbitrary
independent vendors and can be extended by usenstbin the original supplier.

Copyright © 2005 IEEE. All rights reserved. 5
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

3.52 operation: An action defined by a procedure.

3.53 parametric testing: Testing of a test subject’s ability to functiormeetly within acceptable tolerance
when all values are varied within specified lim{{adapted from MIL-STD-1309D)

3.54 portability: The ease with which software can be transferrewah fone system or environment to
another. A relative measure of effort, inverselggartional to the level of modification required fo
software to be transferred from one system or enwirent to another.

3.55 process: Sequence of operations performed in and by thgewnt in which the variable is to be
controlled.

3.56 product characteristic: An observable attribute of a product. This inclifienctional, physical, and
performance characteristics (e.g.; gain and barttivaflan amplifier).

3.57 resour ce manager: A process or activity that initializes and manatigsresources in a system.
3.58 response data: The information sensed from a test subject asebelt of an applied stimulus.
3.59 sense signal: The response taken or measured from a test subject

3.60 sequencer: An object that controls the execution flow of prags.

3.61 service: Operation or run-time call whose behavior andrfatee are standardizeSee also: method.

3.62 signal: (A) The behavior controlled or observed by a testuesn(B) A visual, audible, or other
indication used to convey information.

3.63 software product: A complete set of computer programs, procedaesmciated documentation and
data designated for delivery to a user.

3.64 static parameters: Variables given a constant value for a specifigpse or process.

3.65 stimulus: Any physical or electrical input applied to a tegbject intended to produce a measurable
response. (Adapted from MIL-STD-1309D)

3.66 task: The smallest unit of work subject to managemeobantability. (e.g.; a sequence of instructions
treated as a basic unit of work by an operatingesyps

3.67 test: (A) An observed activity that may be caused to ocely.{stimulus-response) in order to obtain
information about the behavior of a test subjé®}.A set of stimuli, either applied or known, comkine
with a set of observed responses and criteriadorparing these responses to a known standard. {@dlap
from IEEE Std.1232-2002)

3.68 testability: A design characteristic that allows the statug(able, inoperable, or degraded) of an
item to be determined and the isolation of faulithiw the item to be performed in a timely and @#it
manner. (Adapted from MIL-STD-1309D)

3.69 test adapter: See: adapter.

3.70 test asset: An assemblage of instruments, interconnect deyvigsporting software, and manual
procedures that enable one or more test objediives achievedsee also: automatic test system.

3.71 test control: The functionality that directs and facilitates thescution of tests and the collection of
data.

Copyright © 2005 IEEE. All rights reserved. 6
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

3.72 test entity: A specific procedure or action that will be takerdetermine a test subjects capabilities or
limitations.

3.73 test method: A specification that defines the algorithm, prosess, and required controllable inputs
and potential behavior (nominal and anomalous)tekasubject.

3.74 test object: Any object defined for use within the domain dftteepresenting an encapsulated view of
a test method with interfaces to a test system.

3.75 test objective: The purpose of a specific procedure or actioretpérformed on a test subject.
3.76 test outcome: A mapping from an observation to one of a setiedréte possibilities.

3.77 test procedure: The implementation of a test method.

3.78 test program (TP): A program specifically intended for the testingaaest subject.

3.79 test program set (TPS): A assembly of items necessary to test a test subea piece of Automatic
Test Equipment (ATE). This includes the electricaéchanical, instructional, and logical decision
elements. The individual elements of the TPS ageTt, the adapter, and the TPS documentation (TPSD)

3.80 test requirement: A specification of the test methods and test dionis needed to evaluate and
diagnose a test subject.

3.81 test specification: A document that defines the tests to be perforomed test subject to verify
conformance with its performance specification hwitt reference to any specific test equipment gr te
method.

3.82test strategy: (A) The arrangement of specific tester types to aehigtimum throughput and
diagnostic capability at the least possible cogtgithe fault spectrum, process yield, productaie,rand
product mix for a particular environment. (Adapfesm MIL-STD-1309D)(B) A selection of test methods
to achieve some diagnostic test within executioretand test resource constraints.

3.83 test subject: The specific product design that is the focustt#raion or target for the development of
tests and diagnostics.

3.84 user interface: The part of the application that permits the @&t application to communicate with
each other to perform certain tasks.

3.85 virtual instrument software ar chitecture (VISA): The general name given to the VPP (VXI
Plug&Play) 4 Specification and its associated deciiire. The architecture consists of two main VISA
components: the VISA resource manager and the \tS#ument control resources.

3.86 XML schema: The structure or framework used to define a detand. This includes each field’s
name, type, shape, dimension, and mapping.

Copyright © 2005 IEEE. All rights reserved. 7
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

4. ATML Overview

4.1 Background

Market and technology pressures cause the neednfmoved testing environments. There are market
pressures to reduce a new product’s time-to-maakdtto reduce maintenance costs. At the same time,
testing environments must respond to continuousbjving and increasingly complex technology used in
modern products. Test technology needs to keep\piticehese pressures.

The lack of accepted industry standards for telsttad information is one factor that has limitea th
availability and use of improved test environmer@®mputer-Aided Design (CAD) environments and
exchange standards for design data have helpednaesito cope with these pressures, but testing
environments have lagged behind.

Computer-aided test environments offer the potettigfficiently access and manipulate design aesd t
information. For example, product test informatfoom earlier life cycle phases can be preserveatdier
to eliminate rediscovery efforts in later phaseibraries of reusable test procedures can be prdvide
various types of products. Test equipment intefacapabilities, and control characteristics cao dle
accessed from libraries and used to adapt existstg to other environments with different tesbreses.

4.2 Purpose

The primary purpose of ATML is to specify standafds test environments that encompass the total
product life cycle. ATML defines an integrated sétest related information that supports the infation
needs of test environments for testing applicatioh§ML is intended to accomplish the following
objectives:

O Facilitate the communication, sharing, and reusgrofluct design and test information for the puepos
of testing the product.

Facilitate TPS portability and interoperability.
Facilitate instrument interchangeability.
Facilitate the development, integration, and usesif software and test software development tools.

Support the application of integrated diagnostics.

O 0o o o O

Supports modular software architectures based w@pdramework that supports reusable software
products.

4.3 ATML and the Product Life Cycle
There are primarily five reasons for performingdesn products:

Design Verification. Verify that a product design meets its functiopatformance specifications.
Product Verification. Verify that a product meets its functional andistural specifications.

Product Calibration. Adjust the characteristics of a product to mepectfied tolerances or
performance criteria. Calibration tests are ofterorporated as part of a verification process.

O Product Maintenance. Identification of a fault condition(s) in the entea product verification test fails
or a problem is reported with the product.

Copyright © 2005 IEEE. All rights reserved. 8
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

O Process Control. Acquire information about a process used to pcedoperate, or maintain a product.
For example, monitor and maintain proper environt@aeronditions during a manufacturing process.

These reasons motivate the creation of test aseets.assets can be manually or automatically otedt;
extend from simple inspection to complex functiopedcessing; be built in or applied by external nea
or be applied on entire systems or constitute sgraBlies. The decisions regarding the test assgisnd
on the selected life-cycle strategies. All testzdpice potentially useful data that can be useévatuation
as dictated by either technology or policy. ATMLpports the useful exchange of test information agnon
product life-cycle phases while supporting theat#ht test-related technologies present in each.

The product life cycle shown in the top portionFagure 1 is typical of product development, depleyit)
operation, and maintenance operations. The lifdecpbases are shown from left to right across the
diagram. Activities performed during each phase sttewn as circles on the diagram, with the test
activities being highlighted. The three life cypleases that have test activities are as follows:

0 Design. The product proceeds from a concept to a workirgjotype or preproduction model. The
characteristics of the model are tested to verdyngliance with specified design and performance
criteria.

O Manufacture. The product is fabricated and made availabladfsiribution and use. Tests are used to
assure that the product is properly assembled fwridelivery.

0 Support: The product is performing in its intended funotidrests are used to monitor the products
condition during normal operation, to support peitcanaintenance activities, and to diagnose fanlts
trouble situations.

Figure 1 also indicates that products frequentlyehanultiple levels of assembly (e.g.; circuit card,
subsystem, system) and test activities occur dadls within each life cycle phase.

The lower portion of Figure 1 identifies five categs of test information associated with everyt tes
application.

O Design Data. This includes characteristics of the test subfleat must be known before tests can be
defined. It can include both static structural pndies and dynamic behavior.

O Test Srategy. This includes the targeted set of test subjadtdaspecifications for a set of individual
tests, and diagnostic knowledge. The targeted baesh faults is the set of defects that the test
application is expected to detect if present. Eaclividual test is characterized by a measured test
subject characteristic, its acceptable range ofuesml and the method used for making the
measurement. Diagnostic knowledge correlates tetomes with the test subject faults that they
reveal. The test strategy within a specific testtert contributes to the test requirements thattrbhas
defined and met.

Test Control. This consists of manual or automatic test procesifor the test subject.

Test Resources. This includes descriptions of test equipment igpmétions, capabilities, and control
characteristics.

0 Test and Maintenance Information. This consists of historical data collected durpeyformance of
tests. It can include measured values for eactvichahl test, recommended corrective actions, and
maintenance actions that were performed. This ct@teinformation can be used within and between
various phases of the product life cycle to aspuoper maturation of the testability and diagnast€
a product, as well as the product itself.

The lower portion of Figure 1 also shows sever@hpavhere improved flow of test information canueel
the overall cost of test. The solid arrows repreggiormation flow dependencies during the develeptn
process and the subsequent feedback of actualemgts within a single test application. Howeuest
information is rarely in a form that other, relatixbt applications can readily access and use; (&yg.
integrated diagnostics). The dotted arrows inditade frequently the transfer of test informatioor one
level of system integration to another is nearlgaastent.

Copyright © 2005 IEEE. All rights reserved. 9
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

4 PRODUCT LIFE CYCLE R
DESIGN MANUFACTURE SUPPORT

— o~

Desigr
Verificatior
Test

Manufacturing Inve Operation anc
Acceptance Maintenance
Test Test

/ Rewor] s Rewol
Multiple B m{ple) m{u ple

Levels of Levels of Levels of
Desigr Assembly Maintenance

Normal
Operatior

abricate

TEST INFORMATION FLOWS
DESIGN MANUFACTURE SUPPORT
Within a single test application A Within a single test application Within a single test application
mong
Phase:
—_— Design Data o Design Data Design Data
Test Strategy e Test Strategy Test Strategy
Test Control e Test Control Test Control
e Test Resources Test Resources
Test anc Testanc Test anc
Maintenance <> Maintenance Maintenance
Informatior , Informatior Informatior
ﬂmong /:mong
Levels Levels

Figure 1—Product Life Cycle and Test Information F low

The use of different test systems and proprietya datmats has inhibited the exchange of useful test
information. ATML, by defining standards for repeesing test information, promotes its exchange amon
diverse test environments. In addition, ATML proemthe feedback of test and maintenance information
enabling continuous improvement of both the prodamd its test processes. This is accomplished by
strengthening the interfaces between activities pimakses of the product life cycle, thus promotiree f
flow of required information. Results of experiensepporting a product can be used to recommend
changes in product design, which would be fed fodwa the design phase for the next generatiomef t
product (indicated by the start of a new proddetdiycle).

It may not always be practical to completely retesst information in subsequent life-cycle phasese T
amount of reuse that can be achieved depends aottiext within which the testing occurs, the ekten
which common test information applies, and the labdity of test resources with the required cafiags.
Recognizing these limitations, ATML organizes tegbrmation in a way that allows the useful elenseiat
be found and reapplied. The effort needed to ceptursufficiently rich set of test information is an
investment that is recouped when the pertinentinétion is found and reused in other test appbeeti

4.3.1 Design

During the design phase design verification testsoften performed to verify that products builtaaing
to the design will satisfy the established funciband structural specifications. Design verifioatitests
are especially important prior to entering a lgpgeduction phase. Tests are distinguished for aflesign
verification methods such as inspection or analysisone approach to design verification, tests are
performed using a prototype or preproduction madét according to the design. These tests geneusk
instrumentation to acquire actual data and compat@ acceptance criteria. Nominal performancestest

Copyright © 2005 IEEE. All rights reserved. 10
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

verify product operation under typical operatingndibions. Stress tests verify that the product iomets to
perform acceptably when one or more external camditapproach their limits.

The use of virtual test methodologies is also suggoby ATML through the specification of virtual
resources whose operation can be simulated, themelwding for test simulation in design environrtgen
This capability can be used to help evaluate teategjies for subsequent phases and capture tiksrés
later use during actual implementation. IEEE S&¥1:2005 (Standard for Signal and Test Description)
provides for this simulation specification, andritended to be used as the common signal refefencse
throughout the life cycle of the UUT or test system

The best opportunity to reduce the costs of teats the entire product life cycle occurs during tlesign
phase. Cost savings can be achieved by adequateinmafor test applications in the subsequentdifele
phases. This planning includes incremental testabéinalysis, evaluation of alternative maintenance
strategies, consideration of available test methadd assessment of available or planned test eguip
Testability in later life cycle phases is often swained by decisions made during design. As shiown
Figure 1, the information generated during desigoutd be captured so that it can be fed forwarth&o
other product life-cycle phases. These later tedtvites need access to comprehensive product
information, including functional and structuralesffications, failure modes and effects, and rdliigb
data. Planned manufacturing and maintenance tastgies should also be captured.

Each phase includes a historical data-gatheringvityct indicated by the “test and maintenance
information” block that appears in every phase ghanvFigure 1. The information collected during the
subsequent phases can be fed back to the des@mm@anners, who can use this information to dater
whether design changes are needed to alleviatéeahproblems. This is indicated by the two-wayflof

test and maintenance information between phaseshanf@edback from test and maintenance information
to design information with the phases shown in Fagu

4.3.2 Manufacturing

One primary purpose of manufacturing tests is tieateproduct defects resulting from anomalies i th
manufacturing process. This verification procegduides in-process tests as well as inspectiongaéh
level of assembly, tests may be used to screen @oemps according to quality-assurance criteriaalFin
acceptance tests may be performed prior to pradilotery. Another purpose of some manufacturingstes

is to characterize components. For example, iteath @s resisters can be placed into separate bins
depending on required accuracy ranges.

The manufacturing test process for a product ierdghed in accordance with the manufacturer’s
capabilities, equipment, budget, and policies. dtcessfully higher levels of assembly (e.g.; circaird,
subassembly, system), manufacturing tests are @ac detect faults introduced during the assembly
process. When manufacturing tests are based omcéidnal test strategy, access to design veriboatiest
information can significantly reduce test developineosts. It is likely that manufacturing test depers

will be able to reuse significant parts of the desiverification test strategy. Test strategies for
subassemblies can also be integrated with thetiedegies at higher levels to ensure that aletad)faults
are covered and consistent limits used to enswateuthits will operate properly when installed imglnér-
level assemblies. Assuming that design deficiendmewe been corrected, recurring failures in
manufacturing tests are indicative of anomalieth@fabrication process.

4.3.3 Support

During the support phase, tests are typically wgleeih a system failure occurs or scheduled maintenin
performed. If a failure occurs, a maintenance ¢ast be used to isolate the fault, leading to repdiests
performed as part of scheduled maintenance indieste performed periodically for operational reads)

system calibration, prognostics (e.g.; evaluating temaining life of a component), and for prewemnti
maintenance purposes.

Copyright © 2005 IEEE. All rights reserved. 11
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

Field test and repair frequently emphasize expegielMaintenance tests are used to isolate the faudt
field replaceable unit (FRU), which is replacedhnét spare. If he maintenance test passes aftemthés
replaced, the system is returned to service. The removed from the system is either discarded or
returned to the factory or a designated mainteriegyear center.

Sometimes fault mitigation strategies are usedh siscwhen a replacement unit is of lower capabitign
the unit it replaces. For example, a flat tire anaatomobile is usually fixed in the field by regleg the
flat with a spare. The spare may be undersized toveer quality. In this case, the repair is notrgete
until the original tire has been cycled througlepair center (garage).

When prescribed maintenance procedures do notdattpmplish the repair, additional ad hoc methads a
sometimes used to locate the anomaly that is cgubanfailure. If all this fails to rectify the gdotem, the
system may be returned to the factory or maintemaepair center, where additional resources are
available to accomplish the test and repair.

A maintenance test can be used for both diagnasticverification purposes. The only distinctiorthat
additional tests may be performed for diagnosticppses, in order to isolate the fault to a smaller
ambiguity group. These additional tests may algjoiire manual operations such as removing accesdspan
and probing that may not be required for verificatpurposes.

Test and maintenance information from the fielcdhéeded by maintenance/repair centers. Information
about system failures, associated symptoms, thdittmms of failure, and the field test results dmused

to help isolate faults. The information can be gnéded with reports from other units (and othezsjit This
consolidated information provides useful input fecognizing recurring problems, and possibly lead t
changes in the product design, manufacture, op@ratr maintenance process.

Ideally, diagnostics performed in the field willrcectly locate the failing subassembly. Howevert, aib
diagnostics achieve this objective. As a resultnesainits returned to a repair center as faultyaataally
good and some units that test as OK are actuallityfaFurther, it is possible that inadequate syste
testability limits the ability of the diagnostice isolate faults adequately. Further, poor maintesa
processes and technician training can introdude leigels of human error, leading to incorrect dizgjits.
Access to the field test and maintenance informat&n help maintainers to track and better manaeget
situations. Historical data for faults modes antlabdity data are very useful developing efficient
maintenance test strategies.

When there are multiple levels of maintenance,isbaest and maintenance information among theldeve
is very important. An integrated diagnostic strgtétat consistently address targeted faults anditeis
during the test development process helps redteedacurrences of “can not duplicate” and “retekt’
problems that plague many maintenance organizatidxcxess to both design verification and
manufacturing functional test information can h&dpsignificantly reduce maintenance test develogmen
costs. Access to test and maintenance results fhenfield enable maintenance/repair centers to more
efficiently isolate faults and accomplish repairs.

4.4 ATML Framework

A framework is a reusable object-oriented desigpressed as a set of abstract classes and the wiay th
instances collaborate. In the context of ATML, #imstract classes are component standards reptiasenta
of all or part of an ATS. The framework providesamtext for the components to be used.

The ATML framework has been developed to:

0 Summarize and organize the essential elements AT &n
O Provide a common frame of reference.

O Eliminate the need to use a variety of customféilenats.

Copyright © 2005 IEEE. All rights reserved. 12
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

Provide compliance with the W3C standards.
Be standards based.

Be extensible.

O 0o o g

substituted and data can be shared between theoo@mis).

Be pluggable/modular (components based upon the IATddmponent standards can easily be

The ATML component standards are the core elemeitee ATML framework. Figure 2 portrays the

integrated family of standards that make up the ATimework in the yellow shading.

“Future”
ATML
Component
“Test Tool” o
Test Application(s)
Configuration
Test Adapter
Test Preparation and Analysis Tools
Test Station '
Instrument
Description
Common
Test Results “Future”
Diagnostics | and Session Te_s t. UL!T. ATML
X Description Description
Information Component
ATML Framework

~

/

Figure 2—ATML Framework, Components, and Compliant Applications

The test subject standards, represented by thedmbal axis of Figure 2, support the capture andeeof
test subject information. Opportunities for reudetast subject information include situations where
products are tested in various phases of the ptddecycle and situations where common components
are used in multiple products. Test subject infdromacaptures specifications for test subject desigd
test requirements, which avoids rediscovery effortde initial development, maintenance, and rst$ito
test applications. The test subject informatioro dlscludes diagnostic knowledge that can be acdesse

during the test process, such as recommended tiverections based upon the test results.

Test resource standards, represented by the \eatits of Figure 2, apply to test resource conantl
information. Test resource standards support dpatidns for test application resource requiremeamts

Copyright © 2005 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

13

IEEE P1671 /D2, December 2005

test equipment capabilities. These standards stigm@aptation of test applications to changes in tes
equipment configurations, which can range from rglacement of a single instrument to re-host in a
separate test environment.

As previously stated, the ATML framework is definedthe form of ATML Components. The ATML
Components define the domain-orientated informat##ofML Components are segmented into:

ATML Component Standards (in the form of formal EEGtandards).
XML Schemas.

Reference to ATML Instance Documents. (howevergigigeinstance documents are not part of the
ATML framework)

4.4.1 ATML Component Standards

The ATML Components (as denoted in Table 1) havasswociated IEEE published Standard. Each of the
ATML Component Standards contains the definitioesdiption, and use of each element of the ATML
Component.

Each ATML Components published IEEE Standard caadogiired from the IEEE as a published work. As
such, United States and European Union CopyrightsLaestrict the use of their content without
appropriate license agreements with the IEEE.

4.4.2 XML Schemas

A majority of the ATML Component Standards haveaasociated XML Schema (as denoted in Table 2).
XML Schemas are described in Clause 4.5.1.

XML Schemas are to be located on the World Wide \Methe locations defined in Clause 4.7.
The IEEE-SA, IEEE Computer Society, SCC20, andGheative Commons Organization are, as of the
date of this publication, addressing the acquisjtiese, and licensing of XML Schemas associatetl wit

IEEE Standards. Upon resolution and guidance fleerEEE-SA, this clause will be updated.

Figure 3 illustrates example ATML Component Staddzontent alongside the associated XML, where the
ATML Component Standard and XML Schemas can beimdxda as well as what is copyrighted material.

Copyright © 2005 IEEE. All rights reserved. 14
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

The material contained in the Schema

f | i i
All of the material contained in the 1S NOT copyritten by the IEEE

Standard IS copyritten by the IEEE

Will be available as a published . "
\EEE standard from the IEEE Will be available on an IEEE Web Site

IEEE Published Standard Associated XML
111 Operator . Schema to the IEEE

Common:Operator H

TheOperator element permits the inclusion of any identificatinformation for the P u bl I S h ed Sta n d a rd

operator of the test system. This data is in thenfof an unbounded set Gther Data

elements, which are pairs inherited

Optional

<Operator name="Some Operator" />
looporstor ¢

Figure 1—Operator

Figure 3—IEEE Standards and XML Schemas

4.4.3 ATML Instance Documents

ATML instance documents are a collection of spediiformation defined and organized by the refeeenc
XML schema. (e.g.; a “widget” instruments instandecument shall contains the definition of the
“widget”, per the instrument description XML schespecification)

As such, the individual ATML instance documents oepart of ATML framework standardization.

4.5 Specification Techniques
The use of XML to define the ATML framework is dissed in the following sub-clauses.
4.5.1 XML Schemas and their use in ATML

The XML Schema is the formal language used to $pétiormation requirements. The language focuses
on the definition of entities, which are the obgeof interest. The entities are defined in termgheir
elements and attributes, which are the traits @radteristics considered to be important for using
understanding them. These elements or attributes haepresentation, which might be a simple daia t
(such as integer) or another entity type. The XMth&na also specifies constraints, rules, and
relationships between entities.

ATML uses XML Schemas to precisely specify the ddu@t can reside in an ATML test environment.
XML Schemas are specified for those categoriesesf information where different sets of data can be
instantiated and exchanged between ATML implemantat Test information that conforms to the ATML
Schemas can be accessed and manipulated by softwadsan an ATML test environment. A set of best
practices and guidelines for the development of ATKML schemas is provided in Annex A of this
Standard.

The advantage of XML Schemas is that it permitsmisiguous specification of knowledge that can be
shared by different standards or information prsicessystems.

Copyright © 2005 IEEE. All rights reserved. 15
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

4.5.2 Relationships between ATML and the IEEE AI-ES TATE, SIMICA, & STD Standards

Certain ATML Component Standards (and their assediXML Schemas) utilize or reference capabilities
defined in existing IEEE Standards and projectsenrdevelopment. Specifically, ATML Component
Standards utilize or reference the following IEE&nslards:

0 IEEE Std. 1641 (Standard for Signal and Test Dedinj: This Standard provides the means to define
and describe signals used in testing.

0 IEEE Std. 1232 (Standard for Artificial IntelligemcExchange and Service Tie to All Test
Environments): This Standard provides the mearexéhange and process diagnostic information, as
well as control the diagnostic processes (processels as: testability analysis, diagnostic reaspnin
diagnosability assessment, maintenance suppadtagnostic maturation).

O IEEE P1636 (Standard for Software Interface to Maiance Information and Collection Analysis):
This Standard provides the means to store andevetrmachine processable representations of
historical diagnostic and maintenance information.

4.5.2.1 |EEE Std. 1641 (STD)

ATML Diagnostics, Test Description, Instrument Destion, Interface Adapter, and Test Station all
utilize the concept of a signal description wittie Standards specification and within the XML sobe
Where this occurs, the IEEE Std. 1641 construet{i$pe referenced. ATML Component Standards do not
redefine, repeat, or compete with the constructnel® in IEEE Std. 1641. Should any ATML signal
description requirement not be satisfied by the SStBndard, the requirement(s) shall be broughhé¢o t
IEEE SCC20 TAD subcommittee in the form of a chapg®posal to the STD Standard.

4.5.2.2 |IEEE Std. 1232 (AI-ESTATE)

ATML Diagnostics requires a means to exchange andgss diagnostic information, as well as contnel t
diagnostic process. All of these ATML Diagnostique@ements will be supported by the utilizationtloé
AI-ESTATE Standard. Should any ATML Diagnostic regment not be satisfied by the AI-ESTATE
Standard, the requirement(s) shall be brought ¢eolHEE SCC20 DMC subcommittee in the form of a
change proposal to the AI-ESTATE Standard (ATML dpiastics shall not become a “competing
standard” to AI-ESTATE).

4.5.2.3 |IEEE P1636 (SIMICA)

ATML Diagnostics requires a means to store andiensdr historical diagnostic and maintenance
information. All of these ATML Diagnostic requiremts will be supported by the utilization of the
SIMICA project Standard. Should any ATML Diagnostiequirement not be satisfied by the SIMICA
project Standard, the requirement(s) shall be bdrbtgthe IEEE SCC20 DMC subcommittee in the form
of a change proposal to the SIMICA project Stand&TBML Diagnostics shall not become a “competing
standard” to SIMICA).

Copyright © 2005 IEEE. All rights reserved. 16
This is an unapproved IEEE Standards Draft, subject to change.

4.6 ATML Component Standards

The family of ATML standards (with its associateMX schemas) defines a logically related set of ATML
information. These ATML component standards elateoran information that only appears as “place

IEEE P1671 /D2, December 2005

holders” in this standard. The entire ATML familfystandards consists of:

Table 1—ATML Components

Component Name

Brief Description

Standard

Standard Automatic Test Marku
Language (ATML) for
Exchanging Automatic Test
Equipment and Test Information
via XML

b This Standard

IEEE Std. 1671 (ATML)

Common Contains the shared type None
definitions utilized within two or
more ATML components
Diagnostics Supports the execution and IEEE Std 1232 (AI-ESTATE)

analysis of diagnosis and
diagnostic procedures

and IEEE P1636 (SIMICA)

Instrument Description

Provides for the descriptiéan
test instrument

IEEE P1671.2 (ATML:
Instrument Description)

Test Adapter

Provides for the description of
interface test adaptor (ITA)

afEEE P1671.5 (ATML: Test
Adapter)

Test Configuration

Provides for the descriptiorited
testing configuration

IEEE P1671.4 (ATML: Test
Configuration)

Test Description

Provides for the description &
test subjects test requirements

HEEE P1671.1 (ATML: Test
Description)

Test Results and Session
Information

Contains the results of a single
run of an test, or tests, performe
on a test subject

IEEE P1636.1 (SIMICA: Test
dResults and Session Information

Test Station

Provides for the description of
test station

n |[EEE P1671.6 (ATML: Test
Station)

UUT Description

Provides for the description of
test subject

1 IEEE P1671.3 (ATML: UUT
Description)

4.6.1 Common

Common provides the definition of common types attibutes used by more than one of the XML

schemas. This XML schema is simply is a “toolboot” the other XML schemas.

Common is not a stand-alone |IEEE standard.

4.6.2 Diagnostics

Diagnostics facilitates diagnostic information shgrto support the execution and analysis of diagno
and diagnostic procedures.

While ATML Diagnostics is strongly focused aroundtificial Intelligence type applications, the ATML
definition of diagnostic data is broad enough t¢ peclude some other maintenance related standards
from being developed at some future date.

The process of diagnosis will include informationnh potentially all of the ATML components. The
specific diagnostic information for the Diagnostimemponent is found in IEEE Std. 1232 Standard for

Copyright © 2005 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

17

IEEE P1671 /D2, December 2005

Artificial Intelligence Exchange and Service Tie Al Environments (AI-ESTATE), and IEEE P1636
Software Interface for Maintenance Information €ction Analysis (SIMICA).

4.6.3 Instrument Description

Instrument Description facilitates the definitiohthe static description of an Instrument. The runstent
Description will facilitate the description of sytic / virtual / composite instrumentation.

4.6.4 Test Adapter

Test Adapter facilitates the unique descriptiorihef interface between the UUT and the Test Statlumn,
physical and electrical characteristics, the cdjtisi / performance, the identification and cléisation,

the intended test platform, and the TPS(s) sup@pméc. This includes the cables, connectors, wires
contacts, etc.

4.6.5 Test Configuration

Test Configuration facilitates the identificatiot af the hardware, software, and documentatioreasary
to test a UUT on a particular ATS.

4.6.6 Test Description

Test Description facilitates the definition of ttest performance, test conditions, diagnostic requents,
and support equipment to locate, align, and vemifyper operation of a UUT.

Any signal descriptions within a Test Descriptioill wtilize the IEEE Std. 1641-2004 Signal and Test
Definition (STD) capabilities.

Test Description(s) will be utilized in the devetognt of a TPS.

The history of re-hosting a TPS between ATE will tplaced by re-hosting test descriptions. Test
descriptions can be implemented on a target ATHEdxeloping a TPS from the test descriptions, in the
programming language of choice.

4.6.7 Test Results and Session Information

Test Results and Session Information provides tsnition for the data collected that resulted from
executing test(s) of a UUT via a TPS in an autoth#&tst environment. This includes the measuredegalu
pass/fail results, and accompanying data includiest operator, station information, environmental
conditions, etc.

Test Results and Session Information is a compostmdard of IEEE P1636 Software Interface for
Maintenance Information Collection Analysis (SIMICA

4.6.8 Test Station

Test Station facilitates the specification of atjgafar automatic test station. This includes thggical and
electrical characteristics, the paths betweensigstem ports and the Instruments, tolerances acutaxy

of the test station, test station identificatioformation such as part number, serial number, nctagaure,
location; status information such as calibratiotagddates, and self test status; operational lyistach as
system up-time, external interfaces, safety infdimmasuch as interlocks, temperature sensing; power
requirements controller definitions, etc.

Copyright © 2005 IEEE. All rights reserved. 18
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

4.6.9 UUT Description

UUT Description facilitates the unique descriptimina particular UUT. This includes information suah
the name, part number, model number, type, powguirements, interfaces, physical properties, and
operational requirements.

4.7 XML Schema Names and Locations

The ATML family of standards, their associated XMtchemas names, and where each of the XML
schemas can be located, are:

Table 2—XML Schema Names and Locations

Component XML Schema XML Schema Namespace
Standard

ATML (This
None None

Standard)

Common Common.xsd http://www.ieee.org/atml/<release year>/Common
CommonElementModel.xsd http://www.ieee.org/1232/<release year>/CommonElementModel
DynamicContextModel.xsd http://www.ieee.org/1232/<release year>/DynamicContextModel

Dlag nostics DynamiclnferenceModel.xsd http://www.ieee.org/1232/<release year>/DiagnosticinferenceModel
EnhancedDiagnosticinferenceModel.xsd http://www.ieee.org/1232/<release year>/EnhancedDiagnosticinferenceModel
FaultTreeModel.xsd http://www.ieee.org/1232/<release year>/FaultTreeModel

:Ssg(;‘:gﬁg:] InstrumentDescription.xsd http://www.ieee.org/atml/<release year>/InstrumentDescription

Signal and

Test stdbsc.xsd STDBSC

. stdtsf.xsd STDTSE

Definition

Test Adapter TestAdapter.xsd http://www.ieee.org/atml/<release year>/TestAdapter

Test , , _ -

Conﬁguration TestConfiguration.xsd http://www.ieee.org/atml/<release year>/TestConfiguration

Test - _ .

Description TestDescription.xsd http:/www.ieee.org/atml/<release year>/TestDescription

Test Results

and Session | TestResults.xsd http://www.ieee.ora/1636/<release year>/TestResults

Information

Test Station | TestStation.xsd http://www.ieee.ora/atml/<release vear>/TestStation

uuT - . _ .

Description UutDescription.xsd http://www.ieee.org/atml/<release year>/UutDescription

In addition to the above schema, additional schemeag be defined if information beyond a serial nemb
is needed when describing an instance. This stdvdd be updated as new schemas are created.

5. Conformance

Conformance to ATML can be achieved by conformingohe or more ATML component standards,
assuming the conformance requirements of the ATbWmonent standard(s) have been satisfied.

An instance document is considered to be confornfahthas been validated by the XML schema and
adheres to all requirements specified in the reied ML Component Standard.

Copyright © 2005 IEEE. All rights reserved. 19
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

6. Extensibility

The provision of an extension mechanism is necgdsagnsure the viability of the specification aaitbw
producers and consumers of ATML instance documemtisiteroperate in those case where there is a
requirement to exchange relevant data that is m@tided in the standard XML schema. The use of the
extensions should be done in a way ensures thanforecnant consumer can utilize the extended file
without error, discard or otherwise sidestep theemaed data, and use the non-extended portioniseof t
data as it is intended - without error or losswofdtionality.

Extensions should be additional information adaethé content model of the element being extended.
They should not repackage existing informatiorhie XML document.

An extended instance document should be accompéagidite extension XML schema and documentation
sufficient to explain the need for the extensionvali as the underlying semantics and relationshifg(the
base schema.

ATML schemas support two forms of extension:
O Wildcard-based extensions allow for the extensibATML schemas with additional elements.

O Type derivation allows for extending the set ofadftpes by deriving a new type from an existing
type.

XML schemas control the location and type of eximsllowed. Clause A.9 describes how to speciéy th
extension points for an XML schema.

Copyright © 2005 IEEE. All rights reserved. 20
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

Annex A
(informative)

XML Schema Style Guidelines

A.1 Naming Conventions

A.1.1 Capitalization Conventions

A.1.1.1 Pascal Case
The first letter in the identifier and the firsttkr of each subsequent concatenated word areatiapit.
A.1.1.2 Camel Case

The first letter of an identifier is lowercase ate first letter of each subsequent concatenated o
capitalized.

A.1.1.3 Uppercase

All letters in the identifier are capitalized.
A.1.1.4 Lowercase

All letters in the identifier are lowercase.
A.1.2 Naming Guidelines

O Spell words using correct spelling. Avoid abbréweias and acronyms.

0 As a general rule, acronyms SHOULD NOT be usedML>element and attribute names.
When it is necessary to use an acronym, acronymfistiaiee or more characters wsscal
case. Acronyms with two characters udpper case.

Abbreviations MUST NOT be used in XML element afigilaute names.

For XML schema data types, abbreviations MUST haidad while acronyms SHOULD
NOT be used.

XML element and XML schema data types &sscal case.

Except for XML schema abstract data types, XML schalata type names SHALL NOT have the
word ‘Type’ appended.

O XML attributes useCamel case. There is one exception to this rule. If an elemhas an “ID”
attribute, that attribute should use tppercase naming convention and be of typenBlankString
if it is required, and be of types:string if it is optional.

Namespace names uRascal case.
Namespace prefixes uk®wer case.
Use mixed case instead of underscores to distihquame segments.

Copyright © 2005 IEEE. All rights reserved. 21
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

O Underscores, periods and dashes MUST NOT be us¥tinelement, schema data type,
or attribute names.

O An element that represents a collection shall tmathusing a plural name.

O An element that represents a single entity shalidmed using a singular name.

A.2 XML Declaration

All ATML schema and instance documents shall usexpiicit XML declaration as the first line of ddfi
This declaration shall follow the forre?xm versi on opt. _encodi ng opt._standal one?>.

In general, it is expected that all ATML documemsl use UTF-8 encoding and will not use the
standalone option. Thus, the XML declaration folMT documents shall be:

<?xml version="1.0" encoding="UTF-8"?>
A.3 ATML Namespaces
The namespace URL for approved schemas shall be:

http://www.ieee.org/ATML/<release_year>/<schema_nam e>

where
<release_year > is the year in which the schema was approved.

<schema_name> is the schema name identified in Table 2.
The namespace URL for pre-approved (draft, canedjdatommendation) schemas shall be:

http://www.ieee.org/ATML/<posting_year>/<version>/< schema_name>

where
<posting_year > is the year in which the pre-release versiorhefd¢chema is made available

<version> is an integer that indicates the version of the-gpproved schema. The version
starts at 01 and increments each a new pre-appr@rsibn is made available for evaluation

<schema_name> is the schema name identified in Table 2.
The namespace shall be modified whenever one dbtlosving conditions occurs:

A change is made to a schema that invalidatesimgigtstance documents (i.e. a major revision
update)

The schema’s state changes from “pre-approvedapproved”
A new “pre-approved” version is made availabledwaluation

The use of these ATML sections is controlled thiotigeir namespace, such that any ATML document
refers to the namespace when describing one of t@msponents. e.g.

<?xml version="1.0" encoding="UTF-8"?>

<TestStation name="CASS" xmiIns="http://www.ieee.org /ATML/2005/TestStation">
<Configuration>
<Instrument name="Cablel" xmIns="http://www. ieee .org/2005/ATML/Instrument">
</Instrument>
<Instrument name="DMM" xmIns="http://www. ieee.or g/ATML/2005/Instrument”>
</Instrument>
</Configuration>
<Supports>
Copyright © 2005 IEEE. All rights reserved. 22

This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

<Equipment>

<UUT name="LHGS" xmins="http://www. ieee.org/ATM L/2005/TestRequirements"/>
<TestAdaptor name="123/45"
xmins="http://www. ieee.org/2005/InterfaceAdapt er'/>
</Equipment>
</Supports>
</TestStation>

A.3.1 Target Namespace

Every XML schema should define a target namespaldee namespace should be defined as a URL as
described in clause A.3. Each ATML component XMihema has its own namespace. This provides a
standard way to avoid name collisions between sakem

A.3.2 Default Namespace
The default namespace should be the target nanespac
A.3.3 XML Schema Namespace Reference

The namespace prefix for the XML Schema namesgamad bexs:

xmins:xs:="http://www.w3.0rg/2001/XMLSchema”
The XML Schema namespace should not be the defaoiespace.
A.3.4 Qualified and Unqualified

There are two attributes of thes:schema element that should be specified for every XML &uoh:
elementFormDefault and attributeFormDefault . These attributes specify whether or not
elements and attributes in XML instance documeredrto be qualified with the namespace of the XML
schema in which they are defined.

The value ofattributeFormDefault specifies whether or not attributes in XML instartocuments
are qualified with the namespace of the XML schemavhich they are defined. Since an attribute is
always defined and used in the context of an elgnieis not necessary to quality the attributenadl as
the element.

The value ofttributeFormDefault should baunqualified

The value oklementFormDefault specifies whether or not elements in XML instadoeuments are
qualified with the namespace of the XML schema mmicl they are defined. A value gtialified
indicates that if the root element is qualifiederitall sub-elements must be qualified as well. afug of
unqualified indicates that only global elements need to bdiftpth Using a value ofinqualified
allows for inconsistent qualification of elementdnstance documents.

Given the following example schema wélementFormDefault set toqualified
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmins: http://mynamespace.com/MySchema
xmins:xs =http://www.w3.0rg/2001/XMLSchema

targetNamespace =" http://mynamespace.com/MySchema
elementFormDefault =" qualified
attributeFormDefault ="unqualified ">

<xs:element name =" GlobalElement ">
<xs:complexType >
<xs:sequence >
<xs:element name =" ChildElement " type ="xs:string "/>
</ xs:sequence >
</ xs:complexType >
</ xs:element >

Copyright © 2005 IEEE. All rights reserved. 23
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

</ xs:schema >

The following are valid instance documents:

<?xml version="1.0" encoding="UTF-8"?>

<GlobalElement xmIns="http://mynamespace.com/MySche ma'">
<ChildElement/>

</GlobalElement>

and

<?xml version="1.0" encoding="UTF-8"?>

<my: GlobalElement xmIns:my="http://mynamespace.com/MySc hema">
< my: ChildElement/>

</ my: GlobalElement>

The following is NOT

<?xml version="1.0" encoding="UTF-8"?>

<my: GlobalElement xmiIns:my="http://mynamespace.com/MySc hema">
<ChildElement/>

</ my: GlobalElement>

If we setelementFormDefault set tounqualified in the above schema, then the following are
valid instance documents:

<?xml version="1.0" encoding="UTF-8"?>

<GlobalElement xmIns="http://mynamespace.com/MySche ma">

<ChildElement/>
</GlobalElement>

and

<?xml version="1.0" encoding="UTF-8"?>

<my: GlobalElement xmlns:my="http://mynamespace.com/MySc hema">
<ChildElement/>

</ my: GlobalElement>

The following is NOT

<?xml version="1.0" encoding="UTF-8"?>

<my: GlobalElement xmlIns:my="http://mynamespace.com/MySc hema">
< my: ChildElement/>

</ my: GlobalElement>

The value of elementFormDefault should be qualified
A.4 Versioning
The schema version shall be captured in the sclising the version attribute of the schema element.

The format of the schema version shall be <majar#ner>, where the major portion shall always bedfin
‘0’ and the minor portion shall be a two digit nuenlbeginning from “00”.

Previousreleased versions of each schema shall be made availablenomieee.org.
Changes made to an XML schema fall into two categor

a) A non-invalidating change — a non-invalidating oparns one that does not invalidate existing
instance documents. That is, existing instance mects will continue to validate against the
new version of the schema. Examples include ctinggor adding annotation data, adding an
optional element, adding an optional attribute d@diag an enumeration item. For this type of
change, it is sufficient to increment the <minooftipn of the version.

Copyright © 2005 IEEE. All rights reserved. 24
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

b) An invalidating change — an invalidating changeoise that invalidates existing instance
documents, that is, existing instance documentsnwillonger validate against the new version
of the schema. Examples include adding requirechehts or attributes, changing the structure
of an element, or renaming an element or attrib&ar. this type of change, the <major> portion
of the version must be incremented and the minetiggoof the version will be reset to zero
(00). Also in this case, the namespace of the sahrest be changed.

A.4.1 Versioning process for non-invalidating chang e

a) Change the schema version number within the scifemanor> portion is incremented by 1).
b) Document the change in the schema change history.
c) Make the new and previous version of the schemiaine

A.4.2 Versioning process for an invalidating change

a) Change the namespace

b) Change the schema version number within the sc{gmajor> portion is incremented by 1,
<minor> portion is reset to 00).

c) Document the change in the schema change history.
d) Make the new and previous version of the schemuadne
A.4.3 Version process releasing an approved schema
a) Change the namespace to replapesting_year>/<version> with <release_year>
b) Make the new and previous version of the schemiaine.

A.5 Documentation

Use the annotation element for documenting the raehe The
<xs:annotation><xs:documentation>...</xs:documentatio n></xs:annotation>

elements shall contain information targeted at huneaders of the XML schema. Use the annotations t
capture semantics, definitions and other explagatdormation.

A.6 Element versus Type

When in doubt, define a type. Declaring elemerith & named type permits reuse.

A.7 Design

A schema shall define at most one global eleménglobal element is an element declaration thans
immediate child of the <schema> element.

A schema may define one or more global type dédimét

All elements shall be defined using type definifonThis approach maximizes reuse and namespace
control.

Avoid the use of global attributes.

Copyright © 2005 IEEE. All rights reserved. 25
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

A.8 Element versus Attribute

There is no easy answer to the element versubwirquestion. As a general convention, elemestthe
“real” containers of data. Attributes are use@ntmotate elements with metadata describing theesnbof
the element. Perhaps the biggest advantage off idement content to represent information in the
document and using attributes for annotation ismsibility. The decision to use elements versuiates
should never be made to optimize document size.

A.9 Extensibility

An element has an extensible content model if steince documents that element can contain elerardts
data beyond that specified by the schema. ATMlesws should explicitly identify where they can be
extended. Only elements from a namespace différent the document namespace should be allowed in
an extension. The schema shall use ¢hs:any> element with thenamespace attribute set to
“##other ” to identify where extension is allowed. To avoitbn-deterministic validation, the
<xs:any> element shall be included in afExtension> or <Other> element. This approach, often
referred to as Wildcard extensions, is the onlyrapgh that allows an extended instance document to
validate against the original XML schema definition

Allowing the extension of a schema using type sulikin should be avoided. Schemas should mark
elements defined via a simple or complex type withblock attribute set tétall if type substitution is

to be avoided. Elements which use type substiiutie their means of definition should be set the
abstract attribute tatrue .

A.10 Defining Uniqueness and References

When defining a schema for which validation of refees is desireds:key andxs:keyref shall be
used instead ofs:ID andxs:IDREF .

When defining a schema for which validation of wdqgdentifiers is desires:unique shall be used
instead ofs:I1D

These requirements arise from the fact that trermilimitation on the values or types that caubed as
part of an identity constraint that usesunique , xs:key andxs:keyref , whereaxs:ID can only
be of a specific range of values (for example, RGT a validxs:ID). In addition, the scope aof:ID
and xs:IDREF is the entire document. The scopexsfunique , xs:key andxs:keyref is the
target scope of thEPATH expression included in thes:keyref definition.

A.11 Default and Fixed Values

Default and fixed values should NOT be specifieddibributes. If a value for an attribute spedifigith a
'default ' or fixed ' value is not supplied in the instance document]LXvalidation software
automatically inserts the default or fixed value(Sjnce validation is not required, making valagailable
only when validation is performed should be avoided

A.12 Collections

A collection is a list of identical items. Whenesjfying a collection, a containing element shobkl
included. TheminOccurs attribute of the containing element should beteel if the collection is
required and O if it is optional. TheaxOccurs attribute of the containing element should alwbgsset
to 1, This implies that if the containing elemexitsés, then the collection has at least one item.

The following is an example of the recommended wettlor defining a collection of identical items:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmins: http://mynamespace.com/MySchema

Copyright © 2005 IEEE. All rights reserved. 26
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

xmins:xs =http://www.w3.0rg/2001/XMLSchema

targetNamespace =" http://mynamespace.com/MySchema
elementFormDefault =" qualified "
attributeFormDefault ="unqualified ">

<xs:element name="MyElement">
<xs:complexType>
<xs:seguence>
<xs:element name="Items" minOccurs="0">
<xs:complexType>
<xs:.sequence>
<xs:element name="Item" maxOccurs="unbounded ">
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="OtherElement"/>
</xs:sequence>
</xs:complexType>
<I/xs:element>

</ xs:schema >

The above schema validates the following XML.:

<MyElement xmIns="http://mynamespace.com/MySchema">
<ltems>
<ltem/>
<ltem/>
<ltem/>
</ltems>
<OtherElement/>
</MyElement>

Further, theminOccurs and maxOccurs values of anxs:sequence element in an XML schema
should be set to 1, the default value.

A.13 minOccurs and maxOccurs

The default value for both of these attributes.isdo not explicitly set the value of these attténiif the
default value is the value to be used.

Copyright © 2005 IEEE. All rights reserved. 27
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

Annex B
(informative)

Architecture Examples

B.1 Diagnostics

The following example has been created from alifeascenario, to demonstrate the operational henef
utilizing ATML diagnostic components.

A Weapons Platform at the Operational Level (O-lewsintenance activity fails a pre mission chedkou
The failure is diagnosed using Weapons Platform. Bifi operator removes and replaces several LRUs
from the Weapons Platform, and the system thenegaB$T. The removed LRUs are then sent to the
Intermediate Level (I-Level) maintenance shop &pair.

In the I-Level shop, each of the LRUs is sent to anomatic test station where they undergo a
comprehensive full compliment of functional and giiastic tests. During diagnostic testing, a faslt i
identified with an SRU in one (1) of the LRUs. Thaalty SRU is removed and replaced; the repairetd LR
is retested, and passes. The remaining LRUs aed{ezach passes testing and is returned to sdwitte

no faults found). The removed SRU is sent to theotéor repair, which in this case is the manufestwf

the SRU.

Once received by the manufacturer, the SRU is $entdiagnosis and repair. After performing a
comprehensive full compliment of functional and giiastic tests on the SRU, the repair technician
determines the presence or absence of a faultrdg@r technician replaces any faulty componemtd,if
warranted, returns the replaced components toadhgonents manufacturer for fault analyses.

This example illustrates this typical, autonomopsration of the various levels of maintenance.

~

I-Level Testing:
find fault to next lower
sub-assembly, and
replace faulty sub-
assembly

O-Level Testing:
find fault to next lower
assembly, and replace

faulty assembly

Depot Level (Factory)
Testing:
find fault to component
level, and replace faulty
component

Component
Manufacture Testing:
find fault with
component

- /

Figure B.1—Autonomous Operation of Maintenance Leve Is

Copyright © 2005 IEEE. All rights reserved. 28
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

Using ATML as the means to exchange data betwessetlevels has the potential benefit of reducireg th
test workload and speeding up the diagnostic peoeBnprove the time spent at each level.

At the O-Level for example, the availability of tuscal data for the Weapons Platform could rediee
number of pulled and replaced LRUs during the diestjn process and at the same time reduce the amoun
of Weapons Platform time required for a particukgpair. (e.g.; Bit code 137 calls out LRUs 1, 5 &ut

the failure, from historical data, 95% of the tiltiRU 5 is the fault, 4% of the time LRU 7, and LRUeks
than 1% of the time).

At the I-Level for example, the availability of Celel data for this occurrence could be used toeguid
diagnostic testing of LRUs (e.g.; When BIT code Tafls out LRU 5 the predominant failure is detdcte
90% of the time in test group 900. The TPS for LRUas a an entry point prior to test group 900 itha
testing were to be started there, this would cutittutes off of the detection time of that partarulailure
mode).

The data collected at all levels of maintenancelzansed as verification of the validity or ideicgfion of
problems associated with maintenance actions asrthple down the logistics stream as illustratgd b
figure B.2.

4 N

Test
Results &

Test
Results &
Repair
Actiong

Historica
Test Results
& Repair

Repair

Actions Actions

-Level Testing
find fault to next lower
sub-assembly and
replace faulty sub-
assembly

O-Level Testing
find fault to next lower
assembly and replace

faulty assembly

Diagnostic
Reasoners

Diagnostic
Reasoners

Depot Leve (Factory)

; Component
find faul-lt-?gtg:fm - Manufacture Testinc
P find fault with

level and replace faulty
component

component

Diagnostic
Reasoners

Test
Results &
Repair

Test
Results &
Repair
Actions

Actions

Figure B.2—Example ATML Diagnostics Operation betwe en Maintenance Levels

Copyright © 2005 IEEE. All rights reserved. 29
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

B.2 Instruments

The following has been created from a real lifensei®, to demonstrate the operational benefitsibzing
ATML Instrument Descriptions. The scenario of tlexample is that of representing instruments
capabilities during an ATLAS based TPS compilapoocess.

Typically, ATLAS based compilation tools utilize ree representation of station instrumentation
capabilities. This file (or maybe database) usuallyf a proprietary format, unique to the partazulendor
who developed the compilation toolset. This is thepulated with data (either by ATE system integnst

or the tool vendor) which is at best, an intergieta of each of the instruments capabilities, each
manipulated to “fit” within the constraints of tipeoprietary format and/or the function of the colapi

The philosophy ATML is consciously supporting is te longer attempt to interpret instrument
capabilities, but to use and maintain the instrundata as provided by the manufacturer througlzatibn
of the InstrumentDescription.xsd schema.

It is worthwhile noting, although not applicable tthis example, that in addition to the
InstrumentDescription.xsd schema that would exisif particular vendors product (e.g.; Vendor X,ddio
ABC), that ATML permits an Instrument Descriptiarsiance schema for the particular serial number and
configuration of the actual product “purchasedg(eVendor X, Model ABC with Option 1A, Serial
Number 12,345).

ATML tool developers have already begun enhancingistieg tool sets to utilize
InstrumentDescription.xsd schemas in lieu of tpeaprietary databases.

The following example illustrates using the instamhvendor original instrument description rathen
interpreting data sheets into yet another spedifiplementation. ATML implemented properly, makes
interpreting instrument datasheets by system iategs and maintainers a “thing of the past”.

Instrument “X”
ATML In_str_ument Performance
Descriptions Characteristics
Data Sheet What information should | be including ?
How do | interpret the data sheet?
Why can’t the database be easily interpreted?

|

! Why do I have to create the instrument database at all;

! couldn't the instrument vendors just give me the data

: . in a standard form a compiler (or human) could use?

|

|

|

L

Instrument
- Database Test Program Compiler for
ATE “Family A”
.
Figure B.3—Example ATML Instrument Usage/Benefits
Copyright © 2005 IEEE. All rights reserved. 30

This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

B.3 Test Descriptions

The following has been created from a real lifensei®, to demonstrate the operational benefitsibzing
ATML Test Descriptions. The scenario of this exaenigl that of moving (either by re-hosting or pagim
TPS from one ATE family to another.

Typically, TPSs are developed and integrated wiadicular ATE. What this methodology introducss i
station dependencies integrated within the TPSs&lséation dependencies can be categorized as:

a) TPSinstrument programming: An “historical” programming technique that evalvrom the
manual testing methodology, and is widely utilizeday. The “result” is that a test is written
around a particular instrument, its “features”, dhd instruments operation within that ATE.
The “problem” with this methodology is that it i®arly impossible to replace the instrument
without some level of modification to the writtests (up to and including a total re-write).

b) Instrument hardware electrical characteristics: Electrical characteristics that must be taken
into account when interfacing instruments with tH&T. For example impedance, drive
capability, resolution, and accuracy — capabilitigsically found on instrument data sheets.
However there are characteristics that are quitendfoverlooked”, and not documented, such
as timing (e.g.; 3 microseconds after a trigger waveform is present) or firmware impacts
(e.g.; the instrument resets to zero volts betwsteps of a ramped waveform output). These
“overlooked” characteristics quite often have torbeerse engineered, for each instrument and
ATE configuration.

c) Instrument programming interfaces. The instruments setup time and the time to command
the instruments affect the overall TPS executionet as well as individual test timing.
Regardless of the interfaces used within the ATESS were developed with this specific
timing integrated within. This timing does not omBpresent the actual hardware interface, but
the controller(s) execution times and software bgad.

It is important to note that at some point in tirttes tests that were developed and integrated speeific
ATE, were implementing a test strategy for theipalar UUT.

The philosophy ATML is consciously supporting isrto longer attempt to re-use the implemented tests
(and address the issues discussed above), butiserand maintain the test strategy for the pdatiduUT.
When a new ATE is desired for example, rather tleaerse engineering the existing TPS implementation
develop a “new” TPS (in the programming languagechbice) targeted to the new ATE (and its
capabilities), utilizing the test strategy captubgdutilization of the TestDescription.xsd schema.

ATML tool developers have already begun developnm@ntool sets that can extract test requirement
schema information from existing ATLAS based TPf8s (se when the test strategy information may no
longer be available), as well as support the dembént of TPS source code from TestDescription.xsd
schemas.

The following example illustrates re-using the ova test requirement rather than interpreting ectic
implementation to create yet another specific immatation. ATML implemented properly, makes re-
hosting legacy TPS code a “thing of the past”.

Copyright © 2005 IEEE. All rights reserved. 31
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

4 N

N

Verify that 120VAC (+/-10VAC) . Information to be used to develop a
is present at the outlet strip g TPS on the desired ATE

What does filter 3 mean?
What did this “do to the old DMM"?
| can't find that 10 year old manual...
. Why can’t | just implement a procedure on the ‘new ATE”
from the original requirement?,
it would be a lot faster to get the TPS ready, and | could utilize the
state of the art capabilities of the “new ATE”....

e
v 77 ¥
%* ES
MEASURE (VOLTAGE-TRMS) AC SIGNAL USING ‘DMM’, MEASURE (VOLTAGE) AC SIGNAL USING ‘DMM’,
VOLTAGE-TRMS MAX 130 VAC, VOLTAGE MAX 130 VAC,
FILTER 3, MODE 1A, RANGE 4....... COUPLING AC.......
Implementation #1 Implementation #2

Figure B.4—Example ATML Test Description Usage/Bene fits

B.4 Runtime Services

B.4.1 Messages

As a guideline messages and user display informatiged in an ATML system should utilized well
formed HTML for representing their display infornmat. The use of HTML allows the use of standard
browser technology to display and interact withdker, in a common format across platforms.

If a requirement exists where ATML documents neechtlude bits of HTML, and HTML documents to
include bits of other markup languages, then us€-6FML should be considered.

B.4.2 Executive System Service

As an example of using the ATML collection of sclamone classic example would be a service that
consumes Test Descriptions and returns Test Results

The Test Descriptions are an XML document confognia the ATML schema with the namespace
derived from TestDescription.xsd. The Test Resalesan XML document conforming to the Test Results
and Session Information schema with the namespadeed from TestResults.xsd. Such a service is
described in terms of its inputs and outputs; daies not prevent the service providing additionklbging
information to internal systems such as an opegatiystem event logger (Windows Event Log or Linux
Event Log).

This example assumes an abstract WSDL definitiorthat this could be implemented as straight Foncti
Calls, DLL calls, COM Methods, COBRA Services or M\@ervices.

Copyright © 2005 IEEE. All rights reserved. 32
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

A WSDL document defineservices as collections of network endpoints,pmrts. In WSDL, the abstract
definition of endpoints and messages is separated their concrete network deployment or data farma
bindings. This allows the reuse of abstract defin&: messages, which are abstract descriptions of the data
being exchanged, amgbrt types which are abstract collections gferations. The concrete protocol and
data format specifications for a particular popeyconstitutes a reusaldénding. A port is defined by
associating a network address with a reusable tgnd@dind a collection of ports define a service. ¢¢ea
WSDL document uses the following elements in thinden of network services:

types— a container for data type definitions using saype system (such as XSD).

message- an abstract, typed definition of the data beimiguaunicated.

port Type-an abstract set of operations supported by ongog endpoints.

O operation— an abstract description of an action supportethéyservice.

binding— a concrete protocol and data format specificdiora particular port type.

service- a collection of related endpoints.

O port— a single endpoint defined as a combination dhdibg and a network address.

B.4.2.1 Example WSDL Service Definition

<?xml version="1.0" encoding="UTF-8" ?>

<definitions
xmins =http://schemas.xmlsoap.org/wsdl/
xmins:soap =http://schemas.xmlsoap.org/wsdl/soap/

xmins:http =" http://schemas.xmlsoap.org/wsdl/http/ "
xmins:xs =" http://www.w3.0rg/2001/XMLSchema "
xmins:soapenc =" http://schemas.xmlsoap.org/soap/encoding/

xmins:mime =" http://schemas.xmlsoap.org/wsdl/mime/

xmins:tdml " http://www.ieee.org/ATML/2005/02/TestDescription "
xmins:trml " http://www.ieee.org/ATML/2005/01/TestResults "
xmins:y =" http://www.ieee.org/ATML/2005/01/RuntimeServices "

targetNamespace =" http://www.ieee.org/ATML/2005/01/RuntimeServices ">
<message name =" testDescriptionin ">
<part name ="parameters " element ="tdml:TestDescription ">

</ message >
<message name ="testResultOut ">

<part name ="parameters " element ="trml:TestResults ">
</ message >
<portType name =" ExecutiveRuntimeSystem ">
<operation name =" Execute ">
<input message ="y:testDescriptionin ">
<output message ="y:testResultOut ">

</ operation >
</ portType >
</ definitions >

Because this definition does not contain any syebihdings or services it can be used as part \6fed
service call or to define a tradition C/C++ functio

CString Execute (const CString parameters);

With the added constraints that the input and dwgprings will conform to the relevant ATML schemas

Copyright © 2005 IEEE. All rights reserved. 33
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

Annex C
(informative)

Acronyms

AI-ESTATE Artificial Intelligence Exchange and Sée Tie to All Test Environments

API Application Program Interface
ATE Automatic Test Equipment
ATLAS Abbreviated Test Language for All Systems
ATML Automatic Test Markup Language
ATS Automatic Test System
BIT Built In Test
C/ATLAS Common/Abbreviated Test Language for AllsEyms
CAD Computer Aided Design
CcC Creative Commons
CORBA Common Object Request Broker Architecture
COM Component Object Module
DLL Dynamic Link Library
DMC Diagnostics and Maintenance Control
EDIF Electronics Design Interchange Format
FRU Field Replaceable Unit
HTML HyperText Markup Language
IEEE-SA Institute of Electrical and Electronics Emeprs-Standards Association
ID Interface Device or IDentifier
IDL Interface Definition Language
ITA Interface Test Adapter
I-Level Intermediate Level
VI Interchangeable Virtual Instrument
LRU Line Replaceable Unit
O-Level Operational Level
OoMG Object Management Group
RFI Receiver Fixture Interface
RTO Run-time Test Object
SCC20 Standards Coordinating Committee 20
SIMICA Software Interface for Maintenance InfornuatiCollection and Analysis
SRA Shop Replaceable Assembly
SRU Shop Replaceable Unit
STD Signal and Test Definition
STEP STandard for the Exchange of Product data
TAD Test and ATS Description
TP Test Program
TPS Test Program Set
TPSD Test Program Set Documentation
URI Uniform Resource Identifier
URN Uniform Resource Name
URL Universal Resource Locator
UuT Unit Under Test
VISA Virtual Instrument Software Architecture
VPP VXI Plug & Play
VXI VME (Versa Module Eurocard) Extension for Instnentation
w3cC World Wide Web Consortium
WSDL Web Services Definition Language
XHTML Extensible HyperText Markup Language
Copyright © 2005 IEEE. All rights reserved. 34

This is an unapproved IEEE Standards Draft, subject to change.

XML
XSD

IEEE P1671 /D2, December 2005

Extensible Markup Language
XML Schema Document

Copyright © 2005 IEEE. All rights reserved. 35
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

Annex D
(informative)

Bibliography

[B1] An ascetic view of XML best practices. Availabterh World Wide Webhttp://monasticxml.org

[B2] Extensible Markup Language (XML) 1.0 (Third EditjonWorld Wide Web Consortium
Recommendation 4 February 2004 [cited 2000-05-OBjailable from World Wide Web:
http://www.w3.0rg/TR/2004/REC-xmI-2004020

[B3] ISO 1000:1992, Sl units and recommendations forube of their multiples and of certain other
units?

[B4] IEEE 100,The Authoritative Dictionary of |EEE Standards, Seventh Edition.?

[B5] MedBiquitous XML Schema Design Guidelines. Avaitabfrom the World Wide Web:
http://www.medbig.org/technology/tech architectyngldesignguidelines.pdf

[B6] Namespaces in XML. World Wide Web Consortium Reca@ndation 14 January 1999 [cited 2000-
05-05]. Available from World Wide Wellnttp://www.w3.0rg/TR/1999/REC-xml-names-19990114

[B7] Schenck, D. and Wilson, Rnformation modeling the EXPRESSway, New York: Oxford University
Press, 1994.

[B8] TIBCO XML Resource Center: Best Practices. Avadabfrom World Wide Web:
http://www.tibco.com/software/standards_supporthesburces/index_best.jsp

[B9] Uniform Resource Identifiers (URI): Generic Syntémternet Engineering Task Force RFC 2396
August 1998 [cited 2000-08-07]. Available from WibkVide Webhttp://www.ietf.org/rfc/rfc2396.txt

[B10] URN Syntax. Internet Engineering Task Force RFC12Way 1997 [cited 2000-09-28]. Available
from World Wide Webhttp://www.ietf.org/rfc/rfc2141.txt

[B11] W3C XML Schema Design Patterns: Avoiding Complexityailable from the World Wide Web:
http://msdn.microsoft.com/library/default.asp?ibrary/en-us/dnxml/html/xmischemacomplex.asp.

[B12] XML Developers Guide for government. Available fromWorld Wide Web:
http://xml.gov/documents/in_progress/developerseupidf.

[B13] XML Information Set World Wide Web Consortium Cadaie Recommendation 24 October 2001
[cited 2004-05-05]. Available from World Wide Welbttp://www.w3.0rg/TR/2001/REC-xml-infoset-
20011024

1 1SO publications are available from the ISO Cdrecretariat, Case Post&l6, 1 rue de Varensh CH-
1211, Gene¥ 20, Switzerland/.Suigghttp://www.iso.ch/). ISO publications are als@#able in the
United States from the Sales Department, AmericatioNal Standards Institute, 25 West‘&reet, 4
floor, New York, NY 10036, USA (http://www.ansi.djg

2 |EEE publications are available from the InstitaféElectrical and Electronics Engineers Inc., #es
Lane, Piscataway, NJ 08854, USA (http://standards.brg/)

Copyright © 2005 IEEE. All rights reserved. 36
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1671 /D2, December 2005

[B14] XML Linking Language (XLink) Version 1.0. World W& Web Consortium Candidate
Recommendation 27 June 2001 [cited 2004-05-05]. ilAbie from World Wide Web:
http://www.w3.0rg/TR/2001/REC-xlink-2001062

[B15] XML Path Language (Xpath) Version 1.0. World Widéeb Consortium Recommendation 16
November 1999 [cited 2003-05-12]. Available fronokd Wide Web:http://www.w3.org/TR/1999/REC-

xpath-19991116

[B16] XML Schema Part 1: Structures. W3C Recommendafidiay 2001 [cited 2004-05-05]. Available
from World Wide Web:http://www.w3.0rg/TR/2001/REC-xmlIschema-1-20010502

[B17] XML Schema Part 2: Datatypes. W3C Recommendatidvia 2001 [cited 2004-05-05]. Available
from World Wide Webhttp://www.w3.0rg/TR/2001/REC-xmiIschema-2-20010502

[B18] XML Schemas: Best Practices. Available from World id&/ Web:
http://www.xfront.com/BestPracticesHomepage.html

[B19] XML Schema Tutorial: Available from World Wide Wehttp://www.xfront.com

Copyright © 2005 IEEE. All rights reserved. 37
This is an unapproved IEEE Standards Draft, subject to change.

