The Information and Content
Exchange (ICE) Protocol

Working Draft Version 2.0
December 1, 2003

Thisversion
http://www.icestandard.org/Spec/SPEC-I CE-2.0.html
Latest version
http://www.icestandard.org/Spec/SPEC-ICE1.1.html
Previous version
http://www.icestandard.org/Spec/SPEC-ICE1.01.html
Latest version eratta
http://www.icestandard.org/Spec/ERATTA-ICEL.1.html
Editors:
Jay Brodsky, Tribune Media Services
Marco Carrer, Oracle Corporation

Dianne Kennedy, IDEAIlliance

Daniel Koger, independent consultant
Richard Martin, Active Data Exchange
Laird Popkin, Warner Music Group

Status of this Document

This document is a draft recommended specification. It representsa

significant step towards a stable specification suitable for widespread

dissemination and implementation. It has NIETHER been reviewed NOR approved
by the ICE-AG or the Board of Directors of IDEAlliance. The ICE Authoring
Group intends to submit this update of the ICE specification to the W3C to

replace the original ICE Note specifying version 1.0.

ICE 2.0 isthefirst major revision of the ICE Specification. Assuch, ICE 2.0isnot a
compatible update to the ICE 1.0 specification. This update is a response to the
implementation experience that has been gained over the past four years as well asthe

advancement in technology and W3C Recommendations. It differs from the ICE 1.0 and
ICE 1.1 specifications in that it is specifically designed to support a Web Services model
for syndication, has been modularized, incorporates XML Namespaces, and moves from
an XML DTD to XML Schema.

The ICE Authoring Group and |DEAIliance recommend that implementations be updated
to conform to the new | CE 2.0 specification. The new specification embraces the latest
Web technologies and W3C Recommendations. It provides added functionality that
greatly enhances the usability of the protocol in avery wide range of syndication
applications and can provide a substantial foundation for delivering syndication solutions
in aWeb Services environment.

Abstract

This document describes the Information and Content Exchange protocol for use by
content Syndicators and their subscribers. The ICE protocol defines the roles and
responsibilities of Syndicators and Subscribers, defines the format and method of content
exchange, and provides support for management and control of syndication relationships.
We expect | CE to be useful in automating content exchange and reuse, both in traditional
publishing contexts and in business-to-busi ness relationships where the exchange
eBusiness content must be reliably automated.

Table of Contents

SEAEUS OF ThiS DOCUMEBINEeeeeee e et e e e e et e e e e e e e e e e e e e e eeeeeeaeeennnneeeeeens i
PADISETOCT ...ttt et e n ittt e s s nnnnn s nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn i

Chapter 1. Introduction 1-1

I R O = o g €T = S 1-1
L111ICE 1.0ODESIGN GOAISccueetieierieeieeiesiee ettt se e ee e 1-1
1.1.2ICE 2.0 DESIGN GOAIScoitiiirieriesiiniieiieee ettt s 1-2

1.2 How ICE Relatesto Other Standardsccocoveeeierieneenenieseee e 1-3
0220 0 Y, I S 1-3
1.2.1 XML NAIMESPACES.cvveeiteririiirisiisasiiesssssesssssessssesssssesssssesssssesssssessnssesssseessns 1-3
1.2.2 XML SCREMAL.....oiiiieeceee e 1-3
L2.3RSS ... ettt bbb e nns 1-3
S T S 1-4
2 IV 5 ST 1-4
022 5 31U T S 1-4
L.2.7 PRISM ..ottt st sttt ettt bbb nns 1-4
IR S D 1 S 1-5
2R I 1 /I SO 1-5
022 0 1 | S 1-5
0 5 5 J OO 1-5
I U 1-6
L2 L3 WEBDAY ..ottt b e b 1-6
L2 LA HTTP DRP.....o ettt sttt renrenneens 1-6

(RS H B < 11 oL 0] SRR 1-7
1.3.1 Requirement Wording NOLE.........cccoreririeieierese e 1-7
1.3.2 ICE SemantiC DefiNItIONS........ccooviirieiriee et 1-7

1.4 TeChNICal DECISIONS......ccuiiieiiieieeiesieee e steeee e st seesbe e e sreenseeneenseeneas 1-9
141 ICE 2.0 CONSITAINES.coiveieriisiesiesienieseeeesieseesaesaesiessessesseeeesessessessessessessens 1-10
1.4.2 Defining ICE 2.0 using an XML-SChemaL.........cccoviinenieniniesesese e 1-10
1.4.3 Use of SOAP Transport Mechanism............ccceceveeieiienicce e 1-11
144 Useof HTTP:GET asaTransport Mechanismcccocevvvniivenieniencnnen. 1-11
IS o U YR SROPURN 1-11

1.4.6 INterNatioNali ZALION ISSUEScoeeee et e e e e e e e e e e e e e e e aeneees 1-12

147 ICE MOGQUIBITTY ..ottt 1-12

1. 4.8 1CE NAMESPACES......cceiueeeireieiiieesteeesiieeassreessseeesseeesseeesseesssseesssseessseessnseees 1-13
149 1CE SIMPIE DALALYPES. ...ccueeiveeierieesieerieeiesiee e see e s sae e s neeseesneeneas 1-13
1.4.10 ICE WSDL SCIPLS...cueeeeitertisteriesiesiesieseesee e sae st st sre e sse s s e s e 1-13
1.5 Structure Of thiS DOCUMENLceouiiieriieierierie e sae e 1-13
1.6 CONVENTIONS.....cueiiiiiitesiesiesieee ettt sttt b e bbbttt sb et b ne e 1-14
Chapter 2. ICE Overview 2-1

2.1 SIMPIE ICE SCENAIIOS.......eeiueeiteeieeiesteesteseesteesteseesseesseeeesseesseaseesseessesssesseessessens 2-2
2.1.1 HEAOlING SCENAIOcoveeeeeeeieie ettt sne s 2-2
2.1.2 PalItS SCENAIMO.cveiiesiiiiesiieieie e sie st sttt sae et b se e e e e e naesbeseesbensens 2-2
2.2 PrOtOCOl OVEIVIBIWceveeiieciiesieeieete st tesseesteesaeseesseesaeesessseenseeneesseensesnensseessesnenns 2-3
2.2.1 Messages, Requests and RESPONSES..........cciveveieerieenieceesieesie e sre e e seesseeeas 2-3
2.2.2 RequEeSt/RESPONSE MOTEooiiiiieriisiereeie e 2-3
2.2.3 Subscriber/Syndicator, Requester/Responder, Sender/Receiver 2-3
2.3BINAINGS Of ICE ..ot 2-4
2.3.1BIinding ICEtO HTTP:GET ..o 2-4
2.3.2MappiNg ICE t0 SOAP ...t 2-4
2.4 ICE Syntax and FOIMAL..........ccceeiiiieieeie e s et see s ste e seesre e e saeeee e esnesnneas 2-6
B [0 1= o (1= T USSP 2-7
2.5.1 Subscriber and Syndicator [dentifiers........coeoeveveeie e, 2-7
2.5.2 Other IAeNtITIErS.eeieeeeeeese et 2-7
2.6 |CE SIMPIE DAELYPES.....cuveieeeiteeieeieste e eee st et et e steesae e sre et e see e e ssesneesseensesnnens 2-9
2.7 ICE NAMESPDACES........eeeveeueerieesteeie e sse et sse s e s e ne e e sre et e aseesreesrensnesneennennneas 2-9
2.8 ICE MESSAGE XSDviiiiiiieiieiiie ettt sttt e sbenne s 2-10
2.9 ICE DEIVENY XSD ..ottt sae et a s sae st snesnenneas 2-10
2.10 |CE SUBSCITDE XSD ..ottt sttt e 2-11
211 ICE MESSAgE HEAET ..ottt 2-13
2.11.1 Message Header AttribDULES........c.ocveeeeiecee e 2-13
2.11.2 Message Header EIEmMENTS........cocove i 2-14

N N R < 1o = ST 2-14
21122 RECEIVEN ...ttt eie st te e siee st ee e st et sseesse e seeneesseeseeneesseensennnens 2-14
2.10.2.3USEN AQENT ..ottt sttt ne e 2-15
212 ICE StAUS COUES.....ccuveeeeeiteeieetieste e siee st eee e te e s sse e e sseestesneesseenseeneesseeneas 2-15
2.12.1 Relationship Between SOAP Faults and ICE Status Codes....................... 2-15
2.12.2 ICE Status COOE FOIMELocvvereeeeisieesie e sieesie e sre e ssee s eae e sse e 2-16

2.12.3 DEfiNEA SLALUS COUBS. ..o e e et e e e e e e e e e e eaeeeaaeens 2-17

Chapter 3. ICE ConformanceLevels 3-1

S LICE MOUUIBITEY ...ttt 31
S LIHTTP:GET (REST) TranSPOItc.ccevverierieeieieiiesiesie st st siesies e seesae e seesneseens 3-2
3.1.2 Message / Package DElIVENY ..o 3-2
3.1.3 SOAP TraNSPOIT.......eeeiiieiieeie ettt 33
3.1.4 SUbSCription ManagEemMENLccceeieeiieeieie e et ns 33
3.5 INcremental UPOELEScccveveierierieriesiesieeeeie ettt 3-3
3.1.6 Delivery Confirmation...........cccceieeieeiesiese e 3-3
0 A o o] 0o TS URUS TP PPN 33
G300 I B N\ [=o 0 = 1 o o VS 34

3.2 MOre aDOUt MOTUIAITYceueeieiiieriesie et 34

3.3 ICE Levels of CONfOrMAanCE.......c.ccueiueeiieiiesecce ettt 34
T 00 I =S Lo 1 SRS 34
GG U 1 RS SSTRN 35
3.3.30ptioNal ICE EXIENSIONS......ccveieiieerieeieseesieeiesseeseeeee e sseeeesseesseensesseesseenes 3-6

Chapter 4. Basic ICE 4-1

A1 OVEIVIBW ...ttt sttt st b et h st e e et et st s bt s bt e st e st e e e e e b et e see b e 4-1

4.2 A BASICICE SCONAMNOeevieieeiee it sie ettt sttt st s sbe e e beeneesneeneesneeas 4-1
4.2.1 Syndicator and Subscriber Set up a Business Agreementccccceevecveeveenee. 4-2
4.2.2 Syndicator Makes “ Catalog” Available..........cocvieiiiniineieeeeeee, 4-2
4.2.3 Subscriber “GetS” ICE CatalOog.........cvereeierierienesie s 4-3
4.2.4 SUDSCIDEN “GELS” CONTENE......coitiiieiiierieeie e et 4-3

4.3 Transport aNd MESSAGING......veeueiueerreeiesierieseesreesseeeeseesseseesseesseseesseesesseessensenns 4-4

4.4 Catalogs and SUbsCription Management............ceceeeereeieneenieeiesee e 4-4
N RO = £ USSR 4-4

O R D T o T o] SRR 4-5
4.4.1.2 DElIVEY POLICY ..ccvveieceieseee ettt st 4-5
4.4.1.2.1 DElIVENY RUIE......c.eeieecie e 4-7
4.4.1.2.2 TIANSPONeeeiieeeeiie ettt sne e s as 4-7
4.4.1.3 Example BasiC ICE Offerccooieiiririereeesee e 4-8

4.5 PackageS and DElIVEIYcovieeiieie ettt st sae e 4-9
4.5.1 Package ATITDULESooueiieieesieee e et 4-9
4.5.2 PaCkage ElEMENLS.........coveeceecece ettt 4-9

Y I 1 o U o USSR 4-10

A.5.2.2 MEAOAEAL......ceeeeeeiieeeee e 4-11

A5 2.3 AU e 4-11

A5.2.4 TTBIM ..ttt ettt renrenne s 4-12
A.5.2.5 HEMERES ... 4-12
A.5.2.4 REFEIEINCEoveiieiieeeie ettt sttt bbb nne s 4-12
Chapter 5. Full ICE 5-1
5.1 OVEIVIBW ...ttt sttt sttt sttt e st st e b e b e bt e bt et e e et et e ntenbenrenns 51
5.2 A FUIl TCE SCENGITO....c.ueeieiieesieeieeeesieesieeeestee e seesseesaesnessseenseeneesseensessessseensesneens 5-1
5.2.1 Syndicator and Subscriber Set up aBusiness Agreementccocceeeeereenee. 5-2
5.2.2 Syndicator and Subscriber Set up a SUbSCHiption..........cccceveeveeeveececeeceenne, 5-2
5.2.2.1 Subscriber Receives Packages of Subscription Offers..........cccoeeveveeene 5-3
5.2.2.2 Subscriber Sends a Request to Subscribe to the Offer.........ccceveieneee. 5-3
5.2.2.3 Syndicator Accepts Request and Responds with Subscription Message. 5-3
5.2.3 Subscriber ReCalVES CONLENEcoceriirieiieie et 5-3
5.2.3.1 Subscriber Requests Initial Subscription Content...........cccccvveeervecereenne. 5-4
5.2.3.2 Syndicator Responds with Full Content of Subscription............c.ccovee... 54
5.2.3.3 Subscriber Confirms DEIIVENYc.ooveiieiecesece e 5-4
5.2.3.4 Variations on the Full ICE SCeNAIO0cccuveereriienieneeieeee e 5-4
5.3 Transport and MESSA0ING.......cceeueeeerieeieeeeseesieeeeseesaeeeesreesseeseesseessesseesseesseasens 5-5
5.3.1 SOAP BINGING ..veitieiieiiisicesie ettt sttt st ne e sne e 55
5.3.2 Integrated ICE/SOAP MESSAQE.cceeiueeeeiieeieseesieenieseesseeseesaesseessesasssennes 5-5
5.4 SUDSCription ManagEmMENLccoiiiiirieeie et s 55
5.4.1 Subscription Establishment OVErVIEWcccveeveeiecieeneese e 5-6
5.4.2 Get Package Of OfferS.......cco i 5-6
543 OffBIS ottt aenne s 5-7
5.4.4 OFfer AITDULES.......eeeeeeeeee e e 5-8
5.4.5 OFfer EIEMENLS......ciieiieeeciese ettt 5-9
5.4.5.1 CoNtent MEtadaa..........cccervereririeiieiesie et sneas 59
5.4.5.2 Offer Metadata.........cccoceveieiiieicicere e 5-11
5.4.5.3 DESCIIPLION.....ecieiieeie e cee ettt re e re e ae e e sreenneenneas 5-11
5.4.5.4 DElIVENY POLICY ..c.ooveiicie st 5-12
54541 DElIVENY RUIE......coeeeeeeeeee ettt 5-13
5.4.5.4.2 Syndicator Offer Specifications by Mode...........ccccooereninerenennns 5-17
5.4.5.4.3 Example Delivery RUIES...........ccooueieeiece e 5-18

5455 Offer BUSINESS TEIM ..coeeeeeeeeeeeeeeeeeeeeeeeeeeee e e e 5-22

5456 Offersfor RSSFEEAScocoeeeaa 5-24

5.4.6 SUDSCITDING ...evveiveeieeieciesie ettt e et s sreeae e seeneeenee e 5-25
5.4.6.1 SUDSCITDE EIEMENT ..o 5-25
5.4.6.1.1 Subscribing Directly to an Offer........ccccoveceveviece e 5-26
5.4.6.1.2 Subscribing with Subscriber Parameters Returned......................... 5-26
5.4.6.2 SUDSCIPLION INITIALEd.........ccveeeeceecieee e 5-27
5.4.6.3 SUDSCIPtION DECHNEd.......ccveiiiiieieeee e 5-29
5.4.6.4 |CE SUDSCIDE FaUITooveiiiiiirieeeee e 5-30
5.5 Other SUDSCIiption OPEratioNS.........ccoeieereriierieseeie e 5-31
B5.5.1 GEE SEBLUS. ..ottt sttt ettt bbbttt ettt sne e 5-31
B.5.2 SEBIUS.....ecveeeeeee ettt ettt ettt b e b e neene ettt nnenne e 5-32
B55.BCANCH ... et 5-32
5.5.4 CaNCEIEHION ... 5-33
5.6 Packages and DEIIVENYcceciieeececce ettt 5-34
5.6.1 Package AtIIHDULEScoiiiieiieeee et 5-35
5.6.2 Package ElemMENTSccceeiice et 5-36
5.6.2. 1 GIOUP ..ttt ettt sttt sttt b e s ae e e b e e saeesnn e e s neeenneeenneenneen 5-36
5.6. 2.2 MEAUALA.c.eeueeneeieiiesie et 5-37
I T AN o (o ST 5-39
5.6.2.4 REMOVE [TEIM ..o e 5-40
BB 2.5 THBIM et ne e 5-40
5.6.2.6 HHEM-RET ... 5-40
5.6.2.7 REFEIBINCE ...ttt 5-41
5.6.3 Package ConfirmMations.........c.cccuereeieeienese e ese e e sae e 5-41
Chapter 6. Extending the ICE Protocol 6-1
5.1 OVEIVIEW ...ttt ettt b e s s e et b et e bt b e e e e nenee e 6-1
6.2 More AbOUt XIML NaMESPACES.ccveruerreerieeieseesseeeeseesseeseesseessesssesseessesssesseeses 6-1
6.2.1 Using XML Namespacesin an ICE MESSage..........cccevveveeieieeiieeie e 6-1
6.2.2 DEfiNING EXIENSIONS......coiiiiiieie e 6-2
6.2.2.1 SIMPIE ICE EXIENSIONS.......oceecieeiecee ettt 6-2
6.2.2.1.1 SeleCt aNAMESPACE........cceririerieriireee e 6-3
6.2.2.1.2 Use YOUr OWN EIeMEeNtSccevreriieiinese e 6-3
6.2.2.1.3 Use Your OwWn AttHDULEScccoveeieeeeeece e 6-3

6.2.2.2 FOrMal |CE EXTENSIONS. ...ttt e e e e e e e eeeeeaeeeeeanans 6-4

6.2.2.2.1 Declare Your Own XML Schema......coooveeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 6-5

6.2.2.2.2 Using Your OWnN Elements.........ccccecveveiieieciee e 6-5

6.2.2.2.3 Using Your Own AttHDULES..........ccoieiiieeeeeee e 6-5

6.3 Where Can ICE be EXtended? ... 6-5
6.3.1 EXtensSionS iN the ICE MESSAQE......c.uiiuiiieeieeiesee ettt sae e 6-5
6.3.2 EXtENSIONS IN ICE DEIIVENY ...ceeeeeeeee ettt 6-7
6.3.3 EXtensions in ICE SUDSCIIDE.........cooiiiiieeeese e 6-8

6.4 Indicating |CE EXIENSIONS........ccoeieeiieieeeesie e see st ete e ene e sse e snee s 6-9
6.4.1 ICEMESSAgE HEAUENceeiieeeeeeeee et 6-9
B.4.2 ICE OFf@ ..o 6-10

6.5 Extending ICE 2.0to Include ICE 1.* FEAUIESccceeiiereenieeieneerieee e 6-10
6.6 Interoperability Of ICE EXTENSIONS......cccveiviieerecie e sieeie et ee e 6-11
Appendix A ICE Simple Datatypes Schemacccccevvivievie i WAL
Appendix B ICE MESSA0E SChEMAL vt et e e e e B-1
Appendix C ICEDélivery SChema..o e C-1

Appendix D ICE Subscribe Schema...........cccoooeiicii e DAL
Appendix E Full ICE Syndicator WSDL.............ccoovviiiiie e E-L
Appendix F Full ICE Subscriber WSDL.......c.coiviiiiiiiieiieie e i1
Appendix G ICE Sequenced Package Model..............ccooviiiiiiiiiiiiie . G-1

Chapter 1. Introduction

Reusing and redistributing information and content from one Web site to another is often
an ad hoc and expensive process. The expense derives from two different types of
problems:

o Before successfully sharing and reusing information, both parties need a common
vocabulary for content.

o Before successfully transferring any data and managing the relationship, both
parties need a common messaging protocol and syndication management model.

Successful content syndication requires solving both halves of this puzzle. Fortunately,
industry-specific efforts already exist for solving the vocabulary problems. Since 1998,
many industries have established their own industry-specific XML vocabularies. A
listing of industry XML vocabulary efforts can be found at XML .org.

| CE addresses the second problem of the redistribution and reuse of content by providing
the solution for successfully transferring data and managing the syndication relationship..
Specifically, | CE enables the management and automation for the establishment of
syndication relationships, data transfer, and results analysis. When combined with an
industry specific vocabulary, |CE provides a complete solution for syndicating any type
of information between information providers and their subscribers.

1.1 ICE Design Goals

The ICE Authoring Group defined a number of design goals for ICE based on
requirements analysis and much thought and discussion.

1.1.1 ICE 1.0 Design Goals

Some of the most important design goals for ICE 1.0 are included here for reference:

NOTE: These goals are non normative. They are included here because the ICE 1.0
design goals serve as the basis for ICE 2.0 as well..

|CE shall be straightforwardly usable over the Internet.

| CE shall support awide variety of applications and not constrain data formats.
ICE shall conform to a specific XML syntax.

The ICE requirements shall constrain the | CE process to practical and
implementable mechanisms.

| CE shall be open for future, unknown uses.

Eal NN

o

6.

Compactness of representation in ICE is of minimal importance. NOTE: thisisa
statement about low level encoding methodology, e.g., the use of XML in general
and the particular choice of tag and attribute namesin particular.

| CE shall keep protocol and packaging overhead to aminimum. NOTE: thisisa
statement about protocol overhead in the sense of round trips, complexity, and
other high-level performance effects. It is not a contradiction of the previous
point. The design of ICE achievesits performance objectives by optimizing the
high level design of the protocol flow and state management, not by micro
optimizing the spelling of individual packets.

1.1.2 ICE 2.0 Design Goals

The ICE Authoring Group extended these design goals for ICE 2.0 through a formal
and open requirements process. Design goals for ICE 2.0 build on the goals for ICE
1.0. New goalsfor ICE 2.0 include:

1.

XML Namespaces: The requirement isto eliminate element collisions by
moving all | CE-defined elementsinto one or more | CE namespaces.

XML Schema: Since ICE isaprotocol, it requires features such as type
definitions found in XML Schemas but not supported by XML DTDs. This entails
ICE DTD transforming to ICE SCHEMA but more than a straightforward
tranglation to one that is extensible.

Simplicity of Specification: There shall be arequirement to break |CE into
modules in amanner that allows for simplicity of implementation and maintains
interoperability.

ICE and SOAP: ICE 2.0 needs to define the characteristics of the
communication over SOAP Version 1.2.

Express ICE as a Web service (WSDL): Thereis arequirement to define the
end points of the ICE conversation as WSDL, either message-oriented, RPC-
oriented or both, on top of SOAP.

Asynchronous Communication: ICE must be able to support Asynchronous
Communication for wireless and transient systems.

ICE Subscription Management of non-ICE delivery, FTP and simple
HTTP:GET Mechanism: ICE 2.0 shall be able establish a subscription that
may then be delivered outside the | CE protocol. E.G. use | CE subscription
management to control the FTP delivery of files. ICE 2.0 isdesigned to handle
current and future delivery vehicles, and an apparatus needs to be considered to
allow for such delivery including both in-band and out-of-band delivery transport
with behavior defined and in-band and out-of-band negotiation transport with
behavior defined.

1.2 How ICE Relates to Other Standards

Many other standards describe how to transmit data of one form or another between
systems. This section briefly discusses some of these protocols and describes their
relationship to ICE.

1.2.1 XML

ICE is an application of the Extensible Mark-up Language (XML 1.1). Basic conceptsin

| CE are represented using the element/attribute mark-up model of XML. Note, however,
that ICE isaprotocol, not just aDTD, and so in that way differs fundamentally from
other pure document applications of XML such as MathML (mathematical formula mark-
up language) and SMIL (Synchronized Multimedia I nterchange Language).

1.2.1 XML Namespaces

XML Namespaces 1.1 provides a ssmple method for qualifying element and attribute
names used in XML documents by associating them with namespaces identified by URI
references. XML Namespaces enable us to define a set of unique element names within a
given context. Namespaces prevent element collisions and enable computers to
uneguivocally determine exact points of reference. Such unique addressing is critical to
reliable messaging between Web Services. In ICE 2.0, all ICE-defined elements will be
moved into one or more | CE namespaces to enable ICE to function as a Web service.

1.2.2 XML Schema

XML Schema Definition Language 1.1 is a three-part specification from the W3C that
provides the capability to specify and constrain XML applications. XML Schema
provides a superset of the specification capabilities of the XML DTD. Only XML
Schema enables specification of type that is expected by Web services. Thisdifferenceis
so critical that the SOAP specification specifically states that a SOAP message “MUST
NOT” contain a DTD. Since ICE is a protocol, it requires features such as type
definitions found in XML Schemas but not supported by XML DTDs. ICE 1.0 was
specified with an XML DTD. ICE 2.0 is specified with an XML Schema.

1.2.3 RSS

RSS is a simple mechanism for enabling the lightweight syndication of content. RSS was
designed to be simple to use and inexpensive to implement. RSS has proven quite useful
for the syndication of free content, but remains limited in its ability to enforce business
rulesin the content syndication environment. | CE, on the other hand, was developed by
industry content-providers and software vendors to automate the scheduled, reliable,

secure redistribution of any content for publishers and for non-commercial content
providers.

1.2.4 SOAP

SOAP (Simple Object Access Protocol) 1.2 is a key enabler of Web Services through
XML. SOAP enables the exchange of XML messages so that services can easily describe
their capabilities and allow any other service, application or device on the Internet to
easily invoke those capabilities. ICE, working with SOAP, adds the mechanisms for the
management of syndication on the Web. SOAP is being widely used as transport for Web
services related RPC. ICE 2.0 is designed to layer its communications on SOAP. This
will enable developers and users to take advantage of their existing communication
infrastructure and management services while taking advantage of ICE for their content
distribution applications or content subscription activities. SOAP V1.2 became a W3C
Recommendation on June 24, 2003.

1.2.5 WSDL

Web Services Definition Language (WSDL) isan XML based description language that
currently describes RPC based end-points. Thisis currently being developed by W3C for
extending RPC to enable messaging-style program end-points. ICE 1.0 hasan XML-
based protocol for conversation between client and server. For ICE 2.0, we are defining

| CE end-points with WSDL (either message-oriented or RPC-based or both). This will
eliminate the need for ICE client packages. Any WSDL to Java or any other
programming language based generator will be able to generate I CE client interfacesin
that programming language. This also enables customer applications to embed ICE
capabilities within their applications as Web services and their Web services management
infrastructure can manage their client.

1.2.6 UDDI

Internet-based Universal Description, Discovery, and Integration specification (UDDI) is
a specification for distributed Web-based information registries of Web services. UDDI
registries are designed to help users discover these distributed Web services. UDDI
compatibility will enable subscribersto discover a server that can deliver content to their
ICE client. In this sense, compatibility with UDDI can provide a discovery mechanism
for the Web syndication services.

1.2.7 PRISM

PRISM is the Publishing Requirements for Industry Standard Metadata. PRISM provides
an industry-standard metadata vocabul ary to describe content assets. This vocabulary can
work with ICE to automate content reuse and syndication processes, but it is not a
syndication protocol. PRISM is a discovery mechanism and enables the selection of

1-4

content that will be syndicated using ICE. Thereis anatural synergy between |CE and
PRISM. ICE provides the protocol for syndication processes, and PRISM provides a
description of the resource being syndicated. IDEAIliance hosts both working groups.

1.2.8 DOI

The Digital Object Identifier (DOI®) is a system for identifying intellectual property in
the digital environment. It provides aframework for managing intellectual content, for
linking customers with content suppliers, for facilitating electronic commerce, and
enabling automated copyright management for all types of media. DOI does not address
the management of content syndication, rather it provides a unique identifier, that when
used with a syndication messaging and management protocol (1CE) will enable content
management and distribution. 1CE 2.0 will enable the use of DOI as a unique content
identifier.

1.2.9 XrML

XrML (Extensible Rights Markup Language) is an XML vocabulary that provides a
universal method for securely specifying and managing rights and conditions associated
with al kinds of resourcesincluding digital content aswell as services.. XrML
compatibility with ICE isimportant for specifying and managing rights during the
process of syndication. ICE 2.0 is designed such that it is compatible with XrML.

1.2.10 CDF

Channel Definition Format (CDF) specifies the operation of push channels. Like ICE, it
defines a mechanism for scheduling delivery of encapsulated content. | CE builds on
some of the concepts of CDF, such as delivery schedules. Note that |CE goes well
beyond what CDF can do; CDF has no notion of explicit subscription relationship
management, asset management, reliable sequenced package delivery, asset repair
operations, constraints, etc.

We expect |CE will be useful for server-to-server syndication to distribute and/or
aggregate content to/from various push servers, whereas CDF is useful for server to
browser applications.

1.2.11 OSD

The Open Software Description (OSD) Format automates distribution of software
packages. OSD focuses on concepts such as package dependencies, OS requirements,
environmental requirements (such as: how much disk space does a software package
require), etc. ICE has very little overlap or relationship to OSD.

We expect | CE to be useful for server to server syndication to distribute and/or aggregate
content to/from one OSD server to another, whereas OSD continues to be useful for its
intended domain of distributing and installing software directly to target desktop and
work group server machines.

1.2.12 P3P

Quoting from [P3P-arch]: The Platform for Privacy Preferences (P3P) protocol
addresses the twin goals of meeting the data privacy expectations of consumers on the
Web while assuring that the medium remains available and productive for electronic
commerce. When ICE is being used to share user profile information from one business
to another, it is the responsibility of the applications on both sides of such arelationship
to enforce the appropriate privacy policiesin accord with the principles described in P3P,
aswell asin accord with any governing laws. ICE is merely the transport mechanism for
those profiles and is not involved in the enforcement of user profile privacy principles.

1.2.13 WebDAV

Quoting from [WebDAV]: WebDAYV (Distributed Authoring and Versioning) specifies a
set of methods, headers, and content types ancillary to HTTP/1.1 for the management of
resource properties, creation and management of resource collections, name space
manipulation, and resource locking (collision avoidance).

WebDAV addresses a collaborative authoring environment and has very little overlap
with ICE.

1.2.14 HTTP DRP

Quoting from [NOTE-DRP]: The HTTP Distribution and Replication protocol was
designed to efficiently replicate a hierarchical set of files to a large number of clients. No
assumption is made about the content or type of the files; they are simply files in some
hierarchical organization.

DRP focuses on the differential update of information organized as a hierarchy of files.
As such, it could be used to solve a portion of the data transfer problems addressed by
ICE, but only for those content syndication situations that are file centric. ICE solves a
more general problem of asset exchange, where assets may not necessarily befilesin a
hierarchy. | CE also addresses explicit subscription relationship management, asset
management, reliable sequenced package delivery, asset repair operations, constraints,
etc. whereas DRP addresses none of those.

1.3 Definitions
1.3.1 Requirement Wording Note

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in RFC 2119.

Inthe HTML version of this specification, those key words are CAPITALIZED BOLD.
Capitalization is significant; uncapitalized uses of the key words are intended to be
interpreted in their normal, informal, English language way. Bold face is not significant,
and is used to aid comprehension, but the bold font is non normative and the absence of a
bold font MUST NOT be given any semantic interpretation.

1.3.2 ICE Semantic Definitions

These definitions are used throughout this document. Readers will most likely not fully
understand these definitions without also reading through the specification.

catalog

A package of subscription offers. A Subscriber pulls a catalog package (by
convention Syndicators will offer the catalog as a subscription with subscription-
id="1") from a Syndicator, and uses the offers within the catalog to initiate the

| CE subscription protocol.

collection

The result of a Subscriber processing all package deliveriesin asingle
subscription, that is, the current content of a subscription. Thisis equivalent to the
set of al itemsthat a Syndicator would deliver in afull update of a subscription.
Thisis not necessarily every item a Syndicator would transmit over timein a
given subscription, because of incremental update.

full update

A set of all items within a subscription are delivered with each update. Basic ICE
only alows for this update method.

ICE
Information and Content Exchange.
incremental update

A set of only changed items within a subscription are delivered with each update.
Basic I CE does not allow for this update method.

ICE/HTTP
The specific binding of the I CE protocol to the HTTP protocol.

ICE/SOAP
The specific binding of the | CE protocol to the SOAP protocol.

item
A single delivery instance of an arbitrary data type. For example, if a database
record were being distributed, each field might be encapsulated as an item. Or, if
a prospectus consisting of an HTML file and two GIF image filesis being
distributed, each of the files would be an item (within an item group).

item group
A delivery instance of one or more items. For example, if a prospectus consisting
of an HTML file and two GIF image filesis being distributed, each of thefiles
would be an item within a single item group.

message
The abstract concept of an atomic unit of communication. In this specification, the
term message does not denote any specific protocol structure; rather, it is used to
denote an abstract communication concept.

offer
An abstract representation of content that can be subscribed to along with delivery
policies.

package

A single delivery instance of a group of items. For example, a packageisasingle
issue of a parts manual or asingle set of headlines. A package is the atomic unit
of information distribution in ICE. A package is also used to distribute ICE
offers.

package sequence
An ordered series of packages delivered over time.
Receiver

Generic term referring to the target of an ICE request. The term Receiver is used
when it is possible for either the Subscriber or the Syndicator to be the party
receiving the request.

Request

A message asking for the performance of an operation. Requestsin ICE are
messages carried by the SOAP payload.

Requester

Generic term referring to the initiator of an |CE request.
Responder

Generic term referring to the recipient of an | CE request.

Response

A message containing the results of an operation. Responses in | CE are messages
carried by SOAP payloads.

Sender

Generic term referring to the originator of an ICE message. The term Sender is
used when it is possible for either the Subscriber or the Syndicator to be the party
sending the message

Subscriber

One of the two partiesin an ICE relationship (the other one being the Syndicator).
The Subscriber uses ICE to obtain information and content from the Syndicator.

subscription

An agreement to deliver a package sequence from a Syndicator to a Subscriber.
There may be many independent subscriptions between a Syndicator and a
Subscriber.

subscription element

A persistent identifier of all versions of an item or item group in a subscription.
The subscription element may have many versions over time, and thus may have
been represented by different items. For example, acompany logo isasingle
subscription element that can be updated over time. Every subscription element
has a unique subscription element ID assigned by the syndicator.

subscription offer

A proposed set of parameters for a particular subscription. Within I CE, the term
subscription offer has a precise meaning directly related to the corresponding
protocol data structure; do not confuse the usage of the term "offer” in this
specification with the more generic and abstract concept of offersin the business
world sense.

Syndicator

One of the two partiesin an ICE relationship (the other one being the Subscriber).
The Syndicator uses | CE to send information and content to the Subscriber.

1.4 Technical Decisions

The Authoring Group went through several major topics of discussion while designing
ICE, and some of the decisions reached are of sufficient interest to warrant recording the
thought processes that led to them.

1.4.1 ICE 2.0 Constraints

During the development of ICE 2.0, the ICE Authoring Group once more searched for an
existing schema and constraint definition language for the content carried by the ICE
payload that would meet the ICE requirements. For example, XML schema can be used
to specify the dateTime format.

With the writing of ICE 2.0, the ICE Authoring Group feels that:

o Constraints are a necessary part of a syndication solution.

e W3C s XML Schema provides aworkable solution to defining constraints for the
specification

e Inaddition, ICE 2.0 provides specific error and status codes for handling
constraint violation errors.

With ICE 2.0, XML Schemais used to specify and manage | CE constraints for packaging
and messaging. |CE 2.0 does not specify any particular constrain language for the
content that ICE carries. Further, the ICE Authoring Group now considers the definition
of such a content constraint language out of scope for ICE. Today, other specifications,
such as PRISM and XrML, own the domain of specifying constraints and/or metadata for
content carried by ICE.

Note that a conforming |CE implementation need not implement any constraint
processing at all such as XML Schemavalidation. Constraint processing for ICE is
entirely aquality of implementation issue. Its presence or absence has no effect
whatsoever on the interoperability of two I CE implementations, because nothing in the
protocol state machine flow depends on constraint processing.

1.4.2 Defining ICE 2.0 using an XML-Schema

ICE 1.0 used DTD syntax to define the format of the ICE protocol. Whilean XML DTD
was used to define the format for ICE 1.0, XML Schema has been selected for the
definition format of ICE 2.0. This selection was made so that | CE could work over
SOAP and function as a Web service. SOAP uses XML Schemafor its definition and
specifically disallows specification by XML DTDs for interoperability with SOAP.

It isimportant to note that XML Schema is used as the definition format for ICE, but that
validation against the schema s not strictly required. In fact there are two places where
XML Schemavalidation isimplied by ICE 2.0:

e A Receiver MAY perform validation on incoming | CE messages.
e A Sender MUST send only valid | CE messages.

Note, however, that "validation” could in principle be implemented in a variety of ways.
A Receiver MAY use any alternate representation of 1CE syntax, and perform some

1-10

aternate form of validation against that representation, aslong as the results are AS-IF
the governing ICE XML Schema had been used.

1.4.3 Use of SOAP Transport Mechanism

Because one of the design goals of ICE 2.0 isto enable ICE as a Web service, the
capability of ICE to function over SOAP iscritical. ICE 2.0 will remain a transport
independent protocol. However this ICE 2.0 Specification will explicitly discuss binding
of the generic ICE protocol over the SOAP transport mechanism and term that
|CE/SOAP.

1.4.4 Use of HTTP:GET as a Transport
Mechanism

In addition to the specification of ICE 2.0 with an explicit binding to SOAP, the use of

| CE in an asynchronous communications environment dictates that | CE 2.0 also enable
the use of HTTP:GET as atransport mechanism. An HTTP:GET retrieves whatever datais
identified by a URI, so where the URI refers to a data-producing process, or a script
which can be run by such a process, it is this data which will be returned, and not the
source text of the script or process. The HTTP:GET isthe simplest form of ICE 2.0
transport and is the only form of 1CE transport allowed for Basic ICE conformance.

1.4.5 Security

The ICE protocol (ICE 1.0 and ICE 2.0) deliberately does not address security, because
the required levels of security can be achieved via existing and emerging Internet/\Web
security mechanisms.

In the specific case of digital signatures, non repudiation, and similar concepts, two
things have happened that have steered the Authoring Group away from the notion of
having digital signaturesinside ICE itself:

e Separate efforts are underway to define digital signing standards for XML
documents. The | CE Authoring Group felt that duplicating such work within ICE
was not warranted.

o Defining digital signing standards for XML documentsis quite tricky, and
reguires defining a canonical text representation of the documents (because the
digital hash functions hash the textual representation of a document, not its
logical representation). The |CE Authoring Group did not want to define its own,
possibly conflicting, canonical representation rules to solve this problem.

Independent of any future XML digital signing standards, | CE implementations can
achieve necessary security using avariety of methods, including:

1-11

e Encryption can be accomplished at the transport level, e.g., viaSSL, PGP, or
SIMIME.

e Applications can agree to send digitally signed content asitems within the ICE
protocol, with verification performed at the application level (above ICE).

e Syndicators and Subscribers can be authenticated using certificates implemented
at the transport level.

e Syndicators can offer extended | CE subscriptions where the specific content
structures to be encrypted as well as the encryption types may be negotiated using
subscription extension described in Extending the ICE Protocol

Also, for interoperability, Syndicators and Subscribers need to agree on how they will
negotiate the security parameters for a given relationship. This may be done inside of ICE
by using protocol extension. Or it may be done outside of ICE by, for example, an
agreement to use SSL at a certain level of encryption, or by some other external means.

1.4.6 Internationalization Issues

Few internationalization issues occur at the protocol level at which | CE operates, but four
specific issues are worthy of NOTE:

1. Support for International Character Sets. ICE relies on capabilitiesin XML
for encoding and supporting international character sets.

2. Other Protocol Text Strings. The ICE protocol sometimes uses string values as
semantic identifiers. For example, a<sender name= encodes the sender’ s name
as atextual string. These textual strings are intended as arbitrary tokens
representing a specific concept; they are not intended for presentation and thus
have no impact on internationalization issues.

3. Language identifier for textual data. Some |CE elements are specifically
designed for the transport of textual data intended for use by humans (defined as
textType). For example, text is expected in the <text> element of business-
term element or in the <description> of anitem. ICE provides axml : lang
attribute in all places where human readable text is being transported and might
require an identification of its specific language encoding. When used, the
xml : lang attribute MUST be filled in according to standards RFC-1766 (Tags for
the Identification of Languages) and 1SO-639 (Code for the representation of
names of languages) asis required by the XML Specification.

1.4.7 ICE Modularity

One of the early design goals for ICE 2.0 was the requirement to provide modularity for
ICE. Modularity will, in effect, enable users of the | CE specification to select certain
modules for implementation and |eave others unimplemented. Modularity will also
enable | CE to interoperate with other specifications, such as SOAP and Web services
specifications, in a seamless fashion ICE modularity is documented in more detail in 3.1
ICE Modularity.

1-12

1.4.8 ICE Namespaces

In order to enable interoperability in the Web services environment, | CE 2.0 uses the

following namespaces:

xmlns:
xmlIns:
xmlIns:

xmlIns:

icemes
icedel
icesub

icesdt

”http://icestandard.

org/I1CE/V20/message”™

”http://icestandard.

org/ICE/V20/delivery”

“http://icestandard.

org/I1CE/V20/subscribe”

“http://icestandard.

org/ICE/V20/simpledatatypes™

1.4.9 ICE Simple Datatypes

In order to specify simple datatypes used in ICE 2.0, a simple datatypes schema was

developed for inclusion in each of the ICE schema definitions. This simple datatypes
SCthnaiShttp://WWW.icestandard.org/Spec/VZO/schema/ice—simpledatatypes.xsd.
Thisisdiscussed in more detail in 2.6 ICE Simple Datatypes and isfound in their entirety
in Appendix **.

1.4.10 ICE WSDL Scripts

In addition to the schema definitions for ICE 2.0, WSDL scripts are required to define
ICE asaWeb service. ThelCE 2.0 Specification provides the following WSDL scripts
that define operations and bindings for Full ICE:

= http://www. icestandard.org/Spec/V20/wsdl/ice-subscriber-full . wsdl

= http://www.icestandard.org/Spec/v20/wsdl/ice-syndicator-full _wsdl

|CE WSDL scripts are found in their entirety in Appendix **.

1.5 Structure of this Document

The remainder of this document is organized as follows:

Chapter 2 provides an overview of the |CE protocol. In this chapter the basic

roles of the syndicator/subscriber and request/response are discussed. The use of
XML Namespaces, and overview of the XML schemas, the XML syntax for ICE
elements and attributes, the types of identifiers and status codes are discussed.
Chapter 3 introduces ICE levels of capability. In this section the modules of the
|CE specification are introduced. The ICE features that must be supported by a
Basic | CE implementation, a Full ICE implementation, and | CE extension
mechanisms are presented. The details of a basic |CE implementation will be
discussed in Chapter 4. The details of afull ICE implementation will be
discussed in Chapter 5.

1-13

e Chapter 4 describes abasic |CE implementation. This section provides a detailed
description of basic protocol operations.

e Chapter 5 describes afull ICE implementation. This section provides a detailed
description of complete protocol operations.

e Chapter 6 describes how to extend the ICE protocol. This section provides details
about how XML Namespaces can be used to extend the | CE protocol.

1.6 Conventions

This document contains a number of constructs that are identified and numbered within a
chapter. These structuresinclude:

e Examples (XML instancefiles)

e XML schemafragments

e Figures
In addition, as specific ICE tags are documented, they will be set in atypewriter face with
an open bracket, but no closing bracket. Namespace designations will be used. For
example <icesub:get-package would be used when discussing the get package
element.

1-14

Chapter 2. ICE Overview

Two entities are involved in forming a business relationship where ICE is used. The
Syndicator produces content that is consumed by Subscribers. The Syndicator produces a
subscription offer from input from various departments in an organization. Decisions are
made about how to make these goods available to prospects. The subscription offer
includes terms such as delivery policy, usage reporting, presentation constraints, etc. An
organization's sales team engages prospects and reaches a business agreement typically
involving legal or contract departments. Once the legal and contractual discussions are
concluded, the technical team is provided with the subscription offer details and
information regarding the Subscriber. The subscription offer is expressed in termsthat a
web application can manage (this could be database records, an XML file, aplain text
file, and so on). In addition, the technical team may have to set up an account for the
subscriber entity, so that the website can identify who it is accessing the syndication
application.

The Subscriber receives the information regarding their account, their subscriber
identification and the syndicator endpoint. At this point, actual ICE operations can begin.
The important point to understand is that | CE starts after the two parties have aready
agreed to have arelationship, and have already worked out the contractual, monetary, and
business implications of that relationship.

The ICE protocol covers three genera types of operations:

e Messaging
o Délivery / Transport / Packaging
e Subscription

From the ICE perspective, arelationship between a Syndicator and a Subscriber starts off
with some form of subscription establishment. In ICE, the Subscriber typically begins by
obtaining offers from the Syndicator. The Subscriber then subscribes to particular offers
with specified delivery transports, protocols and schedules and the Syndicator
acknowledges the subscription.

The relationship then moves on to the steady state, where the primary message exchanges
center on transport, messages and data delivery. |CE uses a package concept as a
container mechanism for generic dataitems. |CE defines asequenced package model
allowing Syndicators to support both incremental and full update models. Basic ICE is
limited to the full update model. Full ICE implementations must support either update
model. |ICE aso defines push and pull data transfer models as well as out-of-band
transfer.

Managing exceptional conditions and being able to diagnose problems is an important
part of syndication management; accordingly, ICE defines a mechanism by which faults

2-1

can be exchanged in a standardized manner between (consenting) Subscribers and
Syndicators.

Finally, ICE provides a number of mechanisms for supporting miscellaneous operations,
such as the ability the ability to query and ascertain the status of the subscription.

2.1 Simple ICE Scenarios

Two simple scenarios are used throughout this specification as the source for examples:
syndication of news headlines from an online publisher to other online services, and
syndication of a parts catalog from a manufacturer to its distributors.

2.1.1 Headline Scenario

An online content provider, Headlines.com, alows other online sites to subscribe to their
headline service. Headlines.com updates headlines three times a day during weekdays,
and once each on Saturday and Sunday. A headline consists of four fields: the headline
text, asmall thumbnail GIF image, adate, and a URL link that points back to the main
story on Headlines.com.

Subscribers who sign up for the headline service can collect these headlines and use them
on their own site. They display the headlines on their own site, with the URL links
pointing back to Headlines.com.

For an extrafee, subscribers may harvest the actual story bodies from Headlines.com and
thus incorporate content directly into their own site instead of linking back to
Headlines.com.

2.1.2 Parts Scenario

A jet powered pencil sharpener manufacturer, JetSharp.com, wants to keep its distributors
up to date with the latest parts and optional accessories catalog at all times. It isvery
important to JetSharp that its distributors always have easy access to the latest service
bulletins, and also that they have the latest information about optional accessories and the
corresponding pricelists.

Each item in the JetSharp parts catal og consists of some structured data, such as price,
shipping weight, and size, and also contains unstructured data consisting of a set of
HTML files and GIF images describing the product.

The JetSharp catalog is huge, but, fortunately, changes fairly slowly over time.

2.2 Protocol Overview

The ICE protocol is primarily arequest/response protocol that allows for fully symmetric
implementations, where both the Syndicator and Subscriber can initiate requests. This
fully symmetric implementation is known as Full ICE. The ICE protocol aso alowsfor
aBasic ICE implementation where only the Subscriber can initiate requests (i.e., no agent
that would be considered a "server” resides on the Subscriber machine).

There are severa key concepts that form the foundation of the | CE protocol.

2.2.1 Messages, Requests and Responses

| CE uses message exchange as its fundamental protocol model, where amessage is
defined for the purposes of this specification to be a SOAP payload as specified by the
ICE 2.0 Specification.).

| CE messages contain header information along with requests and responses. A request
asks for the performance of an operation. For example, when a Subscriber wishesto
initiate a relationship by obtaining a catalog of offers from a Syndicator, the Subscriber
sends the Syndicator a message containing a <get-package request with a subscription
id equal to “1” where“1” is by default the request for the Syndicator’ s package of offers.
Similarly, in this case the response contains the results of the operation and returns a
package of offers.

2.2.2 Request/Response model

Every logical operation in ICE is described by arequest/response pair. All operations are
forced to fit thismodel; thus, avalid ICE protocol session always comprises an even
number of messages when it isin the idle state (i.e., there is a matching response for
every request).

2.2.3 Subscriber/Syndicator,
Requester/Responder, Sender/Receiver

The Subscriber and Syndicator assume several different roles during | CE protocol
operations. Subscriber versus Syndicator, Requester versus Responder, and Sender versus
Receiver.

The definition of Subscriber and Syndicator is based on the business relationships: the
Syndicator distributes content to the Subscriber. These terms are capitalized throughout
this specification wherever they refer specifically to the roles of the partiesin an ICE
relationship, as opposed to the general concepts of subscribing and syndicating.

The definition of Requester/Responder is based on who initiates the | CE operation. The
initiator is the Requester, and the other party, who performs the operation, is the
Responder. It is possible for a Syndicator to be either a Requester or a Responder,
depending on the particular operation. The same is true for a Subscriber. For example,
when a Subscriber initiates a <get-package request to a Syndicator, the Subscriber isthe
Requester. When a Syndicator pushes a <package request to a Subscriber, the Syndicator
becomes the Requester and waits for a <package-confirmation response from the
Subscriber, who in this instance is also the Responder.

Finally, the concept of Sender and Receiver are used in this specification to describe the
relationship with respect to the transmission of a single message. A message travels from
Sender to Receiver (and this thus forms the definition of Sender and Receiver).

Note that an | CE operation inherently consists of a Request/Response pair. Thus, the
Reguester starts out being a Sender, sending a message, containing a request, to the
Receiver. The request could be a SOAP message or asimple HTTP:GET. The Receiver of
this first message becomes the Responder. When the Responder has performed the
operation and wishes to return the results, the Responder becomes the Sender of a
message containing the response, and the initial Requester is now the Receiver.

2.3 Bindings of ICE

Because one of the design goals of ICE 2.0 isto enable ICE as a Web service, the
capability of ICE to function over SOAP iscritical. While ICE 2.0 will remain a
transport independent protocol, thus the ICE 2.0 Specification will explicitly discuss
binding of the generic ICE protocol over the SOAP transport mechanism and term that
ICE/SOAP. In addition to the specification of ICE 2.0 with an explicit binding to SOAP,
ease of implementation also dictates that ICE 2.0 also enable the use of HTTP:GET
ICE/HTTP as atransport mechanism. The bindings for ICE 2.0 are spelled out in the
WSDL scripts.

2.3.1 Binding ICEto HTTP:GET

In Basic ICE all messages are initiated with an HTTP:GET. The HTTP:GET retrieves
whatever dataisidentified by aURL. The body of the response will be an XML message
with a SOAP envelope and | CE messages as defined by the I CE 2.0 Specification.

2.3.2 Mapping ICE to SOAP

For Full ICE, an explicit binding to SOAP is provided. This binding can be found in the
following (partial) WSDL script:

<binding name="ice-syndicator-full-binding"” type=""tns:ice-
syndicator-ful l-portType'/>

2-4

ICE 2.0 was specifically designed to function as a Web service and to take advantage of
SOAP as amessaging protocol. The ICE message header was designed to be carried in
the SOAP header and the I CE fault, delivery and subscription mechanisms were designed
to be enclosed in the SOAP body.

|CE uses XML asthe format for its message header, delivery and subscription elements.
All ICE message elements MUST be formatted in accordance with the XML 1.0
specification. Furthermore, | CE message elements MUST be well formed and MUST be
valid according to the ICE XML Schema Definitions.

This document does not repeat the general rules for proper XML encoding; readers are
expected to refer to the XML specification.

To understand how | CE works with SOAP, see Figure 2.1.

SOAP Envelope
SOAP Header

ICE Message Header

SOAP Body

ICE Delivery Packages

ICE Subscribe

ICE Faults

Figure 2.1. ICE carried by SOAP

For either Full ICE or Basic ICE, content is encoded in an ICE/SOAP format. Thisis
simply an XML file where SOAP and ICE XML tags are used to wrap the content and
| CE faults that may be sent by the Syndicator. An example of an |CE/SOAP message
follows.

<?xml version="1.0" ?>
<env:Envelope xmlns:env="http://www.w3.0rg/2002/12/soap-
envelope®>
<env:Header>
<icemes:Header
xmIns:icemes="http://icestandard.org/I1CE/Spec/V20/message’
timestamp=""2003-03-03" message-id="m0056’>
<icemes:Sender name="mycompany”’
role="http://icestandard.org/ice/2.0/role/syndicator”
sender-id="http://www.xxyz.org”/>
</ice:Header>
</env:Header>
<env:Body>
<icedel : package
xmIns:icemes="http://icestandard.org/I1CE/Spec/V20/delivery’
new-state="P3” old-state=""P2”
fullupdate="false” package-id="012"
subscription-id="3">
<icedel:add subscription-element="offer3”>
<icedel:item-refurl="http://mysite.com/text.htm”/>
</icedel :add>
</icedel :package>
</env:Body><env:Envelope>

2.4 ICE Syntax and Format

ICE 2.0 uses XML asthe format for al |CE messages. XML schemas are used to define
simple datatypes, the |CE message header and status codes and | CE delivery and
subscription elements.

| CE makes extensive use of XML attributes for representing values. The following
requirements apply to the interpretation of attribute values:

o Unlessexplicitly indicated otherwise, leading and trailing white space characters
in attribute values MUST be ignored. For example, the following two attribute
values are equivalent:

"equivalent"

' equivalent "

o All attribute values must conform to ssmple datatyping rules as expressed in the
| CE Simple Datatypes Schema.

2.5 ldentifiers

| CE defines anumber of identifiers that control the access to content and enable content
management throughout the syndication process.

2.5.1 Subscriber and Syndicator Identifiers

| CE uses globally unique identifiers for identifying Subscribers and Syndicators. The
globally unique identifier for the Subscriber and Syndicator should conform to the
Universal Unique Identifier defined by the Open Group [OG-UUID]. Note that if agiven
installation sometimes functions as a Subscriber and sometimes functions as a Syndicator
then it MAY use the same UUID asitsidentification in both roles. Although not
recommended, an |CE implementation may use a unique identifier not based on the open
group standard, such as email addresses or domain names. Once the identifier has been
generated, it must be treated as opaque by all parties.

The UUID format as specified consists of 32 hexadecimal digits, with optional embedded
hyphen characters. Per the requirementsin the Universal Unique Identifier specification,
| CE implementations using the UUID MUST ignore al hyphens when comparing UUID
values for equality, regardless of where the hyphens occur. Also, note that comparisons
MUST be case insensitive.

2.5.2 Other ldentifiers

Asdistinct from the Subscriber UUID and the Syndicator UUID as outlined by the Open
Group, |CE does not define the format of other identifiersit specifies except for
uniqueness constraints. All other identifiers function as being unique only within a
certain scope. For example, a subscription identifier is generated by a Syndicator when
the relationship between a Subscriber and a Syndicator isfirst established. The
identification string used for the subscription 1D need only be unique within the domain
of all subscription identifiers generated by that Syndicator for the Subscriber.

The table below describes each identifier in ICE, its scope, a description of wherein an
| CE message the ID value is assigned, the role of the party that assignsthe ID value,
wherethis ID valueis referenced, and finally, the section in the specification where the
identifier is discussed.

Identifier

Scope

Where assigned

Assigned by

Entity wishing to

ID Referenced by

sender-id attribute on

Syndicator's . . o When ICE <sender element or
. Unique identifier . use ICE to L .
Unique) syndicator . receiver-id attribute on
e of a Syndicator syndicate -
Identifier created content <receiver element
' (depending on role)
Entity wishing to sender-id attribute on
Subscriber’s . . e When ICE Y 9 <sender element or
) Unique identifier . use ICE to L .
Unique ; subscriber . receiver-id attribute on
» of a Subscriber subscribe to .
Identifier created content <receiver element
(depending on role)
Unique across all message-id message-id attribute on
messages from a |attribute on :
Message 1D Sender assigns message <header
sender to a message element
receiver <header element
Unique within the
Offer ID ;a;glg% o;offers offer-id attribute Syndicator offer-id attribute on
- DY on <offer element |assigns. <offer element
Syndicator to a
Subscriber.
Uniaue across all package-id package-id attribute on
Package ID acha es within attribute on Syndicator <package and
9 b ges v <package assigns <confirmation
a subscription
element elements
subscription-id attribute
. o on <cancel, <get-
Unique across subscription-id ackage. <get.status
Subscription |subscriptions attribute on Syndicator package, =g ’
; L . <confirmation
ID from a Syndicator |<subscription assigns L
. <cancellation
to a Subscriber |element N
<subscription, <offer,
<package, elements
subscription-
element-id subscription-element-id
Subscription |Unique within a |attribute on Syndicator attribute on <group,
Element ID |subscription <group, <add, assigns <add, <remove-

<remove-item
element

item element

Many attributes in |CE contain as values the identifiers described above and use them to
track and signal specific states in the syndication relationship. The table below describes
the attributes that contain the identifiers described in the table above.

2.6 ICE Simple Datatypes

One important reason for migrating from the ICE 1.0 XML DTD to the ICE 2.0 XML
Data Schemais to benefit from the ability to specify simple datatypes that XSD offers.
|CE simple datatypes are defined in an |CE simple datatypes schema found at
http://www. icestandard.org/1CE/2002/simpledatatypes.xsd. Datatypesfor
elements and attributes within ICE are specified here. The following shows an example
of the datatype definitions for “dateTime” and “time”. Note that each smple datatypeis
documented to explain the intended usage.

<xs:simpleType name = "dateTime'>
<xs:annotation>
<xs:documentation>the pattern here expresses the
restriction that datetimes in ICE must be in the UTC time
zone</xs:documentation>
</Xxs:annotation>
<xs:restriction base = "dateTime">
<xs:pattern value = "_.*Z"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name = "time'>
<xSs:annotation>
<xs:documentation>the pattern here expresses the
restriction that times in ICE must be in the UTC time
zone</xs:documentation>
</xs:annotation>
<xs:restriction base = "time'>
<xs:pattern value = "_.*Z"/>
</xs:restriction>
</xs:simpleType>

This document does not repeat the general rules for XML datatyping; readers are
expected to refer to the X SD specification to understand the datatypes utilized by I CE.

2.7 ICE Namespaces

XML namespaces provide a ssmple method for qualifying element and attribute names
used in XML documents by associating them with namespaces identified by URI
references. XML Namespaces enable us to define a set of unique element names within a
given context. Namespaces prevent element collisions and enable computers to
unequivocally determine exact points of reference. Such unique addressing is critical to
reliable messaging between Web services. In ICE 2.0, al ICE-defined elements are
moved into one of three ICE namespaces to enable | CE to function as a Web service and
utilize SOAP messaging.

The ICE 2.0 namespaces are:

= xminsicemes=" http://icestandard.org/ICE/Spec/V20/message”

= xminsicedel = “http://icestandard.org/1CE/V20/delivery”

= xminsiicesub = “http://icestandard.org/1CE/V20/subscribe”

= xminsicesdt = “http://icestandard.org/1CE/V20/simpledatatypes”

NOTE: The namespace definition is not a URL that can be
directly resolved. Rather it issimple an identifier for the
namespace. The prefixes used in this specification are
examples. Anyoneis freeto assign their own namespace
prefixes. Implementers should honor the namespace
declarations rather than matching the prefix strings used
here.

2.8 ICE Message XSD

The ICE message schemais defined within http://www.icestandard.org/I CE/

Spec/V 20/schemalice-message.xsd as the “ icemes” namespace. This schema defines
structures relating to the ICE message itself. Thisincludes message header information
and I CE status codes. In ICE 1.0, before SOAP, ICE had its own envelope and the ICE
message header fell within the ICE envelope. Today, however, | CE uses the SOAP
envelope and SOAP header. The ICE message is carried within the SOAP header.

The ICE message schema contains header information that is specific to syndication. In
addition, it contains definitions for PING and OK diagnostic messages. See Figure 2.2.

[# timestamp [# message-id % @)[# response-to %
icesdr:dateTirme token token

[. name % @[@ role q [0 sender—id% @[@ location %
sting EMMTORENS anylJRT anylURT
senderType @[0 compliance-level

icesdticomnpliance-types

* head a [0 name% [0 receiver—id% @[0 role # o * cnmpliance—level%

receiverType string anyLRI FMMTORENS icesdtwomnpliance-types
icesdtient Type language

| # #wildCard *ping | *OK

Figure 2.2. ICE message XSD

The ICE message uses the simple datatypes defined within the simple datatype module.
For example, the timestamp uses the “dateTime” datatype that was discussed previously.

Note: The ICE message schema also contains definitions
for ICE status codes. See 2.12 ICE Status Codes.

2.9 ICE Delivery XSD

|CE déelivery is defined in a schema module with
http://www.icestandard.org/| CE/Spec/V 20/schemalice-delivery.xsd as the “icedel”
namespace. This module defines the elements that support the delivery of syndicated

2-10

content and is carried within the SOAP body. See Figure 2.3.

@l L) package-id% * subscription-id% @l L) fullupdateﬁ ﬁ"{ L] conﬁrmationﬂ
hoken hoken bl ean Eaoalean

new-state a # old-srate a
Ioesat T e e uan ce- staba Type loasat packa g - saduen ca- st be Tyme

L.

3 T
remove-item [
Facha g a Ty Fam i Ty
@[:currenl-stale % [:suhscriplion-id %
hoken hoken
get-package * icesdt:parametersE‘
et-packaqeTye

l & conﬁrmedﬂ [:package-id a l & processing-completed]
b 2an bokan

TAMWTOCEY

confirmation o #* #uildCard |

conHrmation Type:

4 package-confirmations]
pacage-contr mabonsType:

Figure 2.3. ICE delivery elements

ICE delivery is most often made up of packages. Packages may directly contain content
from another XML namespace, indicated by #wildcard or <packages. Two kinds of

| CE packages include those bearing or point to content and those containing a catalog of
subscription offers. ICE delivery also provides for the <get-packages reguest and a
<package-confirmations function.

2.10 ICE Subscribe XSD

The I CE subscription module is used to establish and cancel subscriptions for syndicated
content. It is defined within http://www.icestandard.org/I CE//Spec/V 20/schemalice-
subscribe.xsd as the “icesub” namespace. See Figure 2.4.

2-11

@ offer-id

token

subscription-name
token

7 g elsarg

@ current-state
omsak pa g e seguan o tabe Types

] subscrlplmn |d% & [] subscrlptlon name%

quantity-remaining

Inbeger

]

name
token

.

@ offer-id

takan

— |

g o

+ content-metadata
content-rmetadataType

% @[0 compliance-level
icesdticornplisnce-types

e

+ offer-metadata
affer-rmetadataType

e

+ delivery-policy
delivery-policy Type

) # business-term &=
business-termType

Figure 2.4. ICE subscription elements

+ offer
afferType

description
description Ty pe

Each I CE subscription contains one offer that will be subscribed to. Attributes on the
offer identify it uniquely. Each ICE subscription offer must contain a delivery policy.
The delivery policy rule defines how and when content will be delivered. See Figure 2.5.

quantity
integer

& @ startdate j @ # stopdate j @)[
& icesdridateTime & icesdeidataTime

g o

F AT ORER

expiration-priority

g

delivery- rule
delivery-ruleType

delivery- policy
delivery-policy Type

@ + #wildCard
mode # monthday # weekday

@[*.INMTOKENq @')[NMTOKENS % E?)[NMTOKENS % E‘_'?)[l

startdate
icesdtidateTime

s

& # stopdate d & [] starttime@ &] duratinn@ @)[
icesdtidateTime icesdrtirne icesdtiduration

min-num-updates
integer

n

@:)[# max-num-updates q

inteqer
syndicator-transports E

+ delivery- I‘U|EE

delivery-ruleType

i,

Figure 2.5. ICE Delivery Rule Structure

4 subscriber-delivery-settings E

In addition, the | CE subscription allows for the subscriber to cancel a subscription, for the
syndicator to verify cancellation and for the subscriber to get the status of a subscription.

See Figure 2.6.

2-12

7 # subscription-id = |
token
‘ # get-status)

+ gwildCard |

4 reason
icesdritext Type

4 gwildCard

cancel E

subscription-id =
token

[. cancellation-id [. suhscriptinn—id%|

token token

+ cancellation EJ) +* ZwildCard

Figure 2.6. ICE subscription management elements

2.11 ICE Message Header

The <icemes:header contains header information that fits inside the SOAP header and
specifies information specific to |CE syndication messages. See Figure 2.7.

[L timestamp [# message-id % @[# response-to %
icesdridateTirme token taken

name % @[# role % [. sender—id% @[# location %
string FIMMTORENS anylIRI anyUIRT
senderType ®[

compliance-level
icesdticornpliance-types

* head Q [0 name% [0 receiver-id% @)[‘ role 4 @[0 cnmpliance—level%
receiverTypa string anyURI *MMTORENS icesdtwornpliance-types
user-agent = # xmllang=
icesdttextType lanquage
) + gwildCard

Figure 2.7 ICE Message Header Structure

2.11.1 Message Header Attributes

The <icemes:header has 3 attributes that are used to identify the message.

e timestamp
Required. Indicates the date and time the message was sent.

e message-id
Required. A unique identifier across al messages between a sender/receiver that
identifies the message.

2-13

response-to
Optional. Thisattribute is an echo of a message to which this messageis
responding. It isthe previous message-id.

2.11.2 Message Header Elements

The is made up of arequired <icemes:sender element and optional <icemes:receiver
and <icemes:user-agent elements.

2.11.2.1 Sender

The <icemes:sender provides information about the sender of this message. The
element is empty and has 5 attributes:

name
Required. Thisattributeisastring that is used to indicate the sender name.

role
Optional. This attribute provides a mechanism to indicate the role of the sender.

Valuesinclude “syndicator” and “subscriber”

sender-id
Required. The uniqueidentifier of the sender.

location

Optional. ThisattributeisaURI that pointsto the origin (sender) of the
message.

compliance-level

Default. This attribute indicates the |CE compliance level of the sender. The
values are “basic” and “full”. Thedefault isset to “basic”.

2.11.2.2 Receiver

The <icemes:sender provides information about the sender of this message. The
element is empty and has 4 attributes:

name
Required. Thisattributeisastring that is used to indicate the sender name.

role
Optional. This attribute provides a mechanism to indicate the role of the sender.
Valuesinclude “syndicator” and “subscriber”

receiver-id
Required. The unique identifier of the sender.

compliance-level
Default. This attribute indicates the |CE compliance level of the receiver. The
values are “basic” and “full”. Thedefault isset to “basic”.

2-14

2.11.2.3 User-Agent

The <icemes:user-agent element provides atext field to describe a user-agent, if oneis
employed. If present, the <icemes:user-agent gives the software program used by the
original client. Thisisfor statistical purposes and the tracing of protocol violations. It
should be included.

The <icemes:user-agent text field has a very specific format as defined by the W3C
HTTP Protocol. The first white space delimited word must be the software product
name, with an optional slash and version designator. Other products, which form part of
the user-agent, may be put as separate words.

<icemes:user-agent> LI1-Cello/1.0 Ilibwww/2.5
</icemes:user-agent>

2.12 ICE Status Codes

| CE uses the familiar Internet protocol paradigm of three digit status values in responses
to protocol operations. This paradigm was chosen because it iswell understood and is
suited to both machine-to-machine communication and human interpretation.

2.12.1 Relationship Between SOAP Faults and
|CE Status Codes

The ICE status codes are carried within <icemes:status-code. |CE status codes travel
within the SOAP Body / SOAP Fault. Seethe following example:

<?xml version="1.0" ?>
<env:Envelope
xmIns:env="http://www.w3.0rg/2002/12/soap-envelope”
xmlns:rpc="http://www.w3.0rg/2002/12/soap-rpc’>
<env:Header>
<ice:Header timestamp="2003-03-03" message-id="m0056">
<ice:Sender name="mycompany’’
role="http://icestandard.org/ice/2.0/role/syndicator”
sender-id="http://www.Xxxyz.org’/>
</ice:Header>
</env:Header>
<env:Body>
<env:Fault>
<env:Code>
<env:Value>env:Reciever</env:Value>
<env:Subcode>
<env:Value>ice:202</env:Value>
</env:Subcode>
</env:Code>
<env:Reason>

2-15

<env:Text xml:lang="en-US">Package sequence state
already current</env:Text>
</env:Reason>
<env:Detail>
<ice:status-code code="202"
reason=""Package sequence state already
current” subscription-1d="xxx"/>
</env:Detail>
</env:Fault>
</env:Body>
</env:Envelope>

2.12.2 ICE Status Code Format

The format of |CE status codes is described by the following schema fragment in ICE

2.0:

<element name = *'status-code'>
<complexType>
<attribute name = 'code' use = "required" type =
"positivelnteger'/>
<attribute name = "message-id" use = "required" type =
token'/>
<attribute name = "subscription-id"” use = "required”
type = "token'/>
<attribute name = "location" type = "anyURI"/>
<attribute name = "duration' type = "icesdt:duration'/>
<anyAttribute namespace = "##other"™ processContents =
"lax''/>
</complexType>
</element>

The attributes on <icemes: status-code are:

code
Required. Three digit status/error code, as explained further below.

subscription-id

Required. The subscription-id of the message being referenced by this code.

message-id

Required. The message-id of the request referenced by this code, or, in some

cases, the response-id of the response referenced by this code.

location
Optional. The location isa URL returned along with code=431 (Failure
fetching external data) to indicate a new fetch location.

duration

Optional. The duration is returned along with code=422 (Schedule violation, try

again later) to indicate the duration of the wait before trying again.

2-16

2.12.3 Defined Status Codes

The defined status codes are shown below. Each bullet item contains the three digit code
positivelnteger value, the corresponding phrase, and adescription in italics. Note that
the phrase and the description initalicsis part of the explanation and not part of the status

message.
When generating codes:

e Senders MUST supply athree digit code= value from the set defined here.
When receiving codes:

e Receivers MUST understand all the three digit codes described in this
specification.

e Recelvers MAY treat unrecognized codes not defined in the I CE specification, or
9xx codes, in an implementation specific manner. As aquality of implementation
issue, receivers could implement user interfaces allowing customized handling or
mapping of unknown codes to specific actions; however, this specification does
not require them to do so.

The status values defined by ICE are:
2XX: Success

e 2000K
The operation completed successfully.

e 201 Confirmed
The operation is confirmed. This code is returned when requesting confirmation
of package delivery.

o 202 Package sequence state already current
A Subscriber requested a package update, but the Subscriber is already in the
current package sequence state, i.e., there are no updates at the moment.

3xx: SOAP level Status Codes

These indicate something about the SOAP message itself, as opposed to the individual
requests and responses within the SOAP message. These codes have one very explicit
and important semantic: they are used when the SOAP message could not be properly
interpreted, meaning that even if there were multiple requests in the SOAP message,
there will be only one code in the response. For example, if the SOAP message had been
corrupted, it might be so corrupted that it isn't even possible to determine how many
requests it contains, let alone respond to them individually.

2-17

The specific codes are:

320 Incompatible version

The ICE protocol version used in the request is not supported. NOTE: The ICE
protocol versions are transmitted as part of the message header, implementations
may look there to decide what appropriate corrective actions to take.
Implementations must follow the version rules. This could also be generated for
incompatibilities between conformance levels.

4xx: Request level Status Codes

These indicate errors caused by an inability to carry out an individual request. Note that
in some cases there are similar errors between the 3xx and 4xx class; the differenceis
whether or not the error is supplied as a single, message level error code (3xx) or whether
itissupplied as aper request code.

400 Generic request error

Generic status code indicating inability to comprehend the request. Usually, it is
better to send a more specific code if possible.

401 Incomplete/cannot parse

The request sent is severely garbled and cannot be parsed. Note that in most
cases, a message level error (301) might be more appropriate.

402 Not well formed XML

The request sent is recognizable as XML, but is not well formed per the definition
of XML. This is available as both a message level error and as a request level
(4xx) error. Whether a given implementation attempts to interpret not well formed
XML so as to generate request level (4xx) errors versus. Message level (3xx)
errors is a quality of implementation issue.

403 Validation failure

The request failed validation according to the Schema. This is available as both a
message level error and as a request level (4xx) error. Whether a given
implementation attempts to interpret not well formed XML so as to generate
request level (4xx) errors versus. Message level (3xx) errors is a quality of
implementation issue. Note that Receivers SHOULD perform validation on
incoming ICE messages, but are not required to. Senders MUST send only valid
ICE messages or they are in error; however, the ability to detect invalid messages
is a quality-of-implementation issue for the Receiver, and Senders MUST NOT
assume the Receiver will perform an XML validation on their messages.

404 This error intentionally left blank

405 Unrecognized sender

406 Unrecognized subscription

407 Unrecognized operation

408 Unrecognized operation arguments

409 Not available under this subscription

The Requester has referenced something not covered by the subscription
referenced in the request.

2-18

410 Not found

Generic error for being unable to find something, for example a subscription that
has expired.

411 Unrecognized package sequence state

The package sequence identifier supplied by the Sender is not understood by the
Receiver.

412 Unauthorized

413 Forbidden

414 Business term violation

420 Constraint failure

Compliant implementations MUST NOT send this message if the constraint was
not specified in the subscription.

422 Schedule violation, try again later.

The request was made at an incorrect time. For example, trying to get a package
update outside of the agreed upon timing window.

430 Not confirmed

Generic error indicating the operation is not confirmed.

431 Failure fetching external data

The receiver could not follow an external reference (URL) (<icedel:item-ref)
given to it by the sender. Note that in ICE 2 only the Subscriber is permitted to
reply with this code. A Syndicator MUST NOT reply with this code.

440 Sorry

Used by the Syndicator to reject a subscribe request.

5xx: Implementation errors and operational failures

These indicate errors caused by internal or operational problems, rather than by incorrect
requests. Note that, like all other codes except for the 3xx series, these must be sent
individually with each response; if the error condition or operational problem prevents
the Responder from resolving the original message down to the request level, use a 3xx
code instead.

500 Generic internal responder error

Catch-all for general problems; recovery/retry behavior unspecified.

501 Temporary responder problem

Too busy, update in progress etc. Eventually an identical retry request might
succeed.

503 Not implemented

The server does not implement the requested operation.

6xx: Pending State

These codes indicate a state condition where the Subscriber is expected to send
something to the Syndicator, or vice versa.

2-19

e 602 Excessive confirmations outstanding
The Syndicator had requested confirmation of package delivery, and now refuses
to perform any additional operations until the Subscriber supplies the
confirmations (positive or negative).

7xx: Local Use Codes

These codes are reserved for use by the local ICE implementation and MUST NOT ever
be sent to another ice processor over the transport medium. The intent is that this range of
codes can be used by the local ICE implementation software to communicate transport
level error conditions, or other specific local conditions, using the ice-code
mechanism in away guaranteed to not collide with any other usage of 1ce-code
values.

9xx: Experimental Codes
| CE implementations MUST NOT use any codes not listed in this specification, unless
those codes are in the 9xx range. The 9xx range allows implementations to experiment

with new codes and new facilities without fear of collision with future versions of |1CE.

How a given system treats any 9xx codeis a quality of implementation issue.

2-20

Chapter 3. ICE Conformance
Levels

ICE 2.0 defines three levels of conformance. These levels of conformance spell out the
features of |CE that must be supported for that level of conformance. The definition of
levels of conformance enables software vendors to develop | CE applications that are
interoperable.

= Basic ICE software can be expected to interoperate with other software that
supports Basic ICE.

= Full ICE software can be expected to interoperate with other software that
supports Full ICE.

= Full ICE software can be expected to interoperate with other software that
supports Basic ICE.

| CE features can be viewed as modules of the specification. In this chapter we will
examine these modules and define which features make up each level of ICE
conformance.

NOTE: ThelCE 2.0 Specification has purposely limited
its scope to define Basic |CE and Full ICE. Advanced
syndication operations are alowed for within the
specification as Optional ICE extensions. Theidea hereis
to allow for implementations to extend the |CE protocol in
such away that advanced syndication operations may be
allowed for in a predictable and controlled manner.

3.1 ICE Modularity

One of the early design goals for ICE 2.0 was the requirement to provide modularity for
ICE. Modularity, in effect, enables users of the |CE specification to select certain
modules for implementation and leave others unimplemented. Modularity enables ICE to
interoperate with other specifications, such as RDF or PRISM, in a seamless fashion.

The ICE modules correspond to features of |CE for each level of conformance. See
Figure 3.1.

Update
Delivery
Confirmation

Other . .

ICE Catalog
ICE Packaging
Incremental

Negotiation

Subscription Mgt
Logging/Audits

HTTP:GET Transport | [HTTP:SOAP Transport||[HTTP:SOAP Transport

Basic ICE Full ICE Optional ICE Extensions

Increasing Functionality >

Figure 3.1. ICE modules by increasing functionality

3.1.1HTTP:GET (REST) Transport

The first module of ICE isthe simple HTTP:GET transport. The binding for this transport
does not need to be defined by aWSDL script. The HTTP:GET mechanism enables avery
simple form of ICE syndication thisis known as Basic ICE. This replaces the concept of
the “minimal subscriber” that was part of ICE 1.0.

3.1.2 Message / Package Delivery

Package delivery isrequired for every level of ICE since that is the essence of
syndicating content. Package delivery as afeature includes the following:

| CE message header

| CE package and get-package

3.1.3 SOAP Transport

Because one of the design goals of ICE 2.0 isto enable ICE as a Web service, the
capability of ICE to function over SOAP isrequired. ICE 2.0 remains atransport
independent protocol. However Full ICE explicitly requires the binding of the generic
| CE protocol over the SOAP transport mechanism. The binding for this transport is
defined in the ice-syndicator-full WSDL script.

<I-- SOAP Binding -->
<binding name="ice-syndicator-full-binding"
type=""tns:ice-syndicator-full-portType'>
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http'/>

<I-- OPERATIONS GO HERE -->

</binding>

3.1.4 Subscription Management

Full 1CE adds the capability to establish subscriptions with delivery policies aswell asto
check the status of the subscription and cancel the subscription. While subscription
management is central to |CE-based syndication, asimple form of ICE, Basic ICE,
enabl es syndication without the added sophistication of subscription management.

3.1.5 Incremental Updates

ICE 2.0 allows for two kinds of updates for subscription content. The smplest updateis
the full update mechanism. A full update is a complete replacement of al the content of
asubscription. Full ICE allows for incremental updatesin which only the content that is
new or changed isreplaced. See Chapter 5 Full ICE.

3.1.6 Delivery Confirmation

The ICE 2.0 Specification provides messages by which a Subscriber can provide
confirmation that a package was received and processed. See**.

3.1.7 Logging

The ICE 2.0 Specification defines | CE logging capabilities from ICE 1.x as an optional
extension. This extension will allow a Syndicator to request the protocol event logs of the
Subscriber, and vice versa, as an aid for debugging and diagnosis. To learn how to
extend ICE 2.0 to include optional logging functions, see Chapter 6.

3.1.8 Negotiation

The ICE 2.0 Specification defines parameter negotiation as an optional extension. This
extension provides a means for Syndicator and the Subscriber to reach mutually
agreeabl e subscription operation. The model aso permitted a Syndicator or Subscriber to
define and negotiate other parameters of importance to both the subscription, and the
Syndicator/Subscriber relationship and permitted semantic extension through generalized
parameter negotiation. To learn how to extend | CE 2.0 to include optional parameter
negotiation functions, see Chapter 6.

3.2 More about Modularity

| CE modules correspond to features of ICE for each level of conformance:

e TheFull ICE Syndicator WSDL describes the set of operations that implementers
will have to support in order to satisfy Full ICE conformance. The ICE
Subscriber WSDL describes the set of operations that implementers will have to
support on the subscriber side to satisfy Full ICE conformance.

e Neither the Basic ICE Syndicator nor the Basic | CE Subscriber have an end point,
hence thereis no requirement for aWSDL script. Basic ICE utilizes the smple
HTTP:GET mechanism only.

3.3 ICE Levels of Conformance

ICE 2.0 defines three levels of conformance. These levels of conformance spell out the
features of |CE that must be supported for that level of conformance. The definition of
levels of conformance enables software vendors to develop | CE applications that are
interoperable. So Basic ICE software can be expected to interoperate with other software
that supports Basic ICE. And Full ICE software can be expected to interoperate with
other software that supports Full 1CE.

3.3.1 Basic ICE

The Basic ICE level of conformance provides for very simple syndication functionality.
In fact, all that Basic ICE enablesis for the Syndicator to post messagesto a URL where
the Subscriber can “get” them:

e <package (thisislimited to asingle package)
e <status-code

In Basic ICE, the Subscriber initiates all messages with HTTP GET to URLs on the
Syndicator. Basic ICE does not allow for subscription management capabilities. The
Syndicator sends no messages to the Subscriber in Basic ICE. Basic ICE has no requirement

3-4

for either the Syndicator or the Subscriber to establish a“listener” for push messages. Refer
to Chapter 4 for Basic | CE features/modules.

é}:ﬂ:lish Busine=s Agreeme{b
syndicator Pullz Subzcription CaTaIu:ug[> subscriber

Fulls cantent [:::::j}

Figure 3.1 Basic ICE capabilities

3.3.2 Full ICE

A Full ICE implementation implements all the features of the ICE 2.0 specification. Full
| CE implementations must support SOAP transport bindings and adds messages to
support subscription management. Additional messages include:

e <subscribe

e <subscription
e <cancel

e <cancellation
e <get-status

e <status

e <package-confirmations

Refer to Chapter 5 for Full ICE featuresymodules.

é}cﬂ: lish Business Agree m-[z>

| Pulls Subscription Cahz{ﬁ
@%riher Subscribes to Offer |

| Syndicatar Initiates Subsc ri[@

Syndicator delivers content according fo
delivery palicy for the subscription

Optional Steps

Figure 3.2 Full ICE capabilities

3.3.3 Optional ICE Extensions

The ICE Authoring Group chose to remove a number of capabilities of ICE 2.0
specification to simplify the specification. These capabilitieswill be detailed in
additional specifications that go beyond Full | CE as defined by this document. It will be
the responsibility of implementersto take these additional specifications into account
when devel oping syndication solutions.

Chapter 4. Basic ICE

4.1 Overview

Due to the nature of the content syndication business, it isimportant for |CE to support
Subscriber implementations of varying levels of sophistication. In the most general case,
a Subscriber is a sophisticated server implementation capable of not only sending ICE
requests, but also receiving communications initiated by the Syndicator at any time, such
asthe "push” of new content. A Full ICE Subscriber has an ICE server running at all
times. | CE a so supports the concept of aBasic ICE implementation. Thisisan
implementation where the Subscriber can initiate communicates (e.g. polling for updates)
but does not have a persistent server available to receive messages. It is expected that a
Basic ICE Subscriber is run on demand, either by a user or by an automated script. Thus,
in a Basic | CE implementation, communication is out-of-band.

The Basic ICE level of conformance provides for very simple syndication functionality.
In fact, all that Basic ICE enablesis for the Syndicator to post messagesto a URL where
the Subscriber can “get” them. Basic ICE does not allow for subscription management
capabilities. The Syndicator sends no messages to the Subscriber in Basic ICE. Basic

| CE has no requirement for the Subscriber to establish a*“listener” for push messages.

4.2 A Basic ICE Scenario

Let’slook at a step-by-step example of a simple transaction between a Syndicator and a

Subscriber. See Figure 4.1.
é}:ﬂ:lish Business Agreeme{>
syndicator Pulls Subscription Cafalng> subscriber

Pullz content >

Figure 4.1 A Basic ICE Scenario

4.2.1 Syndicator and Subscriber Set up a Business
Agreement

Syndication relationships begin with a business agreement. The business agreement
negotiation happens outside | CE and can involve person-to-person discussion, legal
review, and contracts. Because Basic | CE has no subscription management features,
these parameters may be discussed as part of the business agreement. We believe Basic

| CE will most often be used in the scenario where the Syndicator is making content freely
available to anyone. Hence subscription management features are not required.

4.2.2 Syndicator Makes “Catalog” Available

In ICE Version 1.0, the ICE protocol defined a set of messages to deliver a catalog of
offers from the Syndicator to the Subscriber. In ICE 2.0, these messages were replaced by
using the Version 2.0 content-syndication mechanism directly to deliver a package of
offers where the subscription-id="1". This|CE package should be placed at
http://<server-url>/get-package/1.

The following example shows a package with a Basic | CE offer provided by a
Syndicator.

<icedel : package
xmIns:icedel="http://icestandard.org/ICE/V20/delivery"
ful lupdate=""true"
package-id=""1"

<icedel :add>
<icedel :metadata
item-type="http://icestandard.org/1CE/V20/item-type/offer"
content-type=""text/xml"/>
<icedel:item>
<icesub:offer
xmIns:icesub=""http://icestandard.org/ICE/V20/subscribe™
offer-id="offID2"
name=""offName2'>
<icesub:description>
headlines
</icesub:description>
<icesub:delivery-policy>
<icesub:delivery-rule/>
</icesub:delivery-policy>
</icesub:offer>
</icedel:item>
</icedel :add>
</icedel :package>

4-2

Note: In thisoffer everything isleft to default including
the mode on the delivery rule. ICE 2.0 was designed so
that all defaults support Basic ICE. The transfer protocol
will be“http:get” and the packaging will be“ice”. The
pull will be made from the same location from which the
catalog was pulled.

4.2.3 Subscriber “Gets” ICE Catalog

In ICE 1.0, messages were provided for retrieving the ICE catalog. In Basic ICE 2.0, the
catalog is retrieved using the same mechanism asis used to retrieve other content. By
convention, if the subscription-id="1" the package is made up of ICE offers.

4.2.4 Subscriber “Gets” Content

To retrieve content in Basic | CE, the Subscriber does an HTTP:GET on the URL specified
in the offer that is selected by the Subscriber.

Basic I CE does not enforce complex delivery rules. All content is pulled from the
Syndicator in Basic ICE. The Subscriber pulls | CE content encoded in an ICE/SOAP
format. Thisissimply an XML file where SOAP and ICE are used to wrap the content
and | CE status codes that may be sent by the Syndicator. The Subscriber can treat this
package as it would treat any XML-encoded file. It isnot necessary that the Subscriber
have SOAP capabilities to receive content or | CE status codes.

An example of what the Subscriber gets from the Syndicator’s URL follows.

<?xml version="1.0" ?>
<env:Envelope
xmlns:env="http://www.w3.0rg/2002/12/soapenvelope”>
<env:Header>
<icemes:header
xmIns:icemes="http://icestandard.org/I1CE/2002/message"
timestamp=""2003-03-03T00:00:00Z"
message-i1d="m0056"">
<icemes:sender name="'mycompany"
role="http://icestandard.org/I1CE/2002/role/syndicator"™
sender-id=""http://www.xxyz.org"/>
</icemes:header>
</env:Header>
<env:Body>
<icedel : package
xmIns:icedel="http://icestandard.org/I1CE/2002/delivery"’
ful lupdate=""true"
package-id="12"
subscription-id="3">
<icedel :add>
<icedel:item-ref>
<icedel:reference
url="http://mysite.com/text.htm"/>
</icedel:item-ref>

4-3

</icedel :add>
</icedel :package>
</env:Body>
</env:Envelope>

4.3 Transport and Messaging

Two entities are involved in ICE transport and messaging. The Syndicator produces
content that is pulled by Subscribers. The philosophy behind Basic ICE isto enable a
very simple form of syndication that does not require sophisticated processing by either
the Syndicator or the Subscriber. In Basic ICE, all messages/packages from the
Syndicator are accessible from a URL and the Subscriber uses an HTTP:GET to retrieve
messages. Thisimplies that the Subscriber does not have to have a SOAP-enabled server
to receive “push” content from the Syndicator. Rather the Subscriber aways pulls from
the Syndicator. Because there are no end points for either the Syndicator or the
Subscriber, aWSDL script for the Basic ICE does not exist.

4.4 Catalogs and Subscription
Management.

Basic | CE was designed for publishing information that is available to any interested
party. Basic | CE does not support subscription management. So, with Basic ICE, there
are no <icesub:subscribe Or <icesub:subscription e ements. The Subscriber
cannot use <cancel. Catalogs of syndication offers, that were uniquely identified by an
element typein ICE 1.0, are simply a special type of <icedel :package that contains
offers (the ICE catalog) and by convention isidentified by the subscription-id="1".

4.4.1 Offers

The structure of an offer for Basic ICE is shown in Figure 4.2. Most of the attributes on
offer and most of the elements that make up offer are only used in Full ICE and are not
shown here. This Chapter will only document those that apply to Basic ICE.

& uffer—id% 7 & name%
token token

description i
| descriptionType

+ delivery-policy]
delivery-policy Type

+ offer
afferType g

Figure 4.2 Basic ICE Offer Structure

| CE was written so that all defaults are set to support basic ICE. Hence offersin Basic
|CE are themselves very basic.

4-4

An <icesub:offer hasthe following attributes that will be used for Basic ICE:

o offer-id
Required. Thisisastring. Itisan identifier that MUST be unique across al
catalog offers from a Syndicator. Its function isto clearly identify this offer from
all other catalog offers made by a Syndicator.

e Name
Optional. Thisisastring. Itisaname that may be used to distinguish
subscriptions and offers from other subscriptions or offers. Itsintended useisto
provide areadable short description of the offer such as, "Julia Child's
Contemporary French Cooking Column".

An offer is made up of aseveral elementsthat will be used for Basic ICE. These include
<icesub:description and <icesub:delivery-policy.

4.4.1.1 Description

This element is atext field and facilitates the entry of a description of the offer. This
simple element is shown in Figure 4.3. Note that the xml : 1ang= attribute on
<icesub: text enables the specification of language for the text field within
<icesub:description.

i, + text 7 # zmllang=
4+ description =) icesdtextType langquage

descriptionType :
) + ZwildCard

Figure 4.3 Description element structure

The description is useful in Basic ICE because it can help Subscribers understand
whether they want to pull the content of the subscription.

4.4.1.2 Delivery Policy

Each subscription offer has one delivery-policy. The delivery policy can determine, for
example, the times and dates during which packages can be pulled for agiven
subscription. Each delivery policy has one or more delivery rules. See Figure 4.4.

The Subscriber must accept the delivery policy within an offer and all required delivery
ruleswithin adelivery policy. They can select among optional delivery rules, however.

4-5

+ delivery-rule F
delivery-rulaType

+ #wildCard

+ delivery-policy E]

delivery-policy Typa

@[# startdate @[# stopdate @[# quantity q @[# expiration-priority %
icesdtidateTime icesdtidateTime integar FMMTOKERN

Figure 4.4 Delivery-policy Structure

The <icesub:delivery-policy element is defined as the type delivery-policyType.
Thisis defined by the following XML schema fragment:

<xs:complexType name = "delivery-policyType">
<XS:sequence>
<xs:element name = "delivery-rule”
type = "delivery-ruleType" maxOccurs = "‘unbounded'/>
<Xs:any namespace = "‘##other"
processContents = "lax"™ minOccurs = 0"
maxOccurs = "‘unbounded/>

</Xs:sequence>
<xs:attribute name
""icesdt:dateTime"/>
<xs:attribute name
"icesdt:dateTime"/>
<xs:attribute name = "quantity” type = 'Xxs:integer'/>
<xs:attribute name = "expiration-priority"
default = "first'>
<xs:simpleType>
<xs:restriction base = "'xXs:NMTOKEN'>

"'startdate' type

"'stopdate’ type

<xs:enumeration value = "first'/>
<xs:enumeration value = "time"/>
<xs:enumeration value = "quantity'/>
<xs:enumeration value = "last'/>
</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:anyAttribute namespace = '‘##other"
processContents = "lax'/>

</xs:complexType>

The attributes for <icesub:delivery-policy that can be used for Basic ICE are:

« startdate
Optional. Datatypeis icesdt:dateTime as defined in the ICE datatype schema.
This attribute specifies the date and time on which the schedule will start to apply.
See the discussion under ICE Datatypes for details of what this means. If this
attribute is omitted, the schedule will start immediately.

e stopdate
Optional. Datatypeis icesdt:dateTime as defined in the ICE datatype schema.
This attribute specifies the Date and Time on which the schedule expires. See the

discussion under ICE Datatypes for details of what this means. If this attribute is
omitted, the schedule never expires (unless superseded in the future).

e quantity
Optional. Datatype is an integer. This attribute specifies the quantity of updates
in the subscription

e expiration-priority
Default. This attribute specifies the expiration priority. Valuesare first,
last, time, and quantity. Thedefaultisfirst.

NOTE: The multiple delivery-rulesin adelivery-policy are
conceptually joined with "OR" (not "AND"). In other
words, the valid delivery times are the union of all the
times defined by each rule in the delivery policy.

4.4.1.2.1 Delivery Rule

Each <icesub:delivery-policy is made up of one or more delivery rules. Only certain
elements and attributes of adelivery rule makes sense for Basic ICE. These structures
are shown in the reduced diagram of <icesub:delivery-rule inthe Figure 4.5. Each
delivery rule in Basic ICE is made up of one or more <icesub: transport e ements.

+ delivery-rule E
deliveny-nleType

Figure 4.5 Basic ICE Delivery-rule Structure

transpoHType icesdtiudccess Type

‘[z +* transport 7 + dEIivery—EndpuintE

#* #wildCard

4.4.1.2.2 Transport

The <icesub:delivery-rule ismade up of one or more <icesub:transport.
Transports are specified when the Syndicator makes an offer. This element provides a
mechanism for the Syndicator to indicate the delivery transports for the <icesub:offer.
Y ou can see the makeup of aBasic ICE <icesub:transport in the Figure 4.6:

& url # username] @)[0 password] @)[0 authenticatiun-scheme%
anylRT token token shring

transport ¥ delivery-endpoint + #wildCard

transport Type icesdtiudAccessType

Figure 4.6 Basic ICE Transport Structure

The <icesub:transport is made up of an optional delivery endpoint. See Figure4.6. In
Basic ICE, when the Syndicator is offering content in “pul 1” mode, a delivery endpoint
for that pull can be specified by using <icesub:delivery-endpoint.

The<icesub:delivery-endpoint has4 attributes. These include:

4-7

o url

Required. This attribute specifies the URL for push delivery. The datatypeis
anyURI .

e username
Optional. This attribute specifies an optional username that may be required to
access URL for push delivery.

e password
Optional. This attribute specifies an optional password that may be required to
access URL for push delivery.

e user-authentication
Optional. This attribute specifies the optional user authentication scheme. Itisa
string with enumerated values of “basic” and “digest”. Thereisno default

4.4.1.3 Example Basic ICE Offer

Basic ICE isasimple “pull” of content by the Subscriber. The following example
shows a Basic I CE offer, using the built-in defaults for Basic ICE.

Syndicator transports were |eft to default. Delivery settings are not provided because the
assumption is that the protocol will be “http:get” and the packaging will be“ice” and
The pull will be made from the URL specified by the endpoint.

<icedel : package
xmIns:icedel="http://icestandard.org/ICE/V20/delivery"
package-id=""1"
subscription-id=""1">
<icedel :add>
<icedel :metadata i1tem-
type="http://icestandard.org/ICE/V20/item-type/offer"
content-type=""text/xml"/>
<icedel:item>
<icesub:offer
xmlIns:icesub="http://icestandard.org/ICE/V20/subscribe""
name=""offName2"
offered="o0ff2”>
<icesub:description>
new stories headlines and abstracts
</icesub:description>
<icesub:delivery-policy>
<icesub:delivery-rule>
</icesub:delivery-policy>
</icesub:offer>
</icedel:item>
</icedel :add>
</icedel :package>

NOTE: Y ou can recognize that this package contains a
subscription offer because the subscription-id isset to “1”.

4-8

4.5 Packages and Delivery

Basic ICE, like Full ICE, supports the delivery of packages. In Basic ICE, the délivery is
simply the act of the Syndicator placing the content in a SOAP/ICE XML document at
the URL specified in the offer. The XML definition for packagesis found at
http://www.icestandard.org/Spec/V 20/schemalice-delivery.xsd.

The ICE package is made up of three elements. See Figure 4.2.NOTE: Even though the
| CE package is made up of three elements, only two of
these make sensefor Basic ICE. InBasic ICE itis
reasonable that the Syndicator delivers a group of items or
adds a single item to the subscription content. Since each
package contains a full update in Basic ICE, removing
items will never be used.

package-id # subscription-id
token token
group]
groupType
i #* add
package EF add Type i
packageType

Yy -
L #wildCard

Ba
Figure 4.2 Basic ICE Package Structure

4.5.1 Package Attributes

There are severa attributes on package that are meaningful for Basic ICE:

= package-id
Required. Identifies the package within the scope of a subscription. The Syndicator
assigns the package-id.

= subscription-id
Required. In Basic ICE, the subscription-id is the unique id of the content feed and
isused by all subscribers. The Syndicator assigns the subscription-id.

4.5.2 Package Elements

The ICE package is made up of 3 elements. An ICE <icedel :package describes a set of
content operations. additions, removals, and a group of additions and/or removals. The
remove operation is specified using the <icedel : remove-item element is not used in
Basic | CE because this functionality facilitates delivery of incremental updates. The
content additions contain the content that needs to be added or updated and are specified
using the <icedel : item and <icedel : i tem-ref elements. The <icedel :group element

4-9

allows the Syndicator to associate the content specified using the <icedel : i tem
elements together. For example, in the syndication of restaurant reviews, each review
may consist of different types of content such asan HTML file and two graphic files.
These three files could be contained within three <icedel : item elements and grouped
together in an ICE <icedel :group as asingle restaurant review. Likewise, unrelated
content can be specified in a<icedel : package by just using the <icedel :add and then
<item elements without an intervening <icedel :group. The <icedel :item and

<icedel : item-ref elements distinguish themselves by the way they contain the content.
The <icedel :item element is used to contain content directly in the delivered content.
The <icedel : item-ref element is used to distribute an indirect reference to the actua
content. Note that the #wi Idcard allows for insertion of content from any namespace.

package-id] [‘ subscription-id]
token token
[
)
token

* -
— 7 #wildCard
ey

4 metadata =
retadataType

+ group |
groupType

+ group]

groupType
:: + add E]

addType

#+ metadata i
rnetadataType

+ add E + iteny E
package .| addType itemType
R—— + item—refE
4+ #wildCard

e + #wildCard

Figure 4.3 Package elements for Basic ICE

4.5.2.1 Group

The <icedel :group isacontainer element that can be used to group content items being
added or removed. It also enables the attachment of metadata to a group of content items.

Attributeson <icedel :group include:
e nName

Optional. This attribute specifies a name for the item group that can be uwsed to
identify that group within a package.

4-10

4.5.2.2 Metadata

The <icedel :metadata element enables the entry of metadata on <icedel :group and
<icedel :add by using its attributes and a description field. See Figure 4.7.

@ # jtem- type% & # content- trpe%
SN token

* description

|u:esdt textT ype

+ #wildCard

+ metadata]

rmetadataType

Figure 4.7 Basic ICE Metadata

Because the attributes on the metadata element are set to support Basic ICE, only the
content-type and item-type attributes may be used.

« content-type

Optional. This attribute enables the specification of the type of content such as
“news.”

e item-type
Optional. This attribute specifies a URI that identifies what type of item thisis.

For example the value of item-type may be
http://icestandard.org/1CE/V20/item-type/offer.

Note: For Basic ICE, the requirement is that content will
be used in its entirety and that the content may not be
edited.

4.5.2.3 Add

The <icedel :add element is used to add new content according to the delivery policy of
the subscription. It enables the attachment of metadata to the content being added. The
<icedel :add enables content to be directly included in the message by using the
<icedel : item element, an indirect reference to content using <icedel : item-ref
mechanism.

The structure of <icedel :add is shown in Figure 4.8.

#+ metadata i

metadataType

+ add +* itemi
[=]

addTvneE iternType

+ item—rEfE

* ZwildCard

Figure 4.8 Add element structure

4-11

4.5.2.4 Item

The <icedel : item element directly carries content from the Syndicator to the
Subscriber. Each item has aunique item-id. In addition, the <icedel :item can carry the
| CE element <icesub:offer.

4.5.2.5 Item-Ref

The <icedel :item-ref element references Syndicator content. The <icedel : item-
ref structureis shown in Figure 4.9. It ismade up of asingle <icedel :reference
element. This means that for each reference, an <item-ref element must be used.

L] relrieve-al"ter @[:name a]
lezzataateTime kokin
® url #® username ﬂ:passwurd% @[# authentication-scheme a]
[anﬂi‘.l % E[w % tokizn 2ring
loezaturl BocessTyr

Figure 4.9 Item-ref structure

The<item-ref eement has two attributes;

retrieve-after
Optional. This attribute specifies atime after which the item can be retrieved. Itis
specified in the icesdt:dateTime format.

name
Optional. This attribute specifies the item name that can be used as atransient identifier
within agroup or add.

4.5.2.4 Reference

The <icedel :reference element is used to reference the content of the <icedel : item-
ref element. The reference element is empty (with the exception of any wildcard
content). The attributes carry the information for this element.

The <icedel : reference element has four attributes;

e url
Required. This attribute specifies the URL from which the content can be
retrieved.

e username
Optional. This attribute specifies the username for retrieving the content if a
loginisrequired.

e password
Optional. This attribute specifies the password for retrieving the content if alogin
isrequired.

4-12

« authentificationscheme
Optional. This attribute specifies the authentification scheme for retrieving the
content if thisis required.

4-13

Chapter 5. Full ICE

5.1 Overview

Basic ICE provides for avery simple syndication model where the Subscriber does not
have an |CE server running constantly and polls for content as required. But, when more
robust syndication functionality isrequired, Full ICE is appropriate. Full ICE extends
Basic I CE functionality to add subscription management services as well as other advanced
capabilities such as “push” delivery.

Full ICE aso differs from Basic ICE in that the Subscriber is a sophisticated server
implementation capable of not only sending ICE requests, but also receiving
communications initiated by the Syndicator, such as the "push” of new content. In aFull
| CE implementation both the Syndicator and Subscriber have an | CE server running at all
times. Each must support SOAP transport bindings as well as subscription management
capabilities.

Because Full ICE is an extension of Basic ICE, aBasic |CE implementation can talk to a
Full ICE implementation, but without the advantages of Full ICE.

5.2 A Full ICE Scenario

Let’slook at a step-by-step example of a simple transaction between a Syndicator and a
Subscriber in afamiliar industry. The Syndicator, the Best Code Company, a software
developer, sets up and delivers a subscription to Tech News, atrade journal for the high
technology industry. See Figure 5.1.

é}cﬂ:lish Business Ag reemeb

1

‘ Pulls Subscription Cmab ;
i

i

i

Subscriber Subscribes to Offer | !

1

i
‘ Syndicator Initiates Subscri[@

Syndicatar delivers content according fo
delivery policy for the subscription

i i
i < Canfirms Delivery | ;
i i

Subscriber

Optional Steps

Figure 5.1 Full ICE Scenario

5.2.1 Syndicator and Subscriber Set up a Business
Agreement

Syndication relationships begin with a business agreement. Best Code and Tech News
agree on such terms as payment issues, usage rights, and subscription lifetime. The
business agreement negotiation happens outside | CE and can involve person-to-person
discussion, legal review, and contracts. Alternatively, a Syndicator could standardize and
automate these terms.

5.2.2 Syndicator and Subscriber Set up a
Subscription

Once the business agreement isin place, ICE comesinto play as Best Code and Tech News
start exchanging | CE messages to establish a subscription and begin content delivery.

5.2.2.1 Subscriber Receives Packages of Subscription
Offers

In order to view a catalog of subscription offers, Tech News goes to the website of Best
Code where the ICE Syndicator’s end point is listed. The Subscriber may also use the
discovery mechanism of Universal Description, Discovery, and Integration (UDDI) to find
the Syndicator’s end point. UDDI represents a set of protocols and a public directory for
the registration and lookup of web services specified by UDDI.org. The Subscriber then
requests a package of subscription offers using <icedel : get-packages><icedel :get-
package. By convention, the subscription with the subscription-id="1" returnsa
Syndicator’ s catalog of subscription offers.

5.2.2.2 Subscriber Sends a Request to Subscribe to the
Offer

Tech News thinks the press rel eases are exciting stuff and promptly asksto sign up for the
subscription offer. It agreesto pull the content from Best Code’ s site and with maximum-
update-interval="P300S", which means that the subscriber must check at least every
five minutes

5.2.2.3 Syndicator Accepts Request and Responds with
Subscription Message

Best Code indicates that it has issued a subscription for Tech News by returning the
<icesub:subscription message. Best Code gives Tech News a unique subscription-id
number and also returns the details of the offer in order to confirm the delivery method.

5.2.3 Subscriber Receives Content

Once the subscription is set up, Tech News is ready to receive content. Tech News starts by
asking for new content. Best Code has chosen to take advantage of the Full ICE
incremental update capability. This means that the updates contain only changes to the
content in the subscription. These changes can add new content and can also include
requests to remove outdated content. In this way, Best Code can control the precise content
for that subscription on the Tech News site. Together with the actual content, the messages
may also specify other subscription parameters such as effective date and expiration date.

5.2.3.1 Subscriber Requests Initial Subscription Content

Tech News uses <icedel :get-package to ask for subscription content. The current-
state="I1CE-INITIAL" indicates that thisisan initial request for this subscription, which
alerts Best Code to download the full content.

5.2.3.2 Syndicator Responds with Full Content of
Subscription

Now Best Code delivers the content of its subscription, consisting of an |CE package with
apressrelease and avideo file. The pressrelease is part of the package. It isthe content of
an ICE item element. The video file, however, is not actually in the package. Instead, its
location is given in the URL attribute of an ICE <icedel : item-ref element. This serves
as apointer to the content and is an alternative to sending the content within the ICE
message.

The I CE package element also conveys other information. For example, editable="true"
gives Tech News permission to edit the content, while new-state=""2"" establishes the state
of the subscription. The next timeTech News requests content, it will receive only content
added or changed since this delivery, instead of receiving the entire content load all over
again.

5.2.3.3 Subscriber Confirms Delivery

If requested by the Syndicator, the Subscriber will return confirmation of content delivery
each time content is updated with the <icedel : package-confirmations message.

5.2.3.4 Variations on the Full ICE Scenario

Figure 5.1 shows the Full ICE subscription model. Note that an | CE subscription always
begins with an out-of-bank business agreement between the Syndicator and the Subscriber.
Several steps within the subscription model are optional, depending upon the business
agreement. See steps marked with dotted linesin Figure 5.1. For example, the
subscription might be initiated without the use of a catalog of offers. In this case the
Syndicator can simply issues an <icesub:subscription message, provide aunique
subscription identifier and begin delivering content.

5-4

5.3 Transport and Messaging

Two entities are involved in | CE transport and messaging. The Syndicator produces content
that is delivered to Subscribers. The philosophy behind Full ICE is to enable syndication as
aWeb service. A Full ICE implementation implements all the features of the ICE 2.0
specification and supports SOAP transport bindings. Full ICE requiresthat the Syndicator
and the Subscriber will establish a*“listener” to receive messages and that either side will
be able to request/respond and send/receive.

5.3.1 SOAP Binding

Because Full ICE supports SOAP transport bindings, two WSDL scripts are included in the
ICE 2.0 Specification. These scripts define the transport for the Full ICE Syndicator and
for the Full 1CE Subscriber. The WSDL scripts can be found, in their entirety in Appendix

**

<I-- SOAP Binding -->

<binding name="ice-syndicator-full-binding"
type=""tns:ice-syndicator-full-portType">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http'/>
<operation>
OPERATIONS GO HERE

</operation> .

</binding>

5.3.2 Integrated ICE/SOAP Message

Aswas discussed in Chapter 2, ICE 2.0 was specifically designed to function asaWeb
service and to take advantage of SOAP as a messaging protocol. The |CE message header
was designed to be carried within the SOAP header and the | CE delivery and subscription
mechanisms were designed to be enclosed in the SOAP body. See Figure 2.1.

5.4 Subscription Management

Basic | CE does not support subscription management. Only with Full ICE conformance
may a Syndicator manage the subscriptions and data feeds to individual subscribers. Of
course, Full ICE Syndicators may also provide public syndication feeds that are freely
available to all Subscribers. But Full ICE was designed to support the business
management of content syndication.

5.4.1 Subscription Establishment Overview

Subscription relationshipsin | CE usually begin with arequest by the Subscriber to obtain a
catalog of subscription offers from the Syndicator. As aready described, prior to the
Subscriber making this request, the Subscriber and the Syndicator have already engaged in
discussions regarding licensing terms, payment options, and other business considerations.
This happens outside of the ICE protocol. Once the parties agree that they wish to have a
content exchange relationship, the ICE process begins.

A typical sequence of eventsis:

1. A user (technical manager, engineer, etc.) at the Syndicator site creates a new
Subscriber account using the | CE software on the Syndicator's system. This
operation is not defined by the protocol; it is a property of the tools used by the
Syndicator.

2. The Syndicator tells the Subscriber what URL to use for ICE communication. It is
likely that this URL will be under access control, and the Syndicator will
communicate the necessary authentication data to the Subscriber using an out-of -
band mechanism.

3. ICE protocol operations are now ready to begin: the Subscriber will authenticate (if

necessary) to the given URL and issue the first ICE request: a<icedel :get-

packages><icedel :get-package subscription-id="1"> request for the
package containing the catalog of offers.

The Syndicator will return a package containing offers.

The Subscriber issues a subscription request for an offer using the

<icesub:subscribe message

6. The Syndicator responds with the <icesub:subscription message indicating that
the subscription is established and packages can begin to be exchanged.

5.4.2 Get Package of Offers

The first step in the establishment of a subscription is the request from the Subscriber for a
package containing a package of offers. Thisrequest isinitiated by the <icedel :get-
package message with the subscription-id="1" that is universally known as a package
that contains offers available from the Syndicator. See Figure 5.2. Change to get-package
astheroot!

oA

7 * current—state% [] suhscriptiun—id%
token token
—@J

4+ get-package H + icesdt:parameters]

get-packageType

Figure 5.2 Get-package Request Structure

An example of such arequest is shown below in its complete ICE/SOAP form:

<?xml version="1.0" ?>
<env:Envelope xmlns:env="http://www.w3.0rg/2002/12/soap-
envelope”>
<env:Header>
<icemes:Header
xmlIns:icedel=http://icestandard.org/1CE/V20/message
timestamp=""2003-03-03T00:00:00" message-id="m0056’">
<icemes:sender name="mycompany”
role="http://icestandard.org//role/subscriber”
sender-id="http://www.xxyz.org”/>
</icemes:Header>
</env:Header>
<env:Body>
<icedel :get-package
xmIns:icedel="http://icestandard.org/I1CE/V20/delivery"
subscription-id="1"/>
</env:Body>
<env:Envelope>

5.4.3 Offers

The structure of an offer is shown in Figure 5.3. There are numerous attributes on offer. It
ismade up of optional <icesub:content-metadata, <icesub:offer-metadata,
<icesub:description, followed by arequired <icesub:delivery-policy> that can be
followed by an optional <icesub:business-term, one or more <icesub:required-
extension and other content from the Syndicator’ s own schemas (#wildCard).

offer-id & # name @)[I' valid—aﬂ:er @)[I' E:-l:piral:iun—dal:e
taken taken dateTime dateTime
7 # full-ice T
boalean

* cuntent—metadataE‘

cuntent-metadataTvne

* nﬂer—metadataE‘
offer-rmetadataType

& # description g
+ offer E- description T ype

offerType * deli\rery—pnlicyE
[delivery-policyType |

) # business-term
business-term Type

&

_@ +* required—eutensinnE|

Figure 5.3 ICE Offer structure

The element <icesub:offer is defined as the complex type offerType as shown in the

following fragment of the XML schema:

<xs:complexType>
<xs:complexContent>

</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
</Xs:sequence>

type = ''Xs:token'/>

</xs:complexType>

<xs:element name = "offer"™ type = "offerType"/>
<xs:complexType name = "offerType'>
<XS:sequence>
<xs:element name = "content-metadata"
type = "content-metadataType' minOccurs = *"0"/>
<xs:element name = "offer-metadata"
type = "offer-metadataType' minOccurs = "0"/>
<xs:element name = "description”
type = "descriptionType"” minOccurs = "0"/>
<xs:element name = "delivery-policy"
type = "delivery-policyType"/>
<xs:element name = "business-term"
type = "business-termType'" minOccurs = "0"
maxOccurs = "‘unbounded"/>
<xs:element name = "‘required-extension"
minOccurs = 0" maxOccurs = "‘unbounded">

<xs:extension base = "required-extensionType">
<xs:attribute name = "extension-type"
use = "required” type = 'xs:anyURI"/>

<xs:attribute name = "offer-id" use = "required"

<xs:attribute name = "name" type = ''xs:token"/>
<xs:attribute name = "valid-after™ type = "xs:dateTime"/>
<xs:attribute name = "expiration-date"

type = "'xs:dateTime'/>
<xs:attribute name = "full-ice" default = "false"

type = "xs:boolean"/>
<xs:anyAttribute namespace = "##other"

processContents = "lax"'/>

5.4.4 Offer Attributes

An <icesub:offer hasthe following attributes:

o offer-id

Required. Thisisastring. Itisanidentifier thatMUST be unique across al catalog
offers between a Syndicator and Subscriber. Its function isto clearly identify this
offer from all other catalog offers made by a Syndicator to a Subscriber.

e Name

Optional. Thisisastring. Itisaname that may be used to distinguish
subscriptions and offers from other subscriptions or offers. Thisis provided for use

5-8

by the syndicator or subscriber and has no defined | CE semantics. Itsintended use
isto provide areadable short description of the offer such as, "Julia Child's
Contemporary French Cooking Column”.

full-ice

Default. ThisisBoolean. The default is set to "false” for Basic ICE.

valid-after

Optional. This attribute has a dateType datatype. It isused to specify a date when
the offer becomes valid and may be accepted.

expiration-date

Optional. This attribute has a dateType datatype. It is used to specify a date when
the offer expires and is no longer valid.

5.4.5 Offer Elements

An offer is made up of aoptional elements <icesub:content-metadata,
<icesub:offer-metadata, <icesub:description, <icesub:delivery-policy
<icesub:business-term, <icesub:required-extensions and allows for the inclusion
of content from the Syndicator’ s own schema (#wi ldCard) .

5.4.5.1 Content Metadata

Content-metadata is an element that provides the means for additional metadata that applies
to al of the content being offered. The structure of this element is shown in Figure 5.4

o & atumic—use@ o & Editahle@ &] ip—status% 52 L] Iicense%
boalean boolean taken token

@}[» rights—hulder% @)[@ shuw—creditﬁ # jtem-type
token boolean itermn-types

" + text %
content-metadata E] icesdtitert Type

conkent-rnetadataType " + pwildCard

Figure 5.4 Content-metadata Structure

The <icesub:content-metadata element provides a mechanism to include additional
metadata about the content. The metadata can be entered in the text field or other content
metadata from the Syndicator’ s own schemas (#wi IdCard) can be included. Note that the
xml : lang= attribute enables the specification of language used in the <icesub: text
element.In addition, a number of optional metadata fields are provided as content-metadata
attributes by the ICE 2.0 specification.

The attributes of <icesub:content-metadata include:

atomic-use

Optional. ThisisaBoolean. If “true”, indicates that all information in the
subscription must be used together, or not used at all. If “false”, or unspecified,
then the Subscriber is permitted to use subsets of the datain any way they want

(and as permitted by the licensing terms, of course). Thisflag is meant to be useful
as a hint/reminder displayed in a Subscribers | CE tool; ICE cannot enforce it (and,
the use of lower case "must" in the above description isintentional; thereis no
protocol requirement here).

ip-status

Optional. Thisisastring describing the intellectual property-rights status of the
content. | CE cannot enforce any of these semantics; rather, the intent is that this
attribute allows the Syndicator to communicate useful information to the Subscriber
ICE tool, which will ideally display this information in some useful presentation
form. This attribute MAY contain any arbitrary string determined by the
Syndicator. | CE defines the following specific string values, and Syndicators
SHOULD use them as appropriate:

* PUBLIC-DOMAIN
The content has no licensing restrictions, whatsoever.

" FREE-WITH-ACK
The content has no licensing restrictions beyond a requirement to display an
acknowledgement of the content source.

» SEE-LICENSE
The content has licensing restrictions as already agreed to in an existing
licensing agreement. This is meant to convey the default case.

" SEVERE-RESTRICTIONS
The content has licensing restrictions that are worthy of special attention.
NOTE: it istheintent that this flag would not be used routinely by
Syndicators. Theintent is that an | CE tool might "red flag" content marked
with this attribute and bring it specially to the attention of an administrator
on the Subscriber site (this makes more sense when this attribute is attached
to package items).

" CONFIDENTIAL
The content is confidential and must be protected specialy.

license

Optional. Token indicating the license for the content.

rights-holder

Optional. String describing the original source of the syndication rights.
show-credit

Optional. ThisisaBoolean. If true, indicates that the Subscriber is explicitly
expected to acknowledge the source of the data.

editable

Optional. ThisisaBoolean. If true, indicates that the Subscriber may edit/alter
the content before using it. If false, or unspecified, the Subscriber is expected to
use the content without any ateration. It has the same "hint" semantics as atomic-
use.

item-type

Optional. Thisattribute is used to specify the type of content item that is being
offered. The datatypeisaURI that specifies the content type. This attribute was

5-10

designed to indicate the datatype of the content of the subscription so that the
subscriber will know whether they can process the content of the subscription being
offered.

Thisis an example of <icesub:content-metadata:

<icesub:content-metadata
atomic-use=""true"
editable="false"
ip-status="Free With Acknoledgement"
rights-holder="0Oracle Corporation, 2003"
show-credit=""true"
item-type="http://icestandard.org/1CE/V20/item-
type/rss2.0"/>

NOTE: Theitem-type attribute in this exampleisused to
specify the “flavor” of RSS being used in the content.

5.4.5.2 Offer Metadata

Offer-metadatais an element that provides the means for additional metadata to be
communicated between the parties specific to an offer. The structure of this element is
shown in Figure 5.5:

) + text 7 # zml:lang
offer-metadata = icesditextType language
|::

offer-rnetadataType + ZwildCard

Figure 5.5 Offer metadata structure

The <icesub:offer-metadata € ement provides a mechanism to include additional
metadata about the offer. The metadata can be entered in the text field or other content
metadata from the Syndicator’ s own schemas (#wildCard) can be included.

5.4.5.3 Description

This element is atext field and facilitates the entry of a description of the offer. This
simple element is shown in Figure 5.6. Note that the xml : 1ang= attribute on
<icesub: text enables the specification of language for the text field within
<icesub:description.

5-11

+ description)

* & H -
icesdttextType langquage

descriptionType

) # ZwildCard

Figure 5.6 Description element structure

5.4.5.4 Delivery Policy

Each subscription offer has one delivery-policy. The delivery policy can determine, for
example, the times and dates during which packages can be delivered (push) or requested
(pull) for a given subscription. Each delivery policy has one or more delivery rules.

The subscriber must accept the delivery policy within an offer and all required delivery
rules within adelivery policy. They can select among optional delivery rules, however.

A delivery-policy has a start date and a stop date attributes, and contains one or more
delivery rules. See Figure 5.7 for the delivery-policy structure.

@)[# startdate
icesdr:dateTime

@)[@ quantity
integar

@)[# stopdate
icesdridateTime

q @[i expiration-priority
* MMTOREN

&)

#+ delivery-rule &

delivery-palicy Type

+ gwildCard

[ji " E]
+ delivery-policy E] [delivery-rileType |

Figure 5.7 Delivery-policy Structure

The <icesub:delivery-policy element is defined as the type delivery-policy Type
is defined by the following XML schema fragment:

. This

<xs:complexType name
<XS:sequence>
<xs:element name

</Xs:sequence>

<xs:attribute name
<xs:attribute name
<xs:attribute name
<xs:attribute name

<xs:simpleType>

type = "delivery-ruleType" maxOccurs

<Xs:any namespace = "‘##other"
processContents = "lax"™ minOccurs = "
maxOccurs = "‘unbounded"/>

default = "first'>

<xs:restriction base =
<xs:enumeration value
<xs:enumeration value

"“delivery-policyType">

"delivery-rule"

"unbounded"'/>

"startdate' type "iIcesdt:dateTime"/>
"'stopdate" type "iIcesdt:dateTime"/>
"quantity'” type = "'xs:integer'/>
"expiration-priority"”

""xs :NMTOKEN"">
“"first'/>
"time''/>

5-12

<xs:enumeration value = "quantity"/>
<xs:enumeration value = "last"/>
</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:anyAttribute namespace = "##other"
processContents = "lax"'/>

</xs:complexType>

The attributes for <icesub:delivery-policy are

startdate

Optional. Datatypeis icesdt:dateTime as defined in the ICE datatype schema.
This attribute specifies the date and time on which the schedule will start to apply.
See the discussion under ICE Datatypes for details of what this means. If this
attribute is omitted, the schedule will start immediately.

stopdate

Optional. Datatypeis icesdt:dateTime as defined in the ICE datatype schema.
This attribute specifies the Date and Time on which the schedule expires. See the
discussion under ICE Datatypes for details of what this means. If this attribute is
omitted, the schedule never expires (unless superseded in the future).

quantity

Optional. Datatype is an integer. This attribute specifies the quantity of updatesin
the subscription

expiration-priority
Default. This attribute specifies the expiration priority. Valuesare first, last,
time, and quantity. Thedefaultis first.

NOTE: The multiple delivery-rulesin adelivery-policy are

conceptually joined with "OR" (not "AND"). In other words,
the valid delivery times are the union of all the times defined
by each rule in the delivery policy.

5.4.5.4.1 Delivery Rule

Each <icesub:delivery-policy is made up of one or more delivery rules. The
<icesub:delivery-rule can define awindow of time during which deliveries can be
performed along with other delivery options. Each delivery-rule has a mode of either a
push or pull, can define when deliveries can be performed, a start and ending time for the
update window, the frequency with which updates can be performed, the count of the
number of updates that can be performed and the transport and packaging. In addition,
attributes on the delivery rule specify whether updates will be full or incremental and
whether this delivery ruleisrequired. Y ou can see the makeup of a<icesub:delivery-
rule inthe Figure 5.8:

5-13

mode @)[& munthday% @)[# weekday % @)[# startdate q
*FIMMTORER HMTORENS HMTOKERS icesdt:date Tirme

@)[# stopdate @)[# starttime Eﬂ @)[# duration Eq # min-num-updates
icesdt:dataTime icesdt tirne icesdt iduration integer

@)[& mau—num—updatesq # incremental- update@ @[i required

intager boolean baalean

transport =
+ delivery- I‘I.I|E|: transportType
delivery-ruleType + #wildcard

Figure 5.8 ICE delivery-rule structure

The <icesub:delivery-rule element is defined as the type delivery-ruleType and is
described by this XML Schema fragment:

<xs:complexType name = "‘delivery-ruleType">
<Xs:sequence>
<xs:element name = ""transport"
maxOccurs = "‘unbounded™ minOccurs = "1"
type = 'transportType'/>
<xs:any namespace = "##local ##other"
processContents = "lax" minOccurs = "0"
maxOccurs = "‘unbounded"/>
</Xs:sequence>
<xs:attribute name = "mode' default = "pull">
<xs:simpleType>
<xs:restriction base = "Xs:NMTOKEN">
<xs:enumeration value = "pull"/>
<xs:enumeration value = "push"/>

</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name
<xs:attribute name

"monthday' type = "'Xs:NMTOKENS'"/>
"weekday" type = "'xs:NMTOKENS'"/>

<xs:attribute name = "startdate' type = "icesdt:dateTime"/>
<xs:attribute name = "stopdate™ type = "icesdt:dateTime"/>
<xs:attribute name = "'starttime"™ type = "icesdt:time"/>
<xs:attribute name = "duration' type = "icesdt:duration'/>
<xs:attribute name = "min-num-updates"

type = xs:integer'/>
<xs:attribute name = "max-num-updates"

type = "'xs:integer'/>
<xs:attribute name = "incremental-update"

type = "xs:boolean" default = "false"/>
<xs:attribute name = "required” type = 'xs:boolean"

default = "true"/>
<xs:anyAttribute namespace = "##other"

processContents = "lax"'/>

</xs:complexType>

5-14

Attributes on <icesub:delivery-rule include:

mode

Default. This attribute specifies the mode for the delivery. Options are push from
Syndicator to Subscriber and pul I by Subscriber from Syndicator, with a default of
“pull” to support Basic ICE.

incremental-update

Default. This attribute specifies the update policy for the offer. The valuesare
Boolean with “false” as the update default.

required

Default. This attribute specifies whether this delivery rule is required in order for
the offer to be accepted. The values are Boolean with the default as “true’.
startdate

Optional. Datatypeis icesdt:dateTime as defined in the ICE datatype schema.
This attribute specifies the date and time on which the delivery schedule will start to
apply. If this attribute is omitted, the schedule will start immediately.

stopdate

Optional. Datatypeis icesdt:dateTime as defined in the ICE datatype schema.
This attribute specifies the date and time on which the delivery schedule expires. If
this attribute is omitted, the schedule never expires (unless superseded in the
future).

weekday

Optional. Thistoken indicates the day of the week on which delivery is scheduled .
monthday

Optional. Thistoken indicates the day of the month on which delivery is scheduled.
duration

Optional. Datatype icesdt:duration as defined in the ICE datatype schema. This
attribute specifies the duration of the window that starts at start-time everyday. .
min-num-updates

Optional. This attribute specifies the minimum number of updates. The datatypeis
an integer.

max-num-updates

Optional. This attribute specifies the maximum number of updates. The datatypeis
an integer.

5.4.5.4.1.1 Transport

The <icesub:delivery-rule ismade up of one or more <icesub:transport.
Transports are specified when the Syndicator makes an offer. This element provides a
mechanism for the Syndicator to indicate the possible delivery transports for the
<icesub:offer. You can seethe makeup of a<icesub:transport inthe Figure 5.9:

5-15

transporkt

#* delivery- EndpmntE
transport Type

icesdtuHAccess Type

@[# protocol # @[# packaging-style #
H AT OKEM * T OREM
E=—

Figure 5.9 Transport structure
The<icesub: transport has two attributes:

e protocol
Default. This attribute specifies the transport protocol. It has pre-enumerated
values of “http:get” “Ftp” “mailto” and “soap” with the default set to
“http:get” for Basic ICE.

e packaging-style
Default. This attribute specifies the packaging style for the offer. It has pre-
enumerated values of “ice” and “ raw” with the default set to “ice” for Basic ICE.

5.4.5.4.1.2 Delivery-Endpoint

The <icesub:transport is made up of an optional delivery endpoint. See Figure 5.10. If the
Syndicator is offering content in “pul 1” mode, the delivery endpoint can be specified by
using <icesub:delivery-endpoint. If the Syndicator is offering content in “push”
mode, the Subscriber would use this elements within the <icesub: subscribe message to
indicate the endpoint for the push delivery.

[0 url % @[‘ username% @[‘ passwurd% @[‘ authenticatiun—scheme%
anyLIRI token token shring

+ delivery- endpulntE) 4+ gwildCard

icesdtuHAccess Type

Figure 5.10 Delivery-endpoint structure

The<icesub:delivery-endpoint has4 attributes. These include:

e url
Required. This attribute specifies the URL for push delivery. The datatype is
anyURI .

e username

Optional. This attribute specifies an optional username that may be required to
access URL for push delivery.

e password
Optional. This attribute specifies an optional password that may be required to
access URL for push delivery.

e user-authentication
Optional. This attribute specifies the optional user authentication scheme. Itisa
string with enumerated values of “basic” and “digest”. Thereisno default

5-16

5.4.5.4.2 Syndicator Offer Specifications by Mode

One of the most important specifications within the delivery rule of an offer isthe
specification of delivery mode= along with the <icesub:syndicator-transports. The
requirement to specify syndicator transports delivery settings varies by delivery mode.
Conditions such as this cannot be expressed by XSD. The following table provides
required specifications based on delivery mode.

Mode Syndicator Protocol Syndicator Delivery Delivery Endpoint
Packaging Style
Pull Default. If not specified, Default. If not specified, Optional. If not specified
the default protocol will be | Syndicator packaging is it is assumed to be the
“http:get” assumed to be "ice” same endpoint from
where the catalog was
pulled
Push Required. For push Required. For push delivery Not Allowed. For push

delivery a specific protocol
should be indicated
because http:get is not a
push protocol

a specific protocol should be
indicated

delivery, only the
Subscriber delivery
endpoint is valid

5-17

5.4.5.4.3 Example Delivery Rules

In this section we will look at a number of offers with delivery rules within delivery
policies. Theintent isto provide examples of delivery rules with different modes and
Syndicator specifications.

5.4.5.4.2.1 Simple “Pull” Delivery Rule

First letslook at an offer with a<icesub:delivery-rule containingasimple “pull”.
Notice that in this simple rule, everything isleft to default including the mode on the
delivery rule. No transport protocol or packaging-styleis provided. Remember that the
assumption is that the protocol will be “http:get” and the packaging will be “ice”. The
pull will be made from the same location from which the catalog was pulled.

<icedel :package
xmIns:icedel="http://icestandard.org/I1CE/V20/delivery"
new-state=""1CE-ANY"
old-state=""1CE-ANY"
ful lupdate=""true"
package-id=""1"
subscription-id="1">
<icedel :add>
<icedel :metadata item-
type="http://icestandard.org/ICE/V20/item-type/offer"
content-type=""text/xml"/>
<icedel:item>
<icesub:offer
xmlIns:icesub="http://icestandard.org/ICE/V20/subscribe"
offer-id=""offID2"
name=""offName2">
<icesub:description>
headlines
</icesub:description>
<icesub:delivery-policy>
<icesub:delivery-rule/>
</icesub:delivery-policy>
</icesub:offer>
</icedel:item>
</icedel :add>
</icedel :package>

NOTE: You can tell this |CE package contains a catalog
offer in several ways. First notice that the subscription-id
on the package equals “1”. Thisistheidentifier of a
subscription catalog. Also notice that the

<icedel :metadata indicates the item typeis offer. And
finally the offer isinside this package.

5-18

5.4.5.4.2.2 “Pull” Delivery Rule with Syndicator Delivery Settings

In this example, the delivery rule specifies apull delivery. But rather than using the
defaults, this Syndicator is specifying transport. In this case the Syndicator provides a
delivery endpoint for content to be pulled from. The Syndicator also indicates that the
delivery packaging stylewill “ice”.

<icedel :package
xmIns:icedel="http://icestandard.org/ICE/V20/delivery"
new-state=""ICE-ANY"*
old-state=""1CE-ANY"
fullupdate=""true"
package-id=""1"
subscription-id="1">
<icedel :add>
<icedel :metadata item-
type="http://icestandard.org/ICE/V20/item-type/offer"
content-type=""text/xml"/>
<icedel:item>
<icesub:offer
xmlIns:icesub="http://icestandard.org/I1CE/V20/subscribe"
offer-id=""offID2"
name=""offName2"">
<icesub:description>
headlines
</icesub:description>
<icesub:delivery-policy quantity="100"
expiration-priority="quantity'>
<icesub:delivery-rule mode="pull"/>
<icesub:transport
protocol="http:get” packaging-style="ice”>
<icesub:delivery-endpoint
url="http://iceserver.com/gp/08292BC"/>
</icesub:transport>
</icesub:delivery-rule>
</icesub:delivery-policy>
</icesub:offer>
</icedel:item>
</icedel :add>
</icedel :package>

NOTE: The<icesub:delivery-policy indicatesthat this
subscription provides for a quantity of 100 feeds. In this
case, the subscription expires when the quantity has been
filled. Also note that no times or durations are placed on this
subscription.

5-19

5.4.5.4.2.3 Single “Push” Delivery Rule

Instead of specifying that delivery will be by “pul1”, the Syndicator may indicate a“push”
delivery. Inthis case the Syndicator provides protocol and packaging information but does
not provide <icesub:delivery-endpoint as push endpoints have to be provided by the
Subscriber!

<icedel :package
xmIns:icedel="http://icestandard.org/I1CE/V20/delivery"
new-state=""1CE-ANY"
old-state=""1CE-ANY"
ful lupdate=""true"
package-id=""1"
subscription-id="1">
<icedel :add>
<icedel :metadata item-
type="http://icestandard.org/ICE/V20/item-type/offer"
content-type=""text/xml"/>
<icedel:item>
<icesub:offer
xmlIns:icesub="http://icestandard.org/ICE/V20/subscribe"
offer-id=""offID2"
name=""offName2">
<icesub:description>
headlines
</icesub:description>
<icesub:delivery-policy quantity="100"
expiration-priority="quantity'>
<icesub:delivery-rule mode="push’>
<icesub: transport protocol="soap"
packaging-style=""ice”/>
<icesub:transport protocol="soap”
packaging-style="raw”/>
<icesub:transport protocol="ftp”
packaging-style="ice”/>
<icesub:transport protocol="ftp”
packaging-style="raw”/>
</icesub:delivery-rule>
</icesub:delivery-policy>
</icesub:offer>
</icedel:item>
</icedel :add>
</icedel :package>

NOTE: In this example the Syndicator provided four
transport protocol s/packaging style options. The Subscriber
can select a preferred transport protocol and packaging style
pair when subscribing to this offer.

5-20

5.4.5.4.2.4 Combined “Pull” and “Push” Delivery Rule

A Syndicator may specify that delivery will be by “pull” and “push” delivery. In this case

the Subscriber must be able to accept both delivery rules (which default to required) in

order to subscribe to the offer. The Subscriber can, however, choose a preferred transport

within each rule.

<icedel :package
xmIns:icedel="http://icestandard.org/ICE/V20/delivery"
new-state=""1CE-ANY"
old-state=""1CE-ANY"
fullupdate=""true"
package-id=""1"
subscription-id="1">
<icedel :add>
<icedel :metadata item-
type="http://icestandard.org/ICE/V20/item-type/offer"
content-type=""text/xml"/>
<icedel:item>
<icesub:offer
xmlIns:icesub="http://icestandard.org/I1CE/V20/subscribe"
offer-id=""offID2"
name=""offName2"">
<icesub:description>
headlines
</icesub:description>
<icesub:delivery-policy quantity="100"
expiration-priority="quantity'>
<icesub:delivery-rule mode="pull''>
<icesub:transport protocol="http:get”
packaging-style="ice”’>
<icesub:delivery-endpoint
url=""http://iceserver.com/ice/08292BC82302427" />
</icesub:transport>
<icesub:transport protocol="http:get”
packaging-style="raw”’>
<icesub:delivery-endpoint
url="http://iceserver.com/raw/08292BC82302427" />
</icesub:transport>
</icesub:delivery-rule>
<icesub:delivery-rule mode="push'>
<icesub:transport>
<icesub:transport protocol="soap”
packaging-style=""ice”/>
<icesub:transport protocol="mailto”
packaging-style="ice”/>
</icesub:delivery-rule>
</icesub:delivery-policy>
</icesub:offer>
</icedel:item>
</icedel :add>
</icedel :package>

5-21

NOTE: Becausethe“required” attribute on delivery ruleis
left to default to “true” all delivery rules within this delivery
policy must be accepted in order for the Subscriber to
subscribe to the offer.

5.4.5.5 Offer Business Term

Another component of the <icesub:offer isthe optional <icesub:business-term
element. Business terms provide the means for additional content and parameters to be
communicated between the parties; both for specific subscriptions as well as for more
general properties of the relationship. Y ou can see the structure of this element in Figure

5.11:
type é @)[ﬁ 7 & name% 7 & usage—required@
F M TORER anylIRT taken boolean

@)[# business-term-id

stHng
7 # umllang=
lanquage

+ text

icesdtitaxtType

#+ business-term B
business-terrnType) + ZwildCard

Figure 5.11 ICE business-term structure

The <icesub:business-term element is defined as the type business-termType and is
described by this XML Schema fragment:

<xs:element name = "business-term" type = "business-termType"
minOccurs = 0" maxOccurs = "‘unbounded"/>
<xs:complexType name = "business-termType'" mixed = "true'>
<xs:sequence>
<xs:element name = ""text" type = "icesdt:textType"
minOccurs = "0" maxOccurs = "‘unbounded"/>
<xs:any namespace = "‘##other™ processContents = "lax"
minOccurs = "0" maxOccurs = "‘unbounded"/>
</Xs:sequence>
<xs:attribute name = "type" use = "required'>
<xs:simpleType>
<xs:restriction base = ""xXs:NMTOKEN">
<xs:enumeration value = "credit"/>
<xs:enumeration value = "licensing"/>
<xs:enumeration value = "‘payment'/>

<xs:enumeration value
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name
<xs:attribute name
<xs:attribute name
<xs:attribute name
""Xs:string"/>
<xs:anyAttribute namespace = "##other'" processContents =
"lax"/>

"“reporting"/>

"url™ type = "xs:anyURI"/>
"name' type = ''xs:token"/>
"usage-required™ type = "xs:boolean'/>
"business-term-id" type =

5-22

| </xs:complexType>

The attributes of <icesub:business-term are:

type

Required. String identifying the particular class of businessterms. All of these
terms are plain text descriptions. | CE makes no attempt to programmatically

explain licensing agreements; rather, |CE simply provides a transport mechanism
allowing user interfaces to easily locate, manage, and display electronic copies of
license agreements presumably executed in the traditional way on paper. Thetypeis
one of the following values:

type
attribute Attribute "type" Meaning
value

Refers to the type of acknowledgement required when using
the content. Note that ICE makes no further requirements

credit about credit. The party making the offer (usually a syndicator)
MAY choose to provide parameters in this category that MAY
or MAY NOT be negotiable.

Refers to the general terms of licensing. Note that ICE makes
no further requirements about licensing. The party making the
offer (usually a syndicator) MAY choose to provide parameters
in this category that MAY or MAY NOT be negotiable.

licensing

Payment refers to the cost and payment terms expected
when using the content. Note that ICE makes no further

payment requirements about payment. The party making the offer
(usually a syndicator) MAY choose to provide parameters in
this category that MAY or MAY NOT be negotiable.

Refers to the end-user usage statistics expected when
content is used. Note that ICE makes no further
requirements about reporting (but see logging). The party

reporting making the offer (usually a syndicator) MAY choose to
provide parameters in this category that MAY or MAY NOT
be negotiable.

url

Optional. A url. URL has no protocol-defined semantics other than to be made
available to the | CE application processor. The intent is that this URL provides the
business terms.

name

Optional. Thisname MAY be used by an ICE application processor to identify the
specific business term. "name" has no protocol defined semantics other than to be
made available to the | CE application processor.

usage-required

Optional. This attribute specifies whether the business term usage isrequired. This

5-23

isaBoolean. If true, indicates usage isrequired and false indicatesit is not
required.

e business-term-id
Optional. A subscription unique business term identifier that |CE uses to
distinguish the business term from all other business terms in the subscription.

5.4.5.6 Offers for RSS Feeds

ICE 2.0 has specifically been designed to carry “rss” feeds. RSSis asimple mechanism
for enabling the lightweight syndication of content. RSS was designed to be smple to use
and inexpensive to implement. RSS has been widely deployed, but remains limited in its
ability to enforce business rules in the content syndication environment or to push content
to Subscribers. I1CE 2.0 was designed to add these capabilities to RSS in an automated
Web Services environment.

In order to use ICE 2.0 to carry RSS feeds, one key element of an ICE offer is used:

e The item-type= attribute on the <icesub:content-metadata of an |CE offer was
designed to enable the specification which version of RSS would be used in the
feed. Currently RSS versions (devel oped and managed by different organizations)
include RSS0.91, RSS0.92, RSS1.0 and RSS2.0. The item-type= attribute has
anyURI asavalue so it can point to other specifications as well.

The following example shows an | CE offer for an RSS feed:

<icedel :package
xmIns:icedel="http://icestandard.org/ICE/V20/delivery"
new-state=""1CE-ANY"
old-state=""1CE-ANY"
ful lupdate=""true"

subscription-id="1">
<icedel :add>
<icedel :metadata item-
type="http://icestandard.org/ICE/V20/item-type/offer"
content-type=""text/xml"/>
<icedel:item>
<icesub:offer
xmlIns:icesub="http://icestandard.org/ICE/V20/subscribe"
offer-id=""offID4"
name=""offName4''>
<icesub:content-metadata
atomic-use=""true"
editable="false"
ip-status=""Free With Acknowledgement"
rights-holder="0Oracle Corporation, 2003"
show-credit=""true"
item-type="http://icestandard.org/1CE/V20/item-
type/rss2.0"/>
<icesub:description>
headlines in RSS
</icesub:description>
<icesub:delivery-policy quantity="100"

5-24

expiration-priority="quantity'>
<icesub:delivery-rule mode="push">
<icesub: transport protocol="soap"
packaging-style="ice”/>
<icesub:transport protocol="soap”
packaging-style="raw”/>
</icesub:delivery-rule>
</icesub:delivery-policy>
</icesub:offer>
</icedel:item>
</icedel :add>
</icedel :package>

NOTE: This ICE offer adds push functionality to an RSS
feed. It also provides business rules that limit the quantity of
the feed.

5.4.6 Subscribing

A Subscriber uses the <icesub:subscribe containing an <icesub:offer to establish a
subscription. Typically, a Subscriber will use <icedel :get-packages/<icedel:.get-
package to get an initial package of offers, take one of the offers from that catalog of offers
and send it back to the Syndicator in an <icesub:subscribe request.

5.4.6.1 Subscribe Element

The subscribe message is made up of an offer with parameters. See Figure 5.12.

@[:juhscriptiun—namea & * uffer—id%
token token

offer E
offerType

icesdt:parameters E]

subscribe E]

Figure 5.12 The structure of the subscribe message

The <icesub:subscribe message can carry only asingle offer. This meansthat thereisa
single offer per subscription. The <icesub:offer element isdescribed in 5.4.3 Offers.

In addition to the offer, the <icesub:subscribe message may contain the
<icesub:parameters element. This element enables the Subscriber to send further
parameters at subscription time to specify parameters. These parameters are not defined
within an ICE 2.0 namespace, but rather must come from a Subscriber namespace.

5-25

The structure of the <icesub:subscribe message is shown in the XML schema fragment:

<xs:element name = "subscribe'>
<xs:complexType>
<XS:sequence>

<xs:element name = "offer" type = "offerType" minOccurs
= lloll/>
<xs:element ref = "icesdt:parameters™ minOccurs = "0"/>

</Xs:sequence>
<xs:attribute name
""xs:token"/>

"'subscription-name" type =

<xs:attribute name = "offer-id" type = "xs:token'/>
<xs:anyAttribute namespace = "##other'"™ processContents =
llIaXll/>

</xs:complexType>
</xs:element>

The <icesub:subscribe message has atwo attributes:

e subscription-name
Optional. This attribute specifies the name of the product being subscribed to.

o offer-id
Optional. This attribute specifies the id of the offer being subscribed to. If this
attribute is used, without an echo of the <icesub:offer, it meansthat the offer was
accepted just as it was presented.

5.4.6.1.1 Subscribing Directly to an Offer

If an <icesub:subscribe isreturned with the offer-id attribute but without an echo of
the <icesub:offer, it means that the offer was accepted and subscribed to just asit was
presented. The offer-id attribute was put on <icesub:subscribe specifically to allow
for this short cut.

See how thisis done in the following example:

<icesub:subscribe subscription-name="RSS Headlines"
offer-id="offID2"/>

NOTE: Theoffer-id can only be used to subscribe to
offersthat are “pull” only. If an offer has“push” delivery
rules, the Subscriber must return the offer with delivery
endpoints for the push specified.

5.4.6.1.2 Subscribing with Subscriber Parameters Returned

If an offer has “push” delivery rules, the Subscriber must return the offer with delivery
endpoints for the push specified. The Subscriber may aso have been given choices of
delivery style selections that must be specified in order for content delivery to commence.

5-26

In both these cases, the Subscriber must return the <icesub:offer within the
<icesub:subscribe.

5.4.6.1.2.1 Subscriber Transport

The Subscriber returns transport for push deliveries back to the Syndicator within the offer
that isreturned in the <icesub:subscribe message. For information on
<icesub:transport.

5.4.6.1.2.2 Example Subscribe Message with Subscriber Parameters

This example shows an <icesub:subscribe message in response to the offer shownin
5.4.5.4.2.4 Combined “Pull”” and ““Push’” Delivery Rule. In this example, the Subscriber

sends the offer within the <icesub:subscribe message. Note that the Subscriber has

selected one <icesub:transport option. Also <icesub:delivery-endpoint has been
provided by the Subscriber so the Syndicator will know where the push delivery will be

made.

<icesub:subscribe>

<icesub:offer
xmIns:icesub="http://icestandard.org/I1CE/V20/subscribe"
offer-id=""offID2"
name=""offName2"'>
<icesub:description>
headlines
</icesub:description>
<icesub:delivery-policy quantity="100"
expiration-priority="quantity'>
<icesub:delivery-rule mode="push'>
<icesub:transport protocol="soap"
packaging-style="ice”’>
<icesub:delivery-endpoint
url="http://sub.com/push.jsp"™ username=""foo"
password=""foofoo"/>
</icesub:transport>
</icesub:delivery-rule>
</icesub:delivery-policy>
</icesub:offer>

</icesub:subscribe>

5.4.6.2 Subscription Initiated

After the Subscriber returns the offer to the Syndicator within a <icesub:subscribe
message, the Syndicator can respond in one of two ways, depending upon whether the

subscription was accepted.

If the Syndicator accepts the subscribe request, the Syndicator responds with the
<icesub:subscription message shown in Figure 5.13.

5-27

subscription-id * suhscription—name% G # current-state % G * quantity—remainingﬁ
taken taken icesdtipackage-sequence-stateType inteqger

#+ subscription
subscription T ype # ZwildCard

Figure 5.13 Syndicator's Subscription Response

The structure of the subscription message can be seen in this XML schema fragment:

<xs:element name = ''subscription’” type =
"subscriptionType'/>
<xs:complexType name = "'subscriptionType'>
<XS:sequence>
<xs:element name = "offer" type = "offerType"/>
<xs:any namespace = "‘##other" processContents = "lax"
minOccurs = "0" maxOccurs = "‘unbounded"/>
</Xs:sequence>
<xs:attribute name = "subscription-id"” use = "required”
type = ''xs:token'/>
<xs:attribute name = "'subscription-name" type =
"'xs:token"/>
<xs:attribute name = "current-state" type =
""icesdt:package-sequence-stateType"/>
<xs:attribute name = "quantity-remaining" type =
"Xs:integer'/>
<xs:anyAttribute namespace = "##other" processContents
"lax"/>
</xs:complexType>

The <icesub:subscription element has several attributes:
e subscription-id

Required. This attribute specifies the unique identifier of the product being
subscribed to. The Syndicator provides a subscription-id when the subscription

begins.
e subscription-name

Optional. This attribute specifies the name of the product being subscribed to.

e current-state

Optional. This attribute specifies the current state of the subscription. It is datatype

icesdt:package-sequence-stateType as defined in the ICE
simpledatatypes.xsd. Vauesinclude ICE-INITIAL and ICE-ANY.

e (uantity-remaining

Optional. This attribute specifies the quantity of updates of the product being

subscribed to. The datatype is an integer.

5-28

An example of the <icesub:subscription message is shown below. Thisisthe
subscription that was established based on the example shown in 5.4.6.1.2.2 Example

NOTE: The subscription does not have an offer-id as an
attribute. This means that even though the offer-id can be
used as a short-cut by the Subscriber when subscribing, the
Syndicator is forced to repeat the entire offer within the
subscription. Thisis asafeguard to ensure that the
Subscriber clearly understands the subscription and all
delivery policies at the time the subscription in initiated by
the Syndicator.

Subscribe Message with Subscriber Parameters.

<icesub:subscription
subscription-i1d="08292BC82302427F8CBC93342F931EC8"
current-state="ICE-INITIAL"
quantity-remaining="100">
<icesub:offer
xmlIns:icesub="http://icestandard.org/ICE/V20/subscribe"
offer-id=""offID2" name="offName2'>
<icesub:description>
headlines
</icesub:description>
<icesub:delivery-policy quantity="100"
expiration-priority="quantity'>
<icesub:delivery-rule mode="push'>
<icesub:transport protocol="soap"
packaging-style=""ice”>
<icesub:delivery-endpoint
url="http://sub.com/push. jsp" username=""foo"
password="foofoo" />
</icesub:transport>
</icesub:delivery-rule>
</icesub:delivery-policy>
</icesub:offer>
</icesub:subscription>

Note The subscription message is returned directly within
the SOAP body. Even though the original offer is sent inside
a package, the subscription reply is not.

5.4.6.3 Subscription Declined

If the Syndicator declines the subscription, the response is <icesub:subscription-fault.

The fault contains afault code. One of the following fault codes is appropriate for

declining a subscription.

400 Generic request error

Generic status code indicating inability to comprehend the request. Usually, it is

better to send a more specific code if possible.

5-29

e 401 Incomplete/cannot parse
The request sent is severely garbled and cannot be parsed. Note that in most cases,
a message level error (301) might be more appropriate.

e 402 Not well formed XML
The request sent is recognizable as XML, but is not well formed per the definition of
XML. This is available as both a message level error and as a request level (4xx)
error. Whether a given implementation attempts to interpret not well formed XML
S0 as to generate request level (4xx) errors versus. Message level (3xx) errors is a
quality of implementation issue.

e 403 Validation failure
The request failed validation according to the Schema. This is available as both a
message level error and as a request level (4xx) error. Whether a given
implementation attempts to interpret not well formed XML so as to generate request
level (4xx) errors versus. Message level (3xx) errors is a quality of implementation
issue. Note that Receivers SHOULD perform validation on incoming ICE
messages, but are not required to. Senders MUST send only valid ICE messages or
they are in error; however, the ability to detect invalid messages is a quality-of-
implementation issue for the Receiver, and Senders MUST NOT assume the
Receiver will perform an XML validation on their messages.

e 422 Schedule violation
The subscribe request was made at an incorrect time such as after an offer has
expired or before it is valid.

e 440 Sorry
This indicates the Syndicator rejected the proposed subscription offer, but wishes to
extend additional offers.

5.4.6.4 ICE Subscription Fault

The <icesub:subscription-fault isreturned when a subscription is declined. The
structure of the fault can be seen in Figure 5.14.

code ;
positivelnteger

+ offer E]
subscription-fault E |offerType]

Y -
Ly #wildCard

Figure 5.14 ICE subscription fault

5-30

Thefollowing is an example of a Syndicator declining a subscription:

<icesub:subscribe-fault
code="440">
<icesub:offer
xmIns:icesub="http://icestandard.org/I1CE/V20/subscribe"
offer-id="offID2" name="offName2">
<icesub:description>
headlines
</icesub:description>
<icesub:delivery-policy quantity="100"
expiration-priority="quantity'>
<icesub:delivery-rule mode="push">
<icesub: transport protocol="soap"
packaging-style="ice”>
<icesub:delivery-endpoint
url="http://sub.com/push.jsp™ username=""foo"
password=""foofoo"/>
</icesub:transport>
</icesub:delivery-rule>
</icesub:delivery-policy>
</icesub:offer>
</icesub:subscription>
</icesub:subscribe-fault>

5.5 Other Subscription Operations

In addition to providing the ability for the Subscriber to subscribe to an offer and for the
Syndicator to approve and manage that subscription, Full ICE provides for two other
important subscription management operations— checking the status of a subscription and
cancellation of the subscription.

5.5.1 Get Status

ICE 2.0 provides the ability for the Subscriber to request the status of a subscription. The
structure of the <icesub:get-status message is shown in Figure 5.15.

7 # subscription-id
‘ taken
S

+ zwildCard

get-status]

Figure 5.15 Get-status Structure

NOTE: If the optional subscription-id is not provided, the
Syndicator is expected to respond with the status of each
subscription for the Subscriber.

5-31

The following example shows how the <icesub:get-status request isissued. Note that
the entire ICE/SOAP message is shown.

<?xml version="1.0" ?>
<env:Envelope xmlns:env="http://www.w3.0rg/2002/12/soap-
envelope”>
<env:Header>
<icemes:Header timestamp="2003-03-03” message-id=""m0056">
<icemes:Sender name="mycompany”’
role="http://icestandard.org//role/syndicator”
sender-id="http://www.xxyz.org”/>
</icemes:Header>
</env:Header>
<env:Body>
<icesub:get-status subscription-id=""MC003°/>
</env:Body>
<env:Envelope>

5.5.2 Status

ICE 2.0 provides the ability for the Syndicator to respond to the request from the
Subscriber for the status of a subscription. The structure of the <icesub:status message
isshown in Figure 5.16.

[0 suhscription—id% @)[0 suhscriptinn—name% # current-state % @)[0 quantity-remaining dJ

token token i integer

icesdripack -sequence-stateType

+ status
statusType

+ ZwildCard

Figure 5.16 ICE Status Structure

The ICE Status response returns the subscription element that includes the current state of
the subscription, the quantity remaining in the subscription and the subscription-id along
with the offer itself. From thisinformation, the Subscriber can answer any question that
prompted the <icesub:get-status request.

5.5.3 Cancel

ICE 2.0 provides the ability for the Subscriber to cancel a subscription. The structure of
the <icesub:cancel messageisshown in Figure 5.17.

& suhscriptiun—id%
token
reason 7 # ymllang=
cancel] bt Type lanquage

#* ZwildCard

Figure 5.17 ICE Cancel Structure

5-32

The Subscriber’ s request to cancel a subscription simply includes the subscription-id for
the subscription being cancelled and areason attribute. The xml : 1ang attribute enables the
Subscriber to specify the language for the reason text.

An example of an ICE cancel message is shown here:

<?xml version="1.0" ?>
<env:Envelope xmlns:env="http://www.w3.0rg/2002/12/soap-
envelope”>
<env:Header>
<icemes:Header timestamp=""2003-03-03” message-id=""m0056">
<icemes:Sender name="mycompany”’
role="http://icestandard.org//role/syndicator”
sender-id="http://www.xxyz.org”/>
</icemes:Header>
</env:Header>
<env:Body>
<icesub:cancel
xmIns:icesub="http://icestandard.org/I1CE/V20/subscribe"
subscription-id="08292BC82302427F8CBC93342F931EC8">
<icesub:reason xml:lang="en">
I"m tired of this content feed
</icesub:reason>
</icesub:cancel>
</env:Body>
</env:Envelope>

5.5.4 Cancellation

ICE 2.0 provides the ability for the Syndicator to verify the cancellation of a subscription
requested by the Subscriber with the <icesub:cancel message. The structure for the
<icesub:cancel lation responseis shown in Figure 5.18.

+ cancellatiunE # cancellation-id # subscription-id]
token token

Figure 5.18 ICE Cancellation Response Structure

The Cancellation response requires the Syndicator to provide the Subscriber with a unique
cancellation-id that can be used to verify the cancellation.

5-33

An example of an ICE cancellation response is shown here:

<?xml version="1.0" ?>
<env:Envelope xmlns:env="http://www.w3.0rg/2002/12/soap-
envelope”>
<env:Header>
<icemes:Header timestamp="2003-03-03” message-id=""m0056">

<icemes:Sender name="mycompany”
role=http://icestandard.org//role/syndicator”
sender-id="http://www.xxyz.org”/>
</icemes:Header>

</env:Header>

<env:Body>
<icesub:cancellation
xmIns:icesub="http://icestandard.org/I1CE/V20/subscribe"
subscription-id="08292BC82302427F8CBC93342F931EC8""
cancellation-id="C08292BC82302427F8CBC93342F931EC8" />
</env:Body>
</env:Envelope>

5.6 Packages and Delivery

Full ICE, like Basic ICE, supports the delivery of packages. In Basic ICE, the delivery is
simply the act of the Syndicator placing the content in a SOAP/ICE XML document at the

URL specified in the offer. Full ICE enables the push or pull of content. The XML
definition for packages is found at http://www.icestandard.org/Spec/V 20/schemalice-

delivery.xsd.
The Full 1CE package is made up of three elements. See Figure 5.19

token token boolean

[i package-id [i suhscription—id% @[i fullupdateﬁ @[# confirmation

boalean

& new-state # old-state
icesdtipackage-sequence-stateType icesdtipackage-sequence-state Type

g

4+ group E
groupType

+ add -
addType i

packageType

+ package E= 4+ remove-item =

rernoweType

Figure 5.19

s =
L #wildCard

ICE package structure

The formal definition of a package is expressed with the following XML schema. Note the
defaults of package attributes that define Basic | CE functionality.

<element name = "package™ type = "icedel:packageType"/>

<complexType name = "packageType'>
<sequence>
<group ref = "icedel:cm.package"/>

<any namespace "##other" processContents = "lax"

minOccurs = 0"
maxOccurs = "‘unbounded"/>
</sequence>
<attribute name = "package-id" use = "required" type =
""token"/>
<attribute name = "'subscription-id"” use = "required” type
= "token"/>

<attribute name
"boolean"/>
<attribute name = "confirmation" default = "false" type =
"boolean"/>
<attribute name = "new-state" default = "ICE-ANY"
type = "icesdt:package-sequence-stateType' />
<attribute name = "old-state' default = "I1CE-ANY"
type = "icesdt:package-sequence-stateType' />
<anyAttribute namespace = "##other' processContents =
"lax"/>
</complexType>
</element

"fullupdate' default = "true" type =

5.6.1 Package Attributes

There are several attributes on package:

= confirmation
Default. This attribute specifies whether confirmation of receipt isrequired. The
values are Boolean, “true” or “false.” The default is“false”. Confirmation does not
apply for Basic ICE since Basic | CE does not support subscription management.

= fullupdate
Default. This attribute specifies whether the package contains afull (or partial)
update. The values are Boolean, “true” or “false.” The default is“true” because
Basic ICE does not require management of incremental updates.

* new-state
Default. One of two sequence identifiers, which, together represent the state of the
subscription. Since Basic ICE does not support subscription management, the default
issetto “ICE-ANY™".

= old-state
Default. One of two sequence identifiers, which, together represent the state of the
subscription. Since Basic ICE does not support subscription management, the default
issetto “ICE-ANY”.

= package-id
Required. ldentifies the package within the scope of a subscription. It is referenced

in certain ice-code messages such as 201 (Confirmed) and for package
confirmations. The Syndicator assigns the package-id.

5-35

= subscription-id
Required. In Basic ICE, the subscription-id is the unique id of the content feed and is
used by all subscribers. The Syndicator assigns the subscription-id.

5.6.2 Package Elements

The ICE package is made up of 3 elements. Seefigure 5.20. An ICE <icedel :package
describes a set of content operations: additions, removals, and a group of additions and/or
removals that are used to update/distribute syndicated content. The content additions
contain the content that needs to be added or updated and are specified using the
<icedel:item and <icedel : item-ref e ements. The <icedel :group element allows the
Syndicator to associate the content specified using the <icedel : i tem elements together.
For example, in the syndication of restaurant reviews, each review may consist of different
types of content such asan HTML file and two graphic files. These three files could be
contained within three <icedel : i tem elements and grouped together in an ICE

<icedel :group asasingle restaurant review. Likewise, unrelated content can be specified
ina<icedel :package by just using theadd and then <icedel: item elements without
an intervening <icedel :group. The <icedel :item element is used to contain content
directly for delivery. The <icedel : item-ref element is used to distribute an indirect
reference to the actual content. Note that the #wi Idcard allows for insertion of content
from any namespace.

* name% @)[# subscription-element-id 1

taken stHng

%

Y x
— & #wildCard

e + metadata i
* group metadataType
AraupType + group E
qroupType

+ add
add Type <

remove-item E]
removeT ype

Figure 5.20 Package elements for Full ICE

5.6.2.1 Group

The <icedel :group is acontainer element that can be used to group content items being
added or removed. It also enables the attachment of metadata to a group of content items.

Attributeson <icedel :group include:

5-36

e nName
Optional. This attribute specifies a name for the item group that can be uwsed to
identify that group within a package.

e subscription-element-id
Optional. This attribute specifies the persistent identifier of thegroup of elements
within the subscription

5.6.2.2 Metadata

The <icedel :metadata element enables the entry of metadata on <icedel :group,
<icedel :add, or <icedel : remove-item by using its attributes and description element.

Attributeson <icedel :metadata are shownin Figure 5.21.

@[] cnntent—ﬁlename% @[# content-type % @[# atomic-use ﬁ @[* editahleﬁ
token token boolean boclean

@[[] ip—status% @[] Iicense% @[* rights—hulder% @[] shuw—credit@
token token token boolaan

jtem-type =

itern-types

rietadataType + HwildCard

+ descriptiun%
* metadataE [: icesdt:text Type

Figure 5.21 Attributes on Metadata element

e content-filename
Optional. This element enables the specification the file name contained within.

e content-type
Optional. This attribute enables the specification of the type of content such as
“news.”

e atomic-use
Optional. This attribute specifies whether the element may be used in part. The
values are Boolean, “true” or “false.” The default is“false” because Basic ICE
requires complete item usage.

o editable
Optional. This attribute specifies whether the element is editable or whether it must
be used as delivered. The values are Boolean, “true” or “false.” Thedefaultis
“false” because Basic | CE requires unaltered item usage.

e ip-status
Optional. This specifiesthe intellectual property right status. The valueis atoken.

o license
Optional. This specifies the license status of the content. The valueis atoken.

5-37

e rights-holder
Optional. This attribute specifies the rights holder. The value is atoken

e show-credit
Optional. This attribute specifies the requirement to show credit for the content.

The values are Boolean, “true”’ or “false.” Thereisno default.

5-38

item-type

Optional. This attribute specifies a URI that identifies what type of item thisis.

For example the value of item-type may be
“http://icestandard.org/I1CE/V20/item-type/offer”.

5.6.2.3 Add

The <icedel :add element is used to add new content according to the delivery policy of
the subscription. It enables the attachment of metadata to the content being added. The
<icedel :add enables content to be directly included in the message by using the
<icedel : item element, an indirect reference to content using <icedel - item-ref
mechanism.

The structure of <icedel :add is shown in Figure 5.22.

@[i subscription-element-id ® js- newﬁ @[0 actwatlunq @[i Eupiratiun
token boolean icesdtidateTime icesdt:dateTirme

+* metadataa
—{:} [t]
rietadataType

+ add
addTypa

+ jtem =
itemType

+* item—rEfE

+ #wildCard

Figure 5.22 Add element structure

The <icedel :add element includes the following attributes:

subscription-element-id

Optional. This attribute specifies the persistent identifier of an element of a
subscription that is being added. This applies to the contained item, item-ref or
syndicator supplied (#wi ldcard) content.

is-new
Optional. This attribute specifies that the content is new. The values are Boolean,
“true” or “false.” Thereisno default.

activation
Optional. This attribute specifies when the addition for content is activated. The
valueisinthe icesdt:dateTime format.

expiration

Optional. This attribute specifies when the content expires. This attribute specifies
when the addition for content is activated. Thevaueisinthe icesdt:dateTime
format.

5-39

5.6.2.4 Remove Item

The <icedel :remove-item element is used to remove content of the subscription.

The structure of <icedel :remove-item isshown in Figure 5.23.

token

| | % remove-item J @ + ZwildCard
rermoveT ypa -

Figure 5.23 Remove item structure

subscription-element-id 1

The <icedel : remove-item element has a single required attribute that identifies what is to be
removed:

e subscription-element-id
Required. This attribute specifies the persistent identifier of an element of a
subscription

5.6.2.5 Item

The <icedel : item element directly carries content from the Syndicator to the Subscriber.
An <icedel :item can carry the ICE <icesub:offer. The <icedel : item does not carry
subscription management elements such as <icesub:subscribe or <icesub:cancel. The
<icedel : item structure is shown in Figure 5.24.

@[& cuntent—transfer—encudingd & - name%
FHMTOREN taken
E=—*

jtem # ZwildCard

item Ty pe

Figure 5.24 Item structure
The <icedel : i tem has two attributes:

e content-transfer-encoding
Default. This attribute specifies the transfer encoding. Choices are base64 or x-
native-xml with x-native-xml asthe default.

e Name
Optional. This attribute specifies the item name that can be used as a transient
identifier within agroup or add.

5.6.2.6 Item-Ref

The <icedel :item-ref element references Syndicator content. The <icedel :item-ref
structure is shown in Figure 5.25. It is made up of asingle <icedel : reference e ement.
This means that for each reference, an <item-ref element must be used.

5-40

@ retrieve-al"ler @[:name %]
lozzakaateTime hoken

& url% @[:usernamea @[:passwnrda @[# suthentication-scheme a]
anyl &l boken hoken sring

Figure 5.25 Item-ref structure

The<item-ref eement has two attributes:

e retrieve-after
Optional. This attribute specifies a time after which the item can be retrieved. Itis
specified in the icesdt:dateTime format.

e Name
Optional. This attribute specifies the item name that can be used as a transient
identifier within agroup or add.

5.6.2.7 Reference

The <icedel :reference element is used to reference the content of the <icedel : item-
ref element. The reference element is empty (with the exception of any wildcard content).
The attributes carry the information for this element.

The <icedel : reference element has four attributes;

e url
Required. This attribute specifies the URL from which the content can be
retrieved.

e username
Optional. This attribute specifies the username for retrieving the content if alogin
isrequired.

e password
Optional. This attribute specifies the password for retrieving the content if alogin
IS required.

« authentificationscheme
Optional. This attribute specifies the authentification scheme for retrieving the
content if thisis required.

5.6.3 Package Confirmations

Full ICE has a mechanism to confirm the delivery of packages. If the package that is being
delivered has confirmation="yes” then the Full |CE Subscriber must return a package
confirmations response. The <icedel : package-confirmations element can contain one
or more <icedel :confirmation. See Figure5.26.

5-41

] conﬁrmedﬂ # package-id [. processing-completed
oolean token HFIMMTOKEN
+ confirmation = 0 #wildCard

canfirmationType
+ #wildCard

Figure 5.26 Package Confirmations Structure

4+ package-confirmations =
package-confimationsType

Each <icedel :confirmation has the following attributes:

e confirmed
Required. This attribute specifies whether the package delivery is confirmed. The
value is Boolean and there is no default.

e package-id
Required. This attribute specifies the unique id of the package within a
subscription for which delivery is confirmed.

e processing-completed
Optional. This attribute specifies whether the package was simply received or
whether it was processed. Valuesare “received” and “processed”. Thereisno
default.

5-42

Chapter 6. Extending the ICE
Protocol

6.1 Overview

Authors of the ICE 2.0 Specification have purposely limited its scope to define Basic ICE
and Full ICE. Advanced syndication operations are allowed for as extensionsto ICE 2.0.
This extended level of ICE conformance is known as Optional ICE. Optional ICE
extensions allow implementers to extend the | CE protocol in such away that advanced
syndication operations may be allowed for in a predictable and controlled manner and
interoperation can be achieved.

This chapter describes how to extend the | CE protocol. It provides details about how the
use XML Namespaces along with custom WSDL scripts can be used to extend the ICE
protocol.

6.2 More About XML Namespaces

XML namespaces provide a ssmple method for qualifying element and attribute names
used in XML documents by associating them with namespaces identified by URI
references. XML Namespaces enable us to define a set of unique element names within a
given context while preventing element collisons and enabling computers to
unequivocally determine exact points of reference. Such unique addressing is critical to
support extensibility of ICE 2.0.

InICE 2.0, al ICE-defined elements found in one of three ICE namespaces to enable ICE
to function as a Web service and utilize SOAP messaging. In addition, an ICE
namespace for simple datatypes has been defined.

The ICE 2.0 namespaces include:

xmins:icesdt = * http://icestandard.org/| CE/Spec/V 20/simpledatatypes”

xmins;icemes="“ hitp:/icestandard.org/l CE/Spec/V 20/message”

xmins:icedel = *“ http:/icestandard.org/| CE/V20/delivery”

xmins:icesub = hitp:/icestandard.org/l CE/V 20/subscribe

6.2.1 Using XML Namespaces in an ICE Message

The following example shows how elements from different namespaces are combined in
asimple ICE message. Notice here that we are accessing the W3C SOAP envelope
namespace (xmins.env) as well as elements from the | CE message namespace

(xmins:icemes) and the | CE delivery namespace (xmins:icedel). Each namespaceis
shown in bold.

<?xml version="1.0" ?>
<env:Envelope xmlns:env="http://www.w3.0rg/2002/12/soap-
envelope®>
<env:Header>
<icemes:Header
xmIns:icemes="http://icestandard.org/I1CE/Spec/V20/message’
timestamp=""2003-03-03 message-id="m0056’>
<icemes:Sender name="mycompany”’
role="http://icestandard.org/ice/2.0/role/syndicator”
sender-id="http://www.xxyz.org”/>
</ice:Header>
</env:Header>
<env:Body>
<icedel : package
xmIns:icemes="http://icestandard.org/ICE/Spec/V20/delivery
new-state="P3” old-state=""P2”
ful lupdate="false” package-id="012"
subscription-id="3">
<icedel:add is-new="true”>
<icedel:item-ref item-id="xx203"/>
<icedel:reference
url="http://mysite.com/xxx.htm”>
</icedel :add>
</icedel :package>
</env:Body>
<env:Envelope>

6.2.2 Defining Extensions

Extensions to ICE 2.0 can be made in avery smple, yet XML-conformant manner or in a
more formal manner. These types of ICE extensions are discussed in Section 6.2.2.1 and
6.2.2.2.

6.2.2.1 Simple ICE Extensions

Simple ICE extensions are very straightforward. They do not require the definition of an
XML schema or writing new WSDL scripts. For simple |CE extensions just use your
own attributes and elements, within a unique namespace, in awell-formed SOAP/ICE
instance.

6.2.2.1.1 Select a Namespace

If you are going to mix your own elements and attributes with the | CE message, you must
select a namespace to identify the elements. That namespace will be declared the first
time you use the element. Note how thisis donein the example:

<icemes:status-code code="200"">
<myice:codeDescription
xmlns:myice = “http://myco.com/myice”>

It isimportant to understand that the main purpose of a namespace name such as
http://myco.com/myiceisaURI but not meant to point to aresource. Rather itisused to
provide unique identification. The namespace name is not required to be de-referencable.
So in the case of asimple | CE extension, this namespace name need not point to
anything. And you do not have to have an XML schema definition behind it.

6.2.2.1.2 Use Your Own Elements

While the ICE Authoring Group had the ability to add extensionsto ICE 2.0 as a design
goal, they also were committed to limiting extensions to those that were created in a
predictable and controlled manner. To accomplish this goal, designers of ICE 2.0 created
pointsin the | CE structure where extensions from other namespaces could be added. In
Figure 6.1, you can see where the | CE header may be extended. In the positions where
#wi ldCard appears, elements from any namespace can be included.

+ sender
senderType

+ receiver
4+ header] receiverType

+ user—agent%
shHin

Z
* -
L #wildCard

_r-/'-‘-:’

Figure 6.1 ICE extensions allowed at limited points

Once you have declared the namespace, you are free to use elements from that
namespace any place that ICE 2.0 allows extensions.

6.2.2.1.3 Use Your Own Attributes

In addition to using your own elements, you may want to extend | CE by adding attributes
aswell. The Authors of ICE 2.0 have accounted for thisin their schemas. Each attribute
list within an | CE schema contains a mechanism that enables you to add any attribute
from any namespace. It provides a sort of attribute wildcard so that you may add
attributes from any namespace. The xs:anyAttribute mechanismis highlighted in the
example schema below:

<xs:element name = "cancellation'>
<xs:complexType>
<xs:attribute name = "cancellation-id" use = "required”
type = '"'xs:token"/>

<xs:attribute name = "'subscription-id" use = "required"
type = "'xs:token"/>
<xs:anyAttribute namespace = "##other'™ processContents

= "lax"/>
</xs:complexType>
</xs:element>

When you add your own attributes, remember to preface the attribute with the
namespace, just as you did with the elements.

<icemes:status-code xmIns:myice = “http://myco.com/myice”
code=""200" myice:type=""success”>
<myice:codeDescription>Description of the code goes here
</myice:codeDescription>

</icemes:status-code>

Note that the namespace declaration can be used within any element start-tag and the
scope of the namespace is within that element. So in the example of using your own
elements, the scope is simply within <myice:codeDescription. Butin thisexample,
the scope of the namespace is anywhere within the <icemes: status-code.

6.2.2.2 Formal ICE Extensions

There is a specific method to defining formal extensionsto ICE 2.0.

1. Declare an XML schemain a unique namespace for the extensions you wish to
implement

Use your own elements
Use your own attributes
4. Create new WSDL scripts to reflect the extensions, if necessary

6.2.2.2.1 Declare Your Own XML Schema

If you wish to extend ICE 2.0 by adding elements with new functionality, such asto
support parameter negotiation, begin by defining your own XML schema. The example
below shows a hypothetical schema where we have added the element <accessCode.

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema xmlns = "http://myco.com/myschema/extendheader""
targetNamespace = "http://myco.com/myschema/extendheader"’
xmlns:xs = "http://www.w3.0rg/2001/XMLSchema*
elementFormDefault = "qualified'>
<xs:include schemalLocation = "ice-simpledatatypes.xsd'/>
<xs:element name = "accessCode’">
<xs:complexType>
<xs:attribute name = '"code" use = "required" type =
'xs:token'/>
</xs:complexType>
</xs:element>
</xs:schema>

6.2.2.2.2 Using Your Own Elements

Just as with simple | CE extensions, you are free to use your own el ements wherever ICE
2.0 allows extensions. Thiswill be covered in Section 6.3.

NOTE: If you have declared your own schema, it is
expected that you not only provide well-formed XML, but
that the elements will validate according to your schema.

6.2.2.2.3 Using Your Own Attributes

Just as with simple I CE extensions, you are free to use your own attributes on any
element. You must, however, use proper namespace conventions.

6.3 Where Can ICE be Extended?

Aswas pointed out earlier, the authors of 1CE 2.0 were careful to alow for extensionsin
places that were predictable and controlled. These extension points apply whether ICE is
simply extended or formally extended. Graphics of the ICE 2.0 schema show where Full
| CE can be extended by either method.

6.3.1 Extensions in the ICE Message

The ICE Message is made up of the ICE header and of | CE status codes. Using
namespaces, we are able to include these within the SOAP envelope header and body
respectively. The ICE header can be extended by adding elements to the

<icemes:header itself. See Figure6.1. Note that extensions may be made wherever
#wildcard is shown.

The ICE status code is shown in Figure 6.2. Notice that we can add our own extension

elements to the status code.

& code ﬁ # message-id [‘ subscription-id # location
ositivelnteger token token anyLIRI

.

@ duration gy
Dot B

+* status—cudeE # + gwildCard

Figure 6.2 ICE status-code extensions

In this example, we have added an element from our own namespace, “myice:” to the
status code to add a description field:

<icemes:status-code code=202"
reason=""Package sequence state already current”
subscription-id="KKK12U03”
xmlns:myice = “http://myco.com/myice”>
<myice:description>This code indicates that the
subscription status is up to date</myice:description>
</icemes:status-code>

6.3.2 Extensions in ICE Delivery

Elements within the | CE delivery namespace have also been designed to allow for
controlled extensions. The ICE package shown in Figure 6.3 can be extended directly or
within a<icedel :group, <icedel :add, or <icedel : remove-item.

5 ¥ #wildCard

/ @ # description
+ metadata icesdttentType

Z ==t o
\metadstaTvpe | | * #wildCard

j . * Qroup
l(r qroup Type
f 5 * metadata
j / rmetadataType
j f + add — + jtem
{ =]
P -a:idTEE.:_ itern Type
— + jtem-ref
_{2 ILEM-Te E

\ 4+ ZwildCard

\ _ # remove-item E— + ZwildCard

remiove Type

package = | | e
packageType = .'-I * add@
\ addType

| % remove-item 5

\ rerme Ty
_.@1 + ZwildCard

Figure 6.3 Extensions may be made at several locations within the package elements

In the following example an | ce package has been extended to include <myice: removal -
reason from the namespace “myice:".

<icedel : package
xmIns:icedel="http://icestandard.org/ICE/V20/delivery"
new-state=""1CE-ANY"
old-state=""1CE-ANY"
ful lupdate=""true"
package-id=""16TO0U9""
subscription-id="KKK0098">
<icedel :remove-item subscription-element-id="K1234D”
xmlns:myice = “http://myco.com/myice”>
<myice:removal-reason>This item is out-of-date
and has no replacement
</myice:removal-reason>
</remove-item>
</icedel :package>

Note: It turns out this very extension mechanism enables
the Syndicator to include <icesub:offer within a package
in response to the <icesub:get-catalog request from a
Subscriber. In this case the Syndicator isincluding the
offer from the icesub: namespace within the

<icedel :add element. But extensions to other namespaces
can be made at the same nodes as well.

6.3.3 Extensions in ICE Subscribe

Elements within the I CE subscribe namespace have also been designed to allow for
controlled extensions. See Figure 6.4 to find extension nodes.

) # text %
7 + cuntent—metadata* icesdtitentType
H
Rt

content-retadataType + ZwildCard

i
) # text %
@ + offer-metadata = icesdtitertType
offer-metadataType # # #wildCard
—r:
) # text %
@ # description - " icesdbitextType
descriptionType o + ZwildCard
7 + offer 7 —_—>
offerType # delivery-rule =
[delivery-rulaType |

delivery-policy E]
delivery-palicy Type

#* ZwildCard

Lext %
icesdtitext Type

+ #wildCard

53

) # business-term
buzinass-terrn Type

o
'ﬁﬁ‘r

4 subscribe L

—

) + text %
kS i 4 j icesdtitertType
L) required-extension "
|::

+ #wildCard
—
ey # icesdt:parameters E— + #ZwildCard

/"

Figure 6.4 Extensions to the ICE subscription mechanism

In the following example note how the subscribe message has been extended. A new
namespace “myice:” has been declared. Then an element from within that namespace
(<myice:description-code) has been added to <icesub:description in order to
enable the use of standard description coding.

<icesub:subscribe>
<icesub:offer

offer-id="offID2"
name=""offName2">
<icesub:description
xmIns:myice = “http://myco.com/myice”>
<myice:description-code code=7C1212/>
</icesub:description>
<icesub:delivery-policy quantity="100"
expiration-priority=""quantity'>
<icesub:delivery-rule mode="push'>
<icesub: transport protocol="soap"
packaging-style="ice”>
<icesub:delivery-endpoint
url="http://sub.com/push.jsp"™ username=""foo
password=""foofoo"/>
</icesub:transport>
</icesub:delivery-rule>
</icesub:delivery-policy>
</icesub:offer>
</icesub:subscribe>

xmlns:icesub=""http://icestandard.org/ICE/V20/subscribe"

6.4 Indicating ICE Extensions

When a Syndicator is extending | CE, there are several indications given to the
Subscriber. These include:

6.4.1 ICE Message Header

The <icemes:header includes attributes for both the <icemes:sender and

<icemes:receiver to indicate their compliance level. This attribute has pre-defined

values of “basic” and “full” with adefault of “basic”. However the value of the attribute

isanyURI, and enables the sender to point to a URI that defines the Optional ICE

extensions. See Figure 6.5.

[L] timestamp [0 message—id% @[# response-to %
icesdtidateTime token token

compliance-level
icesdticornpliance-types

[0 name % @)[@ role q [@ sender-id % @)[@ location %
string HMTOKEMS anylIRT anyLIRT
senderType @[

header + receiver [. name% [. receiver-id% f:-:’)[‘ role q @[. cumpliance-le?el%
receiverType string anyIJRT *F MMTORENS icesdticompliance-types

user-agent
strin

) + gwildCard

Figure 6.5 Compliance Level Attribute in ICE Message Header

6.4.2 ICE Offer

Extended ICE isindicated in the offer using the <icesub:required-extensions el ement.
See Figure 6.6.

offer-id % * name% @[* full—ice@
token token boolean
+ cuntent-metadataE|

content-metadataTvne

+ uffer—metadataE‘
offer-retadataType

* descriptiuni
=]
@ descriptionType

+ delivery-policy 5

+ offer E= delivery-palicy Type
offerType

) # business-term
business-termType

[] EHtEnSiDI‘I-t‘,’DE%
anylRI

" + text %
+ required-extension B icead et Type

S + ildCard
o FwildCar

_@

Figure 6.6 Required Extensions indicated in Offer

Note: Extensions assume Full ICE capabilities. Soin
addition to specifying one or more required extensionsin
the offer, the Syndicator must have the ful I-ice= attribute
set to “true”.

6.5 Extending ICE 2.0 to Include ICE 1.*
Features

One of the early design goals for ICE 2.0 was the requirement to provide modularity for
ICE. Modularity, in effect, enables users of the |CE specification to select certain
modules for implementation and leave others unimplemented. A Full ICE
implementation implements all the features of the ICE 2.0 specification. The ICE AG
chose to remove a number of capabilities of ICE 1.* specification within the ICE 2.0
specification in order to simplify the specification and facilitate implementation. Itisthe
goal of the ICE Authoring Group that features that go beyond Full |CE as defined by this
document will be defined by additional specifications.

If an implementer requires features from the ICE 1.* specification, these can be added by
the following steps:

6-10

5.

Examine the structure of the optional feature in the ICE 1.* specification and
determine where that optional feature will fit within the extension mechanism for
ICE 2.0.

Define the optional feature using XML Schema and assign a namespace

Reference this optional feature schema along with the | CE schema definitions
using XML namespaces

Review the WSDL scripts and, if necessary, create two new WSDL scriptsto
support your Optional |CE implementation:

e Ice-syndicator-extension.wsdl
e ice-subscriber-extension.wsdl

Implement the Optional Syndicator and Subscriber in | CE software

6.6 Interoperability of ICE Extensions

I|CE 2.0 defines three levels of conformance that spell out the features of 1CE that must
be supported for that level of conformance. These conformance levels are:

Basic I CE (the default)
Full 1CE (documented in this specification)
Optional ICE Extensions (Full ICE plus user defined capabilities)

In terms of interoperability

Basic | CE software can be expected to interoperate with other software that
supports Basic ICE.

Full 1CE software can be expected to interoperate with other software that
supports Full ICE.

Full 1CE software can be expected to interoperate with other software that
supports Basic ICE.

Extended | CE software can be expected to interoperate with other software that
understands and supports the same extensions.

Note: When an | CE implementation with an optional |CE
extension is interoperating with another ICE
implementation without that extension, it MUST restrict
itself to function without that extension.

6-11

Appendix A. ICE Simple
Datatypes Schema

<?xml version = "1.0" encoding = "UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace=""http://icestandard.org/1CE/V20/simpledatatypes"
xmlns:icesdt="http://icestandard.org/ICE/V20/simpledatatypes"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:annotation>
<xs:documentation>
We define our own schema for the XML namespace because the
canonical one available at http://www.w3.0org/XML/1998/namespace
doesn®t include xml:base and is not in sync with the Recommended
version of W3C Schema 1.0
</xs:documentation>
</xs:annotation>
<xXs:import namespace="http://www.w3.org/XML/1998/namespace"’
schemalLocation=""xml .xsd"/>

<1-—

| attlist._genericmetadata
I
-——>
<xs:attributeGroup name="attlist.genericmetadata'>
<xs:annotation>
<xs:documentation>
changes from 1.1: moved content-transfer-encoding to item only
</xs:documentation>
</Xs:annotation>
<xs:attribute name="atomic-use"
type=""xs:boolean" default="false"/>
<xs:attribute name="editable" type=""xs:boolean™
default="false"/>
<xs:attribute name="ip-status'" type=""xs:token'/>
<xs:attribute name="license"type=""xs:token"/>
<xs:attribute name="rights-holder" type="'xs:token'/>
<xs:attribute name=''show-credit" type=""xs:boolean"/>
<xs:attribute name="item-type" type=""icesdt:item-types"
default="http://icestandard.org/ICE/V20/item-type/undefined"/>
</xs:attributeGroup>

<I--
| ice-compliance
| Basic ICE compliance:
http://icestandard.org/I1CE/V20/syndicator/basic
| Full ICE compliance:
http://icestandard.org/1CE/V20/syndicator/full
I

—_—>
<xs:simpleType name="'compliance-types'>

A-1

<xs:annotation>
<xs:documentation>
a URI that names an ICE compliance level.
</xs:documentation>
</xs:annotation>
<xs:union memberTypes="'xs:anyURI"'">
<xs:simpleType>
<xs:restriction base="xs:anyURI">
<xs:enumeration
value=""http://icestandard.org/I1CE/V20/syndicator/basic'/>
<xs:enumeration
value=""http://icestandard.org/I1CE/V20/syndicator/full'/>
<xs:enumeration
value=""http://icestandard.org/1CE/V20/itemtype/undefined" />
</xs:restriction>
</xs:simpleType>
<xs:simpleType>
<xs:restriction base="xs:anyURI"/>
</xs:simpleType>
</xs:union>
</xs:simpleType>

<l_—

I
| item-types (feature)
I

-—>
<xs:simpleType name="item-types'>
<xs:annotation>
<xs:documentation>
a URI that defines the content of an item.
</xs:documentation>
</xs:annotation>
<xs:union memberTypes=""xs:anyURI">
<xs:simpleType>
<xs:restriction base="xs:anyURI">
<xs:enumeration
value=""http://icestandard.org/I1CE/V20/item-type/undefined"/>
<Xs:enumeration
value="http://icestandard.org/ICE/V20/item-type/offer'/>
<Xs:enumeration
value=""http://icestandard.org/I1CE/V20/item-type/rss0.91"/>
<xs:enumeration
value=""http://icestandard.org/I1CE/V20/item-type/rss0.92"/>
<xs:enumeration
value=""http://icestandard.org/ICE/V20/item-type/rssl.0"/>
<xs:enumeration
value=""http://icestandard.org/I1CE/V20/item-type/rss2.0"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType>
<xs:restriction base="xs:anyURI"/>
</xs:simpleType>
</xs:union>
</xs:simpleType>

A-2

<1-—

| dateTime
|
-——>
<xs:simpleType name="'dateTime'>
<xs:annotation>
<xs:documentation>
the pattern here expresses the restriction that
datetimes in ICE must be in the UTC time zone
</xs:documentation>
</xs:annotation>
<xs:restriction base="'xs:dateTime'>
<xs:pattern value="_*Z"/>
</Xs:restriction>
</xs:simpleType>

-—>
<xs:simpleType name=""time">
<xS:annotation>
<xs:documentation>
the pattern here expresses the restriction that
times in ICE must be in the UTC time zone
</xs:documentation>
</Xxs:annotation>
<xs:restriction base="'xs:time'>
<xs:pattern value="_*Z7"/>
</Xs:restriction>
</xs:simpleType>

<I--

| duration

-—>
<xs:simpleType name="duration'>
<xs:annotation>
<xs:documentation>
the pattern here expresses the restriction that
durations in ICE must only include seconds
</xs:documentation>
</Xs:annotation>
<xs:restriction base='"Xxs:duration'>
<xs:pattern value="PT\d*\.?\d*S"/>
</xs:restriction>
</xs:simpleType>

A-3

<I--

| parameters

—_—>
<xs:element name="parameters'>
<xs:complexType>
<Xs:sequence>
<Xs:any namespace="'##other" processContents=""lax"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:complexType>
</xs:element>

<I--

| package-sequence-stateType

-——>
<xs:simpleType name="package-sequence-stateType''>
<xs:union memberTypes=""xs:token">
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="I1CE-INITIAL"/>
<xs:enumeration value=""ICE-ANY"/>
</Xs:restriction>
</xs:simpleType>
<xs:simpleType>
<xs:restriction base="xs:token"/>
</xs:simpleType>
</Xs:union>
</xs:simpleType>

<1--

I
| textType

-—>
<xs:complexType name=""textType">
<xs:simpleContent>
<xs:extension base="'xs:string'>
<xs:attribute ref="xml:lang"/>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>

A-4

<1--

| urlAccessType

-—>
<xs:complexType name="urlAccessType">
<xs:annotation>
<xs:documentation>
changes from 1.1:
* removed the (FIXED) ice-element att
* added link-only attribute
* remove access-window
</xs:documentation>
</xs:annotation>
<xs:sequence minOccurs="0" maxOccurs="unbou
<Xs:any namespace="'##other" processConten
minOccurs=""0" maxOccurs="unbounde
</xs:sequence>
<xs:attribute name="url' use="required"
<xs:attribute name="‘username"
<xs:attribute name="'password"
<xs:attribute name="authentication-scheme'>
<xs:simpleType>
<xs:union memberTypes="'xs:string'>
<xs:simpleType>
<xs:restriction base="'xs:string'>
<xs:enumeration value="basic'"/>
<xs:enumeration value="'digest'/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType>
<xs:restriction base="Xxs:string"'/>
</xs:simpleType>
</Xs:union>
</xs:simpleType>
</xs:attribute>
</xs:complexType>

</xs:schema>

ribute

nded"'>
ts=""lax"
d"/>

type=""xs:anyURI"/>
type=""xs:token"/>
type=""xs:token"/>

A-5

Appendix B. ICE Message Schema

<?xml version = "1.0" encoding = "UTF-8"?>

<schema xmlns = "http://www.w3.0rg/2001/XMLSchema""
targetNamespace = "http://icestandard.org/ICE/V20/message"
xmlns:icemsg = "http://icestandard.org/ICE/V20/message"’
xmlns:xs = "http://www.w3.0rg/2001/XMLSchema*
xmIns:icesdt = "http://icestandard.org/ICE/V20/simpledatatypes"
elementFormbDefault = "qualified">

<import namespace =
"http://icestandard.org/I1CE/V20/simpledatatypes"

schemalLocation = "ice-simpledatatypes.xsd"/>
<I--
| header
I
-—>
<element name = "header'>
<complexType>
<seguence>
<element name = ''sender' type = "icemsg:senderType'/>
<element name = "receiver"
type = "icemsg:receiverType'™ minOccurs = "0"/>
<element ref = "icemsg:user-agent' minOccurs = "0"/>
<any namespace = "‘##other'" processContents = "lax"
minOccurs = "0" maxOccurs = "unbounded"/>
</sequence>
<attribute name = 'timestamp' use = "‘required"
type = "icesdt:dateTime'/>
<attribute name = "message-id" use = '"required"”
type = "token'/>
<attribute name = "response-to"
type = '"token'/>
<anyAttribute namespace = "##other" processContents = "lax'/>
</complexType>
</element>
<l--
I
| receiverType
I
-—>

<complexType name "'"receiverType'>

<attribute name = "name'™ use = "required' type = ''string'/>
<attribute name = "receiver-id" use = "required" type = "anyURI"/>
<attribute name = "role">
<simpleType>
<restriction base = "NMTOKENS'>
<enumeration value = 'subscriber'/>
<enumeration value = "syndicator'/>

B-1

</restriction>
</simpleType>
</attribute>
<attribute name = "compliance-level" default = "basic"
type = "icesdt:compliance-types'/>
<anyAttribute namespace = "##other" processContents = "lax'/>
</complexType>

<I--

I
| senderType

-—>

<complexType name = "senderType''>

<attribute name = "name" use = "required" type = "'string'/>
<attribute name = "role">
<simpleType>
<restriction base = ""NMTOKENS'>
<enumeration value = 'subscriber'/>
<enumeration value = "syndicator'/>
</restriction>
</simpleType>
</attribute>
<attribute name = "'sender-id" use = "required"” type = "anyURI'/>
<attribute name = "location" type = "anyURI"/>
<attribute name = "compliance-level" default = "basic" type =
""icesdt:compliance-types'/>
<anyAttribute namespace = "##other"™ processContents = "lax'/>
</complexType>
<l--
I
| user-agent
I
-——>
<element name = "user-agent' type = "icesdt:textType'/>
<I--
| ping request message
-—>
<element name = 'ping'>
<complexType/>
</element>

<I-
| OK simple confirmation response message

-—

<element name = "0OK''>
<complexType/>
</element>

N
|

Status-code

-—>
<element name = "status-code''>
<complexType>
<seguence>
<any namespace = "‘##other" processContents = "lax" minOccurs =
0" maxOccurs = "‘unbounded'/>
</sequence>
<attribute name = '‘code' use = “required"
type = "positivelnteger'/>
<attribute name = "message-id" use = 'required” type = "token'/>
<attribute name = "subscription-id" use = "required"
type = "token'/>
<attribute name = "location” type = "anyURI"/>
<attribute name = "duration”
type = "icesdt:duration'/>
<anyAttribute namespace = "##other" processContents = "lax'/>
</complexType>
</element>
</schema>

B-3

Appendix C. ICE Delivery Schema

<?xml version = "1.0" encoding = "UTF-8"?>

<schema xmlns = "http://www.w3.0rg/2001/XMLSchema""
targetNamespace = "http://icestandard.org/ICE/V20/delivery"
xmlns:icedel = "http://icestandard.org/I1CE/V20/delivery"
xmlns:xs = "http://www.w3.0rg/2001/XMLSchema*
xmIns:icesdt = "http://icestandard.org/ICE/V20/simpledatatypes"

elementFormbDefault = "qualified">
<import namespace = “http://icestandard.org/I1CE/V20/simpledatatypes™
schemalLocation = "ice-simpledatatypes.xsd"/>

<import namespace = "http://www.w3.0rg/XML/1998/namespace"’
schemalLocation = "xml_xsd"/>
<attributeGroup name = "attlist.item'>
<attribute name = "content-filename"™ type = 'token'/>
<attribute name = 'content-type"
default = "application/octet-stream” type = 'token'/>
</attributeGroup>
<group name = '‘cm.package"'>
<choice>
<choice minOccurs = "0" maxOccurs = "‘unbounded>
<element name 'group’ type = "icedel:groupType'/>
<element name ""add" type = "icedel:addType"/>
<element ref = "icedel:remove-item"/>
</choice>
</choice>
</group>

<l__

| get-packages

-—>

<element name = ''get-packages''>
<complexType>
<sequence>
<element ref = "icedel:get-package" maxOccurs = "‘unbounded'/>
<any namespace = "‘##other" processContents = "lax" minOccurs =
"0" maxOccurs = "‘unbounded'/>
</sequence>
<anyAttribute namespace = "##other" processContents = "lax'/>
</complexType>
</element>

<I--
I
| get-package
I

-—>

<element name = ''get-package' type = "icedel:get-packageType' />

<l__

C-1

get-packageType

\/ —— —

<complexType name = ''get-packageType''>
<seguence>
<element ref = "icesdt:parameters'™ minOccurs = "0"/>
</sequence>
<attribute name = "current-state" type = '"token'/>
<attribute name = "subscription-id" use = "required" type =
""token' />
<anyAttribute namespace = "##other"™ processContents = "lax'/>
</complexType>
<l--
I
| packages
-—>
<element name = 'packages'>
<complexType>
<sequence minOccurs = "0" maxOccurs = "‘unbounded>
<element ref = "icedel:package"/>
<any namespace = "‘##other" processContents = "lax" minOccurs =
0" maxOccurs = "‘unbounded'/>
</sequence>
<anyAttribute namespace = "##other"™ processContents = "lax'/>
</complexType>
</element>
<I--
| package
I
—_—>
<element name = 'package' type = "icedel:packageType'/>
<l--
| packageType
I
-—>
<complexType name = "packageType''>
<seguence>
<group ref = "icedel:cm.package'/>
<any namespace = "‘##other" processContents = "lax"
minOccurs = "0" maxOccurs = "unbounded"/>
</sequence>
<attribute name = "package-id" use = "required"” type = "token"/>
<attribute name = "subscription-id" use = "required”

type = "token'/>
<attribute name = "fullupdate" default = "true"
type = "boolean'/>

C-2

<attribute name = "confirmation" default = "false"
type = "boolean'/>

<attribute name = "new-state' default = "I1CE-ANY"
type = "icesdt:package-sequence-stateType' />
<attribute name = "old-state' default = "I1CE-ANY"
type = "icesdt:package-sequence-stateType' />
<anyAttribute namespace = "##other" processContents = "lax'/>
</complexType>
<I--
I
| groupType
I
-—>
<complexType name = '‘groupType"'>
<seguence>
<any namespace = "##other" processContents = "lax"
minOccurs = "0"/>
<element name = "metadata” type = "icedel:metadataType"
minOccurs = "0"/>
<group ref = "icedel:cm.package'/>
</sequence>
<attribute name = "name' type = '"token"/>
<attribute name = "subscription-element-id"” type = ''string"/>
</complexType>
<I--
I
| addType
I
I
-—>
<complexType name = "addType'>
<seguence>
<element name = ""metadata” type = "icedel :metadataType"
minOccurs = "0"/>
<choice minOccurs = "0">
<element name = "item" type = "icedel:itemType"/>
<element name = "item-ref'>
<complexType>
<seguence>
<element name = "reference"
type = "icesdt:urlAccessType'/>
<any namespace = "'‘##other"
processContents = "lax" minOccurs = "0"
maxOccurs = "‘unbounded/>
</sequence>
<attribute name = "retrieve-after”
type = "icesdt:dateTime'/>
<attribute name = "name" type = '"token"/>
</complexType>
</element>
<any namespace = "##other" processContents = "lax'/>
</choice>
</sequence>

C-3

<attribute name = "subscription-element-id" type = "token'/>
<attribute name = "is-new" type = "boolean'/>
<attribute name = "activation” type = "icesdt:dateTime"/>
<attribute name = "expiration” type = "icesdt:dateTime"/>
<anyAttribute namespace = "##other" processContents = "lax'/>
</complexType>
<I--
I
| metadataType
I
-—>
<complexType name = "metadataType' mixed = "true">
<sequence minOccurs = "0" maxOccurs = "‘unbounded">
<element name = 'description' type = "icesdt:textType"
minOccurs = "0"/>
<any namespace = "##local ##other " processContents = "lax"
minOccurs = 0" maxOccurs = "‘unbounded"/>
</sequence>
<attributeGroup ref = "icedel:attlist.item'"/>
<attributeGroup ref = "icesdt:attlist.genericmetadata'/>
<anyAttribute namespace = "##other"™ processContents = "lax'/>
</complexType>
<l--
I
| itemType
I
-—>
<complexType name = "itemType'" mixed = "true'>
<seqguence>
<any namespace = "##other" processContents = "lax"
minOccurs = "0" maxOccurs = "unbounded"/>
</sequence>
<attribute name = "content-transfer-encoding"
default = "x-native-xml'>
<simpleType>
<restriction base = "NMTOKEN'">
<enumeration value = "base64'/>
<enumeration value = "x-native-xml'/>
</restriction>
</simpleType>
</attribute>
<attribute name = "name' type = '"token"/>
</complexType>
<l--
I
| remove-item
I
-—>
<element name = '"'remove-item'" type = "icedel:removeType'/>

C-4

<1--

| removeType
I
-—>
<complexType name = "‘removeType'>
<seguence>
<any namespace = "##other" processContents = "lax"
minOccurs = "0"/>
</sequence>
<attribute name = "'subscription-element-id" use = "required”
type = "token'/>
<anyAttribute namespace = "##other'"™ processContents = "'strict'/>
</complexType>
<l--
I
| package-confirmations
I
-——>
<element name = 'package-confirmations”
type = "icedel:package-confirmationsType"/>
<l--
I
| package-confirmationsType
I
-—>
<complexType name = "package-confirmationsType">
<sequence maxOccurs = "‘unbounded'>
<choice>
<element name = "confirmation”
type = "icedel:confirmationType'/>
<any namespace = "##other" processContents = "lax'/>
</choice>
</sequence>
</complexType>
<l--
I
| confirmationType
I
-——>
<complexType name = "confirmationType'>
<seguence>
<any namespace = "‘##other" processContents = "lax"
minOccurs = "0" maxOccurs = "unbounded"/>
</sequence>
<attribute name = "confirmed"” use = “required"” type = "boolean'/>
<attribute name = "package-id" use = '"required" type = '"token"/>
<attribute name = "processing-completed” use = "required">

<simpleType>
<restriction base = ""NMTOKEN"'>

C-5

"received''/>
""processed"/>

<enumeration value
<enumeration value
</restriction>
</simpleType>
</attribute>
<anyAttribute namespace = "##other" processContents = "lax'/>
</complexType>
</schema>

Appendix D. ICE Subscribe
Schema

<?xml version = "1.0" encoding = "UTF-8"?>

<xs:schema xmlns = "http://icestandard.org/ICE/V20/subscribe"
targetNamespace = "http://icestandard.org/ICE/V20/subscribe
xmlns:xs = "http://www.w3.0rg/2001/XMLSchema*
xmIns:icesdt = "http://icestandard.org/ICE/V20/simpledatatypes"
elementFormbDefault = "qualified">
<xs:import namespace =

"http://icestandard.org/I1CE/V20/simpledatatypes™

schemalLocation = "ice-simpledatatypes.xsd"/>
<l--
| offer
I
-—>
<xs:element name = "offer" type = "offerType' />
<I--
| offerType
I
-—>
<xs:complexType name = "offerType'>
<XS:sequence>
<xs:element name = "content-metadata"
type = "content-metadataType'™ minOccurs = "'0"/>
<xs:element name = "offer-metadata"
type = "offer-metadataType' minOccurs = "0"/>
<xs:element name = '‘description"
type = "descriptionType" minOccurs = "0"/>
<xs:element name = "‘delivery-policy”
type = "delivery-policyType"/>
<xs:element name = "business-term"
type = "business-termType' minOccurs = "0"
maxOccurs = "‘unbounded"/>
<xs:element name = "required-extension”™ minOccurs = 0"
maxOccurs = "‘unbounded>

<xs:complexType>
<xs:complexContent>

<xs:extension base = "required-extensionType'>
<xs:attribute name = "extension-type"
use = "required” type = "xs:anyURI"/>

</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
</xs:sequence>

<xs:attribute name = "offer-id" use = "required"
type = "'xs:token"/>

<xs:attribute name = "name" type = "'xs:token' />
<xs:attribute name = "valid-after' type = ''xs:dateTime'/>
<xs:attribute name = "expiration-date' type = "xs:dateTime'/>
<xs:attribute name = "full-ice" default = "false"
type = "Xs:boolean'/>
<xs:anyAttribute namespace = "##other" processContents = "lax"/>
</xs:complexType>
<l--
I
| delivery-policyType
I
-—>
<xs:complexType name = "‘delivery-policyType">
<Xs:sequence>
<xs:element name = "delivery-rule”™ type = "delivery-ruleType"
maxOccurs = "‘unbounded"/>
<Xs:any namespace = "‘##other' processContents = "lax"
minOccurs = "0" maxOccurs = "unbounded"/>
</xs:sequence>
<xs:attribute name "startdate”™ type = "icesdt:dateTime'/>
<xs:attribute name "'stopdate' type = "icesdt:dateTime'/>

<xs:attribute name
<xs:attribute name
<xs:simpleType>
<xs:restriction base = "xs:NMTOKEN''>

""quantity' type = "'Xs:integer'/>
"expiration-priority"” default = "Ffirst'>

<xs:enumeration value = "first'/>
<xs:enumeration value = "time"/>
<xs:enumeration value = "quantity'/>
<xs:enumeration value = "last'/>

</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:anyAttribute namespace = "##other" processContents = "lax"/>
</xs:complexType>

<I--

I
| delivery-ruleType

-—>

<xs:complexType name
<XS:sequence>
<xs:element name = "transport” maxOccurs = "‘unbounded"
minOccurs = "1" type = 'transportType'/>
<xs:any namespace = "##local ##other"
processContents = "lax" minOccurs = "0"
maxOccurs = "‘unbounded"/>
</xs:sequence>

"delivery-ruleType">

<xs:attribute name = "mode" default = "pull">
<xs:simpleType>
<xs:restriction base = "XS:NMTOKEN">

<xs:enumeration value
<xs:enumeration value
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name
<xs:attribute name

"pull"/>
"push"'/>

"monthday' type = "'Xs:NMTOKENS'/>
"weekday" type = "'xs:NMTOKENS'/>

<xs:attribute name = "startdate' type = "icesdt:dateTime"/>
<xs:attribute name = ''stopdate™ type = "icesdt:dateTime'/>
<xs:attribute name = "starttime' type = "icesdt:time'/>
<xs:attribute name = "duration" type = "icesdt:duration'/>
<xs:attribute name = "min-num-updates' type = "'xs:integer'/>

<xs:attribute name ""max-num-updates”
type = "Xxs:integer'/>

<xs:attribute name = "incremental-update' type = "xs:boolean"
default = ""false"/>

<xs:attribute name = "required” type = "Xs:boolean"
default = "true'/>

<xs:anyAttribute namespace = "##other" processContents = "lax"/>

</xs:complexType>

<l--
I
| transportType
I
-——>
<xs:complexType name = '‘transportType' mixed = "true'>
<XS:sequence>
<xs:element name = "delivery-endpoint"
type = "icesdt:urlAccessType" minOccurs = "0"
maxOccurs = "1" />
</xs:sequence>
<xs:attribute name = "protocol” default = "http:get">
<xs:simpleType>
<xs:restriction base = "XS:NMTOKEN">
<xs:enumeration value = "http:get''/>
<xs:enumeration value = "ftp'/>
<xs:enumeration value = "mailto"/>
<xs:enumeration value = ''soap'/>
</Xxs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name = "packaging-style"” default = "ice'>
<xs:simpleType>
<xs:restriction base = "XS:NMTOKEN">
<xs:enumeration value = "ice'/>
<xs:enumeration value = "raw'/>

</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>

D-3

<1--

| content-metadataType
I

-—>
<xs:complexType name = "‘content-metadataType' mixed = "true'>
<Xs:sequence>
<xs:element name = "'text" type = "icesdt:textType"
minOccurs = 0" maxOccurs = "unbounded"/>
<xs:any namespace = "##local ##other' processContents = "lax"
minOccurs = "0" maxOccurs = "unbounded"/>
</xs:sequence>
<xs:attributeGroup ref = "icesdt:attlist.genericmetadata’/>
</xs:complexType>
<l--
I
| offer-metadataType
I
-——>
<xs:complexType name = "offer-metadataType' mixed = "true'>
<Xs:sequence>
<xs:element name = "'text" type = "icesdt:textType"
minOccurs = "0" maxOccurs = "unbounded"/>
<xs:any namespace = "##local ##other " processContents = "lax"
minOccurs = 0" maxOccurs = "‘unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace = "##other'" processContents = "lax"/>
</xs:complexType>
<I--
I
| descriptionType
I
-—>
<xs:complexType name = "‘descriptionType' mixed = "true">
<xs:sequence minOccurs = "0" maxOccurs = "‘unbounded>
<xs:element name = "'text" type = "icesdt:textType"
minOccurs = "0" maxOccurs = "unbounded"/>
<xs:any namespace = "##local ##other " processContents = "lax"
minOccurs = 0" maxOccurs = "‘unbounded"/>
</Xs:sequence>
<xs:anyAttribute namespace = "##other'" processContents = "lax"/>
</xs:complexType>
<I--
I
| business-termType
I
-—>
<xs:complexType name = '‘business-termType" mixed = '"true'>
<xs:sequence>
<xs:element name = ""text" type = "icesdt:textType"

D-4

minOccurs = "0" maxOccurs = "unbounded"/>

<Xs:any namespace = "##other' processContents = "lax"
minOccurs = 0" maxOccurs = "‘unbounded"/>
</Xs:sequence>
<xs:attribute name = '""type" use = "required">
<xs:simpleType>
<xs:restriction base = "XsS:NMTOKEN">
<xs:enumeration value = *credit'/>
<xs:enumeration value = "licensing'/>
<xs:enumeration value = 'payment'/>
<xs:enumeration value = "'reporting'/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name = "url"™ type = "xs:anyURI"/>
<xs:attribute name = "name" type = ''xs:token'/>
<xs:attribute name = "usage-required"” type = ''xXs:boolean'/>
<xs:attribute name = "business-term-id" type = "Xxs:string'/>
<xs:anyAttribute namespace = "##other" processContents = "lax"/>
</xs:complexType>
<l--
I
| required-extensionType
I
-——>
<xs:complexType name = "‘required-extensionType"™ mixed = "true'>
<xs:sequence minOccurs = "0" maxOccurs = "‘unbounded">
<xs:element name = "'text" type = "icesdt:textType"
minOccurs = "0" maxOccurs = "unbounded"/>
<xs:any namespace = "##local ##other " processContents = "lax"
minOccurs = 0" maxOccurs = "‘unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace = "##other'" processContents = "lax"/>
</xs:complexType>
<I--
I
| offer-metadataType
I
-—>
<xs:element name = "'subscribe'>
<xs:complexType>
<XSs:sequence>
<xs:element name = "offer" type = "offerType'" minOccurs = "0"/>
<xs:element ref = "icesdt:parameters’™ minOccurs = "0"/>
</Xs:sequence>
<xs:attribute name = "subscription-name" type = "'xs:token'/>
<xs:attribute name = "offer-id" type = '"Xxs:token"/>
<xs:anyAttribute namespace = "##other" processContents = "lax"/>

</xs:complexType>
</xs:element>

D-5

<1--

| subscription
I
-—>
<xs:element name = "'subscription’” type = "'subscriptionType'/>
<I--
I
| subscriptionType
I
-—>
<xs:complexType name = *'subscriptionType'>
<XS:sequence>
<xs:element name = "offer" type = "offerType' />
<XS:any nhamespace = "‘##other' processContents = "lax"
minOccurs = 0" maxOccurs = "‘unbounded"/>
</Xs:sequence>
<xs:attribute name = "'subscription-id" use = "required"
type = "'Xs:token'/>
<xs:attribute name = "subscription-name" type = "'xs:token'/>
<xs:attribute name = *current-state”
type = "icesdt:package-sequence-stateType' />
<xs:attribute name = "quantity-remaining'" type = "xs:integer'/>
<xs:anyAttribute namespace = "##other" processContents = "lax"/>

</xs:complexType>

<l--
| subscribe-fault
| response message returned in the soap fault details
| if a subscribe/change-subscription request fails
-——>
<xs:element name = "'subscription-fault">

<xs:complexType>
<xs:sequence>

<xs:element ref = "offer” minOccurs = ""1'/>
<Xs:any namespace = "##other" processContents = "lax"
minOccurs = "0" maxOccurs = "unbounded"/>
</xs:sequence>
<xs:attribute name = 'code" use = "required”
type = "xs:positivelnteger'/>
<xs:anyAttribute namespace = "##other'" processContents = "lax"/>

</xs:complexType>
</xs:element>

<I--

| cancel

-—>

<xs:element name = "cancel’'>
<xs:complexType>
<xs:sequence>

D-6

<xs:element n
minOccurs
<xs:any names
minOccurs
</xs:sequence>
<xs:attribute n

ame = '"'reason" type = "icesdt:textType"
= "0" maxOccurs = "‘unbounded"/>
pace = "##other™ processContents = "lax"
= 0" maxOccurs = "unbounded"/>

ame = ''subscription-id" use = "'required"

type = "'xs:token'/>

<xs:anyAttribut
</xs:complexType>
</xs:element>

<1-—

| cancellation

—-—>

<xs:element name =
<xs:complexType>
<Xs:sequence>
<XS:any names
minOccurs
</xs:sequence>
<xs:attribute n
type = ''xs
<xs:attribute n
type = ''Xs
<xs:anyAttribut
</xs:complexType>
</xs:element>

<1-—

I
| get-status

—-—>

<xs:element name =
<xs:complexType>
<XSs:sequence>
<XS:any names
minOccurs
</xs:sequence>
<xs:attribute n
<xs:anyAttribut
</xs:complexType>
</xs:element>

<I--

| status

-—>

<xs:element name =

<l_—

e namespace = "'##other" processContents = "lax"/>

""cancellation'>

pace = "##other'" processContents = "lax"

= "0" maxOccurs = "‘unbounded"/>

ame = "‘cancellation-id" use = "required”
stoken"/>

ame = ''subscription-id" use = "required"
stoken"/>

e namespace = "##other" processContents = "lax"/>
""get-status''>

pace = "##other" processContents = "lax"

= "0" maxOccurs = "‘unbounded"/>

ame = "'subscription-id" type = ''xs:token'/>

e namespace = "##other" processContents = "lax"/>

"status" type = ''statusType'' />

D-7

I
| statusType

-2
<xs:complexType name = "'statusType''>
<Xs:sequence>
<xs:element name = "'subscription’” type = "subscriptionType"
minOccurs = 0" maxOccurs = "‘unbounded"/>
<Xs:any namespace = "##other" processContents = "lax"
minOccurs = "0" maxOccurs = "unbounded"/>

</xs:sequence>
</xs:complexType>
</xs:schema>

Appendix E. Full ICE Syndicator
WSDL

<?xml version="1.0" encoding="UTF-8"7?>

<definitions name="ice-syndicator-full”
targetNamespace="http://icestandard.org/1CE/V20/syndicator/ful I"
xmlns:tns="http://icestandard.org/ICE/V20/syndicator/full”
xmIns:icemsg=""http://icestandard.org/I1CE/V20/message"
xmlIns:icesub="http://icestandard.org/ICE/V20/subscribe"
xmIns:icedel="http://icestandard.org/ICE/V20/delivery"
xmlns:soap=""http://schemas.xmlsoap.org/wsdl/soap/""
xmlns:xsd="http://www.w3_.0org/2001/XMLSchema""
xmIns=""http://schemas.xmlsoap.org/wsdl/">

<l--
| Import schema definitions
-—>
<import namespace="http://icestandard.org/ICE/V20/message"’
location=""_./ice-message.xsd"/>

<import namespace="http://icestandard.org/I1CE/V20/subscribe™
location=""_/ice-subscribe.xsd"/>

<import namespace="http://icestandard.org/ICE/V20/delivery"
location="_./ice-delivery.xsd"/>

<l-- ping messages -->
<message hame=''ping''>

<part name="pingReq" element="icemsg:ping'/>
</message>
<message hame=""ok"'>

<part name="okResp' element=""icemsg:0K"/>
</message>

<I-- subscribe messages -->
<message nhame="‘subscribe'>
<part name=''subscribeReq" element="icesub:offer'/>
</message>
<message hame=''subscription'>
<part name="subscriptionResp’ element=""icesub:subscription’/>
</message>

<I-- cancel messages -->
<message hame="‘cancel-subscription'>
<part name="cancelReq"” element=""icesub:cancel'/>
</message>
<message hame='‘cancellation'>
<part name='cancellationResp' element="icesub:cancellation'/>
</message>

<Il-- get-status messages -->

<message name="'get-status''>

<part name='getStatusReq" element="icesub:get-status'/>
</message>
<message hame=''status''>

<part name='statusResp" element="icesub:status"/>
</message>

<I-- get-packages messages -->
<message name="‘get-packages’''>

<part name=''getPackagesReq" element=""icedel:get-packages"/>
</message>
<message name="‘packages''>

<part name="packagesResp’ element="icedel:packages'/>
</message>

<l-- get-package messages -->
<message hame=''get-package'>

<part name='getPackageReq" element="icedel:get-package'/>
</message>
<message nhame="‘package’'>

<part name='packageResp'" element=""icedel:package'/>
</message>

<I-- confirm messages -->
<message name="‘confirm">

<part name="'confirmReq" element="icedel:package-confirmations'/>
</message>

<message hame=''status-code'>
<part name='status-code' element=""icemsg:status-code'/>
</message>

<message hame="'subscription-fault">
<part name="subscription-fault” element="icesub:subscription-
fault/>
</message>

<message name="‘header'>
<part name="header" element=""icemsg:header'/>
</message>

<I-- portType definition -->
<portType name=""ice-syndicator-full-portType'>

<operation name="ping'>
<input message="tns:ping"” name="ping"/>

<output message=""tns:ok" name=""ok"" />
<fault message=""tns:status-code'" name="'status-code"/>
</operation>

<operation name=''subscribe'>
<input message=""tns:subscribe” name=""'subscribe"/>
<output message=""tns:subscription” name="'subscription"/>
<fault message=""tns:subscription-fault'” name="subscription-
fault"/>
</operation>

<operation name='change-subscription'>
<input message=""tns:subscription” name="'subscription”/>
<output message=""tns:subscription” name="'subscription”/>
<fault message=""tns:subscription-fault'” name="subscription-
fault"/>
</operation>

<operation name="cancel-subscription'>

<input message=""tns:cancel" name=""cancel"'/>

<output message=""tns:cancellation" name='cancellation'/>

<fault message=""tns:status-code" name="'status-code' />
</operation>

<operation name=''get-status''>
<input message=""tns:get-status'" name="'get-status'/>

<output message="'tns:status" name="'status"/>
<fault message=""tns:status-code" name="'status-code' />
</operation>

<I-- delivery operations -->
<operation name='get-packages''>
<input message=""tns:get-packages”™ name='get-packages'/>
<output message='"tns:packages" name=""packages'/>
<fault message=""tns:status-code " name="'status-code'' />
</operation>

<operation name="get-package'>
<input message=""tns:get-package'" name="‘get-package’/>
<output message='"tns:package" name=""package' />
<fault message=""tns:status-code " name="'status-code' />
</operation>

<operation name="confirm'>
<input message="tns:confirm" name="confirm'/>

<output message='"tns:ok" name=""ok" />
<fault message=""tns:status-code " name="'status-code' />
</operation>
</portType>
<l--
SOAP Binding
-——>

<binding name="ice-syndicator-full-binding"” type=""tns:ice-syndicator-
full-portType''>
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http*/>

<operation name='ping'>
<soap:operation/>
<input name='ping'>
<soap:body use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>

E-3

<soap:header message="header' parts="‘header' use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
</input>
<output name="ok''>
<soap:body use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
<soap:header message="header' parts="header" use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
<soap:headerfault message="fault"” use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
</output>
<fault name="status-code'>
<soap:fault name="status-code'" use="literal™
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
</fault>
</operation>

<l--
subscribe
-——>
<operation name=''subscribe'>
<soap:operation/>
<input name="'subscribe">
<soap:body use=""literal"”
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
<soap:header message="header' parts="'header' use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
</input>
<output name="'subscription'>
<soap:body use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
<soap:header message="header' parts="header™ use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
<soap:headerfault message="fault"” use="literal”
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
</output>
<fault name="'subscription-fault'>
<soap:fault name="subscription-fault"” use="literal”
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
</fault>
</operation>

<i--
change-subscription
-—>
<operation name='change-subscription'>
<soap:operation/>
<input name="'subscription’>
<soap:body use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
<soap:header message="header' parts="header' use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
</input>
<output name='subscription’>
<soap:body use="literal"
namespace="http://icestandard.org/ICE/V20/syndicator/full'/>
<soap:header message="header' parts="header' use="literal"

E-4

namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
<soap:headerfault message="fault" use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/ful 1"’ />
</output>
<fault name="'subscription-fault'>
<soap:fault name="'subscription-fault" use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
</fault>
</operation>

<l--
cancel
-—>
<operation name="cancel-subscription'>
<soap:operation/>
<input name="cancel'>
<soap:body use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full"'/>
<soap:header message="header' parts="‘header™ use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
</input>
<output name="'cancellation'>
<soap:body use=""literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full"'/>
<soap:header message="header' parts="'header™ use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
<soap:headerfault message="fault" use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full"'/>
</output>
<fault name="status-code'>
<soap:fault name="'status-code' use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
</fault>
</operation>

<l--
get-status
-—>
<operation name="get-status'>
<soap:operation/>
<input name="'get-status'>
<soap:body use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
<soap:header message="header' parts="header™ use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
</input>
<output name="'status'>
<soap:body use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
<soap:header message="header' parts="'header’ use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
<soap:headerfault message="fault" use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
</output>
<fault name="status-code'>
<soap:fault name="'status-code' use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>

E-5

</fault>

</operation>

<1

get-packages

-——>
<operation name='get-packages''>

<soap:operation/>
<input name="‘get-packages’>
<soap:body use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
<soap:header message="header' parts="header' use="literal"
namespace="http://icestandard.org/1CE/V20/syndicator/full''/>
</input>
<output name="‘packages’'>
<soap:body use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
<soap:header message="header' parts="header™ use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full"'/>
<soap:headerfault message="'status-code" use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
</output>
<fault name="'status-code'>
<soap:fault name="status-code'" use="literal™
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
</fault>

</operation>

<1

get-package

-——>
<operation name='get-package'>

<soap:operation/>
<input name="get-package'>
<soap:body use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
<soap:header message="header' parts="header’ use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
</input>
<output name="'package''>
<soap:body use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
<soap:header message="header' parts="header™ use="literal"
namespace="http://icestandard.org/1CE/V20/syndicator/full''/>
<soap:headerfault message="'status-code" use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
</output>
<fault name="'status-code'>
<soap:fault name="status-code' use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
</fault>

</operation>

<1

confirm

-——>
<operation name="confirm'>

E-6

<soap:operation/>
<input name="confirm">
<soap:body use="literal”
namespace=""http://icestandard.org/1CE/V20/syndicator/full"'/>
<soap:header message="header' parts="'header’™ use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
</input>
<output name="ok''>
<soap:body use=""literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
<soap:header message="header' parts="header' use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
<soap:headerfault message="'status-code”™ use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
</output>
<fault name="status-code'>
<soap:fault name="'status-code'" use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full"'/>
</fault>
</operation>
</binding>

<I-- Sample Service -->
<service name="your-ice-syndicator-full'>
<port name="ice-syndicator-full-portType" binding="tns:ice-
syndicator-full-binding">
<soap:address location="http://your-ice-server._com/soap-ice"/>
</port>
</service>
</definitions>

E-7

Appendix F. Full ICE Subscriber
WSDL

<?xml version="1.0" encoding="UTF-8"7?>

<definitions name="ice-subscriber"
targetNamespace=""http://icestandard.org/1CE/V20/wsdl/subscriber"
xmlns:tns="http://icestandard.org/ICE/V20/wsdl/subscriber"
xmIns:icemsg=""http://icestandard.org/I1CE/V20/message"
xmIns:icedel="http://icestandard.org/ICE/V20/delivery"
xmlns:icesub="http://icestandard.org/ICE/V20/subscribe"
xmlns:soap=""http://schemas.xmlsoap.org/wsdl/soap/""
xmlns:xsd="http://www.w3_.0org/2001/XMLSchema""
xmIns=""http://schemas.xmlsoap.org/wsdl/">

<I-- import schema definition -->
<import namespace="http://icestandard.org/ICE/V20/message"’
location=""_/ice-message.xsd"/>

<import namespace="http://icestandard.org/ICE/V20/delivery"
location="_./ice-delivery.xsd"/>

<import namespace="http://icestandard.org/I1CE/V20/subscribe™
location=""_/ice-subscribe.xsd"/>

<l-- package messages -->
<message name="‘package’’>
<part name="packageReq” element=""icedel:package"/>
</message>
<message hame="‘package-confirmations'>
<part name="packageResp" element=""icedel:package-confirmations'/>
</message>

<I-- cancel messages -->
<message hame='‘cancel-subscription'>

<part name="cancelReq" element="icesub:cancel'/>
</message>
<message name="‘cancellation'>

<part name='cancelResp" element="icesub:cancellation"/>
</message>

<message hame=''status-code'>

<part name='status-code' element=""icemsg:status-code'/>
</message>
<message hame="header">

<part name="header" element=""icemsg:header'"/>
</message>

<l-- portType definition -->
<portType name=""ice-subscriber-portType'>
<operation name="package'>
<input message=""tns:package''name="package'/>

F-1

<output message='"tns:package-confirmations'" name="'package-
confirmations'/>
<fault message=""tns:status-code" name="status-code’"/>
</operation>

<operation name='cancel-subscription'>
<input message=""tns:cancel" name=""cancel"'/>
<output message=""tns:cancellation”™ name="cancellation'/>
<fault message=""tns:status-code" name="status-code"/>
</operation>
</portType>

<I--
SOAP Binding
-——>
<binding name="ice-subscriber-binding"” type="'tns:ice-subscriber-
portType'>
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http'/>
<l--
package
-—>
<operation name='"package'>
<soap:operation/>
<input name="package''>
<soap:body use="literal"
namespace=""http://icestandard.org/1CE/V20/wsdl/subscriber"/>
<soap:header message="header' parts="‘header™ use="literal"
namespace=""http://icestandard.org/1CE/V20/wsdl/subscriber"/>
</input>
<output name="‘package-confirmations'>
<soap:body use=""literal"
namespace=""http://icestandard.org/1CE/V20/wsdl/subscriber’/>
<soap:header message="header' parts="'header™ use="literal"
namespace=""http://icestandard.org/1CE/V20/wsdl/subscriber"/>
<soap:headerfault message="fault" use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
</output>
<fault name="status-code'>
<soap:fault name="'status-code use="literal"
namespace=""http://icestandard.org/1CE/V20/wsdl/subscriber"/>
</fault>
</operation>

<l--
cancel
-——>
<operation name="cancel-subscription'>
<soap:operation/>
<input name="cancel'>
<soap:body use="literal"
namespace=""http://icestandard.org/1CE/V20/wsdl/subscriber"/>
<soap:header message="header' parts="'header’™ use="literal"
namespace=""http://icestandard.org/1CE/V20/wsdl/subscriber"/>
</input>
<output name="cancellation'>

<soap:body use="literal"
namespace=""http://icestandard.org/1CE/V20/wsdl/subscriber"/>
<soap:header message="header' parts="header™ use="literal"
namespace=""http://icestandard.org/1CE/V20/wsdl/subscriber"/>
<soap:headerfault message="fault" use="literal"
namespace=""http://icestandard.org/1CE/V20/syndicator/full''/>
</output>
<fault name="'status-code'>
<soap:fault name="status-code' use="literal™
namespace=""http://icestandard.org/1CE/V20/wsdl/subscriber"/>
</fault>
</operation>
</binding>

<I-- Sample Service -->
<service name="your-ice-subscriber'>
<port name="ice-subscriber-portType"™ binding=""tns:ice-subscriber-
binding">
<soap:address location="http://your-ice-server.com/soap-ice"/>
</port>
</service>
</definitions>

Appendix G. ICE Package
Sequence Model

Incremental package delivery in Full ICE follows a Sequenced Package Model. This
section describes that model. In thisfirst description, the basic concepts are introduced
without regard for the specific protocol messages used to realize the semantics of the
model. Later sectionswill

G.1 Discrete Package Model

An | CE subscription consists of a discrete set of packages delivered, in order, over a
period of time. Consider the following diagram representing the delivery of individual
packages, each labeled P and positioned along atime-line:

| CE defines the term collection to mean the current content of a subscription. In the
Headlines.com example discussed in 2.1.1, the collection consists of al the headline text,
thumbnail images, etc., existing on a Syndicator or Subscribers site at any point in time.
In the Parts Information Scenario described in 2.1.2, the collection consists of the
complete set of service bulletins, pricelists, etc., again asit exists at any one point in
time.

| CE uses the <package as the atomic unit of collection manipulation; the only way for a
Syndicator to change a Subscribers collection is for the Syndicator to send a package to
the Subscriber (push or pull). It is not possible for the Syndicator to send a "naked"
content file unlessit is part of a package. Similarly, a Subscriber cannot request an update
for an individual file; the only thing the Subscriber can do is request a new package of
updates from the Syndicator.

It follows from this model that the state of a Subscribers collection is completely
described by knowing the set of packages the Subscriber has received over time

G.2 Strictly Ordered Package Model

|CE forces a Syndicator (and a Subscriber) to view the package stream as a strictly
ordered sequence of packages. This means that packages cannot be processed out of
order, and all intermediate packages must be processed.

For explanatory purposes, assume for the moment that packages were numbered P1 for
the first package, P2 for the second, etc., In this case the strictly ordered package model

G-1

of ICE requires that the Subscriber always process package PN-1 before processing
package PN.

Thismodel may seem at first glance to be a poor match for some types of syndication,
where intermediate updates might not be important. For example, in the Headlines.com
example, if a Subscriber misses 10 days of headlines, it might be perfectly reasonable for
the Subscriber to simply get the current set of headlines and ignore the intervening
packages. The ICE model does, in fact, allow for thistype of Syndication; thiswill be
explained in a moment.

G.3 Subscription State

Given that | CE defines a package as the atomic unit of collection manipulation, and given
that | CE forces a Subscriber to process all packagesin astrict order, it is possible for a
Syndicator (or Subscriber) to completely describe the state of the Subscribers collection
with asingle value: namely, an identifier indicating the position of the Subscriber within
the ordered sequence of packages.

Thus, if packages were numbered with integers, consider the following package
sequence:

S —— Pl-——-P2-———— P3-————P4————- T J— P6————P7-———- >t
t=0

In this example, simply knowing the number of the last package successfully processed
by a Subscriber will suffice to know the complete state of the Subscribers collection. For
example, knowing that the Subscriber is"in state 5", meaning, has received and correctly
processed package number 5, implies that the Subscribers collection is in the state that
would be achieved by starting in an empty state, and processing packages 1 through 5, in
order. Thus, asimple number by itself, e.g., "5", suffices for describing the state of the
Subscribers collection.

In ICE, this"number" is called apackage sequence identifier, andisactually not a
number at all, but rather an opaque string.

A subscription state identifier is an opaque string, generated by a Syndicator, representing
the state at the boundary (before or after) of package processing. Each package sent by a
Syndicator to a Subscriber has two package sequence identifiers attached to it: an "old"
state value representing the required state before processing the package, and a " new"
state value representing the resulting state after processing the package.

Note that the identifier is completely opaque to the Subscriber. This gives the ICE
implementation on the Syndicator the complete flexibility to use an implementation
specific method for encoding state into this identifier. For example, the implementation
might use integers as described above, or it might use timestamps, or it might use a
unique key into a proprietary database as the state encoding mechanism. All of these
methods are permitted, and the opagueness of the identifier guarantees that (properly-
implemented) Subscribers will not be affected by these choices.

| CE defines three distinguished values for subscription state identifiers:

G-2

e Zero-length string
Thisisanillegal Package Sequence Identifier string. All ICE implementations
MUST regject any use of this string with a411 (Unrecognized package sequence
state) status code.

o ICE-INITIAL
This special string meansthe "null”, or empty, state, and describes the state of a
collection when a Subscriber first establishes a subscription (i.e., has not yet
received any packages).

o ICE-ANY
This special string means "any state, whatsoever", and has special semantics when
used in the "old" state on a package, as defined below.

Furthermore, I CE reserves all strings beginning with 1CE- (capital I, capital C, capita E,
hyphen) as values for subscription states. All other values of an old-state= and new-
state= are controlled by the Syndicator and are completely opague to the Subscriber.

The requirements for Subscribers regarding Package Sequence Identifiers are:

Subscribers MAY compare two Package Sequence Identifier strings for equality; to do
S0, Subscribers MUST compare the entire string using an opague character equality
comparison.

Subscribers MUST NOT assume any ordering semantics regarding unequal Package
Sequence Identifier strings. In particular, Subscribers MUST NOT assume that
lexigraphical or alphabetical ordering has any semantic significance whatsoever. For
example, Syndicators might be using simple integer strings as Sequence Identifiers, and
"42" might sort earlier than "9".

Subscribers MUST interpret the three special cases (zero-length, 1ICE-INITIAL, ICE-
ANY) as described above.

G.4 Packages and Package Seguence
Identifiers

When a Syndicator delivers a package to a Subscriber, whether by push or pull, the
package contains two sequence identifiers. the old-state=, which represents the state
the Subscriber must be in before applying the package, and the new-state=, which
represents the state the Subscriber will be in after applying the package.

Assume, for example, that a Syndicator is using the names of people as the Package
Sequence Identifier. Using this method, a set of packages delivered over time might
consist of:

First Package: old-state: ICE-INITIAL new-state: STEVE
Next Package: old-state: STEVE new-state: GREG
Next Package: old-state: GREG new-state: ROGER
Aswill be shown in more detail later, a Subscriber isrequired to store its current Package
Sequence state at all times. When it first starts a new subscription, the Subscriber startsin

G-3

state ICE-INITIAL. In the above example, the first package the Subscriber receives must
have an old-state of 1CE-INITIAL (or ICE-ANY, which will be discussed next). If, due to
some operational error, the Subscriber were to receive the wrong package, e.g., one that

said old-state: GREG instead of old-state: 1CE-INITIAL, then the Subscriber would know

not to process that package and to raise an error condition.

The above model works well for subscriptions requiring a strict, fully reliable, replication
of state from a Syndicator to a Subscriber. The Package Sequence model strictly forces
the Subscriber to receive all packagesin their proper order, and process them each
individually. The protocol does this by requiring the Subscriber to remember its current
Package Sequence Identifier, and to send that Identifier to the Syndicator when
requesting a package update (for pull; push subscriptions are slightly more complex and
will be discussed later). Thus, the Syndicator always knows what state the Subscriber is
in, and the Syndicator can thus always compute what the "right" next package to send to
the Subscriber.

Some models of subscriptions do not require the rigor of this model. As mentioned, the
Headlines.com model can be implemented in a much simpler fashion: each package is
actually afull update of the Subscriber, and there are no dependencies on intervening
packages. The ICE Package Sequence model accommodates this type of subscription
using the 1ICE-ANY value. When ICE-ANY appearsin the "old-state”" of a package, it means
that the package can be applied by a Subscriber regardless of what state the Subscriber is
in.

By using combinations of 1CE-ANY preconditions and specific preconditions, a
Syndicator can also implement hybrid models where some packages are useful regardless
of the Subscribers current state.

G.5 Sequenced Package Example

An example will help tie thisall together. To understand the example, assume for the
moment that packages can contain files, and that they can also contain "remove"
operations that refer to files delivered in previous packages. Aswill be explained later,
packages can indeed contain these types of things, albeit in a much more general (and
complex) way (because packages are not limited to operating only on files).

A Syndicator provides arestaurant review service; Subscribers receive updates with new
restaurants, new information about existing restaurants, etc.

Reviews are stored as flat HTML filesin a URL structure that looks like:

|/restaurants/<<<restaurant-name>>>_html \
In other words, when a new restaurant is reviewed, the Subscriber ssmply receives a
package with the new HTML file. When an existing review is updated, the Subscriber
receives a package with an update for an HTML file. A /restaurants/index.html file
is sent each time to provide navigation

When arestaurant burns down to the ground (it's a rough town), the Syndicator makes
certain to include a remove operation in the next package update.

G4

Assume for the moment that the serviceisjust starting up and thereis only one
Subscriber. The serviceis launched with only 3 restaurant reviews. The package stream
generated over time by the Syndicator might look something like this:

Time = 1 -- package P1:
add /restaurants/bobs.html
add /restaurants/joes.html
add /restaurants/moms.html
add /restaurants/index.html
Time = 2 -- package P2:
comment: a new restaurant opened, and bob"s is updated
add /restaurants/anns.html
update /restaurants/bobs.html
update /restaurants/index.html
Time = 3 -- package P3:
comment: someone burned mom"s place down
remove /restaurants/moms.html
update /restaurants/index.html

At this point assume that a new Subscriber signs up. That Subscriber needs all three
packages P1, P2, P3, in that order. The Syndicator will know this because the Syndicator
(by definition) knows that it is currently in state "P3", and it will know that the
Subscriber isin state 1CE-INITIAL when the Subscriber requestsits first update.

Note that, as an implementation optimization, the Syndicator can construct a special
"catch up" packagein this case. That would look like this:

add /restaurants/anns.html
add /restaurants/joes.html
add /restaurants/bobs.html
add /restaurants/index._html
A Syndicator implementation that does that might be more efficient than sending all three
incremental updates. But whether or not this should be done is a quality-of-
implementation decision made by the Syndicator. Nothing in the sequenced package
model dictates one approach or the other.

Finally, assume one more package needs to get sent, this time to two Subscribers:

Time = 4 -- package P4:

comment: mom®"s rebuilt, and there®"s another update for
bob*s

add /restaurants/moms.html

update /restaurants/bobs.html

update /restaurants/index.html
As mentioned before, the Subscriber must keep track of the sequence identifier of the last
successfully processed package. The Subscriber sends this sequence identifier back to the
Syndicator when requesting an update, so that the Syndicator can understand the
Subscribers state. The Syndicator contains the logic to understand what to do based on
the Subscribers (stated) sequence identifier. In the case of an unreliable update model, the
Syndicator can basically ignore the sequence identifier and just send the current package
(with an old-state of 1CE-ANY). In other models, the Syndicator can compute what to send
by decoding the sequence identifier (which it generated in an earlier package) and using
that to determine what to send.

G-5

G.6 Example Pseudo-protocol Exchange

This shows the messages exchanged in the above example when the new Subscriber was
added between Time 3 and Time 4 in the above sequence.

SUB ==> SYN I"m subscribing to RESTAURANTS
SYN ==> SUB OK

SUB ==> SYN GetPackage, my state is ICE-INITIAL
SYN ==> SUB

- three packages

P1, old-state: ICE-INITIAL new-state: XYZ-1
P2, old-state: XYZ-1 new-state: XYZ-2
P3, old-state: XYZ-2 new-state: XYZ-3

Alternatively, this last message could have been:

SUB ==> SYN I"m subscribing to RESTAURANTS
SYN ==> SUB OK

SUB ==> SYN GetPackage, my state is ICE-INITIAL
SYN ==> SUB

- one package

Px, old-state: ICE-INITIAL new-state: XYZ-3
where the "Px" package would be a customized package designed specifically to get a
Subscriber from the initial state to the current state. The key point is the separate
specification of alist of packages to be received, and an explicit statement about what the
state will be after processing the packages.

It isentirely the Syndicators discretion as to what the best way to update the Subscriber is
(e.0., sending all the incremental packages or sending a special catch up package).

Suppose the Subscriber comes back before Time 4 and asks for an update:

SUB ==> SYN GetPackage, my state is XYZ-3
SYN ==> SUB 202 Package sequence state already current

Later, there are updates available:

SUB ==> SYN GetPackage, my state is XYZ-3
SYN ==> SUB one package: P4, oldstate XYZ-3, new XYZ-4

G.8 Package containment model

| CE packages contain content as a set of idempotent operations. remove and add. These
operations use the addressing mechanism of a subscription element-id to reference and
manage delivered content. The method of delivery does not affect these operations. As
detailed in the Sequenced Package Model section, each package moves the subscription
from an old state into a new state of the subscription.

G-6

An ICE <icedel :package describes a set of content operations. removals
(<icedel:remove-item) and additions (<icedel :add) .

The content model of the ICE < icedel :package € ement is constructed so that it
MUST contain some operation; at aminimum, asingle removal or asingle addition. If
there are removal operations, they MUST be specified and, therefore, performed before
any additions. It ispossible that an ICE < icedel :package only contains removal
operations. Alternatively, a< icedel :package may consist entirely of additions. The
<icedel :package specifies an old-state and a new-state. Before the new-state can be
reached, all of the operations contained within a package MUST be processed, and, if
constraints are specified, the constraints MUST be met as well. If an operation can not be
performed successfully, all previously performed operations specified in the package
MUST be undone, so the Subscriber is not |eft in an inconsistent state with regards to the
package sequence, and asurprise < icemes:status-code message MUST be delivered
to the Syndicator indicating the type of error that occurred, such as 420 (Constraint
failure). All of the operations are idempotent, i.e., it isnot an error if the same content is
added more than once, nor isit an error if aremove operation does not find the element to
remove. In both cases the results are the same (an add operation resulted in the content
existing on the Subscribers system, and a remove operation resulted in the content not
existing).

G-7

