
ICE is hosted by , Solutions Through Standards
© 2000 IDEAlliance | 100 Daingerfield Road | Alexandria, VA 22314

703-519-8191 | www.IDEAlliance.org

Information and Content Exchange

ICE Implementation Cookbook

Getting Started with Web Syndication

From Members of the
ICE Authoring Group

Adam Souzis, Laird Popkin, Sami Khoury, Bruce Hunt

This is a collection of recipes for implementing ICE in a step-by-step manner.

ICE Implementation Cook Book

Acknowledgements

All of the ICE Authoring Group contributed to this Cookbook. In particular, we wish to thank Dianne Kennedy,
Linda Burman, Michael Branch, Michael Strong and Nathan Pride for their comments on the drafts. The editors
have shamelessly used all their good advice. The Ice Authoring Group is one of the IDEAlliance standards
groups. This document was inspired by Brad Husick whose resemblance to Brad's Gadgets is purely coincidental. ;-)
The authors have no idea why the names are the same. We further disclaim all knowledge of anyone named Joe
Cool.

Unfortunately there are likely to be some typographical errors in this document. If you find one, please send an
E-mail to any of the editors above. We also solicit your implementation experience and feedback on this
step-by-step approach.

Use of this document may be enhanced by obtaining the latest ICE Specification. For the latest Information on
ICE please see http://www.icestandard.net and consider joining the ICE network!

Preface

This ICE Cookbook was written by the authors of the ICE (Information & Content Exchange) specification to
assist in implementing ICE in a wide variety of situations. Every system designer attempts to balance the near
term need for an immediate solution with the longer term desire for a well structured and complete solution. The
authors recognize the need for solving simple problems with simple solutions, and more complex problems with
more sophisticated answers. The recipes included in this cookbook start with the simplest of all solutions and
build on each other so that each succeeding recipe further adds to the resulting ICE implementation. Although
the resulting solutions are not 100% ICE compliant, this practical approach to building ICE functionality over
time is well proven in the marketplace. The objective is start with the minimal working protocol using ICE
constructs and add capability until a minimum ICE compliant implementation is achieved. This implementation
cookbook is a way to provide the Web community with a set of practical implementation steps that both get the
job done quickly and efficiently as well as providing a path so that your near term investment in building an easy
solution assists the longer term goal of full inter-operability with commercial ICE implementations.

1. Introduction
The ICE specification consists of over one hundred pages describing the ICE protocol. When you read the
specification it is difficult to know where to begin an ICE implementation. This cook book, on the other hand, is
designed to give you a step-by-step set of recipes for implementing ICE. It starts with a minimum protocol
subset that is not ICE compliant, but it works and will enable you to begin syndicating content. Each following
recipe builds on the previous one to add additional capabilities until a minimal, conforming ICE implementation
is achieved. Thus, this document provides a road map for implementing ICE.

1.1 Basic Terms
Although this cook book is designed to provide simple ICE implementation advice, some basic nomenclature is
required to understand the text:

1 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

ICE:
Information and Content Exchange protocol

Syndicator:
A content aggregator and distributor.

Subscriber:
A content consumer.

Subscription:
An agreement between a subscriber and a Syndicator for the delivery of content according to the delivery
policy and other parameters in the agreement.

Collection:
The current content of a subscription.

ICE Package:
A delivery instance of commands to update a collection such as the addition of content items.

ICE Payload:
The XML document used by ICE to carry protocol information. Examples include requests for packages,
packages, catalogs of subscription offers, usage logs and other management information.

1.2 About the Recipes
The recipes are as follows:

1. Pull public content. You obtain the capability to pull or link to content using the simplest ICE package
processing and the use of item metadata. While this recipe provides a set of simple services, it is not ICE
compliant.

2. Non-compliant minimal ICE spelling for content delivery. With this recipe you obtain all of the
facilities of recipe #1 plus access control, personalization of subscription content and you are on the road
to complying with the full ICE specification.

3. Nearly ICE compliant, minimal implementation. This recipe enables you to obtain confirmed delivery
after processing, notification and restricted-offer support.

4. Full ICE compliance. In addition to all of the above, this recipe enables you to obtain automated
subscriptions and subscription management. You can also support trivial negotiation and you gain the
benefit of ICE inter-operability.

5. Enhancements: You can enhance each recipe in a number of areas to achieve increased automation and
efficiency in handling syndication relationships. We describe easy enhancements at each of the recipe
steps.

1.3 Examples
To make the recipes concrete and complete, we'll provide an example. We'll highlight the places where you will
replace example specific implementation information with your own changes so that you can easily see how to
apply the recipe to your environment.

The example we'll use is the following.

We'll look at both sides of content supply and consumption to illustrate how syndication works.

Consider first that you are interested in news and views about the latest in personal electronic gadgets. Let's
suppose that your name is "Joe Cool" and you want to regularly obtain the latest information about the
wonderful world of emerging personal electronic gadgets. This makes you an ideal subscriber (a content
consumer) if you find someone that provides this information.

2 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

Consider second that you want to provide others access to all the information about personal electronic
equipment (gadgets!) that you've been avidly collecting. To do this, you might put up a web site; or you could
become a content Syndicator (a content supplier). As a content Syndicator, you will provide daily updates of the
latest news to interested subscribers. As a content Syndicator, let's suppose your name is "Brad" and your
domain name is "BradsGadgets". You share your extraordinary contacts and insight into the gadget world
through various content feeds on your web site, such as newsletters, reports, columns, etc. It is well known that
Brad is interested in various gadget areas and has information and opinions on Digital Cameras, Personal Digital
Assistants, Media Players, Cell Phones and Laptop Computers.

1.4 Recipe Organization
Now, a word about the recipe organization. Each of the recipes has a background section that sets up the
problem that the recipe solves and describes the general form of the solution. This is followed by
implementation guidelines for Syndicators and subscribers. These implementation guidelines are the real meat of
the recipe. The guidelines are laid out in a step-by-step manner using parts of the example above to make it
concrete. We've provided sample XML documents and sample URL references as well as descriptions of what is
needed for code. Where we think you'll want to make changes to fit your application, we've highlighted the
samples using bold-italics like this:

http://www.bradsgadgets.com/ice/subscribers/joecool.ice

When you see a phrase in bold italics, you should think about how you want to replace it for your application.

After the implementation guidelines, we include a section on enhancements that you can make to the recipe to
achieve increased automation, function or inter-operability while building toward a fully compliant well featured
implementation. Finally, we have a section on assumptions based on the ICE specification as well as how the
recipe conforms to the ICE specification. We do this so you'll know where this recipe is at odds with a full ICE
specification and where we've taken advantage of the flexibility in the ICE specification to achieve this
implementation model. This will be handy as you plan how you want to make extensions or improvements to the
recipe when you build your own implementation.

Maximum inter-operability is achieved when everyone you communicate with knows how to respond to your
protocol. The section on conformance is designed to assist you in planning upgrades to maximize the number of
other Syndicators (and subscribers) that you can communicate with. This enhances the value of your
implementation and lowers your syndication and/or subscription costs.

Let's get to it. We certainly don't want the ICE to melt. (Bad ICE jokes are strictly encouraged!)

2. Recipes

2.1 Pull Public Content.

2.1.1 Background

In this recipe, a Syndicator provides content by generating two sets of publicly accessible files on its HTTP
server. One set of files contains the media content and the other set of files are ICE packages. A subscriber
accesses a content offerings by retrieving an ICE package and processing it. The Syndicator, creates an ICE
package for each offering of content it wants to provide. The following picture illustrates the setup:

3 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

Each ICE package
contains one or
more pointers to
the content as well
as providing
metadata that
describes how the
content can be used
and with simple
enhancements, how
long the content
will be available as
well as a modicum
of content
protection. This
allows the
subscriber to know
when to check
back for updates
for when the
content will be
removed. The
approach provides
a number of
advantages to
Syndicators and
subscribers. For
subscribers, they
know the lifetime
of the content so
that its use can be
appropriately planned. Subscribers also know when to check for updates. Syndicators can change content and
update content without disturbing existing subscribers. This way both Syndicators and subscribers avoid "404"
not found errors. Finally, syndicators can notify subscribers of limitations on use of the content using ICE item
metadata.

2.1.2 Syndicator Implementation Steps

1. Construct the newsletter, "Tech Tips from Brads Gadgets" using your normal production process. We'll
assume that you place it on your site under the following URL:
http://www.bradsgadgets.com/news/techtips/<todaysdate>/news.html

2. Construct a standard ice-package:

<?xml version="1.0"?>
<!DOCTYPE ice-package SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd">
<ice-package>
 <ice-item-ref
 url="http://www.bradsgadgets.com/news/techtips/2000-08-01/news.html"
 item-id="BGTECHTIPS_V1" />
</ice-package>

The item-id uniquely identifies the content within the package.

4 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

3. Place the ice-package at some public location on your web-site, say
http://www.bradsgadgets.com/ice/techtips.ice

That's all that is required of the Syndicator. Note that the Syndicator may wish to publicize the standards
location for public syndications using ICE.

2.1.3 Subscriber Implementation Guidelines

1. Obtain the URL for the simple ICE based content, the ice-package, from a potential Syndicator. In this
example, you obtain the URL:

http://www.bradsgadgets.com/ice/techtips.ice

Periodically you will refetch the URL to update to the next newsletter.

2. Parse the ice-item-ref URLs out of the ice-package and either download the content or reference it using
the URL

That's all there is to it! You now have the simplest possible syndication.

2.1.4 Enhancements

2.1.4.1 Multiple URLs in a single package

You can repeat the ice-item-ref in a package as many times as you like to provide many different pieces of
content. Suppose for example, that Brad wants to have a newsletter for MP3 players and for Digital Cameras. He
would then construct an ICE package like the following:

<?xml version="1.0"?>
<!DOCTYPE ice-package SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >
<ice-package >
 <ice-item-ref
 url="http://www.bradsgadgets.com/news/techtips/2000-08-01/MP3news.html"
 item-id="BGMP3TIPS_V1" />
 <ice-item-ref
 url="http://www.bradsgadgets.com/news/techtips/2000-07-01/DCnews.html"
 item-id="BGDIGCAMTIPS_V1" />
</ice-package >

The advantage here of course is multiple documents in a single easy to access package. Notice that the
subscriber does exactly the same actions as before except now there are two newsletters.

2.1.4.2 Simple content management using Access Control

While the above recipe allows you to syndicate simply and very quickly, it has a number of simple
improvements that can give you significant benefit. There are two simple improvements that you can do to
manage your content effectively. The first is to notify your subscribers how long the content is available. This
allows you to control the lifetime of your content and it means that your subscribers can plan for it's effective
use without encountering "page not found" 404 errors. The second is to control who can access your content by
using HTTP's basic authentication (password protection) mechanism.

Setting the length of time your content can be accessed.

5 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

An ice-item-ref has an access control mechanism. You can quickly enhance this recipe to notify your subscribers
of the lifetime of the content -- i.e. when it will be available and for how long. So, now the content of the
ice-item-ref element (which was EMPTY) gets replaced with:

<?xml version="1.0" ?>
<!DOCTYPE ice-package SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >
<ice-package >
 <ice-item-ref
 url="http://www.bradsgadgets.com/news/techtips/<todaysdate>/news.html"
 item-id="BG1" >
 <ice-access >
 <ice-access-window starttime="2000-07-21T08:00:00"
 stoptime="2001-08-01T00:00:00" />
 </ice-access >
 </ice-item-ref >
</ice-package >

The ice access window element specifies the span of time that the URL will be available. This means that you as
a subscriber now know how long the link will last. And, you as the Syndicator have made a commitment to
provide it for a specific length of time. Thus, the duration of the content is now made explicit so that each party
can avoid the "404" broken link problem. This simple addition can save your subscribers many hours of
wondering if a "404" is temporary or permanent. Also, notice that you can update the access window if you
decide to extend or reduce the lifetime of the content. Thus, your subscribers only need to refetch the
ice-package to find out the current lifetime before they call you!

Protecting Content using HTTP basic authentication.

The ice access control mechanism permits a Syndicator to provide simple protection for the content. This
informs subscribers that HTTP's basic authentication mechanism protects the content behind the URL. You can
enhance this protection by sending the ice-package through a private channel to prospective subscribers. For
example, Brad sends this package by E-mail to his subscribers:

<?xml version="1.0" ?>
<!DOCTYPE ice-package SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >
<ice-package >
 <ice-item-ref
 url="http://www.bradsgadgets.com/news/techtips/2000-08-01/news.html"
 item-id="BG1" >
 <ice-access >
 <ice-access-window starttime="2000-08-01T00:00:00"
 stoptime="2001-08-31T24:00:00" />
 <ice-access-control control-type="password"
 user="TechTips Subscriber"
 password="mysecret" >
 (C)2000 Brads Gadgets, Inc. All Rights Reserved.
 Use of the content in this item reference
 implies acceptance of the use license at
 http://www.bradsgadgets.com/licenses/subscriber.html
 including honoring all copyrights and trademarks.
 You agree not to provide others with the
 access control password above.
 </ice-access-control >
 </ice-access >
 </ice-item-ref >
</ice-package >

When Joe Cool receives this package, he is informed not only of the lifetime of the content, but he also knows
that access to the content will require satisfaction of HTTP's basic authentication mechanism using the user and
password provided. Only parties with access to the above package are able to get access to the content. The
security of this facility is enhanced by delivering it over a private channel to prospective subscribers instead of

6 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

simply placing it on Brads web site.

Clearly this marks the content as being licensed. For you as a subscriber, it lets you know the fair use of the
content because the usage rules are made explicit. This mechanism provides a defense against unfounded
accusations of misappropriation of intellectual property including copyright infringement. For you as a
Syndicator, it provides you the means to both deliver content and clearly mark the usage rules. Note that the
access control mechanism does not prevent syndication of any specific type of content (public or private). It only
provides a means to make the usage rules explicit and it provides a means to limit the population of users.

2.2 Request-Response Protocol - ICE spelling for
content delivery.

2.2.1 Background

This recipe introduces ICE's basic request/response protocol to enable personalized content delivery for each of
your subscribers.

Build a simple request/response protocol on top of HTTP.

In the previous recipe no programming was required. This recipe requires that the rudiments of a protocol be
built. ICE uses a request/response protocol. In this protocol, every request is answered by a response. The
requester repeatedly sends the request until it hears the response or it gives up, being fairly certain that the
receiver is incapable of responding. The receiver may respond to the requester multiple times for a single
request.

ICE relies on a reliable transport protocol such as HTTP. In this cookbook we assume that you'll use HTTP. The
key ICE transport requirement is that the transport protocol deliver each ice-payload without error from the
sender to receiver; or fail to deliver the ice-payload and report an error to the sender. This means that if the
transport hands an ice-payload to the receiver, it has no errors. HTTP satisfies this requirement if you map
ice-requests to HTTP Posts and map ice-responses to the HTTP response to an HTTP Post. Both sides
(Syndicator and Subscriber) must be able to issue HTTP Posts and responses to HTTP Posts.

You can use the code that you developed in recipe one above to analyze and respond to the ice-package. In this
recipe, however, you'll deal with full ice-payloads as well as ice-packages.

You get the following benefit from this recipe:

The syndicator will be able to:

Provide multiple content collections each capable of being subscribed to*.
Let multiple subscribers subscribe to one content collection*.
Let one subscriber subscribe to multiple content collections*.
Select the population that has access to syndicator content.
Control how long the content is available
Directly deliver a simple ice-package to each subscriber.
Lay foundation for automated delivery

(*-capability available in Recipe 1)

The subscriber will be able to:

7 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

Have multiple subscriptions
subscribe to content from different Syndicators
subscribe to different collections from the same Syndicator
potentially gain access to more exclusive information

Syndication Scenario - Brad has multiple newsletters to syndicate.

Suppose that Brads initial foray into syndication has been extremely popular. So, Brad begins selling his gadget
reviews to subscribers and upgrades his offerings to send content differentiated reviews to different subscriber
populations. Brad writes newsletters on Digital Cameras, Laptop Computers, Cell Phones and Media Players.

Brad couples his Web site to an ICE site. The ICE site allows him to offer multiple different newsletters as
subscriptions and to keep a list of subscribers for each of the newsletters. Also, the ICE site sends a newsletter to
any of the subscribers when they request it. Brad uses his Web site to solicit customers for his newsletters and to
provide an easy, interactive way to initiate subscriptions.

Joe Cool, for his part wants to obtain only the newsletters about Digital Cameras and Cell Phones and is willing
to pay a small subscription fee.

In this recipe, the subscriber, (Joe Cool), is willing to retrieve the newsletters for which he has a subscription
every month.

2.2.2 Syndication Implementation Guidelines

1. A new subscriber, Joe Cool, signs up to receive content from Brad's Gadgets. How does Joe Cool know
how to sign up? Brad solicits new subscribers on his web site and creates a forms based subscription
application. Joe Cool while browsing the site, finds the application and fills out the form. Brad creates a
new subscriber account from the subscription application using his Syndicator software and assigns a
subscriber identifier for Joe. He then sends Joe Cool his subscriber id, say,
4af37b30-2c35-11d2-be4a-204c4f4f5020; and also a subscription id, say,
SB-BradsGadgets-DigitalCameras2000-2000-08-23S3-003F9A7C for the Digital Camera newsletter and,
say, SB-BradsGadgets-CellPhones2000-2000-08-23S14-003F9A7C for the Cell Phones newsletter. To
retrieve the content , the subscriber, Joe Cool, also needs to know the URL Brads syndicator is running on
so that he can post requests there. Brad sets up the following URL:
http://www.bradsgadgets.com/ice/newsletters.

A Few words about identifiers. If you are going to implement a syndicator, you will need to generate
several identifiers as indicated above and below. Most of these identifiers need to be unique within your
syndication relationships but that is about all. However, each syndicator and each subscriber needs a
universally unique identifier to prevent duplication. ICE uses the UUID (see Universally Unique
Identifiers) as a distributed means to provide unique names for subscribers and syndicators. Once you
select a UUID for your syndicator or subscriber, you should use it from then on. The UUID is how you as
a subscriber know for sure which syndicator you are communicating with and similarly for you as a
syndicator, this is how you uniquely know which subscriber it is. The style and format of the other
identifiers is up to you within the uniqueness constraints. Below in Appendix B are models for various
identifiers.

2. Brad prepares the newsletters in his usual way. When they are ready to "publish", Brad copies them to a
place on his Web site that is accessible and known to the syndication software. (This location may or may
not be publicly accessible; but it must be accessible to the syndication software.). The syndicator software
is now ready to provide content to subscribers.

8 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

3. The syndicator, Brad, receives an ICE payload containing an ice-get-package request posted to the
Syndicators URL by the subscriber, Joe Cool's, ICE client software. This happened because Joe Cool
monitors Brads Web site to find out when the new issue of the newsletters are available. Brad puts up a
page informing subscribers and potential subscribers that the newsletters are available. Joe Cool then turns
on his simple subscriber client and sends a request to Brads simple ICE syndicator. For example Joe Cool
sends the following request:

<?xml version="1.0"?>
<!DOCTYPE ice-payload SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >
<ice-payload payload-id="PL-2000-07-21T02:02:23.007-JoeCool-39"
 timestamp="02:02:23,449" ice.version="1.1" >
 <ice-header>
 <ice-sender sender-id="4af37b30-2c35-11d2-be4a-204c4f4f5020"
 name="Joe Cool" role="subscriber" />
 <ice-user-agent>IceBlock Systems ICE Processor, V7.0</ice-user-agent >
 </ice-header>
 <ice-request request-id="REQ-2000-07-21T02:02:23_JoeCool_58" >
 <ice-get-package current-state="ICE-ANY"
 subscription-id="SB-BradsGadgets-DigitalCameras2000-2000-08-23S3-003F9A7C" />
 </ice-request>
</ice-payload>

The payload-id uniquely identifies the payload for the sender (in this case, the subscriber, Joe Cool).
The request-id, set by the sender will be used by the receiver (in this case, the syndicator, Brad) in his
response so that the sender knows exactly which request was meant in the response. Of course, the
subscription-id tells Brad which newsletter is desired. With this complete, notice that Brad has enough
information to look up the subscriber and the right subscription. Brad can also check to make sure that Joe
Cool is really a subscriber; and so can precisely respond to the request.

A similar payload is easy to generate for the Cell Phone newsletter. Notice that the identifiers are chosen
for communication clarity. You may want to use simpler ones; or even choose a format that is difficult to
predict. The latter are an aid in preventing undesired access to the content. See Appendix B for some
sample identifier prototypes.

4. The syndicator, Brad, looks up the sender to see if the requester is a valid subscriber. If not, an unknown
subscriber error message is returned (See Appendix A: Unknown Subscriber Error Response for the
format.) If valid, the syndicator responds with an ice-payload containing a personalized ice-package.
In this case, Brad responds with the following payload:

<?xml version="1.0" ?>
<!DOCTYPE ice-payload SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >
<ice-payload payload-id="PL-2000-07-21T02:02:24.019-BradsGadgets-1327"
 timestamp="02:02:24,016314"
 location="//www.bradsgadget.com/ice/newsletters"
 ice.version="1.1" >
 <ice-header >
 <ice-sender sender-id="4a2180c9-9435-d00f-9317-204d974e3410"
 name="Brads Gadgets, Inc." role="syndicator" />
 <ice-user-agent>
 RockSolid Protocols ICE Processor, V17
 </ice-user-agent >
 </ice-header >
 <ice-response response-id="RSP-2000-07-21T02:03:45-BradsGadgets-1" >
 <ice-code numeric="200" phrase="OK"
 message-id="REQ-2000-07-21T02:02:23_JoeCool_58" />
 <ice-package new-state="ICE-ANY" old-state="ICE-ANY" package-id="CP20000701-1">
 <ice-item-ref url="http://www.bradsgadgets.com/ice/newsletters/D
 item-id="BG_JoeCool_1" />
 </ice-package>
 </ice-response>

9 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

</ice-payload>

The sender-id here is Brads UUID. The response for the Cell Phone newsletter is similar in pattern to the
above. Again, the identifiers are chosen for reader clarity. You may wish to obscure them with a format
that is more difficult to predict.

The message-id in the ice-code is identical to the request-id from a previous request. This way the
receiver knows that this response is for a previously sent request and which one it was.

5. Any other requests are responded to with "not implemented" (503) ice-code such as that shown in
Appendix A.3. That's it. You know have a simple syndication capability.

2.2.3 Subscriber Implementation Guidelines

1. The subscriber, Joe Cool, wants to subscribe to content being offered from Brads Gadgets. He contacts
Brad to setup the subscription. In this example, this is done by Joe perusing Brads Web site and deciding
to fill out the HTML forms to subscribe to the Digital Camera and Cell Phone newsletters.

2. Brad sends Joe a subscription ID,
"SB-BradsGadgets-DigitalCameras2000-2000-08-23S3-003F9A7C",
for the Digital Camera newsletter and
"SB-BradsGadgets-CellPhones2000-2000-08-23S14-003F9A7C",
for the Cell Phone newsletter as well as the URL pointing to Brads ICE syndication software,
http://www.bradsgadgets.com/ice/newsletters.
Joe obtains a UUID for his subscriber, say, "4af37b30-2c35-11d2-be4a-204c4f4f5020" .

3. Joe enters this information into his ICE client software and points at Brads site using the URL Brad
supplied. Joe then peruses Brads site looking for the availability of the newsletters he subscribes to. Note
that in this recipe, Joe manually tells the simple subscriber software to attempt to retrieve the newsletters.

4. The subscriber ICE client software sends (via an HTTP post) an ICE payload containing an
ice-get-package request that is similar to that shown in step 3 of 2.2.2 above. For example, the simple
subscriber processor might send the following to obtain the Cell Phone newsletter:

<?xml version="1.0"?>
<!DOCTYPE ice-payload SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >
<ice-payload payload-id="PL-2000-07-21T02:02:24.019-JoeCool-14"
 timestamp="02:02:23,449" ice.version="1.1" >
 <ice-header>
 <ice-sender sender-id="4af37b30-2c35-11d2-be4a-204c4f4f5020"
 name="Joe Cool" role="subscriber" />
 <ice-user-agent>
 IceBlock Systems ICE Processor, V7.0
 </ice-user-agent >
 </ice-header>
 <ice-request request-id="REQ-2000-07-21T02:02:23-JoeCool-1" >
 <ice-get-package
 current-state="ICE-ANY"
 subscription-id="SB-BradsGadgets-CellPhones2000-2000-08-23S14-003F9A7C" />
 </ice-request>
</ice-payload>

5. The ICE client software receives the ice-package. In this example, it would look like:

<?xml version="1.0" ?>
<!DOCTYPE ice-payload SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >
<ice-payload payload-id="PL-2000-07-21T02:03:45.019-BradsGadgets-1523"
 timestamp="02:03:45,314"
 location="//www.bradsgadget.com/ice/newsletters"
 ice.version="1.1" >
 <ice-header >

10 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

 <ice-sender sender-id="4a2180c9-9435-d00f-9317-204d974e3410"
 name="Brads Gadgets, Inc." role="syndicator" />
 <ice-user-agent>
 RockSolid Protocols ICE Processor, V17
 </ice-user-agent >
 </ice-header >
 <ice-response response-id="RSP-2000-07-21T02:03:45-BradsGadgets-1234" >
 <ice-code numeric="200" phrase="OK"
 message-id="REQ-2000-07-21T02:02:23-JoeCool-1" />
 <ice-package new-state="ICE-ANY" old-state="ICE-ANY" package-id="CP20000701-1">
 <ice-item-ref url="http://www.bradsgadgets.com/ice/newsletters/C
 item-id="BG_JoeCool_1" />
 </ice-package>
 </ice-response>
</ice-payload>

The ICE client software processes it as in recipe 1 above. That's all there is to it.

In your implementation you may want to have timers associated with the requests that you send out. If the
timer expires before you get a response, you can send the request again. If you count the number of times
this happens, when it exceeds some number that you select, you can be fairly sure that the Syndicator is
having problems; or that you are posting to the wrong URL. When this happens, it is probably time to
check your URL and call the Syndicator for assistance.

2.2.4 Enhancements

There are many enhancements that are possible once this basic recipe is working. These enhancements improve
the operation of content syndication in a number of ways including improving function, efficiency and error
recovery.

2.2.4.1 Multiple URLs in a package and Access Control

Notice that the same enhancements for recipe 0 work here as well. That is, you can add access controls to set the
availability time of the content as well as basic HTTP authentication access control.

2.2.4.2 Use other protocols to access Content.

The ice-item-ref elements can have the URL specifiy another protocol such as FTP or RTSP in the URL.
Thus, you can direct your subscribers to the desired protocol to use to access the content.

2.2.4.3 Send Content In line as well as by Reference.

The Syndicator could send ice-items directly (i.e. in line) instead of an using an ice-item-ref.. If this is done,
the subscriber must be able to handle "escaped" character data as is required by XML (i.e. both character entities
and also base 64 encoding). This is an additional requirement for the implementation. To do this, the Syndicator
would send ice-packages that contain both ice-items and possibly ice-item-refs. The subscriber then
extracts the ice-items and ice-item-refs from the ice-packages in an ice-payload. Both the Syndicator
and the Subscriber must implement the ability to handle ice-items. The following is a sample ice-payload
that contains both an ice-item and an ice-item-ref. In it, Brad uses an ice-item to deliver news flashes that
keep his subscribers up-to-date:

<?xml version="1.0" ?>
<!DOCTYPE ice-payload
 SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >
<ice-payload payload-id="PL-2000-07-21T02:02:25.039-BradsGadgets-1631"

11 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

 timestamp="02:02:25,039416"
 location="//www.bradsgadget.com/ice/newsletters"
 ice.version="1.1" >
 <ice-header >
 <ice-sender sender-id="4a2180c9-9435-d00f-9317-204d974e3410"
 name="Brads Gadgets, Inc." role="syndicator" />
 <ice-user-agent>
 RockSolid Protocols ICE Processor, V17
 </ice-user-agent >
 </ice-header >
 <ice-response response-id="RSP-2000-07-21T02:03:45_BradsGadgets_1234" >
 <ice-code numeric="200" phrase="OK"
 message-id="REQ-2000-07-21T02:02:23_JoeCool_1" />
 <ice-package new-state="ICE-ANY" old-state="ICE-ANY" package-id="CP20000701-1">
 <ice-item name="WMLstory"
 subscription-element="NewsFlash"
 item-id="NewsFlash1" >
 WML adopted by major cell phone providers including
 Motorola, Nokia, Qualcomm, Erricson, NEC, Samsung and
 Phillips. In a stunning show of Internet inter-operability,
 the major manufacturers today announced that they
 will support WML for Internet access...
 .
 .
 .
 </ice-item>
 <ice-item-ref url="http://www.bradsgadgets.com/ice/newsletters/CellPhone/Ju
 item-id="BG_JoeCool_1" />
 </ice-package>
 </ice-response>
</ice-payload>

As you can see, the ability to directly deliver content can enhance offerings. The part that you need to be careful
about is the case where the ice-item contains HTML or other marked up text. There are two ways of handling
this.

The first way to handle "markup" is to use a CDATA section. Place the HTML or other markup content in the
interior of "<![CDATA[" and "]]>". For example, suppose that you wanted to send the following HTML
fragment in line:

<![CDATA[
<html>
 <head>
 <meta http-equiv="content-type"
 content="text/html;charset=iso-8859-1">
 <meta name="generator" content="Adobe GoLive 4">
 <title>Cell Phones 2000 - Hot August Nights Issue</title>
 </head>
 <body bgcolor="#e5daa9">
 <h1>Cell Phones 2000 - Hot August Nights Issue</h1>
 <h2>(C)2000 Brads Gadgets, Inc. All rights reserved!</h2>
 <p>Well phone phreaks, while we've been sweltering in the
 hot August sun, the phone phaetons have been busy pouring
 plastic and pushing photons to create ourcerebrall cellular means
 of communication. In this phreaky issue we look at the
 latest cellular cool from Phillips. While these guys have
 been pretty sedate as of late, now they are phreaking!
 ...
 </p>
 ...
 </body>
</html>
]]>

12 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

This content would be placed in an ice-item in an ice-package. The CDATA section cannot nest - so you put
only one CDATA wrapper in for each item. This mechanism works pretty well until you start working with
paired right box brackets followed by a right angle bracket ("]]>").

The second way to handle mark-up is to encode the markup using the standard XML escapes:

> for ">" (right angle bracket).
< for "<" (left angle bracket).
' for an apostrophe (').
& for an ampersand, "&".
" for a quotation mark (").

This approach can get fairly tedious and it expands the size of the file; but this approach lets you send any
sequence of text including the paired right box brackets followed by a right angle bracket ("]]>").

2.2.4.4 Implement a "Ping" facility.

One of the most useful facilities for any protocol is the ability to "ping" the other side and get a response back.
Receipt of a response quickly isolates drives problem resolution toward the ICE like implementation or to
making sure that the transport mechanism is working. To implement a ping facility all that is needed is to
implement the ice-nop request and a very simple response.

A model for the ice-nop request is:

<?xml version="1.0"?>
<!DOCTYPE ice-payload SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >
<ice-payload payload-id="PL-2000-07-21T02:02:25.027-JoeCool-348"
 timestamp="02:02:25,027341" ice.version="1.1" >
 <ice-header>
 <ice-sender sender-id="4af37b30-2c35-11d2-be4a-204c4f4f5020"
 name="Joe Cool" role="subscriber" />
 <ice-user-agent>
 IceBlock Systems ICE Processor, V7.0
 </ice-user-agent >
 </ice-header>
 <ice-request request-id="REQ-2000-07-21T02:02:23-JoeCool-2397" >
 <ice-nop />
 </ice-request>
</ice-payload>

A model for the ice-nop response is:

<?xml version="1.0" ?>
<!DOCTYPE ice-payload SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >
<ice-payload payload-id="PL-2000-07-21T02:03:45.132-BradsGadgets-1787"
 timestamp="02:03:45,31416"
 location="www.bradsgadget.com/ice/newsletters"
 ice.version="1.1" >
 <ice-header >
 <ice-sender sender-id="4a2180c9-9435-d00f-9317-204d974e3410"
 name="Brads Gadgets, Inc." role="syndicator" />
 <ice-user-agent>
 RockSolid Protocols ICE Processor, V17
 </ice-user-agent >
 </ice-header >
 <ice-response response-id="RSP-2000-07-21T02:03:45-BradsGadgets-1234" >
 <ice-code numeric="200" phrase="OK"
 message-id="REQ-2000-07-21T02:02:23-JoeCool-2397" />

13 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

 </ice-response>
</ice-payload>

Both the Syndicator and the Subscriber should implement this request and response. Now subscribers and
syndicators can "ping" each others server to assure that the communication channel is operative.

2.3 Nearly ICE compliant, minimal implementation

2.3.1 Background

This recipe expands the Syndicators ability to support many Subscribers. It also expands the ability of
Subscribers to access many different Syndicators so that a wide selection of content can be obtained.

Enhance the request/response protocol with operational features.

This recipe enhances the previous recipe with many of the extras that make the ICE protocol particularly useful.
Now that you have implemented the basic ICE request/response protocol it is time to add several useful
operational features. Let's look at the features and their value:

Features and their Value to Syndicator and Subscriber:

Confirmed delivery processing
The subscriber notifies the syndicator when it has completed processing packages. The value here is that the
both the Syndicator and Subscriber know that the content has been correctly processed.
Notification
Both parties can send operational notices to each other. The value here is that important operational information
such as planned or emergency server outages can be communicated.
Ping facility
Both parties can send the simplest form of a request and response to assure each other that the communication
channel is working properly. Note that this was an extension for recipe 2.2 above.
Fixed offers - no negotiation
The Syndicator automates the listing of offers and the Subscriber can pick up a list of offers from the Syndicator
and choose the one it prefers.

Syndication Scenario

The popularity of Brads Gadgets has grown to the point that he is seeking a way to lower his operational costs so
that his staff can get back to following the rapidly growing world of electronic gadgets instead of spending all
their time setting up and managing subscriptions. He can do this in several ways. First, Brads Gadgets is fielding
many support calls for troubleshooting subscriptions that are expensive and slow to resolve. It is especially
frustrating when the problem is not in the syndication or subscription processors at all, but in the communication
channel. A simple fast way of verifying the communication channel is needed. Many of the support calls arise
when an emergency and/or routine maintenance require the servers be taken down. A way is needed to notify his
subscribers of operational events.

Brads Gadgets has been approached by his customers with the desire to re-syndicate several of his newsletters.
Brad wants to be sure that his new syndicating subscribers provide as high a quality of service as he provides
and so wants to know that his content has been processed by his new syndicating subscribers.

2.3.2 Syndication Implementation Guidelines

14 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

1. Implement the basic Request-Response Syndicator side of the protocol as in 2.2 above. We use recipe 2.2
as the basis for this recipe.

2. Implement in line package content delivery. This was an enhancement for Recipe 2.2. If you implemented
it there, then you don't have to do anything. Otherwise, implement a mechanism to partition your content
into packages of ice-items (and/or) ice-item groups; as well as the simpler ice-item-ref. See the extension,
2.2.4.3 above.

3. Implement the confirmation attribute on the ice-package. This attribute has a value of "true" or "false".
By default the value is "false"; so if the attribute is omitted, the action taken is as if the value is "false" -
namely the subscriber is not expected to confirm package processing with an ice-code. It is up to you as a
Syndicator when to ask for package confirmation. One reasonable policy is to ask for confirmation on a
collection or subscription basis. On some of your collections, the value may be sufficiently high that you'd
like to know that the subscriber received and processed the content. For example, suppose that Joe Cool
wants to re syndicate Brads newsletters and Brad wants to make sure that Joe is processing his newsletters
in a timely fashion. (Brads Gadgets has become so popular that many of his subscribers are re-syndicating
his newsletters.) Thus, when the ice-package is sent to Joe Cool, the confirmation="true" attribute is
placed on the ice-package.

4. Implement the Notification Request. This Request allows your syndication server to send operator
notifications to your subscribers. The model for this request is as follows:

<?xml version="1.0"?>
<!DOCTYPE ice-payload SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >
<ice-payload payload-id="PL-2000-07-21T04:02:24.539-BradsGadgets-2132"
 timestamp="04:02:23,449" ice.version="1.1" >
 <ice-header>
 <ice-sender sender-id="4a2180c9-9435-d00f-9317-204d974e3410"
 name="Brads Gadgets, Inc." role="syndicator" />
 <ice-user-agent>
 RockSolid Protocols ICE Processor, V17
 </ice-user-agent >
 </ice-header>
 <ice-request request-id="REQ-2000-07-21T02:02:23-BradsGadgets-9723" >
 <ice-notify priority="5" >
 <ice-text>
 The special Cell Phones 2000 Consumer
 Electronics Show edition will be available
 starting in mid March when the show opens
 and will be updated daily during the run
 of the show. You may want to re-fetch
 this issue multiple times to keep up to
 date with the latest news from CES. The
 show runs from March 15 to March 19
 this year. Thanks for keeping up with
 all your favorite Gadgets with the number
 one provider of Gadget Gossip.
 Thanks for your continued patronage,
 The ICE team at BradsGadgets.
 </ice-text>
 </ice-notify>
 </ice-request>
</ice-payload>

The priority attribute value ranges from 1 to 5 and is required. Priority 1 is the most important; while
priority 5 is the least important. A priority 1 message should cause appropriate emergency action at the
receivers site. You should use this when an extremely important message needs to be delivered and acted
upon by the operations management. You should also work very hard to not overuse this facility.

5. Implement the response to a notification request. You should display the notification on the server console
(or computer screen). If the priority is a 1 or 2 you may want to consider using a dialog box and/or
appropriate action to gain attention (Perhaps blinking text with a bell?). The model for responding to the

15 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

request is:

<?xml version="1.0" ?>
<!DOCTYPE ice-payload SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >
<ice-payload payload-id="PL-2000-07-21T02:04:23.699-BradsGadgets-2311
 timestamp="02:03:45,31416"
 location="www.BradsGadgets.com"
 ice.version="1.1" >
 <ice-header >
 <ice-sender sender-id="4a2180c9-9435-d00f-9317-204d974e3410"
 name="Brads Gadgets, Inc." role="syndicator" />
 <ice-user-agent>
 RockSolid Protocols ICE Processor, V17
 </ice-user-agent >
 </ice-header >
 <ice-response response-id="RSP-2000-07-21T02:03:45-BradsGadgets-9876" >
 <ice-code numeric="200" phrase="OK"
 message-id="REQ-2000-07-21T02:02:23-BradsGadgets-2397" />
 </ice-response>
</ice-payload>

If you implemented the ice-nop extension in the previous recipe, this step is very similar and should be
even easier to implement. On the other hand, if you haven't implemented the ice-nop, now would be a
great time to do so since you have most of it after completing this step; in fact we'll do it in the next step.
The response to the notify request is just a straight-forward acknowledgement of the request.

6. Implement the ice-nop. See extension, 2.2.4.4 above for both the request and response side of the
protocol.

When you have completed this recipe, you will have a robust, nearly ICE compliant, Syndicator. At this point,
you've got a syndication processor that can handle many subscribers.

2.3.3 Subscriber Implementation Guidelines

1. Implement the Subscriber facilities to Recipe 2.2 above. As usual, we'll use the previous recipe as a
starting point for this recipe.

2. Implement in line package content delivery. This was an enhancement for Recipe 2.2. If you implemented
it there, then you don't have to do anything. Otherwise, implement a mechanism to partition your content
into packages of ice-items (and/or) ice-item groups; as well as the simpler ice-item-ref. See the extension,
2.2.4.3 above.

3. Implement the ability to "confirm processing" within in your Subscriber processor. When a package is
delivered, a new attribute, confirmation, may appear on the ice-package element. It asks you to send
back a confirmation request to the sender of the ice-package when you have completed processing the
ice-package. This allows you to inform the sender of your success at obtaining and understanding of the
content in the package. It is generally good form to confirm when you've obtained all of the items in a
packages without error and have updated your copy of the Syndicators collection. You, of course, may
delay confirmation until you've actually used the delivered content. Upon correctly processing the items in
a package to update your copy of the collection you send a request similar to the one that Joe Cool sends
(in your standard payload) back to the Syndicator:

 <ice-request request-id="REQ-2000-07-21T02:05:32-JoeCool-1873" >
 <ice-code numeric="201" phrase="Confirmed"
 message-id="REQ-2000-07-21T02:02:23-BradsGadgets-2397" />
 </ice-request>

If processing failed for, say, inability to fetch the data in an ice-item-ref you provide a more sophisticated
message:

16 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

 <ice-request request-id="REQ-2000-07-21T02:03:00-JoeCool-1873" >
 <ice-code numeric="331"
 phrase="Failure fetching external data"
 message-id="REQ-2000-07-21T02:02:23-BradsGadgets-2397" >
 Unable to obtain content from URL:
 http://www.bradsgadgets.com/ice/newsletters/CellPhone/July2000.htm
 </ice-code >
 </ice-request>

There are several ICE codes that can be used to describe to the package sender exactly what type of error
in processing was encountered. Appendix A.4 contains a complete list of ICE codes that you can use. The
following is a short list of those that you may want to use to announce non-confirmation:

201 - Confirmed. - The subscriber has successfully processed the package.
331 - Failure fetching external data
401 - Incomplete/Cannot parse - You couldn't even get the parser started!
402 - Not well formed XML - Your XML tags didn't balance.
403 - Request/ResponseValidation Failure - XML didn't match the schema.
405 - Unrecognized Sender - Who are you?
406 - Unrecognized Subscription - You have to have a valid subscription-id
407 - Unrecognized operation - An operation in the package was not one that you recognized
408 - Unrecognized operation arguments - The attributes on the element were unknown.
430 - Not Confirmed - (Generic error indicating that Subscriber didn't complete processing.
501 - Temporary Responder error. - I'm to busy right now to do it" message
603 - No more confirmations to send. - When you've confirmed everything, respond with this.

There are many others that are defined in the ICE specification. Since this is a request, you will receive an
ice-code response and your standard retry mechanism (e.g. wait, time out & resend) should be used until
you do.

Well, that's it for the confirmation feature.

4. Implement the Notification Request. This Request allows your subscription processor to send operator
notifications to your syndicators. The model and discussion for this request is identical to that shown
above for the Syndicator and is not repeated here.

5. Implement the ice-nop. See the Extension, 2.2.4.4 above for both the request and response side of the
protocol.

Well, that's it for this Recipe. Congratulations, these features should make it much easier to operate a
subscriber.

2.3.4 Enhancements

2.3.4.1 Implement a simple scheduling system.

As a Syndicator, you may consider implementing a simple scheduling system. In Brads case, this system would
periodically check for new newsletters in a specific place and if found, run through the list of subscribers to that
newsletter creating notifications for "pull" subscribers and ice-packages for "push" subscribers.

As a Subscriber, you may consider implementing a simple scheduling system as well. In Joe Cools case, this
system wakes up periodically and issues an ice-get-package request to his Syndicators to see if new newsletters
are available. The rate at which the requests go out is determined by discussion with the Syndicator.
BradsGadgets newsletters are both bi-weekly and monthly, so Joe Cool checks BradsGadgets on the first
through fifth and the 15th through the 20th of every month until he successfully gets a newsletter or the checking

17 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

window expires.

2.3.4.2 Implement Content Push.

As a Syndicator, you can offer your subscriptions in either "push" mode or "pull" mode; as well as in line or by
reference. In push mode, the Syndicator automatically delivers ice-payloads containing ice-packages whenever
there is new content. In pull mode, the Syndicator relies on the Subscriber to initiate content delivery with an
ice-get-package request. If you offer this service, you will need to provide a way for your subscribers (and
potential subscribers) to sign up for the service. The implementation of this feature is very in-expensive since
you already have the apparatus to construct ice-payloads containing content packages. All you need now is to
build the apparatus that notices when new content is available, use your existing apparatus to build the
ice-payload(s) and run through each of your subscribers to the content sending each one that is signed up for
"push" delivery the payloads.

As a Subscriber, you can automate more of your subscriptions by using "push" mode delivery from a Syndicator.
In this mode, the Syndicator will automatically send you ice-payloads with ice-packages whenever it generates
new content. Of course, you have to have a receiver always ready to accept such packages. In some syndication
operations that is not feasible. But, if you have a server up and running almost all of the time, it can make
subscriptions rather easier to manage. Given your current subscription apparatus, you can easily add this facility.
The same mechanism that takes ice-packages apart can be used for this facility; and you already know how to
decode an ice-payload containing packages.

2.3.4.3 Implement Collection Management.

Background.

In previous recipes we have relied on Subscribers to keep track of their collections and have mostly dealt with
collections that can be accessed via reference. Suppose that Brad decides to offer his complete collected
newsletters as a single subscription. In this case, Brad can construct an ice-package that contains an ice-item-ref
for each subscription. But what if the subscriber wants to have the newsletters sent in line? If Brad puts each
newsletter into an ice-item, in a large package, it may be that the result is to large to send via HTTP because
many HTTP servers limit the size of a post or response to the post. The solution, of course, is to break the large
package into several smaller ones. But then, what if one of the packages is lost; arrives in error, or worse, is not
sent by accident. Or, suppose that the packages arrive out of order through delayed delivery. How will the
receiver know how to re-assemble them in the correct order? As you have guessed by now, ICE provides
collection management to make sure that all these problems cannot occur. Notice that none of these problems
arise (directly) if your content can always fit into a single package.

Basic Idea

The idea behind collection management is very simple. The Syndicator marks every package with a special
identifier (yes, another identifier!) called a package-sequence-identifier. Whenever the Syndicator sends an
ice-package to a Subscriber, the Syndicator sends the old package-sequence-identifer he thinks the Subscriber
has; as well as the new package-sequence-identifier for this package. The Subscriber keeps track of its current
package-sequence-identifier and holds on to it until it has successfully updated its collection with the new
package; at which point it switches to the new package-sequence-identifier. If the old
package-sequence-identifier does not match the Subscribers current identifier, the Subscriber sends an error
message back to the Syndicator with it's current package-sequence-identifier; at which point, the Syndicator can
send the correct sequence of packages. Notice that most of the time, the Subscriber has only one
package-sequence-identifier to keep for a collection. The Syndicator and Subscriber can send each other
requests to know what the current package-sequence-identifier is for the other. Getting the
package-sequence-identifier from a Subscriber tells the Syndicator exactly what state the Subscribers collection
is in. Getting the package-sequence-identifier from the Syndicator tells the Subscriber whether or not its

18 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

collection is up-to-date and so indicates to the Subscriber whether or not is issue a ice-get-package request.

Implementation

The Syndicator needs to generate an package-sequence-identifier (PSID) for each package it sends. It keeps track
of the Subscribers PSID in each subscription for the Subscriber. A sample model for the PSID is in Appendix
B.5 below.

2.4 Full ICE compliance

2.4.1 Background

Brad determines that he can reduce his costs further by standardizing his subscription offers to reduce the initial
costs of starting up a subscription since this is another place in the syndication service that is costing much
valuable staff time. Brad automates the subscription offerings by creating a catalog of subscription offers where
subscribers can access them programmatically. This allows Brad to quickly make new offers to better reflect his
changing content offerings and automatically make it available to his Subscribers. In addition, Brad is looking
forward to implementing offer negotiation which will allow him and his subscribers to optimize their
subscription operations. For Brad this will means that he will be able to reduce peak server loading as well as
delay having to invest in new hardware and operating costs. For Brad's subscribers it means that they will be
able to get better operational parameters to suit their needs such as better delivery times, dates and frequencies.
For example, a large subscriber may want Brad's newsletters delivered in the early morning so as not to impact
other site operations.

Value to Syndicator and Subscriber

Automated Subscription Selection
The subscriber asks for a listing of subscription offers called (surprise!) a catalog. The subscriber can then
select an offer based not only on the collection, but several other parameters that the Syndicator places in
the offer. These parameters can either be subscription operational parameters such as delivery windows,
etc; or any other set of business parameters that the Syndicator wishes to offer.

Subscription management
The subscriber can now select a subscription offer from many different offers, can ask for subscription
status, can change the subscription and cancel it. The Syndicator responds to all of these and can instigate
a change in subscription as well. This includes the following:

Automated Subscription Establishment.
A subscriber sends a selected subscription offer (ice-offer) to the Syndicator. The Syndicator accepts
or rejects the offer.

Cancel Subscription
A Subscriber can cancel a subscription (that is terminate it).

Get Subscription Status
A Subscriber can ask the Syndicator for the current state of its subscription. This response include contact
information, the current delivery policy and current length of time and number of deliveries left among
other detailed information about the subscription.

Features

ice-get-catalog

Subscriber may request, Syndicator Must respond
Fixed subscription offers

Subscriber selects subscription offer from catalog, Syndicator only accepts or rejects

19 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

ice-cancel
Subscriber may issue an ice-cancel, Syndicator must respond to it.

ice-change-subscription
Subscriber may issue an ice-change-subscription, Syndicator must respond to it.

ice-get-status
Subscriber may issue an ice-get-status request. The Syndicator must respond with an ice-status
which describes, in detail, the subscription.

2.4.2 Syndication Implementation Guidelines

1. Implement the receiver side of the ice-get-catalog request. The Syndicator responds to the ice-get-catalog
request with an ice-catalog response. A good model for the ice-get-catalog request looks like:

<?xml version="1.0"?>
<!DOCTYPE ice-payload SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >
<ice-payload payload-id="PL-2000-08-24T22:10:33.901-JoeCool-423"
 timestamp="22:10:33,741" ice.version="1.1" >
 <ice-header>
 <ice-sender sender-id="4af37b30-2c35-11d2-be4a-204c4f4f5020"
 name="Joe Cool" role="subscriber" />
 <ice-user-agent>
 IceBlock Systems ICE Processor, V7.0
 </ice-user-agent >
 </ice-header>
 <ice-request request-id="2000-08-24T22:10:33_RQ_JoeCool_1873" >
 <ice-get-catalog />
 </ice-request>
</ice-payload>

An ICE catalog contains contact information and prototype subscriptions called offers. The contact
information is used to aid in human to human communication so that when your subscribers need to call,
they can quickly get in touch with the right people. Offers contain all of the proposed operating
parameters for specific subscription. This includes all of the basic things like which collection to
subscribe to, the name of the product being offered, how often it will be offered and a number of other
parameters that give your customers a great deal of control over the subscription. In this Recipe, we'll
limit ourselves to the smallest number needed. You can implement additional parameters as their value
becomes apparent.

Below is a good model for a typical catalog response:

<?xml version="1.0" ?>
<!DOCTYPE ice-payload SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >
<ice-payload payload-id="PL-2000-08-24T22:10:45-BradsGadgets-2761"
 timestamp="22:10:45,321"
 location="www.BradsGadgets.com"
 ice.version="1.1" >
 <ice-header >
 <ice-sender sender-id="4a2180c9-9435-d00f-9317-204d974e3410"
 name="Brads Gadgets, Inc." role="syndicator" />
 <ice-user-agent>
 RockSolid Protocols ICE Processor, V17
 </ice-user-agent >
 </ice-header >
 <ice-response response-id="RSP-2000-07-21T02:03:45-BradsGadgets-9876" >
 <ice-code numeric="200"
 phrase="OK"
 message-id="REQ-2000-07-21T02:02:23-JoeCool-345" />
 </ice-response>
 <ice-catalog name="Brad Newsletters"

20 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

 url="http://www.BradsGadgets.com/offers/newsletters.html" >
 <ice-contact name="Brads Gadgets">
 For information please contact
 Catalog Offers: Sherry Seller, 650-555-1212
 Technical Support: Gary Geek, 650-555-1313
 </ice-contact>
 <ice-offer product-name="Digital Cameras 2000 Newsletter"
 offer-id="BradsGadgets-DIGCAM-2000-V1-R1"
 subscription-id="ICE-NEW-SUBSCRIPTION"
 expiration-date="2001-08-30"
 quantity="20" >
 <ice-delivery-policy stopdate="2001-08-30" >
 <ice-delivery-rule mode="pull"
 max-num-updates="720"
 min-num-updates="13"
 max-update-interval="P2678400S"
 min-update-interval="P43200S" />
 <!-- max-num-updates is two per day,
 min-num-updates is 13 per year,
 max-update-interval is 31 days,
 min-update-interval is 12 hours -->
 </ice-delivery-policy >
 </ice-offer>
 <ice-offer product-name="Cell Phones 2000 Newsletter"
 offer-id="BradsGadgets-CELLPHONES-2000-V1-R1"
 subscription-id="ICE-NEW-SUBSCRIPTION"
 expiration-date="2001-08-30"
 quantity="30" >
 <ice-delivery-policy stopdate="2001-08-30" >
 <ice-delivery-rule mode="pull"
 max-num-updates="720"
 min-num-updates="26"
 max-update-interval="P1382400S"
 min-update-interval="P43200S" />
 <!-- max-num-updates is two per day,
 min-num-updates is 26 per year,
 max-update-interval is 16 days,
 min-update-interval is 12 hours -->
 </ice-delivery-policy >
 </ice-offer>
 </ice-catalog>
</ice-payload>

The above is a catalog of Brads Newsletters. In the catalog there are two fixed offers, one for the Digital
Camera Newsletter and one for the Cell Phone Newsletter. It is easy to add additional Newsletters for the
other gadgets Brad is interested in. The offers are fixed because there are no ice-negotiables specified.
This indicates an unwillingness on the part of the Syndicator to negotiate any of the operational
parameters.

The offer-id is a unique identifier used to specify directly this offer. No other offer in the Syndicators
many offers can have this id. The subscription-id is set to the ICE 1.1 required
"ICE-NEW-SUBSCRIPTION" value. This is an indicator that this is an offer and not yet a subscription.
The Syndicator changes this to a valid subscription-id when it returns an acceptable offer to a potential
subscriber that the subscriber has selected and proposed.

The expiration-date defines the date when the offer will expire. No subscription with this expiration
date lasts beyond this date. You should choose this date based on the length of time that you are willing to
deliver content according to this offer. If no expiration-date is provided on the ice-offer, then the
subscriptions from this offer are permitted to run indefinitely. In most circumstances, it is not a good idea
to allow either subscriptions nor offers to have unbounded time limits and therefore run indefinitely. (You
get out of this case using the ice-cancel request.)

21 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

The attribute, quantity, sets the maximum number of updates during the time span of the offer. This
means that the Syndicator promises to alter the collection at most this many times during the time of the
offer. In the example, for cell phones, this is 20. The monthly newsletter is offered 12 times and the
special CES update issue is updated daily during the show for 5 more times. The remaining 3 times are for
other specials that might occur during the year. Thus quantity gives Syndicators an opportunity to set
Subscriber delivery expectations.

An ice-delivery-policy is a list of delivery rules for the content specified by this subscription. The
stopdate on the ice-delivery-rule defines the date at which each subscription constructed from this
offer will end. What is implied but only indirectly stated is that the offer begins at the time the offer is
sent. In this example, the date is 24 August, 2000. Notice that the subscription stops one year from the
current (ice-package) date.

An ice-delivery-rule defines the parameters for content delivery. This is a very important XML
element because it is how ICE knows when and how often to attempt delivery. In this example, we're only
using a small number of the capabilities of one delivery rule. For sophisticated syndications, ICE permits
many delivery rules to be applied to a single Subscription.

Lets look at some of the attributes. The mode of the delivery can be either push or pull. Push mode means
that the Syndicator will send content to a subscriber; while pull mode means that the Subscriber will ask
for the content. Both newsletters above are set to pull mode. The mode attribute is the only required
attribute on an ice-delivery-rule.

The max-num-updates attribute stands for "maximum number of updates" and is set to 720 which during
the year the subscription runs is (nearly) twice per day. ICE duration times are always in seconds. The
max-update-interval attribute specifies the maximum amount of time that updates will be made available.
These are set to 31 days for the Digital Cameras newsletter (or 2678400 seconds) and 16 days for the Cell
Phones newsletter (or 1382400 seconds). The min-update-interval specifies the minimum amount of time
that updates will be made available. These times are set to 12 hours (43200 seconds) for both newsletters.
These are a small number of parameters in a single delivery rule to keep the example simple.

While the catalog setup is the most sophisticated to date, notice that it is a simple list of offers so that
potential Subscribers can choose a subscription. Each offer is a prototype subscription that is the layout of
how the Syndicator thinks the subscription could work for a Subscriber. The Syndicator can construct
many different offers to provide its collections in many different ways.

2. Implement the response to an ice-offer request. Brad finishes up automating support of subscriptions by
responding to ice-offer requests. Potential subscribers select an offer from Brads Catalog and send a
request similar to the following that was sent in by our buddy, Joe Cool:

<?xml version="1.0"?>
<!DOCTYPE ice-payload SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >
<ice-payload payload-id="PL-2000-08-24T22:10:33-JoeCool-534"
 timestamp="22:10:33,741" ice.version="1.1" >
 <ice-header>
 <ice-sender sender-id="4af37b30-2c35-11d2-be4a-204c4f4f5020"
 name="Joe Cool" role="subscriber" />
 <ice-user-agent>
 IceBlock Systems ICE Processor, V7.0
 </ice-user-agent >
 </ice-header>
 <ice-request request-id="REQ-000-08-24T22:10:33-JoeCool-1888" >
 <ice-offer product-name="Cell Phones 2000 Newsletter"
 offer-id="BradsGadgets-CELLPHONES-2000-V1-R1"
 subscription-id="ICE-NEW-SUBSCRIPTION"

22 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

 expiration-date="2001-08-30"
 quantity="30" >
 <ice-delivery-policy stopdate="2001-08-30" >
 <ice-delivery-rule mode="pull"
 max-num-updates="720"
 min-num-updates="26"
 max-update-interval="P1382400S"
 min-update-interval="P43200S" />
 <!-- max-num-updates is two per day,
 min-num-updates is 26 per year,
 max-update-interval is 16 days,
 min-update-interval is 12 hours -->
 </ice-delivery-policy >
 </ice-offer>
 </ice-request>
</ice-payload>

Brads responsibility is to check out the offer to make sure that he is willing to support the subscription in
the offer. Brad can validate each of the parameters and should do so. Specifically, Brad pulls the offer-id
and uses it to lookup his version of the offer as a comparison to validate the rest of the newly arrived
offer. Brad then makes a decision whether or not he wants to engage in a syndication relationship with the
sender. Presumably, you as a Syndicator would have a general business relationship setup with the
potential subscriber and this would help determine if you will let them subscribe. In this example, Brad
knows Joe Cool and is delighted to have Joe extend his subscription. Brad constructs a new
subscription-id (See Appendix B.2 for ways to do this) and sends back the following ice-subscription to
Joe Cool:

<?xml version="1.0" ?>
<!DOCTYPE ice-payload SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >
<ice-payload payload-id="PL-2000-08-24T23:40:45-BradsGadgets-3197"
 timestamp="23:40:45,321"
 location="www.BradsGadgets.com"
 ice.version="1.1" >
 <ice-header >
 <ice-sender sender-id="4a2180c9-9435-d00f-9317-204d974e3410"
 name="Brads Gadgets, Inc." role="syndicator" />
 <ice-user-agent>
 RockSolid Protocols ICE Processor, V17
 </ice-user-agent >
 </ice-header >
 <ice-response response-id="RSP-2000-07-21T02:03:45-BradsGadgets-9876" >
 <ice-code numeric="200" phrase="OK"
 message-id="REQ-2000-07-21T02:02:23-BradsGadgets-2397" />
 </ice-response>
 <ice-subscription current-state="INITIAL_STATE">
 <ice-offer product-name="Digital Cameras 2000 Newsletter"
 offer-id="BradsGadgets-DIGCAM-2000-V1-R1"
 subscription-id="SB-BradsGadgets-DigitalCameras2000-2000-08-23S3-003F9A7C"
 expiration-date="2001-08-30"
 quantity="20" >
 <ice-delivery-policy stopdate="2001-08-30" >
 <ice-delivery-rule mode="pull"
 max-num-updates="720"
 min-num-updates="13"
 max-update-interval="P2678400S"
 min-update-interval="P43200S" />
 <!-- max-num-updates is two per day,
 min-num-updates is 13 per year,
 max-update-interval is 31 days,
 min-update-interval is 12 hours -->
 </ice-delivery-policy >
 </ice-offer>
 </ice-catalog>

23 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

</ice-payload>

Notice that Brad has filled in the subscription-id with a new value. This is how Joe Cool asks for specific
content.

3. Implement ice-cancel so subscriptions can be terminated.

A Subscriber will issue an ice-cancel to terminate a subscription. Suppose for example that Joe Cool finds
that he can no longer keep up with Digital Cameras and decides to focus his energy on his true passion,
Cell Phones. Joe sends Brad the following:

<?xml version="1.0"?>
<!DOCTYPE ice-payload SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >
<ice-payload payload-id="PL-2000-08-24T22:10:33-JoeCool-1349"
 timestamp="22:10:33,741" ice.version="1.1" >
 <ice-header>
 <ice-sender sender-id="4af37b30-2c35-11d2-be4a-204c4f4f5020"
 name="Joe Cool" role="subscriber" />
 <ice-user-agent>
 IceBlock Systems ICE Processor, V7.0
 </ice-user-agent >
 </ice-header>
 <ice-request request-id="REQ-2000-08-24T23:47:33-JoeCool-1983" >
 <ice-cancel
 subscription-id="SB-BradsGadgets-DigitalCameras2000-2000-08-23S3-003F9A7C" />
 </ice-request>
</ice-payload>

The key items to note are the subscription-id which tells Brad which subscription to cancel. Brad verifies
the sender-id and the subscription-id before cancelling the subscription. Brad then sends back the
following response:

<?xml version="1.0" ?>
<!DOCTYPE ice-payload SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >
<ice-payload payload-id="PL-2000-08-24T23:40:45-BradsGadgets-2171"
 timestamp="23:40:45,321"
 location="www.BradsGadgets.com"
 ice.version="1.1" >
 <ice-header >
 <ice-sender sender-id="4a2180c9-9435-d00f-9317-204d974e3410"
 name="Brads Gadgets, Inc." role="syndicator" />
 <ice-user-agent>
 RockSolid Protocols ICE Processor, V17
 </ice-user-agent >
 </ice-header >
 <ice-response response-id="RSP-2000-07-21T02:03:45-BradsGadgets-9876" >
 <ice-code numeric="200" phrase="OK"
 message-id="REQ-2000-08-24T23:47:33-JoeCool-1983" />
 </ice-response>
</ice-payload >

Note that Brad could also send back any of a number of status codes shown in Appendix A.4. For
example, the status code "405" indicates an unknown sender and "406" indicates the subscription is
unknown. It is straightforward for your implementation to reply with anyone of several status codes
depending on the outcome of processing the request.

4. Implement ice-change-subscription to adjust subscription parameters.

2.4.3 Subscription Implementation Guidelines

24 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

1. Implement the ice-get-catalog request. The Syndicator responds to the ice-get-catalog request with
an ice-catalog response. Joe Cool, now can ask for a catalog. A good model for the ice-get-catalog
request looks like:

<?xml version="1.0"?>
<!DOCTYPE ice-payload SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >
<ice-payload payload-id="PL-2000-08-24T22:10:33-JoeCool-1869"
 timestamp="22:10:33,741" ice.version="1.1" >
 <ice-header>
 <ice-sender sender-id="4af37b30-2c35-11d2-be4a-204c4f4f5020"
 name="Joe Cool" role="subscriber" />
 <ice-user-agent>
 IceBlock Systems ICE Processor, V7.0
 </ice-user-agent >
 </ice-header>
 <ice-request request-id="REQ-2000-08-24T22:10:33-JoeCool-1873" >
 <ice-get-catalog />
 </ice-request>
</ice-payload>

The model for the response to this request is shown in Step 7 above in the Syndicator Implementation
guidelines. When your subscriber processor receives the ICE catalog, it should select one of the offers.
One way to do it is to display the offer names and product-ids to a person for selection. For this
implementation, the Subscriber-processor may simply select by product name. Joe Cool can now
automatically select a subscription offer, suppose that he once again selects the Cell Phone newsletter
Once selected, a model for the offer in our example would look like:

<?xml version="1.0"?>
<!DOCTYPE ice-payload SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >
<ice-payload payload-id="PL-2000-08-24T22:10:45-JoeCool-1870"
 timestamp="22:10:45,741" ice.version="1.1" >
 <ice-header>
 <ice-sender sender-id="4af37b30-2c35-11d2-be4a-204c4f4f5020"
 name="Joe Cool" role="subscriber" />
 <ice-user-agent>
 IceBlock Systems ICE Processor, V7.0
 </ice-user-agent >
 </ice-header>
 <ice-request request-id="REQ-2000-08-24T22:10:33-JoeCool-1888" >
 <ice-offer product-name="Cell Phones 2000 Newsletter"
 offer-id="BradsGadgets-CELLPHONES-2000-V1-R1"
 subscription-id="ICE-NEW-SUBSCRIPTION"
 expiration-date="2001-08-30"
 quantity="30" >
 <ice-delivery-policy stopdate="2001-08-30" >
 <ice-delivery-rule mode="pull"
 max-num-updates="720"
 min-num-updates="26"
 max-update-interval="P1382400S"
 min-update-interval="P43200S" />
 <!-- max-num-updates is two per day,
 min-num-updates is 26 per year,
 max-update-interval is 16 days,
 min-update-interval is 12 hours -->
 </ice-delivery-policy >
 </ice-offer>
 </ice-request>
</ice-payload>

The Syndicator, BradsGadgets, checks the offer and responds with a new subscription:

<?xml version="1.0" ?>
<!DOCTYPE ice-payload SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >

25 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

<ice-payload payload-id="PL-2000-08-24T23:40:45-BradsGadgets-4329"
 timestamp="23:40:45,321"
 location="www.BradsGadgets.com"
 ice.version="1.1" >
 <ice-header >
 <ice-sender sender-id="4a2180c9-9435-d00f-9317-204d974e3410"
 name="Brads Gadgets, Inc." role="syndicator" />
 <ice-user-agent>
 RockSolid Protocols ICE Processor, V17
 </ice-user-agent >
 </ice-header >
 <ice-response response-id="RSP-2000-07-21T02:03:45-BradsGadgets-9876" >
 <ice-code numeric="200" phrase="OK"
 message-id="REQ-2000-07-21T02:02:23-BradsGadgets-2397" />
 </ice-response>
 <ice-subscription current-state="INITIAL_STATE">
 <ice-offer product-name="Cell Phones 2000 Newsletter"
 offer-id="BradsGadgets-CELLPHONES-2000-V1-R1"
 subscription-id="SB-BradsGadgets-CellPhones2000-2000-08-23S14-003F9A7C"
 expiration-date="2001-08-30"
 quantity="20" >
 <ice-delivery-policy stopdate="2001-08-30" >
 <ice-delivery-rule mode="pull"
 max-num-updates="720"
 min-num-updates="13"
 max-update-interval="P2678400S"
 min-update-interval="P43200S" />
 <!-- max-num-updates is two per day,
 min-num-updates is 13 per year,
 max-update-interval is 31 days,
 min-update-interval is 12 hours -->
 </ice-delivery-policy >
 </ice-offer>
 </ice-catalog>
</ice-payload>

The key thing to observe is that the Syndicator filled in the subscription-id. This is your confirmation that
you have a subscription to "Digital Cameras 2000 Newsletter". The other attribute values have been
extensively explained in the Syndicator Implementations guidelines above. Basically, it says:

The Subscriber (you!) will send a requests for updates (mode="pull")
The subscription ends on the 30 day of August in 2001.
The Syndicator will update the content at most 720 times or about twice a day.
The Syndicator will update the content at least 13 times or about once per month.
The Subscriber should check for new content at most once every 12 hours.
The Subscriber should check for new content at least once every 31 days.

You may want to consider implementing a simple scheduling mechanism to wake up periodically and
check to see if it is time to check for a new newsletter.

2. Implement ice-cancel so subscriptions can be terminated.

This feature gives the Subscriber the ability to terminate a subscription when desired . Suppose that Joe
Cool decides that he no longer desires to subscribe to Brads Digital Camera Newsletter. Joe issues the
following payload to Brad:

<?xml version="1.0"?>
<!DOCTYPE ice-payload SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >
<ice-payload payload-id="PL-2000-08-24T22:10:33-JoeCool-2321"
 timestamp="22:10:33,741" ice.version="1.1" >
 <ice-header>
 <ice-sender sender-id="4af37b30-2c35-11d2-be4a-204c4f4f5020"

26 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

 name="Joe Cool" role="subscriber" />
 <ice-user-agent>
 IceBlock Systems ICE Processor, V7.0
 </ice-user-agent >
 </ice-header>
 <ice-request request-id="REQ-2000-08-24T23:47:33-JoeCool-1983" >
 <ice-cancel subscription-id="SB-BradsGadgets-DigCam2000-2000-08-23S14-003F9A7C" />
 </ice-request>
</ice-payload>

The key items to note are the subscription-id which tells Brad which subscription to cancel. Brad will
verify the sender-id and the subscription-id before cancelling the subscription. If both check out, Brad
then sends back the following response:

<?xml version="1.0" ?>
<!DOCTYPE ice-payload SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >
<ice-payload payload-id="PL-2000-08-24T23:40:45-BradsGadgets-3782"
 timestamp="23:40:45,321"
 location="www.BradsGadgets.com"
 ice.version="1.1" >
 <ice-header >
 <ice-sender sender-id="4a2180c9-9435-d00f-9317-204d974e3410"
 name="Brads Gadgets, Inc." role="syndicator" />
 <ice-user-agent>
 RockSolid Protocols ICE Processor, V17
 </ice-user-agent >
 </ice-header >
 <ice-response response-id="RSP-2000-07-21T02:03:45-BradsGadgets-9876" >
 <ice-code numeric="200" phrase="OK"
 message-id="REQ-2000-08-24T23:47:33-JoeCool-1983" />
 </ice-response>
</ice-payload >

Again, note the importance of the message-id matching the request-id. Also, Brad could send back any of
a number of status codes shown in Appendix A.4. For example, the status code "405" indicates an
unknown sender and "406" indicates the subscription is unknown. It is straightforward for your
implementation to process any of several status codes.

3. Implement ice-change-subscription to adjust subscription parameters.

2.4.4 Enhancements

There are a number of enhancements to this recipe to make your minimal ICE compliant implementation more
robust. Collection management will enhance the Syndicators ability to deliver and manage the collection at all of
the subscribers. Incremental Update enhances efficiency at both the Syndicator and Subscriber, because it
lightens the delivery and processing load. Individual asset repair permits rapid quick repair of a single ice-item
without having to download an entire ice-package, again enhancing operational efficiency. Finally, enhancing
the delivery rules support means that both Syndicators and Subscribers can better manage server and bandwidth
resources and thus obtain significant efficiency.

2.4.4.1 Collection Management

If you haven't done so, consider implementing collection management as described in 2.3.4.3 above.

2.4.4.2 Incremental Update

Once you have implemented basic Collection Management, the first efficiency upgrade is to provide incremental

27 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

update. To achieve this, you need to implement ice-item-group and ice-item-delete to accompany
ice-item and ice-item-ref. With these implemented you can alter your package construction algorithm to
add new items and delete items that are no longer used and, most importantly, not send items that your
subscriber already has.

2.4.4.3 Individual Asset Repair

This feature allows a subscriber to ask the Syndicator to resend a single ice-item. The value to the subscriber is
the savings in processing an entire ice-package to obtain one item and it saves the transmission bandwidth. From
the Syndicators view, it is (now) simple to build a one-item response.

2.4.4.4 Enhance Delivery Rules Support

Significant efficiency and performance gains can be made by increasing the number of attributes in the
ice-delivery-rule that you support. The suggest order and value is outlined in 3.1 below.

3. Additions & Improvements
There are a number of optional enhancement paths:

Full Delivery Rule Support
Simple Negotiation Support
Full Subscription Negotiation.
Minimal Subscriber Support.
Auditing (logging)

3.1 Full Delivery Rule Support
There are many options on delivery rules that enhance the operation of both Syndicators and Subscribers. They
are useful to Syndicators in both push and pull delivery mode. In push mode, they determine the best time for
package delivery and, in pull mode, they determine if the subscriber is honoring the delivery window. The same
comments work in reverse for the Subscriber. In push mode, they determine if the Syndicator is honoring the
delivery window. In pull mode, they determine the best time to ask for package delivery from the Syndicator.
Here is my (ordered by importance) list of attributes for implementation. (By now you should feel completely
free to implement in your own order!)

Many of the parameters concern the idea of a delivery window. The delivery window is the span of calendar
time when it is permissable for delivery to occur. For each delivery rule, the time attributes are ANDed in the
sense that the delivery window is restricted by each of the time parameters.

mode={"push"|"pull"}
This has already been implemented. It determines whether the Syndicator pushes content to the
Subscriber or whether the Subscriber pulls content from the Syndicator.

url
The address to send the updates. This effectively allows the subscriber to direct packages to a
specific place (or service).

startdate
This is the start date of the delivery window. If this parameter is left out, the delivery window starts
at the startdate of the enclosing ice-delivery-policy. The value is an ice-date (i.e. an
ISO8601 date) of the form CCYY-MM-DDTHH:NN:SS,F. CC is the 2 digit century (e.g. 20), YY is

28 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

the two digit year (e.g. 00), MM is the two digit month (e.g. 01 is January and 12 is December), DD
is two digit day from 01 to 31, HH is two digit hour (00..24), NN is two digit minute (00..59), SS
is two digit second (00..59) and F is an optional fraction of a second with up to 9 digits of
precision. If the fraction of a second is left out, the seperating comma can also be left out. Note the
time 00:00:00 means the start of the day (i.e. just slightly past midnight the previous day) and
24:00:00 means the end of the day (i.e. just slightly before midnight of today). Thus, a startdate
of 2000-08-27:24:00:00 and a startdate of 2000-08-28:00:00:00 are (for all measurable purposes)
identical, while a startdate of 200-08-28:00:00:00 and a startdate of 2000-08-28:24:00:00 are
24 hours apart. Please note that all ice-times are UTC (or informally GMT) times; so that time
computations are normalized to UTC time. This means for example that if you are in New York,
you are 5 hours behind UTC; or 2000-08-28:09:00:00 is at 4 AM your time and not 9 AM. Make
sure that you translate accordingly when you present these times to your users. The utility of this to
you is that you don't have to adjust times for each interaction with a Syndicator or Subscriber based
on their timezone. Everyone using ICE runs on UTC time.

stopdate
This is the stop date of the delivery window. If this parameter is left out, the delivery window stops
on the stopdate of the enclosing ice-delivery-policy. Together the startdate and the
stopdate define the maximum amount of time that the delivery window is open (that is the time
that packages may be delivered) for this delivery rule. A day is open if package deliveries are
possible on any part of the day. The value is an ice-date as defined above. However, the
stopdate must always exceed or equal the startdate.

starttime
This is the start time of the delivery window on each day that is open. It is an ice-time format and
is of the form HH:NN:SS,F where these values are as defined above in startdate. The starttime
defaults to 00:00:00 if left unspecified. A starttime of 24:00:00 is legal and effectively begins the
adjacent day.

There are two special cases that can arise based on the specification of the startdate and the
starttime. If the startdate specifies a time later than the starttime, the startdate time is used
as the starttime for that first possibly open day. If the stopdate specifies a time that occurs
before the starttime plus duration (see below) runs out, the duration is reduced so that the
span of time that deliveries can be made ends at the time in the stopdate.

monthday
This is a list of the days of the month that the delivery window is restricted to. A month day is
expressed as a number from 1 to 31 inclusive or the special tokens, "any" and "last". Note that
leading zeros are valid and 01 is the same as 1. A valid attribute is, monthday="1 15 last" and
means that the delivery window is also restricted to the first, fifteenth and last day of the month
between the start and stop dates. If this attribute is not specified, the default value is "any" meaning
that the delivery window is not restricted by monthday. "last" means the last day of the month, so
it is 28,29,30,or 31 depending on whether it is leap-year and the current month.

weekday
This is a list of the days of the week that the delivery window is restricted to. A week day is
expressed as either a number from 1 to 7 or a named day. Monday is day 1, etc. through Sunday is
day 7. The special token "any" means that every day of the week is available to the delivery window
and is the default value. Thus, a valid weekday attribute is, weekday="1 3 5 7" which means that
delivery is restricted to Monday, Wednesday, Friday and Sunday. It could also have been expressed
as, weekday="Monday Wednesday Friday Sunday".

duration
This is the length of time during a day that delivery can be made and occurs on each open day or
part of open day in the delivery window beginning at the starttime and lasting for the duration,
even if it extends into an adjacent open day. This is called the open time. The duration is specified
in ice-duration format, that is in number of seconds and fractions of a second in the form PN,FS

29 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

where P is the literal 'P', N is a non-negative integer number of seconds, F is a fraction of a second
and P is the literal 'P'. The fraction of a second must be readable with up to 9 digits. (You don't have
to have 9 digits of precision, use what you have, but you must accept up to 9 digits. We
reccommend that you round to your implementations precision.) Thus, P86400S represents 24 hours
and is the maximum length of time during an open day that deliveries can be made. Note that for the
first and last days, the open time may be reduced. If the time in the startdate exceeds the
starttime attribute, the duration is reduced by the difference between the time in the startdate
and the starttime upto the duration time. So, if the startdate time excceds the starttime plus
the duration, the day is closed on the first day. If the time on the stopdate is earlier than the
starttime plus duration, the duration is reduced so that the open time stops at the stopdate
time. Also, if stopdate time occurs before the starttime, the last day is closed. If the duration
attribute is not specified, it defaults to 24 hours (P86400S) . A duration of 0 hours (P0S) is legal
and effectively closes each open day!

min-update-interval
This is an ice-duration and is interpreted according to the role of syndicator or subscriber. If a
syndicator, in push mode, it is the minimum amount of time between updates during each open time
on each open day. The syndicator will allow at least this amount of time between updates. If a
subscriber, it is pull mode, the subscriber will allow at least this amount of time between get
package requests during each open time on each open day.

max-update-interval
This is an ice-duration and is interpreted according to the role of syndicator or subscriber. If a
syndicator, in push mode, no more than this amount of time will elapse between updates during
each open time on each open day. The syndicator promises to update at least once during during this
amount of time. If a subscriber, in pull mode, no more than this amount of time will elapse between
get package requests to the syndicator. The subscriber promises to ask for updates at least once
during this amount of time.

min-num-updates
This is the minimum number of updates that will occur during each open time on an open day. For
"pull" mode, the syndicator is asking the subscriber to issue a get package at least this many times.
For "push" mode, the syndicator will deliver a payload at least this many times.

max-num-updates
This is the maximum number of updates that will occur during each open time on an open day. For
"pull" mode, the syndicator is asking the subscriber to issue a get package no more than this many
times. For "push" mode, the syndicator will deliver a payload no more than this many times.

For example, the delivery rule that has a start date of 15 September 2000 at 8:00 AM and a stop date of 1
January 2001 at 8:00 AM, with a start time of 7:00 AM and a monthday of 15 and a weekday of "1 2 3 4 5" and
a duration of 2 hours means that delivery can occur only on the 15th of the month if it is during the work week
of Monday through Friday for two hours from 7 AM to 9 AM. Note that the first open date on the 15th of
September, the open time is only 1 hour on that Friday from 8 AM to 9 AM. Note also that the translation to
UTC may mean the ice-dates are different unless you live in the GMT time zone.

While there is a fair amount of detail here, it is a straight forward implementation of delivery window
computation. The value of these delivery rules is that they can assist in a wide variety of dynamic content
retrieval that is very difficult to keep up with by hand. For example, if you are monitoring fast changing events
such as stock changes, sports action, news stories, entertainment stories or even the weather, automating
delivery really enhances your use of this rapidly changing content that would be almost impossible to keep up
with by hand. The other potential advantage is that you may be able to schedule delivery during off-peak hours
to distribute server loading, and thus control your operational costs.

3.2 Simple Negotiable Subscriptions

30 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

Ice defines carefully, the ability to negotiate both operational parameters and any other set of business terms that
may interest you. This can be a very powerful addition to your syndication service. To get started on a useful
initial implementation, consider permitting your subscribers to fill in the delivery URL in the ice-delivery-rule.
This is both easy to do and may require almost no checking on your part. Next consider building the ability to
negotiate only a couple of numeric parameters. For example permit negotiating the start time and duration
attributes of a delivery rule. This allows your subscribers the ability to restrict delivery to late nights or early
mornings and thereby shift the delivery load to lightly loaded times on their servers.

3.3 Full Subscription Negotiation
Once simple negotiation is achieved, Consider implementing multiple parameter resolution. Start by enhancing
negotiation to handle enumerations as well as the spans in 3.2 above. Test your implementation by permitting
negotiation of the monthday and weekday attributes. Once you have this working, implement the constrained
convergence algorithm in both the Syndicator and the Subscriber. Finally, observe that parameter negotiation
works on any well defined set of parameters and that they are expressable as an ice-negotiable. Thus, your
implementation can now support application specific parameter negotiation that has nothing to do with ICE's
protocol operational parameters.

3.4 Minimal Subscriber Support
ICE supports a minimal subscriber. This is a subscriber that may not have a server on line at all times. ICE is
carefully defined so that the Syndicator never issues a direct request to a subscriber; but always waits for the
Subscriber to initiate a conversation. This is because the subscriber may not always be online. Thus, the
subscriber is free to completely shut down. However, the Syndicator occasionally needs to obtain information
from the subscriber. The Syndicator signals this need by setting a flag in the response to a subscriber when it
issues a request. This flag is called the "unsolicited pending" flag. Effectively, it asks the Subscriber to issue an
request for these "unsolicited" requests that the Syndicator wants to send. The Subscriber is free to defer this
request until it is convenient. Of course the Syndicator is also free to refuse any new requests until the subscriber
asks for the "unsolicited" requests and signals this intention with an error code when the subscriber issues a new
request. See Appendix A.4 for the status code. The subscriber eventually MUST issue a request for these
"unsolicited" requests. Through the use of an unsolicited request, the Syndicator can ask the Subscriber to
change a subscription (and possibly re-negotiate it), obtain Subscriber usage logs, obtain the Subscribers view
of a subscription, issue a notification, update a collection or ask for collection update confirmation.

3.5 Auditing & Logging
Most robust syndications keep significant logs of their interactions. These are useful to assist in resolving
operational problems and to assure correct and desired operation of the syndication and subscription operations.
ICE provides a standard means for each side of a syndication relationship to ask for and receive log information.
This is also of value for auditing purposes. Often a syndicator will provide content under the requirement of
auditing the statistics of the viewers of the content. A useful addition to your implementation is the auditing and
logging services of ICE.

4. Conclusion.
Congratulations! If you've implemented an ICE Subscriber and Syndicator using these recipes, you have built a
fine piece of software. While there is much more to build, Clearly you have a useful tool to support a wide range
of syndication relationships.

31 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

Appendices

A. Model Error Responses

A.1 Unknown Subscriber/Syndicator Error Response

The following is a model for responding to a request for which the sender is not known. To populate it correctly
for your implementation, you need to replace the values of all of the following attributes:

payload-id - A sender unique payload identifier.
timestamp - The time stamp should mark the completion of the ice-payload construction.
location - The URL where the next request to the sender is to be sent.
sender-id - This is the UUID of the sender.
name - This should be the senders Web site URL; or otherwise describe the organization sending error
response.
ice-user-agent content - describes your protocol processor and version number. Use this for debugging the
code.
response-id - A sender unique response identifier (privately generated).
failing-request-id - The request id from the payload whose header contained the unknown sender.
ice-code content - The text below is indicative of the type of message you may find useful.

<?xml version="1.0" ?>

<!DOCTYPE ice-payload SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >

<ice-payload payload-id="PL-2000-07-21T02:03:46-BradsGadgets-3996"

 timestamp="02:03:46,32416"

 location="www.bradsgadgets.com/ice"

 ice.version="1.1" >

 <ice-header >
 <ice-sender sender-id="4a2180c9-9435-d00f-9317-204d974e3410"

 name="Brads Gadgets, Inc." role="syndicator" />

 <ice-user-agent>Road Kill, Inc. ICE Processor, V17</ice-user-agent >

 </ice-header>

 <ice-response response-id="RSP-2000-07-21T02:03:45-BradsGadgets-78889" >

 <ice-code numeric="405"

 phrase="Unrecognized Sender"

 message-id="{failing-request-id}"

 >

 Your sender-id, {unknown-sender-id}, is not known. Please see,

 http://www.bradsgadgets.com/newsletters/subscriptions to setup

 a subscription. Or, call {subscription-support-phone} for

 technical assistance.

 </ice-code>

 </ice-response>

</ice-payload>

A.2 Unknown Subscription Error Response

The following is a model for responding to a request where the subscription is not known.

<?xml version="1.0" ?>

<!DOCTYPE ice-payload SYSTEM "http://www.icestandard.org/dtds/ICE1_1.dtd" >

<ice-payload payload-id="PL-2000-07-21T02:03:46-BradsGadgets_3996"

 timestamp="02:03:46,32416"

 location="www.bradsgadgets.com/ice"

 ice.version="1.1" >

 <ice-header >

32 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

 <ice-sender sender-id="4a2180c9-9435-d00f-9317-204d974e3410"

 name="Brads Gadgets, Inc." role="syndicator" />

 <ice-user-agent>Road Kill, Inc. ICE Processor, V17</ice-user-agent >
 </ice-header>

 <ice-response response-id="RSP-2000-07-21T02:03:45-BradsGadgets-78889" >

 <ice-code numeric="405"

 phrase="Unrecognized Sender"

 message-id="{failing-request-id}"

 >

 Your subscription-id, {unknown-sender-id}, is not known. Please see,

 http://www.bradsgadgets.com/newsletters/subscriptions to setup

 a subscription. Or, call {subscription-support-phone} for

 technical assistance.

 </ice-code>

 </ice-response>
</ice-payload>

A.3 Unimplemented Error Response

This model can be used by both the syndicator and subscriber by replacing the highlighted values with
those that your implementation generates.

<?xml version="1.0" ?>
<!DOCTYPE ice-payload SYSTEM "http://www.icestandard.org/dtds/ICE1_2.dtd" >

<ice-payload payload-id="PL-2000-07-21T02:03:46-BradsGadgets-3841"

 timestamp="02:03:46,32416"

 location="www.bradsgadgets.com/ice/newsletters"

 ice.version="1.1" >

 <ice-header >

 <ice-sender sender-id="4a2180c9-9435-d00f-9317-204d974e3410"

 name="Brads Gadgets, Inc." role="syndicator" />

 <ice-user-agent>Road Kill, Inc. ICE Processor, V17</ice-user-agent >

 </ice-header>

 <ice-response response-id="RSP-2000-07-21T02:03:45-BradsGadgets-1" >

 <ice-code numeric="503"
 phrase="Not implemented"

 message-id="{unimplemented-request-id}"

 >

 Your request is not implemented in the current syndication program.

 </ice-code>

 </ice-response>

</ice-payload>

The message-id in the ice-code matches the request-id of the request that was not implemented.

A.4 List of ICE Codes:

The status values defined by ICE are:

2xx: Success
200 OK
The operation completed successfully.
201 Confirmed
The operation is confirmed.
202 Package sequence state already current
A Subscriber requested a package update, but the Subscriber is already in the current package
sequence state, i.e., there are no updates at the moment.

3xx: Payload level Status Codes

33 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

These indicate something about the ice-payload itself, as opposed to the individual requests and
responses within the payload. These codes have one very explicit and important semantic: they are used
when the payload could not be properly interpreted, meaning that even if there were multiple requests in
the payload, there will be only one ice-code in the response. For example, if the payload had been
corrupted, it might be so corrupted that it isn't even possible to determine how many requests it contains,
let alone respond to them individually.

The specific codes are:
300 Generic catastrophic payload error
Generic status code indicating inability to comprehend the received payload. Usually, it is better to
send a more specific code if possible.
301 Payload incomplete/cannot parse
The payload sent is severely garbled and cannot be parsed. For example, if a binary file were sent
instead of an XML payload, this would be an appropriate response.
302 Payload not well formed XML
The payload sent is recognizable as XML, but is not well formed per the definition of XML. This is
available as both a payload level error and as a request level (4xx) error. Whether a given
implementation attempts to interpret not well formed XML so as to generate request level (4xx)
errors vs. payload level (3xx) errors is a quality of implementation issue.
303 Payload validation failure
The payload failed validation according to the DTD. This is available as both a payload level error
and as a request level (4xx) error. Whether a given implementation attempts to interpret not well
formed XML so as to generate request level (4xx) errors vs. payload level (3xx) errors is a quality
of implementation issue. Note that Receivers SHOULD perform validation on incoming ICE
payloads, but are not required to. Senders MUST send only valid ICE payloads or they are in
error; however, the ability to detect invalid payloads is a quality-of-implementation issue for the
Receiver, and Senders MUST NOT assume the Receiver will perform an XML validation on their
payloads.
320 Incompatible version
The ICE protocol version used in the request is not supported. NOTE: The ICE protocol versions
are transmitted as part of the payload header, implementations may look there to decide what
appropriate corrective actions to take.
331 Failure fetching external data
The receiver could not follow an external reference (URL) given to it by the sender as an external
entity reference. Note that in ICE 1.0 only the Subscriber is permitted to reply with this code. A
Syndicator MUST NOT reply with this code.
390 Payload temporary redirect
Used with redirection.
391 Payload permanent redirect
Used with redirection.

4xx: Request level Status Codes

These indicate errors caused by an inability to carry out an individual request. Note that in some cases
there are similar errors between the 3xx and 4xx class; the difference is whether or not the error is
supplied as a single, payload level error code (3xx) or whether it is supplied as a prerequisite code.

400 Generic request error
Generic status code indicating inability to comprehend the request. Usually, it is better to send a
more specific code if possible.
401 Incomplete/cannot parse
The request sent is severely garbled and cannot be parsed. Note that in most cases, a payload level
error (301) might be more appropriate.
402 Not well formed XML

34 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

The request sent is recognizable as XML, but is not well formed per the definition of XML. This is
available as both a payload level error and as a request level (4xx) error. Whether a given
implementation attempts to interpret not well formed XML so as to generate request level (4xx)
errors vs. payload level (3xx) errors is a quality of implementation issue.
403 Validation failure
The request failed validation according to the DTD. This is available as both a payload level error
and as a request level (4xx) error. Whether a given implementation attempts to interpret not well
formed XML so as to generate request level (4xx) errors vs. payload level (3xx) errors is a quality
of implementation issue. Note that Receivers SHOULD perform validation on incoming ICE
payloads, but are not required to. Senders MUST send only valid ICE payloads or they are in
error; however, the ability to detect invalid payloads is a quality-of-implementation issue for the
Receiver, and Senders MUST NOT assume the Receiver will perform an XML validation on their
payloads.
404 This error intentionally left blank
405 Unrecognized sender
406 Unrecognized subscription
407 Unrecognized operation
408 Unrecognized operation arguments
409 Not available under this subscription
The Requester has referenced something not covered by the subscription referenced in the request.
410 Not found
Generic error for being unable to find something.
411 Unrecognized package sequence state
The package sequence identifier supplied by the Sender is not understood by the Receiver.
412 Unauthorized
413 Forbidden
414 Business term violation
420 Constraint failure
Compliant implementations MUST NOT send this message if the constraint was not specified in the
negotiated subscription.
422 Schedule violation, try again later
The request was made at an incorrect time. For example, trying to get a package update outside of
the agreed upon timing window.
430 Not confirmed
Generic error indicating the operation is not confirmed.
431 Failure fetching external data
The receiver could not follow an external reference (URL) given to it by the sender. Note that in
ICE 1.0 only the Subscriber is permitted to reply with this code. A Syndicator MUST NOT reply
with this code.

5xx: Implementation errors and operational failures

These indicate errors caused by internal or operational problems, rather than by incorrect requests. Note
that, like all other codes except for the 3xx series, these must be sent individually with each response; if
the error condition or operational problem prevents the Responder from resolving the original payload
down to the request level, use a 3xx code instead.

500 Generic internal responder error
Catch-all for general problems; recovery/retry behavior unspecified.
501 Temporary responder problem
Too busy, update in progress etc. Eventually an identical retry request might succeed.
503 Not implemented
The server does not implement the requested operation.

35 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

6xx: Pending State

These codes indicate a state condition where the Subscriber is expected to send something to the
Syndicator, or vice versa.

601 Unsolicited messages must be processed now
The Syndicator has unsolicited messages to send to the Subscriber, and the Subscriber has not yet
requested them. The Syndicator has decided (based on implementation specific policy) to refuse to
process any more requests until the unsolicited messages are collected.
602 Excessive confirmations outstanding
The Syndicator had requested confirmation of package delivery, and now refuses to perform any
additional operations until the Subscriber supplies the confirmations (positive or negative).
603 No more confirmations to send
The Subscriber received an ice-send-confirmations message but believes it has sent all of the
confirmations already.
604 No more unsolicited messages
The Subscriber sent an ice-unsolicited-now but the Syndicator has no unsolicited messages to
send.

7xx: Local Use Codes

These codes are reserved for use by the local ICE implementation and MUST NOT ever be sent over the
wire. The intent is that this range of codes can be used by the local ICE implementation software to
communicate transport level error conditions, or other specific local conditions, using the ice-code
mechanism in a way guaranteed to not collide with any other usage of ice-code values.

9xx: Experimental Codes

ICE implementations MUST NOT use any codes not listed in this specification, unless those codes are in
the 9xx range. The 9xx range allows implementations to experiment with new codes and new facilities
without fear of collision with future versions of ICE.

How a given system treats any 9xx code is a quality of implementation issue.

B. Identifier Implementation Suggestions

B.1 Payload Identifiers

The payload identifier is used to uniquely describe the sender's payloads. One of the best ways to obtain a
unique identifier is to use the time coupled with your domain name. The ICE timestamp follows the ISO
8601 time format. So if today is the 23 of August, 2000 at 8:10 am then a reasonable model for a payload
identifier is:

PL-[date]T[time]-[domain]-[count]

where
PL stands for Payload.
[date] is the date the payload is created. For example, 2000-08-23.
[time] is the time the payload is created. For example, 08:10:43.007.
[domain] is the domain name of your ICE site. For example, BradsGadgets.
[count] is an incrementing number starting at one. Each time a payload is constructed, increment
this number. This orders all of the payloads, even if you have a very fast computer that can generate

36 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

more than one payload in a millisecond.

Putting it altogether, we get a rather long but unique to Brad identifier:

PL-2000-08-23T08:10:43.007-BradsGadgets-49783

This is just one of the many possible models. You may wish to add additional distinguishing fields such as
host name if you have multiple hosts running ICE. You can have almost any format that you want. ICE
only requires that the Payload identifier be unique. Since only you have the right to use your domain
name, it is a pretty good distinguishing mechanism. Of course, the current time is also a pretty good
distinguishing identifier and putting them together is reasonably unique.

B.2 Subscription Identifiers

The subscription identifier is used by the Syndicator to uniquely identify a particular subscription. It is
used by a subscriber to tell the Syndicator which subscription is being discussed. Generally, the subscriber
needs to keep the subscription information with additional Syndicator information (such as at what
domain name to make requests). So for the subscriber, the association is distinguishing only within the
subscriptions to a single syndicator. Further only the Syndicator can generate this identifier because it
must generate one for each new subscription it creates.

This being the case, the Syndicator could use something of the form:

SB-[domain]-[contentName]-[subscriptionNumber]-[key]

where
SB stands for Subscription
[domain] is the domain name of your ICE site. For example, BradsGadgets.
[contentName] is the name of your content offering. For example, CellPhones2000.
[subscriptionNumber] is a number that uniquely identifies the subscription within the content
offering. For example, the date the subscription started with an incrementing count appended would
be: 2000-08-23S14
[key] is some key that only the subscriber would know and that is hard to guess, say a generated
UUID that the Syndicator sends to the subscriber to begin a subscription. For example: 003F9A7C

Putting it all together, you get:

SB-BradsGadgets-CellPhones2000-2000-08-23S14-003F9A7C

Again, you can have almost any format that you want. ICE only requires that the Subscription Identifier be
unique across all subscriptions from Syndicator to a receiver so that the Syndicator can distinguish
subscriptions; while the above generates a unique subscription identifier across all of a Syndic tors
subscriptions.

B.3 Request Identifiers

The Request Identifier is used by the sender to uniquely identify its requests. The receiver uses it only to
place into a message-id of the ice-code in a response it makes to the request. This is how the sender knows
which response is associated with which request. When the sender receives a response, it looks up the
message-id in its list of requests and thereby figures out which request the response if for.

This being the case, the requester (be it Syndicator or subscriber) could use a prototype of the form:

37 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

REQ-[domain]-[date]T[time]-[count]

where:
REQ stands for "Request"
[domain] is the domain name of your ICE site. For example, JoeCool.
[date] is the ISO 8601 date. For example, 2000-08-24
[time] is the ISO 8601 time. For example, 08:10:43.003
[count] is an incrementing number that increments for each request that is generated. For example,
35478.

Putting it all together, you get:

REQ-JoeCool-2000-08-24T08:10:43.003-35478

Again, you can have almost any format that you want. ICE only requires that the Request Identifier be
unique across all payloads from a sender to a receiver so that it can distinguish requests. The receiver is
required to place the Request Identifier in the "message-id" of the response.

B.4 Response Identifiers

The response identifier is used by the receiver of a request to uniquely identify its response to the request.
When the receiver of a request sends back a response, it become a sender (of the response). The Response
Identifier has the same uniqueness requirement that the Resquest Identifier has. That being the case, a
similar prototype to the Request Identifier can be used:

RSP-[domain]-[date]T[time]-[count]

where:
RSP stands for "Response"
[domain] is the domain name of your ICE site. For example, BradsGadgets.
[date] is the ISO 8601 date. For example, 2000-08-24
[time] is the ISO 8601 time. For example, 08:10:43.078
[count] is an incrementing number that increments for each request that is generated. For example,
1379.

Putting it all together, you get:

RSP-BradsGadgets-2000-08-24T08:10:43.078-1379

You may wonder why this is necessary. For system's of any complexity, you will quickly run into a
requirement to log protocol interaction to find and eliminate operational problems quickly and efficiently.
The Response Identifier allows you to tie a specific response back to a specific sender and quickly
determine, therefore, where miscommunication originates.

B.5 Package Sequence Identifiers

The package sequence identifier(PSID) marks each package sent by a Syndicator to a Subscriber for a
subscription. The Syndicator generates all PSIDs. The PSID must be unique within a collection. That
being the case, the following can be used for a PSID:

PSID-[collectionName]-[count]

38 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

where
PSID stands for "Package Sequence Idenifier"
[collectionName] is the name of the collection offered in subscriptions. For example,
"CellPhones2000"
[count] is an incrementing number that increments for each package that is generated. For example,
1379.

Putting it all together, you get:

PSID-CellPhones2000-1379

The Subscriber treats the PSID as opaque, in the sense that all it has to do is store it and compare the one
in a new package with the current one.

B.6 Package Identifiers

The package identifier is used by the Syndicator to mark each package. It is unique to the Syndicator. A
very simple model for this identifier is:

PI-[time]-[count]

where
PI stands for "Package Identifier"
[time] is a compressed date and time. For example, 20000827:095821-234

Putting it all together, you get:

PI-20000827:095821-234

C. Assumptions and Conformance
Each of the recipes in the CookBook are based on the ICE 1.1 Specification. They are designed to begin
simply and increase in complexity. Each recipe takes advantage of the the features detailed carefully in the
ICE specification. But each recipe is also designed to leave you with a working inter-operable syndication
system for processors at the recipe level. To do this, we have selected from the specification conforming
simplfing assumptions. The ICE specification is designed to handle a very wide variety of syndication
applications and so it has been very careful to make the ICE machinery flexible. This appendix is where
we layout those simplifying assumptions. If your application seems to need more capability or seems to
require facilities at variance to a recipe, check here first to see if we've made a simplifying assumption that
you adjust to your needs. The advantage of checking is so that your implementation can maximally
conform to the ICE specification as you build you implementation. This enhances your inter-operability
with other implementations. This lowers your over-all syndication costs and it increases the content that
you have access to; or the number of subscribers that can access your content. Remember, the value of a
protocol standard goes up as the square of the number of users.

This appendix is also where we lay out the major features missing in each recipe that make the recipe not
fully ICE compliant. You can use these compliance comments to plan additional features for your
implementation; or to compare your implementation to others to determine potential inter-operability
issues.

39 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

C.1 - Recipe 1 Assumptions and Conformance

This recipe provides excellent service for being so simple. As a Syndicator, all you have to do is create a
few XML documents. As a subscriber, all you have to do is read them and fetch (or reference) the content.
It provides you with an easy to implement and better means to syndicate content than a simple list of
URLs. By simple extension, you obtain lifetime and content protection. But, even better, it positions you
to be able to add capability as your growth warrants in a manner that leads to a conforming ICE
implementation.

C.1.1 Simplifying Assumptions

This recipe uses the ice-package XML document to describe the content that is available for public use.
Almost all of the apparatus available in the ICE protocol is missing. This recipe focuses on the very basics
of syndication and uses ICE document formats. It is the first useful step in creating an extensible
syndication system. It assumes that subscribers can read and process XML documents and can use other
means to access and pull content.

C.1.2 Non-conforming Assumptions

This recipe is not conforming for several basic reasons. The ICE protocol ships an XML document called
an ice-payload in a request-reponse manner. This recipe only constructs XML documents called
ice-packages (which are contained by ice-payloads) since there is no actual request-response protocol
implementation. The ice-package requires several attributes that assist in managing the protocol. These
aren't implemented here.

So, this is the beginning of getting the spelling right and getting several core advantages that ICE provides
(particularly if you implement the simple extensions). The value of this recipe is that you get the simplest
form of syndication; and it permits you to rapidly and simply enhance you syndication/subscriptions
beyond the simplest model. And, it gets you ready to enhance your implementation to protocol status, the
next recipe.

C.2 - Recipe 2 Assumptions and Conformance

The steps outlined in Recipe 2 model a transaction that has the several restrictions that are valid within the
ICE specification. Also, a number of simplifications were made that violate the specification.
Nevertheless, this receipe permits you to obtain significant function with a simple implementation. Full
inter-operability with compliant ICE implementations is sacrificed as well as basic scheduling. Both
scheduling of content and inter-operability capabilities improves your investment in syndication. This can
be done in the next step. This recipe provides you with the basic request-response protocol foundation that
ICE is built upon. You can use this as a working capability and a foundation for improving to the next
level on your way to full ICE function.

C.2.1 Simplifying Assumptions

No Scheduled Delivery.
ICE provides delivery policies in subscriptions that define the scheduling and delivery rules. This
allows subscriptions to specify automated delivery. In this recipe, delivery scheduling is done
out-of-band.

Fixed Subscriptions
ICE provides an optional ability to select "prototype subscriptions" called offers from a list of offers

40 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

in a catalog. Further, ICE provides the ability to negotiate all of the operational parameters of a
subscription to arrive at the final subscription. This permits an overall optimal delivery policy for
the subscription to be established. This same mechanism can be used to negotiate any set of
parameters values of interest to the parties. In this recipe, the operational characteristics of the
subscription are set and managed out-of-band. The subscription starts with the syndicator address,
subscriber ID and subscription ID fixed in advance as well. While the facility for obtaining offers
for subscriptions is required by ICE, the ability to negotiate offer parameters is not required.

Full update only.
ICE permits incremental updates that take advantage of a Syndicators knowlege about its
subscriber's collection(s). This permits optimizing content delivery by excluding content already at
the subscriber. This implementation resends all elements of the collection, even if the subscriber
already has some of the elements.

Delivery by Reference
All content is encoded in ice-item-refs. In ICE, content may also be sent inline using an
ice-item. This recipe provides URL pointers to the content and does not deliver content in-line.
This provides the advantage of sending small packets and permits the use of other protocols for
delivering the actual content. In the extensions to this recipe, how to send content inline was shown.

No auditing.
ICE provides a feature for both parties to obtain usage logs. This feature is not implemented in this
recipe.

Pull delivery only.
ICE permits the syndicator to push content to a subscriber without it being solicited should the
subscription so define. This recipe only implements pull delivery. This has the advantage that the
subscriber determines its optimal time for content retrieval. However, this time may not be optimal
for the Syndicator.

Unstructured Content.
ICE is designed to carry and manage both structured and unstructured content. This recipe does not
implement the ice-item-group element. This means that the protocol does not know about
structured content and delivers it as an opaque whole.

No "Package Processed" confirmation request.
ICE provides two kinds of confirmation, transport delivery and package processed delivery
confirmation. Transport delivery is signaled by an ice-code indicating success and acknowlegement
of delivery to a receiver. ICE also supports package processed delivery confirmation, which means
that all of the items in a package including those delivered by reference have been successfully
obtained and processed. This recipe does not implement the syndicator request for package
processed delivery confirmation.

No unsolicited messages (or pending flag) sent by syndicator.
ICE supports a simple subscriber that may not be available to receive messages from a syndicator
(because it is not in operation.). ICE defines an "unsolicited message pending" flag to inform the
simple subscriber that the syndicator would like to send it requests. This facility is not implemented
in this recipe.

No individual asset repair request.
ICE supports a mechanism for a syndicator to repair an individual item in a subscriber's collection
at the subscribers request. This facility is not implemented in this recipe.

No sending of notification.
ICE supports an optional facilty for a party to send operator notifications to the other party(s). This
facility is not implemented in this recipe.

C2.2 Non-conforming Assumptions

No confirmation of package processing response.
ICE requires that a subscriber be able to confirm package delivery processing. This is not

41 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

implemented in this recipe. While the facility to send a confirmation request is optional, a full ICE
subscriber MUST implement this capability.

ice-item unsupported.
ICE requires that a subscriber be able to process inline content as well as content by reference.
Ice-item processing is not implemented in this recipe. However, it is a straight-forward extension
as explained above.

Unsolicited messages and unsolicited message pending flag unsupported.
ICE requires that a subscriber be able to process unsolicited messages as well as honor the
unsolicited message pending flag. This subscriber does not implement these facilities.

individual asset repair response unsupported.
The Syndicator must implement an ability to respond to requests for item repair. This is not
implement is this recipe.

Notification receipt unsupported.
Neither the syndicator nor the subscriber implement notification receipt procesing in this recipe as
is required by ICE. While the facility to send a notification request is optional, all ICE processors
MUST implement notification receipt processing.

NOP unsupported.
ICE requires that a Syndicator and subscriber be able to receive and process a NOP. This
implementation does not support NOP. This is a nearly trivial extension to this recipe.

Catalog features unsupported.
This recipe does not implement support for theice-get-catalog request and an ice-catalog
response. Every ICE Syndicator MUST provide an ice-catalog of ice-offers which are
prototype subscriptions in response to an ice-get-catalog request. Every subscriber MUST be
able to request an ice-catalog with an ice-get-catalog request and choose an offer. Further, the
subscriber MUST be able to send an ice-offer to a Syndicator and the Syndicator MUST be able to
send an ice-subscription to a subscriber. This interchange is NOT implemented in this recipe.

C.3 - Recipe 3 Assumptions and Conformance

This Recipe enchances the basic request/response protocol by adding additional operational facilities that
are part of the ICE specification.

C.3.1 Simplifying Assumptions

No Scheduled Delivery.
ICE provides delivery policies in subscriptions that define the scheduling and delivery rules. This
allows subscriptions to specify automated delivery. In this recipe, delivery scheduling is done
out-of-band.

Fixed Subscriptions
ICE provides an optional ability to select "prototype subscriptions" called offers from a list of offers
in a catalog. Further, ICE provides the ability to negotiate all of the operational parameters of a
subscription to arrive at the final subscription. This permits an overall optimal delivery policy for
the subscription to be established. This same mechanism can be used to negotiate any set of
parameters values of interest to the parties. In this recipe, the operational characteristics of the
subscription are set and managed out-of-band. The subscription starts with the syndicator address,
subscriber ID and subscription ID fixed in advance as well. While the facility for obtaining offers
for subscriptions is required by ICE, the ability to negotiate offer parameters is not required.

Full update only.
ICE permits incremental updates that take advantage of a Syndicators knowlege about its
subscriber's collection(s). This permits optimizing content delivery by excluding content already at
the subscriber. This implementation resends all elements of the collection, even if the subscriber
already has some of the elements.

42 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

No auditing.
ICE provides a feature for both parties to obtain usage logs. This feature is not implemented in this
recipe.

Unstructured Content.
ICE is designed to carry and manage both structured and unstructured content. This recipe does not
implement the ice-item-group element. This means that the protocol does not know about
structured content and delivers it as an opaque whole.

No unsolicited messages (or pending flag) sent by syndicator.
ICE supports a simple subscriber that may not be available to receive messages from a syndicator
(because it is not in operation.). ICE defines an "unsolicited message pending" flag to inform the
simple subscriber that the syndicator would like to send it requests. This facility is not implemented
in this recipe.

No individual asset repair request.
ICE supports a mechanism for a syndicator to repair an individual item in a subscriber's collection
at the subscribers request. This facility is not implemented in this recipe.

Trivial Negotiation Only
ICE supports the apparatus to negotiate the parameters of a subscription. Both operational
parameters and other business terms defined in an offer can be negotiated. This recipe selects the
simpler "trivial" negotiation mechanism, the minimum required by the Specification.

C3.2 Non-conforming Assumptions

Unsolicited messages and unsolicited message pending flag unsupported.
ICE requires that a subscriber be able to process unsolicited messages as well as honor the
unsolicited message pending flag. This subscriber does not implement these facilities.

individual asset repair response unsupported.
The Syndicator must implement an ability to respond to requests for item repair. This is not
implement is this recipe.

Catalog features unsupported.
This recipe does not implement support for theice-get-catalog request and an ice-catalog
response. Every ICE Syndicator MUST provide an ice-catalog of ice-offers which are
prototype subscriptions in response to an ice-get-catalog request. Every subscriber MUST be
able to request an ice-catalog with an ice-get-catalog request and choose an offer. Further, the
subscriber MUST be able to send an ice-offer to a Syndicator and the Syndicator MUST be able to
send an ice-subscription to a subscriber. This interchange is NOT implemented in this recipe.

C.4 - Recipe 4 Assumptions and Conformance

A number of simplifying assumptions have been made in the CookBook to get a conforming but not
complete roadmap for implementing ICE.

C.4.1 Simplifying Assumptions

No Scheduled Delivery.
ICE provides delivery policies in subscriptions that define the scheduling and delivery rules. This
allows subscriptions to specify automated delivery. In this recipe, delivery scheduling is done
out-of-band.

Fixed Subscriptions
ICE provides an optional ability to select "prototype subscriptions" called offers from a list of offers
in a catalog. Further, ICE provides the ability to negotiate all of the operational parameters of a
subscription to arrive at the final subscription. This permits an overall optimal delivery policy for

43 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

the subscription to be established. This same mechanism can be used to negotiate any set of
parameters values of interest to the parties. In this recipe, the operational characteristics of the
subscription are set and managed out-of-band. The subscription starts with the syndicator address,
subscriber ID and subscription ID fixed in advance as well. While the facility for obtaining offers
for subscriptions is required by ICE, the ability to negotiate offer parameters is not required.

Full update only.
ICE permits incremental updates that take advantage of a Syndicators knowlege about its
subscriber's collection(s). This permits optimizing content delivery by excluding content already at
the subscriber. This implementation resends all elements of the collection, even if the subscriber
already has some of the elements.

No auditing.
ICE provides a feature for both parties to obtain usage logs. This feature is not implemented in this
recipe.

Unstructured Content.
ICE is designed to carry and manage both structured and unstructured content. This recipe does not
implement the ice-item-group element. This means that the protocol does not know about
structured content and delivers it as an opaque whole.

No unsolicited messages (or pending flag) sent by syndicator.
ICE supports a simple subscriber that may not be available to receive messages from a syndicator
(because it is not in operation.). ICE defines an "unsolicited message pending" flag to inform the
simple subscriber that the syndicator would like to send it requests. This facility is not implemented
in this recipe.

No individual asset repair request.
ICE supports a mechanism for a syndicator to repair an individual item in a subscriber's collection
at the subscribers request. This facility is not implemented in this recipe.

Trivial Negotiation Only
ICE supports the apparatus to negotiate the parameters of a subscription. Both operational
parameters and other business terms defined in an offer can be negotiated. This recipe selects the
simpler "trivial" negotiation mechanism, the minimum required by the Specification.

C4.2 Non-conforming Assumptions

individual asset repair response unsupported.
The Syndicator must implement an ability to respond to requests for item repair. This is not
implemented is this recipe.

44 of 44 11/29/2000 10:19 AM

ICE Cook Book Version 1.0 28th November file:///C|/My Documents/ICE/ICEcookBook1-paul1.html

	ICE Cookbook
	Acknowledgements
	1. Introduction
	1.1 Basic Terms
	1.2 About the Recipes
	1.3 Examples
	1.4 Recipe Organization

	2. Recipes
	2.1 Pull Public Content
	2.2 Request-Response Protocol
	2.3 Nearly ICE Compliant, Minimal Implementation
	2.4 Full ICE Compliance

	3. Additions & Improvements
	3.1 Full Delivery Rule Support
	3.2 Simple Negotiable Subscriptions
	3.3 Full Subscription Negotiation
	3.4 Minimal Subscriber Support
	3.5 Auditing & Logging

	4. Conclusion
	Appendices
	A. Model Error Responses
	A.1 Unknown Subscriber/Syndicator Error Response
	A.2 Unknown Subscription Error Response
	A.3 Unimplemented Error Response
	A.4 List of ICE Codes

	B. Identifier Implementation Suggestions
	B.1 Payload Identifiers
	B.2 Subscription Identifiers
	B.3 Request Identifiers
	B.4 Response Identifiers
	B.5 Package Sequence Identifiers
	B.6 Package Identifiers

	C. Assumptions and Conformance
	C.1 Recipe 1
	C.2 Recipe 2
	C.3 Recipe 3
	C.4 Recipe 4

