
XHTML+Voice Profile 1.1
28 January 2003
This version:

http://www.ibm.com/pvc/multimodal/x+v/11/spec.html
Latest version:

http://www.ibm.com/pvc/multimodal/x+v/11/spec.html
Previous versions:

http://www.w3.org/TR/2001/NOTE-xhtml+voice-20011221
Editors:

Chris Cross, IBM <xcross@us.ibm.com>
Jonny Axelsson, Opera Software <jax@opera.no>
Gerald McCobb, IBM <mccobb@us.ibm.com>
T. V. Raman, IBM <tvraman@us.ibm.com>
Les Wilson, IBM <lesw@us.ibm.com>

Abstract
The XHTML+Voice profile brings spoken interaction to standard web content by
integrating the mature XHTML and XML-Events technologies with XML
vocabularies developed as part of the W3C Speech Interface Framework. The
profile includes voice modules that support speech synthesis, speech dialogs,
command and control, and speech grammars. Voice handlers can be attached to
XHTML elements and respond to specific DOM events, thereby reusing the event
model familiar to web developers. Voice interaction features are integrated with
XHTML and CSS and can consequently be used directly within XHTML content.

Status of this Document
This section describes the status of this document at the time of its publication.
Other documents may supersede this document.

Note that the language profile described in this specification re-uses W3C
working drafts that are likely to change. This integration profile will be updated as
needed to use the final stable versions of these specifications. This profile is an
update to the XHTML+Voice 1.0 profile. XHTML+Voice 1.1 is current with the

Page 1 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

VoiceXML 2.0 Candidate Recommendation.

Table of Contents
1 Introduction
 1.1 Motivation And Applications
 1.2 Design Principles
 1.3 XHTML+Voice Processing Model
 1.3.1 Processing within one Document
 1.3.1.1 Language and Version
 1.3.1.2 VoiceXML Scope within XHTML+Voice
 1.3.1.3 Accessing Speech Dialog Results from XHTML
 1.3.1.4 Accessing XHTML from a Speech Dialog
 1.3.2 Cancel
 1.3.3 Declarative Synchronization of Input Modes
 1.3.4 Events and Event Handling
 1.3.5 Document Linking with Voice
 1.3.6 Aural Style Sheets
2 VoiceXML 2.0 Modules
 2.1 Modularization Of VoiceXML 2.0
 2.2 Speech Dialogs
 2.3 Executable Content
 2.4 Speech Grammars
 2.5 Speech And Non-speech Audio Output
 2.6 Event Handling
3 XHTML Modularization
 3.1 Document Conformance
 3.2 User Agent Conformance
 3.3 XHTML Namespace Integration
 3.4 XHTML+Voice Profile
 3.5 XHTML+Voice Abstract Modules
 3.5.1 Abstract Modules
 3.5.2 Element content shorthands
 3.5.3 Attribute list shorthands
4 XML-Events Module
 4.1 Listener
 4.2 Event Types
5 XHTML+Voice Extension Module
 5.1 Sync
 5.2 Cancel
 5.3 VoiceXML Field ID Attribute
 5.4 VoiceXML Prompt SRC Attribute

Page 2 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

Appendices

A Reusable VoiceXML
B Examples
 B.1 What You See Is What You Can Say
 B.2 Mixed-initiative Conversational Interface
 B.3 Speech-Enabled Mail Interface
 B.4 Reusable VoiceXML Subdialogs
C FIA for XHTML+Voice
D DTD
 D.1 xhtml+voice11.dtd
E Schema
 E.1 xhtml+voice11.xsd
F References
 F.1 Normative References
 F.2 Informative References

1 Introduction
This section is informative.

This document defines version 1.1 of the XHTML+Voice profile. XHTML+Voice
1.1 is a member of the XHTML family of document types, as specified by XHTML
Modularization [XHTML Modularization]. XHTML is extended with a modularized
subset of VoiceXML 2.0, the XML-Events module, and a module containing a
small number of attribute extensions to both XHTML and VoiceXML. The latter
module facilitates the sharing of multimodal input data between the VoiceXML
dialog and XHTML input and text elements.

The XML-Events module [XML Events] provides XML host languages the ability
to uniformly integrate event listeners and associated event handlers with
Document Object Model (DOM) Level 2 [DOM2 Events] event interfaces. The
result is an event syntax for XHTML-based languages that enables an
interoperable way of associating behaviors with document-level markup.

VoiceXML [VoiceXML 2.0] has been designed for creating audio dialogs that
feature synthesized speech, digitized audio, recognition of spoken and DTMF
key input, recording of spoken input, telephony, and mixed-initiative
conversations. In this document, VoiceXML 2.0 is modularized to prepare it for
integration into the XHTML family of languages using the XHTML modularization
framework. The modules that combine to support speech dialogs for updating

Page 3 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

XHTML forms and form elements are selected to be added to XHTML. The
modules are described as well as the integration issues. The modularization of
VoiceXML 2.0 also specifies DOM event types specific to voice interaction for
use with the XHTML Events module. Speech dialogs authored in VoiceXML 2.0
can then be treated as event handlers to add voice-interaction specific behaviors
to XHTML documents. The language integration supports all of the modules
defined in XHTML Modularization, and adds speech interaction functionality to
XHTML elements to enable multimodal applications. The document type defined
by the XHTML+Voice profile is XHTML Host language document type
conformant.

1.1 Motivation And Applications

Two mature technologies, XHTML 1.1 [XHTML 1.1] and VoiceXML 2.0
[VoiceXML 2.0] are integrated using [XHTML Modularization] to bring spoken
interaction to the visual web. The design leverages open industry APIs like the
W3C DOM to create interoperable web content that can be deployed across a
variety of end-user devices. Multiple modes of interaction are synchronized and
integrated using the DOM 2 Events model [DOM2 Events] and exposed to the
content author via XML Events [XML Events].

Today, web applications are authored in XHTML with user interaction created via
XHTML form elements. The W3C is presently working on XForms [XForms], the
next generation of web forms that bring the power of XML to web application
development. The combination of XHTML and Voice described in this document
can leverage the semantic richness of web applications created using XForms,
while providing a smooth transition for today's developers wishing to deploy
multimodal applications by adding spoken interaction to present-day web
content. Integrating the work of the W3C voice browser working group into
mainstream XHTML content has the advantage of ensuring that future
enhancements to the voice browser component such as natural language
understanding will be incorporated. Thus, a smooth transition path for web
developers wishing to deliver increasingly smart user interaction for their web
applications is provided. Building on XHTML Basic [XHTML Basic] and XHTML
modularization, content developers will be able to deploy their content to a wide
variety of end-user clients ranging from mobile phones and small PDAs to
desktop browsers.

1.2 Design Principles

XHTML+Voice is an XML application [XML 1.0].

1. XHTML is the host language.

Page 4 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

2. XHTML+Voice extends XHTML Basic with a subset of VoiceXML 2.0, as
well as XML-Events and a small extension module.

3. XHTML+Voice makes authoring easy for common types of multimodal
interactions.

4. VoiceXML is modularized to permit the creation of profiles that match
different application deployment environments.

5. Those parts of VoiceXML that relate to the VoiceXML document being a
stand-alone speech application are omitted from the XHTML+Voice profile.

6. VoiceXML modularization does not alter the VoiceXML execution model.
Specifically, a speech dialog is run as specified by the VoiceXML form
interpretation algorithm.

7. VoiceXML modularization does not modify the function of the VoiceXML 2.0
elements and attributes that are part of the profile.

1.3 XHTML+Voice Processing Model

XHTML+Voice is designed for creating multimodal dialogs that combine in a
straightforward way the visual input mode represented by XHTML, and speech
input and output, as represented by VoiceXML. Here is a "Hello World" example
of XHTML+Voice:

<?xml version="1.0"?>
<html
xmlns="http://www.w3.org/1999/xhtml"
xmlns:vxml="http://www.w3.org/2001/vxml"
xmlns:ev="http://www.w3.org/2001/xml-events"
xmlns:xv="http://www.voicexml.org/2002/xhtml+voice"
>

<head>
<title>XHTML+Voice Example</title>
<!-- voice handler -->
<vxml:form id="sayHello">

<vxml:block><vxml:prompt xv:src="#hello"/>
</vxml:block>

</vxml:form>
</head>
<body>

<h1>XHTML+Voice Example</h1>
<p id="hello" ev:event="click" ev:handler="#sayHello">

Hello World!
</p>

</body>
</html>

The speech dialog identified by "sayHello" is activated when the user clicks

Page 5 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

anywhere on the paragraph identified by "hello." The speech dialog is a
VoiceXML form that synthesizes the text obtained from the same paragraph that
activated the form. The speech output is "Hello World!"

1.3.1 Processing within one Document

A speech dialog is defined within XHTML+Voice as a [VoiceXML 2.0] form with a
unique ID. The VoiceXML form is activated by an XML-event with an associated
handler that references the form's unique ID. The XML-event is generated from a
user interaction with an XHTML element, generally a form control, or from a
document event such as load or unload. Activating the VoiceXML form sets all
form and field item variables to their initial values. This clears the the guard
conditions on all form items that don't have an initial value set with the expr
attribute. The form is run according to the form interpretation algorithm (FIA)
specified by VoiceXML.

1.3.1.1 Language and Version

A VoiceXML form requires language and VoiceXML version information.
VoiceXML 2.0 includes language and version attributes with its root <vxml>
element. XHTML+Voice obtains language and VoiceXML version from XHTML
as follows. Language is obtained from the HTML root element's xml:lang
attribute, while the VoiceXML version can be derived from the value of the
VoiceXML namespace. The language can be overriden by the xml:lang attribute
on the VoiceXML grammar and prompt tags.

1.3.1.2 VoiceXML Scope within XHTML+Voice

A VoiceXML form within an XHTML+Voice document does not have the session
and document scopes defined by VoiceXML. It does not have these scopes for
two reasons. First, <form> is the top level VoiceXML element in an
XHTML+Voice document. Second, XHTML+Voice does not allow transitions from
one voice handler to another. VoiceXML 2.0 allows a form to have either dialog
or document scope. If the form's scope is document, as set by the scope
attribute, the form is active while another form in the document is running. When
the speech input matches the grammar of the form with document scope, there is
a transition from the currently running form to the form with the document scope.
XHTML+Voice does not allow this transition. Consequently, a form's scope is
limited to dialog and the scope attribute is omitted. The grammar scope attribute
is also omitted for the same reason. The remaining inner VoiceXML scopes,
dialog and anonymous, are the same in XHTML+Voice, as required by the
VoiceXML FIA.

XHTML+Voice allows a speech dialog to be referenced as a voice handler in an

Page 6 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

external file. Because the speech dialog has no scope outside of its enclosing
form, only the form in the external file is processed when the form is activated.
For example, the script elements in the external file will not be processed. This is
because the visual browser only executes script in the current document, and the
VoiceXML <script> element is not supported. This requires the external reference
to contain a fragment identifer specifying the form in addition to an absolute or
relative URI. This differs from VoiceXML, which specifies that when the fragment
is absent, the form "invoked is the lexically first dialog in the
document" [VoiceXML 2.0]. With this restriction, the speech dialog can reside in
any external XML document, including VoiceXML. Only the calling document has
to be an XHTML+Voice document.

Because XHTML script placed in an external file is not processed, validation of
VoiceXML results cannot be performed within an external subdialog by calling
out to some ECMAScript contained within a VoiceXML script tag. ECMAScript
validation of subdialog results can only be performed from the calling document.
Validation methods must be included in the ECMAScript objects passed as
parameters to the subdialog.

VoiceXML <field>, <subdialog>, and <var> elements do not have any visibility to
the XHTML namespace as ECMAScript variables. Furthermore, there is no
requirement to support the VoiceXML elements as nodes in the DOM object
available to JavaScript. There are several problems with supporting the DOM
object. Unlike XHTML form control elements, VoiceXML form item elements don't
have a value attribute and consequently the DOM node value property is
missing. A value attribute is necessary because the VoiceXML form item
elements are their own ECMAScript variables, and they have defined values only
while the enclosing form is active. At all other times their values are undefined.

1.3.1.3 Accessing Speech Dialog Results from XHTML

Speech dialog results may be accessed from XHTML in one of the following
ways:

1. The VoiceXML standard application variables are available to an
XHTML+Voice application as global ECMAScript variables. Each variable
listed is an array of elements [0..i..n], where each element represents a
possible result. See [VoiceXML 2.0] for more details:

� application.lastresult$[i].confidence
� application.lastresult$[i].utterance
� application.lastresult$[i].inputmode
� application.lastresult$[i].interpretation

2. The XHTML+Voice <sync> element is described in XHTML+Voice
Extension Module.

Page 7 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

1.3.1.4 Accessing XHTML from a Speech Dialog

The global JavaScript scope of an XHTML+Voice document is available to a
speech dialog. For example, an XHTML form control element, such as input, can
be accessed from within VoiceXML using the DOM object traversal notation
available to JavaScript. For example, the value of an input field with name
"from_city" is set from the VoiceXML assign tag as follows:

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<form id="form_id" xmlns="www.w3.org/2001/vxml">
<field name="from_field" expr="start">

<filled>
<assign name="document.main.from_city.value"

expr="from_field"/>
</filled>

</field>
</form>

</head>
<body>

<form id="main" action="">
<input name="from_city" type="text"/>

</form>
</body>

</html>

The document keyword in XHTML+Voice refers to the JavaScript DOM object.
The application.lastresult$ variables are at the same scope as the DOM object,
which is effectively the VoiceXML application scope.

1.3.2 Cancel

Multiple speech dialogs running simultaneously are not allowed by
XHTML+Voice. A speech dialog runs in its own thread and, for many devices, the
audio subsystem can be owned by only one thread at one time. Also, other
resources that are guaranteed to be thread-safe may cause a voice handler to
indefinitely block. Therefore, only one speech dialog can be running at one time
per loaded XHTML+Voice document. If only one speech dialog can be running at
one time, the activating speech dialog must cancel the currently running dialog.
This is the default behavior. The running dialog should also be canceled when
the current XHTML+Voice document is unloaded.

A speech dialog may be canceled for other reasons, which depend on the
multimodal browser implementation and user preference. For example, A speech
dialog may be canceled whenever the user leaves the current XHTML form

Page 8 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

control or clicks on another element, i.e., whenever an HTML 4.01 "onblur" event
is generated. An input timeout may also cancel the current speech dialog.
However, if a cancel button or some other means to cancel is supplied, then only
the default behavior will in most cases be preferred. It is preferred in cases where
the XHTML+Voice application is running in "voice-only" mode while the user is
working in another window or application. An e-mail application, for example,
should allow a "voice-only" mode to run after losing application focus. The
multimodal browser may also have a user preference for cancel which would
override the default behavior. A good strategy would be for the multimodal
browser to cancel only upon activation of a new speech dialog by default, and
provide a user-preference for cancelling upon an "onblur" event.

The document author can cancel the currently running speech dialog with the
<cancel> element that can be specified by an XHTML element as a handler for
an XML Event. The XHTML+Voice Extension Module section provides more
details.

Cancel is a message from the visual browser that must be handled by the
VoiceXML FIA. It is separate from the cancel event supported by VoiceXML that
cancels the currently running prompt. The cancel message from the visual
browser modifies the FIA in the sense that it must be checked throughout the
FIA, and if it is received then the FIA must terminate.

1.3.3 Declarative Synchronization of Input Modes

XHTML+Voice 1.1 supports a declarative synchronization of XHTML form control
elements and the VoiceXML <field> element. XHTML+Voice 1.1 introduces sync
as a standalone element. Sync specifies the following behaviors. First, sync
allows input from one speech or visual modality to set the field in the other
modality. Second, setting the focus of an <input> element that is synchronized
with a VoiceXML field updates the FIA to visit that VoiceXML field. This is useful
when there are multiple fields within a VoiceXML form. Sync is both a message
to the VoiceXML FIA from the visual browser, like cancel, and a message from
the FIA to the visual browser. The XHTML+Voice Extension Module section
provides more details.

1.3.4 Events and Event Handling

The nomatch, noinput, help, and error VoiceXML event types are propagated as
XML-events to XHTML. They can be linked to a Javascript handler using the
XML-events syntax for specifying target, observer, event, and handler. The
events are propagated regardless of whether the event has already been caught
and handled properly within the VoiceXML form. Within VoiceXML a chain of
events can be created, where one event is caught and another event is thrown,

Page 9 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

and so on. Because the entire chain of events is propagated to XHTML, the
application author should be careful not to chain multiple events of the same
type. The VoiceXML error event subtypes error.semantic, error.badfetch,
error.unsupport.element, etc., are propagated as the error event type to XHTML.
This is in accordance with the VoiceXML specification. This allows for the user to
define additional error subtypes that can be handled by the visual browser. More
general user-defined event types are also supported. If a user-defined event type
is defined within the VoiceXML form, such as "foo.bar", then when that event is
thrown within the form, it is propagated to XHTML as an XML-event. For the
example below, both the noinput and foo.bar events are handled by the visual
browser via the XML-events listener tag. Note that the VoiceXML form exits
because the foo.bar event is not handled within the form. Throwing an unhandled
foo.bar event is like throwing an unhandled exit event, except that the foo.bar
event is propagated to XHTML before the form exits.

<vxml:form id="ex1">
<vxml:catch event="noinput">

<vxml:throw event="foo.bar"/>
</vxml:catch>

<vxml:field name="f1">
<vxml:grammar type="boolean"/>
<vxml:prompt>Say yes or no</vxml:prompt>

</vxml:field>
</vxml:form>

<ev:listener ev:target="ex1" ev:event="noinput" ev:handler="#h1"/>
<ev:listener ev:target="ex1" ev:event="foo.bar" ev:handler="#h2"/>

In addition to the VoiceXML event types listed above, XHTML+Voice supports
the vxmldone event type. The vxmldone event is generated when the currently
running VoiceXML form completes. All the event types that XHTML+Voice
supports are listed in the XML-Events Module.

1.3.5 Document Linking with Voice

Document linking with voice is available to the author. Given an XHTML+Voice
document with the following link and a tags:

<link rel="glossary" title="Glossary" href="glossary.html"/>
<link rel="contents" title="Contents" href="contents.html"/>
Next
Previou

Page 10 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

The following grammar can be produced from parsing the document. For this
example the grammar is JSGF. The grammar is collected from each link and a
element in the document that has a rel attribute. The document author uses the
rel attribute to enable document linking for a select set of link and a elements.
For each element with a rel attribute, the rel attribute value is added to the
grammar. Alternatively, the title attribute can be used in place of rel for
international language support:

#JSGF V1.0 iso-8859-1;
grammar document-links;

public <document-links> = Glossary {this.$value="glossary.html"}
| Contents {this.$value="contents.html"}
| Next Page {this.$value="chapter3.html"}
| Previous Page {this.$value="chapter1.html"};

The grammar scope of the grammar is document so that it is always active.
While XHTML+Voice does not support authoring a grammar with document
scope within a form, the multimodal browser should support grammars with
document scope for document linking and command and control.

1.3.6 Aural Style Sheets

With the addition of a src attribute to the VoiceXML <prompt> element,
XHTML+Voice 1.1 is able to support Aural style sheets declared according to
[CSS2]. Within XHTML, a paragraph with id set to "warnPara" can be styled with
the CSS "warn" class:

<p id="warnPara" class="warn">warning</p>

The CSS has visual and aural rules for class "warn." When the VoiceXML<form>
processes a prompt with the src attribute set to that paragraph, the aural style
rules for "warn" are invoked. The VoiceXML Prompt SRC Attribute Section
provides a complete example.

2 VoiceXML 2.0 Modules
This section first modularizes VoiceXML 2.0 and then specifies the various
VoiceXML 2.0 modules used in the creation of the XHTML+VoiceXML profile.

2.1 Modularization Of VoiceXML 2.0

The files making up the modularization of the VoiceXML 2.0 SCHEMA are

Page 11 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

available as voice-xml-modules.zip and have been created to ease the process
of integrating VoiceXML 2.0 and XHTML. These modules do not change the
VoiceXML 2.0 language as specified by the voice browser working group of the
W3C. This section gives a high-level overview of each module.

Module Purpose Elements XHTML+VoiceXML?

Events
Events
thrown by
Voice XML
processor

catch help
noinput
nomatch
error throw

Y

Executable
statements

Statements
for use in
voice
handlers

assign
clear var
log
reprompt

Y

Filled

Voice
handlers
invoked
when a slot
is filled.

filled Y

Flow control
Flow control
constructs
from
VoiceXML

if else
elseif
return

Y

Forms
Encapsulate
voice
dialogs

form field
record
subdialog
block
initial
option

Y

Miscellaneous
Non-local
transfers in
VoiceXML

exit goto
link script
submit

N

Menus VoiceXML
menus

menu choice
enumerate N

Object
Foreign
objects for
VoiceXML

object N

Specifying

Page 12 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

Resources
resources
for
VoiceXML

param

property Y

Root
VoiceXML
stand-alone
documents

vxml meta N

Output Speech and
audio output

prompt
value audio
emphasis
voice break
prosody
say-as
phoneme
paragraph p
sentence s
mark

Y

Telephony Telephony
control

transfer
disconnect N

User Input

Speech
input
constructs
from
VoiceXML

grammar
count
example
token
import item
one-of rule
ruleref

Y

Attributes
Common
attributes
used in
VoiceXML

NA Y

Datatypes
Common
datatypes
used in
VoiceXML

NA Y

Document
Model

Defines
content
model for
VoiceXML
elements

NA N

Page 13 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

2.2 Speech Dialogs

Modules vxml-exec-1.xsd, vxml-filled-1.xsd, vxml-resource-1.xsd vxml-
flow-1.xsd, and vxml-form-1.xsd support authoring handlers that implement
speech dialogs.

2.3 Executable Content

Modules vxml-filled-1.xsd, vxml-flow-1.xsd, vxml-exec-1.xsd, and vxml-
resource-1.xsd declare constructs for use within voice handlers. The semantics
of these constructs are as defined in the VoiceXML 2.0 specification.

2.4 Speech Grammars

The speech grammar modules provide constructs for authoring speech
grammars as specified in VoiceXML 2.0. The modules are provided by the
normative VoiceXML 2.0 SCHEMA and are unchanged: grammar-core.xsd,
grammar.xsd, vxml-grammar-restriction.xsd, and vxml-grammar-
extension.xsd. The restriction and extension modules allow the elements and
attributes normatively specified by the speech grammar specification [Speech
Grammars] to be included within the VoiceXML 2.0 namespace.

2.5 Speech And Non-speech Audio Output

The speech and audio output modules define constructs for producing spoken
and non-spoken audio output. The modules are provided by the normative
VoiceXML SCHEMA and are unchanged: synthesis-core.xsd, synthesis.xsd,
vxml-synthesis-restriction.xsd, and vxml-synthesis-extension.xsd. As
with the speech grammar modules, the elements and attributes normatively
defined in the SSML specification [SSML 1.0] are included within the VoiceXML
2.0 namespace.

2.6 Event Handling

Module vxml-events-1.xsd declares the event types defined in VoiceXML 2.0

3 XHTML Modularization
This section is normative.

Table 1: VoiceXML Modules

Page 14 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

3.1 Document Conformance

A conforming XHTML+Voice document is a document that requires only the
facilities described as mandatory in this specification. Such a document must
meet all of the following criteria:

1. It must validate against the XML Schema found in schema provided in this
document.

2. The root element of the document must be html.
3. The name of the default namespace on the root element must be the

XHTML namespace name: http://www.w3.org/1999/xhtml.
4. If a DOCTYPE declaration is present and includes a public identifier, the

DOCTYPE declaration must reference the DTD provided in this document
using its Formal Public Identifier. The system identifier may be modified
appropriately.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+Voice 1.1//EN"
"http://www.w3.org/Voice/Group/2003/xhtml+voice11.dtd">

3.2 User Agent Conformance

The user agent must conform to the "User Agent Conformance" section of the
XHTML specification ([XHTML 1.0], section 3.2) and the conformance
requirements detailed in the VoiceXML modules ([VoiceXML 2.0]) supported by
the integration profile.

The user agent must conform to the following additional user agent rule:

1. When the user agent claims to support facilities defined within the VoiceXML
2.0 specifications or facilities required by this specification through
normative reference, it must do so in ways consistent with the facilities'
definition.

3.3 XHTML Namespace Integration

The default XML namespace of an XHTML+Voice document is XHTML.
XHTML+Voice extends XHTML with VoiceXML, XML-events, and XHTML+Voice
extensions. The VoiceXML, XML-events, and XHTML+Voice extension elements
and attributes are included through additional namespace declarations:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:vxml="http://www.w3.org/2001/vxml"
xmlns:ev="http://www.w3.org/2001/xml-events"

Page 15 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

xmlns:xv="http://www.voicexml.org/2002/xhtml+voice">

The name of the unique prefix identifier for the namespace within the document,
for example, vxml for VoiceXML elements, is left to the document author's
discretion.

3.4 XHTML+Voice Profile

The XHTML functionality in the XHTML+Voice document type is based upon the
XHTML modules defined in [XHTML Modularization]. The XHTML+Voice profile
includes the XHTML modules defined in [XHTML Basic], such as the basic
XHTML forms and tables modules. Added to the XHTML Basic modules are the
following modules:

� The XHTML scripting module.
� XML Events as defined by the XML Events module, [XML Events]. XML-

events with VoiceXML event types and handlers allow the XHTML author to
associate voice-interaction specific behaviors.

� A set of VoiceXML modules for speech-enabling XHTML constructs. The top
level VoiceXML element for defining a voice handler is <form>.

� An XHTML+Voice Extension module for facilitating the authoring of the
interaction between the visual and speech modules.

The notation, terms and document conventions used here are borrowed from
[XHTML 1.1].

The profile includes the XHTML basic module defined in [XHTML Basic], the
XHTML scripting module defined in [XHTML 1.1], the XML Event module defined
in [XML Events], the XHTML+Voice extension module defined in the
XHTML+Voice Extension Module, and the following VoiceXML 2.0 modules:

� Speech Dialogs
� Executable Content
� Speech Grammars
� Speech and non-speech audio Output
� Event Handling

3.5 XHTML+Voice Abstract Modules

The namespaces used in these modules are as follows:

XHTML:

Page 16 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

http://www.w3.org/1999/xhtml
VoiceXML:

http://www.w3.org/2001/vxml
XML Events:

http://www.w3.org/2001/xml-events
XHTML+Voice:

http://www.voicexml.org/2002/xhtml+voice

3.5.1 Abstract Modules

Element Content Attributes
Base Module (XHTML)
base EMPTY href* (URI)
Basic Forms Module (XHTML)

form Heading | Block -
form

Common, action* (URI),
method ("get"* | "post"),
enctype (ContentType)

input EMPTY

Common, Access, checked
("checked"), maxlength
(Number), name (CDATA), size
(Number), src (URI), type
("text"* | "password" |
"checkbox" | "radio" | "submit" |
"reset" | "hidden"), value
(CDATA)

label (PCDATA | Inline
- label)*

Common, accesskey
(Character), for (IDREF)

select option+ Common, multiple ("multiple"),
name (CDATA), size (Number)

option PCDATA Common, , selected
("selected"), value (CDATA)

textarea PCDATA
Common, Access, cols*
(Number), name (CDATA),
rows* (Number)

Basic Tables Module (XHTML)

caption (PCDATA | Inline)
* Common

Page 17 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

table caption?, tr+ Common, summary (Text),
width (Length)

td (PCDATA | Flow -
table)* Common, Cell, Align

th (PCDATA | Flow -
table)* Common, Cell, Align

tr td+ Common, Align
Events Module (VoiceXML)

catch Exec VoiceHandler, event
(NMTOKENS)

help Exec VoiceHandler
noinput Exec VoiceHandler
nomatch Exec VoiceHandler
error Exec VoiceHandler

throw EMPTY
VoiceHandler, event
(NMTOKEN), eventexpr
(Script), message (CDATA),
messageexpr (Script)

Executable Statements Module (VoiceXML)
assign EMPTY Expr
clear EMPTY namelist (CDATA)
var EMPTY Expr

log (PCDATA | value)
* label (CDATA), expr (Script)

reprompt EMPTY -
Filled Module (VoiceXML)

filled (Exec)* mode("any" | "all"*), namelist
(CDATA)

Flow Control Module (VoiceXML)

if (Exec | elseif |
else)* cond (Script)

else EMPTY -

Page 18 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

elseif EMPTY cond (Script)

return EMPTY
namelist (CDATA), event
(NMTOKEN), eventexpr
(Script), message (CDATA),
messageexpr (Script)

Forms Module (VoiceXML)
form (Form)* id (ID)

field

(Audio |
EventHandler |
filled | grammar |
link | vxml:option |
prompt | property)
*

Item, type (GrammarType), slot
(NMTOKEN), modal
(Boolean), xv:id (ID)

record

(Audio |
EventHandler |
filled | grammar |
prompt | property)
*

Item, type (ContentType), beep
(Boolean), maxtime
(Duration), modal (Boolean),
dtmfterm (Boolean),
finalsilence (Duration)

subdialog
(Audio | filled |
param | prompt |
property)*

Item, Cache, Submit, src (URI),
srcexpr (Script), fetchaudio
(URI)

block Exec Item

initial
(Audio |
EventHandler |
link | prompt |
property)*

Item

vxml:option PCDATA dtmf (CDATA), value (CDATA)
Hypertext Module (XHTML)

a (PCDATA | Inline
- a)*

Common, Access, Linking,
hreflang (LanguageCode)

Image Module (XHTML)

img EMPTY Common, Dim, alt* (Text),
longdesc (URI), src* (URI)

Link Module (XHTML)
link EMPTY Linking , media (MediaDesc)

Page 19 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

List Module (XHTML)
dl (dd | dt)+ Common

dt (PCDATA | Inline)
* Common

dd (PCDATA | Flow)* Common
ol li+ Common
ul li+ Common
li (PCDATA |Flow)* Common
Metainformation Module (XHTML)

meta EMPTY
I18N, content* (CDATA), http-
equiv (NMTOKEN), name
(NMTOKEN), scheme (CDATA)

Object Module (XHTML)

object (PCDATA | Flow |
param)*

Common, Dim, archive (URI),
classid (URI), codebase (URI),
codetype (ContentType), data
(URI), declare ("declare"),
name (CDATA), standby (Text),
tabindex (Number), type
(ContentType)

param EMPTY
id (IDREF), name* (CDATA),
type (ContentType), value
(CDATA), valuetype ("data"* |
"ref" | "object")

Output Module (VoiceXML)

prompt (Audio | TTS)*
I18N, VoiceHandler, bargein
(Boolean), bargeintype
("speech" | "hotword"), timeout
(Duration), xv:src (URI)

value EMPTY expr (Script)
audio (Audio | TTS)* Cache, src (URI), expr (Script)

emphasis SentenceContent level ("strong" | "moderate"* |
"none" | "reduced")

I18N, gender ("male" | "female"

Page 20 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

voice (SentenceContent
| Structure)*

| "neutral"), age (Number),
variant (Number), name
(CDATA)

break EMPTY
size ("large" | "medium"* |
"small" | "none"), time
(Duration)

prosody (SentenceContent
| Structure)*

pitch (CDATA), contour
(CDATA), range (CDATA),
rate (CDATA), duration
(Duration), volume (CDATA)

say-as (PCDATA |
value)* type (SayAsType)

phoneme PCDATA ph (CDATA), alphabet
(CDATA)

paragraph, p (SentenceContent
| Sentence)* I18N

sentence, s SentenceContent I18N

mark (SentenceContent
| Sentence)* name (IDREF)

Resources Module (VoiceXML)

param EMPTY
Expr, value (CDATA),
valuetype ("data"* | "ref"), type
(CDATA)

property EMPTY name (NMTOKEN), value
(CDATA)

Scripting Module (XHTML)

script PCDATA
charset (CharSet), defer
("defer"), src (URI), type*
(ContentType),
xml:space="preserve"

noscript (Heading | Block
| List)+ Common

Structure Module (XHTML)

body (Heading | Block |
List)* Common

Page 21 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

head

title, (meta | link |
object | script |
vxml:form |
ev:listener |
xv:sync |
xv:cancel)*

I18N, profile (URI)

html head, body
I18N, version (CDATA), xmlns
(URI =
"http://www.w3.org/1999/xhtml")

title PCDATA I18N
Text Module (XHTML)

abbr (PCDATA | Inline)
* Common

acronym (PCDATA | Inline)
* Common

address (PCDATA | Inline)
* Common

blockquote
(PCDATA |
Heading | Block |
List)*

Common, cite (URI)

br EMPTY Core

cite (PCDATA | Inline)
* Common

code (PCDATA | Inline)
* Common

dfn (PCDATA | Inline)
* Common

div (PCDATA | Flow)* Common

em (PCDATA | Inline)
* Common

h1 (PCDATA | Inline)
* Common

h2 (PCDATA | Inline)
* Common

(PCDATA |

Page 22 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

h3 Inline)* Common

h4 (PCDATA |
Inline)* Common

h5 (PCDATA |
Inline)* Common

h6 (PCDATA |
Inline)* Common

kbd (PCDATA |
Inline)* Common

p (PCDATA |
Inline)* Common

pre (PCDATA |
Inline)*

Common,
xml:space="preserve"

q (PCDATA |
Inline)* Common, cite (URI)

samp (PCDATA |
Inline)* Common

span (PCDATA |
Inline)* Common

strong (PCDATA |
Inline)* Common

var (PCDATA |
Inline)* Common

User Input Module (VoiceXML)

grammar
(PCDATA | meta |
metadata |
lexicon | rule)*

Cache, I18N, version
(NMTOKEN), root (IDREF),
mode ("voice"* | "dtmf"), src
(URI), type (ContentType),
weight (CDATA), tag-format
(URI)

example PCDATA
lexicon EMPTY uri (URI), type (ContentType)
tag PCDATA
token PCDATA I18N

Page 23 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

3.5.2 Element content shorthands

item (RuleExpansion)*
I18N, weight (NMTOKEN),
repeat (NMTOKEN), repeat-
prob (NMTOKEN)

meta EMPTY
name (NMTOKEN), content
(CDATA), http-equiv
(NMTOKEN)

metadata ANY
one-of (item)+ I18N

rule (RuleExpansion |
example)*

id (ID), scope ("private"* |
"public")

ruleref EMPTY
I18N, uri (URI), type
(ContentType), special ("NULL"
| "VOID" | "GARBAGE")

XML Events Module (XML Events)
listener EMPTY XEvents
XHTML+Voice Extension Module (XHTML+Voice)
sync EMPTY input (NMTOKEN), field (URI)
cancel EMPTY id (ID), handler (URI)

Elements Attributes
vxml:field& id (ID)
vxml:prompt& src (URI)

Table 2: XHTML+Voice Abstract Modules

Element Entities Content
Audio (VoiceXML) PCDATA | audio | value
Block (XHTML) address | blockquote | div | p | pre
EventHandler
(VoiceXML) catch | help | noinput | nomatch | error

Exec (VoiceXML)
Audio | assign | clear | disconnect | exit |
goto | if | log | prompt | reprompt | return
| script | submit | throw | var

Page 24 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

3.5.3 Attribute list shorthands

Flow (XHTML) Heading | List | Block | Inline

Form (VoiceXML)
EventHandler | grammar | filled | initial |
object | link | property | record |
subdialog | Variable

Heading (XHTML) h1 | h2 | h3 | h4 | h5 | h6

Inline (XHTML)
a | abbr | acronym | button | br | cite |
code | dfn | em | img | input | kbd | label |
object | q | samp | select | span | strong |
textarea

RuleExpansion
(VoiceXML) PCDATA | token | ruleref | item | one-of

SentenceContent
(VoiceXML) Audio | SentenceElements

SentenceElements
(VoiceXML)

break | emphasis | phoneme | mark |
prosody | say-as | voice

Structure
(VoiceXML) sentence | s | paragraph | p

TTS (VoiceXML) SentenceElements | Structure
Variable (VoiceXML) block | field | var

Table 3: Element Entities and Content

Attribute
Entities Content

Access
(XHTML) accesskey (Character), tabindex (Number)

Align (XHTML) align ("left" | "center" | "right"), valign ("top" |
"middle" | "bottom")

Cache
(VoiceXML)

fetchhint ("prefetch" | "safe"), fetchtimeout
(Duration, maxage (Number), maxstale
(Number)

Cell (XHTML)
abbr (Text), axis (CDATA), colspan
(Number), headers (IDREFS), rowspan
(Number), scope ("row" | "col")

Page 25 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

Attribute types

Common
(XHTML) Core, Events, XEvents

Core (XHTML) class (NMTOKENS), id (ID), title (CDATA)
Dim (XHTML) height (Length), width (Length)
Events
(XHTML) MouseEvents , KeyEvents

Expr
(VoiceXML) name (VarName), expr (Script)

I18N (XML) xml:lang (NMTOKEN)
Item
(VoiceXML) name (VarName), cond (Script), expr (Script)

KeyEvents
(XHTML)

onkeypress (Script), onkeydown (Script),
onkeyup (Script)

Linking
(XHTML)

charset (CharSet), href (URI), hreflang
(LanguageCode), rel (LinkTypes), rev
(LinkTypes), type (ContentType)

MouseEvents
(XHTML)

onclick (Script), ondblclick (Script),
onmousedown (Script), onmouseover (Script),
onmousemove (Script), onmouseout (Script)

Next
(VoiceXML) next (URI), expr (Script)

Style (XHTML) style (CDATA)
Submit
(VoiceXML)

method ("get"* | "post"), enctype
(ContentType), namelist (CDATA)

VoiceHandler
(VoiceXML) count (Number), cond (Script)

XEvents (XML
Events)

event, observer (IDREF), handler (URI),
target (IDREF), phase ("capture" | "default"*),
propagate ("stop" | "continue"*), defaultAction
("cancel" | "perform"*), id

Table 4: Attribute Entities and Content

Attribute

Page 26 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

4 XML-Events Module
This section is normative.

4.1 Listener

XHTML+Voice extends XHTML with the XML-Events <listener> element and its
attributes. The <listener> attributes are added to XHTML elements primarily for
activating voice handlers. The <listener> element and attributes belong to the
XML-Events namespace:

xmlns:ev="http://www.w3.org/2001/xml-events"

4.2 Event Types

For a given XML language extended with XML Events, a set of event types must
be specified independently of the [XML Events] module. The XML Event types
supported by the XHTML+Voice profile include all event types defined for [HTML

Type Description
Boolean "true" | "false"

Duration A positive real number followed by either
's' (seconds) or 'ms' (milliseconds)

GrammarType CDATA

SayAsType

"acronym" | "spell-out" |"currency" | "measure" |
"name" | "telephone" | "address" | "number" |
"number:ordinal" | "number:digits" |
"number:cardinal" | "date" | "date:dmy" |
"date:mdy" | "date:ymd" | "date:ym" | "date:my"
| "date:md" | "date:y" | "date:m" | "date:d" |
"time" | "time:hms" | "time:hm" | "time:h" |
"duration" | "duration:hms" | "duration:hm" |
"duration:ms" | "duration:h" | "duration:m" |
"duration:s" | "net" | "net:email" | "net:uri" |
"vxml:date" | "vxml:boolean" | "vxml:currency" |
"vxml:time" | "vxml:digits" | "vxml:number" |
"vxml:phone"

VarName NMTOKEN or NMTOKEN with "$" appended
Table 5: Attribute Types

Page 27 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

4.01] intrinsic events. VoiceXML handler activation is specified by including with
an XHTML element one of these event types as an XML event and an ID
reference to the VoiceXML form as an XML event handler.

The XHTML+Voice profile supports the following VoiceXML 2.0 event types:
nomatch, noinput, error, and help. The VoiceXML exit and cancel event types are
supported within the VoiceXML form but are not propagated to the visual
browser. Event types defined by the author within VoiceXML, also known as
user-defined event types, are also propagated to the visual browser. However,
the VoiceXML <form> element does not support adding <listener> attributes.

An additional XHTML+Voice event type, "vxmldone", is supported. The vxmldone
event is generated when the voice handler completes.

The XHTML+Voice profile extends the XHTML <script> element with XML
Events. The <script> element doesn't generate any events of its own, so the
target attribute is required to specify capturing an XML event. The <script>
element can target any XHTML or VoiceXML element and can specify any HTML
4.01 intrinsic event or VoiceXML event. Here is an example of how a <script>
element can be a handler for a "vxmldone" event. The value of XHTML input
"drink" is updated when the voice handler "fid" completes:

<script type="text/javascript" ev:event="vxmldone" ev:target="fid">
document.xform.drink.value = application.lastresult$[0].utterance

</script>
<vxml:form id="fid">

<vxml:field name="f1">
<vxml:grammar src="drink.gram"/>
<vxml:prompt>Coffee, tea, or milk?</vxml:prompt>

</vxml:field>
</vxml:form>

<body>
<form id="xform" action="cgi/submit">
<input type="text" id="drink" ev:event="focus" ev:handler="#fid"/>
</form>

The following table matches the XHTML+VoiceXML event types with the XHTML
or VoiceXML elements that support them. When the <listener> event attribute is
added to an XHTML element, it must specify a event type supported by the
element in the right-hand column. Because the HTML 4.01 event types have
been translated into XML-event types, the "on" prefix for these event types have
been removed.

Page 28 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

5 XHTML+Voice Extension Module
This section is normative.

The XHTML+Voice Extension module extends XHTML+Voice 1.0 with the
<sync> element, <cancel> element, the src attribute of the VoiceXML <prompt>
element, and the id attribute of the VoiceXML field element. The element and
attributes in this module belong to their own namespace:

xmlns:xv="http://www.voicexml.org/2002/xhtml+voice"

The value of the namespace is temporary until the XHTML+Voice specification is
taken over by the W3C Voice Browser Working Group. At that time the Voice
Browser Working Group will obtain from the W3C an official XHTML+Voice
namespace and location for the XHTML+Voice schema.

5.1 Sync

The XHTML+Voice <sync> element adds support for synchronization of data
entered via either speech or visual input. It binds the value property of the input
field, or JavaScript variable, to the VoiceXML field with the given id attribute

Elements Event Type
XHTML body load, unload

Most XHTML elements
click, dblclick, mousedown,
mouseup, mouseover, mouseout,
keypress, keydown, keyup

XHTML elements: a,
label, input, select,
textarea, button

focus, blur

XHTML form submit, reset
XHTML elements: input,
textarea select

XHTML elements: input,
select, textarea change

VoiceXML form nomatch, noinput, error, help,
vxmldone, "user defined"

Table 6: XHTML+VoiceXML Event Types

Page 29 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

value. This means several things:

1. Speech dialog results are returned to both the VoiceXML field and the
XHTML <input> element, or JavaScript variable.

2. Keyboard data entered into the <input> element update both the VoiceXML
field and the XHTML <input> element.

3. Keyboard data entered into the <input> element satisfies the guard
condition on the VoiceXML field.

4. For an active VoiceXML form with multiple fields, if the user gives focus to
the input field, the FIA is instructed to visit the referenced VoiceXML field as
the next item. This includes the mixed initiative case.

Sync does not activate a voice handler. This means that if the <sync> element
has specified an XHTML input field but no VoiceXML form is currently active,
nothing will happen when a user clicks on the input field unless an XML-event
and event handler are also specified for the input field. If an event and event
handler are specified, then when the user clicks on the input field the VoiceXML
form is activated and the guard conditions of the VoiceXML form items are
cleared. The XHTML input field is not cleared if data is already there.

The <sync> element attributes are:

The type of the input attribute is NMTOKEN. The type of the field attribute is URI.
The URI must include a fragment identifier that references a VoiceXML <field>
ID. If the <field> element is in an external file, then the fragment identifier is
appended to the URI.

The What You See Is What You Can Say and Mixed-initiative Conversational
Interface examples both use the <sync> element to synchronize XHTML inputs
and VoiceXML fields.

5.2 Cancel

The XHTML+Voice <cancel> element allows a document author to cancel a
running speech dialog. It is a stand-alone element with no content that can be
referenced as an XML event handler. The <cancel> element has two attributes,

input The name of an XHTML input field or Javascript
variable.

field A URI reference to a field ID within a VoiceXML
form.

Table 7: <sync> attributes

Page 30 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

id and handler. The id attribute is required. The optional handler attribute
references the id attribute of a voice handler form. If the handler attribute is
omitted, then the currently running speech dialog is canceled. If handler is
specified, then only the specified voice handler is canceled.

The <cancel> element attributes are:

The type of the id attribute is ID. The type of the handler attribute is URI. The URI
must include a fragment identifier that references a VoiceXML <form> ID. If the
<form> element is in an external file, then the fragment identifier is appended to
the URI.

<head><title>Cancel Example</title>
...
<xv:cancel id="cid1" handler="#fid1"/>
<xv:cancel id="cid2"/>
</head>
<body>
...
<input type="reset" ev:event="click" ev:handler="#cid1"/>
<button ev:event="click" ev:handler="#cid2">Cancel Voice</button>

The example above shows how <cancel> can be used to cancel either a specific
speech dialog or the currently running speech dialog. The reset button in the
example cancels the speech dialog identified by "fid1." The "Cancel Voice"
button cancels the currently running dialog because the handler attribute is
omitted from the <cancel> element that is activated when the button is clicked.

5.3 VoiceXML Field ID Attribute

The VoiceXML field does not have an id attribute and it is required to support the
XHTML+Voice <sync> element extension.

5.4 VoiceXML Prompt SRC Attribute

XHTML+Voice 1.1 extends the VoiceXML <prompt> element with a src attribute.
The SRC attribute allows for the specification of a text source for speech output
anywhere in the document or in an external document. In addition, the text
source can be styled according to the aural styling rules defined in [CSS2]. For

id Unique document identifier.
handler A URI reference to a VoiceXML form ID.

Table 8: <cancel> attributes

Page 31 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

example, a style sheet may have the following styling rules for the XHTML <p>
element:

P.romeo { voice-family: male; volume: loud; pause-before: 20ms; }
P.juliet { voice-family: female; volume: soft; }

A voice handler can play two prompts from two different text sources in the
document, as follows:

<vxml:form id="sayHello">
<vxml:block><prompt xv:src="#hello_romeo"/>

<prompt xv:src="#hello_juliet"/>
</vxml:block>

</vxml:form>
<body ev:event="load" ev:handler="#sayHello">
<p id="hello_romeo" class="juliet">

Romeo, Romeo, where art thou?
</p>
<p id="hello_juliet" class="romeo">

I am here.
</p>
</body>

The first prompt plays a soft female voice. The second prompt plays a loud male
voice after a 20 ms pause.

A Reusable VoiceXML
This section is informative.

A VoiceXML form, defined here as an event handler, is more practical if it can be
placed in a linked document separate from the XHTML as a reusable component.
A reusable component allows for easier maintenance, and provides a default
behavior that can be used as an application building-block. VoiceXML includes a
subdialog construct and its calling convention is close to what is required for a
reusable component. The problem is that the caller must know both the
subdialog's parameters and the fields included in the ECMAScript object returned
to the caller.

It is not within the scope of this profile to attempt to solve the problem of creating
authentic reusable components within VoiceXML; this is the domain of the W3C
Voice Working Group. Authoring conventions can, however, be suggested which
should work in most cases. A VoiceXML handler can be placed in a separate file
and linked from within an XHTML+VoiceXML profile document if:

Page 32 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

� The handler is a subdialog that has a fixed number of parameters and return
fields that are named according to a fixed naming convention.

� The subdialog is called by a VoiceXML form within the XHTML+VoiceXML
profile document. The calling VoiceXML form is the handler activated by an
XML event.

� The subdialog is referenced explicitly with a fragment identifier at the end of
an absolute or relative URI. With this restriction, the subdialog can be placed
in any valid XML document, including VoiceXML.

The appendix includes an example of how a subdialog can be reused by
following the above authoring conventions.

B Examples
This section is informative.

B.1 What You See Is What You Can Say

<?xml version="1.0"?>
<html
xmlns="http://www.w3.org/1999/xhtml"
xmlns:vxml="http://www.w3.org/2001/vxml"
xmlns:ev="http://www.w3.org/2001/xml-events"
xmlns:xv="http://www.voicexml.org/2002/xhtml+voice"
>

<head>
<title>What You See Is What You Can Say</title>

<!-- first declare the voice handlers. -->
<!-- use vxml:form to declare a voice handler -->
<vxml:form id="voice_city">

<vxml:field xv:id="field_city" name="field_city">
<vxml:grammar src="city.jsgf" type="application/x-jsgf"/>
<vxml:prompt xv:src="#city_label"/>
<vxml:catch event="help nomatch noinput">
For example, say Chicago.

</vxml:catch>
</vxml:field>

</vxml:form>

<vxml:form id="voice_hotel">
<vxml:field xv:id="field_hotel" name="field_hotel">
<vxml:grammar src="hotel.jsgf" type="application/x-jsgf"/>
<vxml:prompt xv:src="#hotel_label"/>
<vxml:catch event="help nomatch noinput">

Page 33 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

For example, say Hilton.
</vxml:catch>
<vxml:filled>

<vxml:prompt>
You selected <vxml:value expr="field_hotel"/>.

</vxml:prompt>
</vxml:filled>

</vxml:field>
</vxml:form>
<! -- done voice handlers -->

<!-- declare inputs synchronized with VoiceXML fields -->
<xv:sync input="city" field="#field_city"/>
<xv:sync input="hotel" field="#field_hotel"/>
<xv:cancel id="voice_cancel"/>

</head>
<body>

<h1>What You See Is What You Can Say</h1>

<p>This example demonstrates a simple application
that permits the user to provide input using either
keyboard or stylus, or speak the same information.

</p>
<h2>Hotel Picker</h2>
<p>

This voice-enabled application lets you pick a hotel.
</p>
<form id="hotel_query" method="post" action="cgi/hotel.pl">

<label id="city_label">Please enter city

<! -- input name attrib required for type "text" -->
<input name="city" type="text"

ev:event="focus" ev:handler="#voice_city"/>
</label>

<label id="hotel_label">Please enter hotel

<input name="hotel" type="text"
ev:event="focus" ev:handler="#voice_hotel"/>

</label>

<input type="submit" value="Submit"/>
<input type="reset" value="Reset"

ev:event="click" xv:handler="#voice_cancel"/>
</form>

</body>
</html>

B.2 Mixed-initiative Conversational Interface

Page 34 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

<?xml version="1.0"?>
<html
xmlns="http://www.w3.org/1999/xhtml"
xmlns:vxml="http://www.w3.org/2001/vxml"
xmlns:ev="http://www.w3.org/2001/xml-events"
xmlns:xv="http://www.voicexml.org/2002/xhtml+voice"
>

<head>
<title>Mixed Initiative Conversational Interface</title>

<!-- first declare the voice handlers. -->
<!-- VXML form supporting a mixed-initiative grammar -->
<vxml:form id="voice_city_hotel">

<vxml:grammar src="city_hotel.jsgf" type="application/x-jsgf

<!-- Mixed initiative form begins with initial prompt -->
<vxml:initial name="start">

<vxml:prompt xv:src="#please_choose"/>
<vxml:help>
Please say the name of a city and a hotel to make
a reservation.

</vxml:help>
<!-- If user is silent, reprompt once, then try

directed prompts. -->
<vxml:noinput count="1"><vxml:reprompt/>
</vxml:noinput>
<vxml:noinput count="2">

<vxml:reprompt/>
<vxml:assign name="start" expr="true"/>

</vxml:noinput>
</vxml:initial>

<vxml:field xv:id="field_city" name="field_city">
<vxml:grammar src="city.jsgf" type="application/x-jsgf"/>
<vxml:prompt>Please choose a city.</vxml:prompt>
<vxml:catch event="help nomatch noinput">
For example, say Chicago.

</vxml:catch>
</vxml:field>

<vxml:field xv:id="field_hotel" name="field_hotel">
<vxml:grammar src="hotel.jsgf" type="application/x-jsgf"/>
<vxml:prompt>Select your hotel.</vxml:prompt>
<vxml:catch event="help nomatch noinput">
For example say Hilton.

</vxml:catch>
<vxml:filled>

<vxml:prompt>
You selected <vxml:value expr="field_hotel"/>.

</vxml:prompt>

Page 35 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

</vxml:filled>
</vxml:field>

<!-- done voice handlers -->

<!-- declare inputs synchronized with VoiceXML fields -->
<xv:sync input="city" field="#field_city"/>
<xv:sync input="hotel" field="#field_hotel"/>
<xv:cancel id="voice_cancel" handler="#voice_city_hotel"/>

</head>
<body>

<h1>Mixed-Initiative Conversational Interface</h1>

<p>In this example, we demonstrate a mixed-initiative dialog. B
activating a grammar capable of recognizing both cities and
hotel names, for the entire application, the user can specify
both hotel and city in a single utterance. Alternatively,
the user can fill one field at a time.

</p>

<h2>Hotel Picker</h2>
<p>This voice-enabled application lets you pick a

city and a hotel.
</p>
<form id="visual_city_hotel" method="post" action="cgi/hotel.pl"

ev:event="focus" ev:handler="#voice_city_hotel" >
<p id="please_choose">
Please choose a city and hotel where you wish to stay.
</p>

<!-- input name attrib required except for type "text" -->
<input name="city" type="text"/>
<input name="hotel" type="text"/>

<input type="submit" value="Submit" />
<input type="reset" value="Reset"

ev:event="click" ev:handler="#voice_cancel"/>
</form>

</body>
</html>

B.3 Speech-Enabled Mail Interface

This email message from the W3C voice browser working group archives has
been speech-enabled to allow easy browsing of email on hand-held devices.

<?xml version="1.0"?>
<html
xmlns="http://www.w3.org/1999/xhtml"

Page 36 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

xmlns:vxml="http://www.w3.org/2001/vxml"
xmlns:ev="http://www.w3.org/2001/xml-events"
xmlns:xv="http://www.voicexml.org/2002/xhtml+voice"
>

<head>
<title>w3c-voice-wg@w3.org from October 2001: preliminary

draft for Multimodal Activity
</title>
<meta name="Author" content="Dave Raggett (dsr@w3.org)" />
<meta name="Subject"

content="preliminary draft for W3C multimodal activity" />
<link rel="Stylesheet"

href="http://www.w3.org/StyleSheets/Mail/member-message"/>

<script language="javascript">
// define array holding command words -> activate-id map.
var commands = new Array();
commands.push("__next_message");
commands.push("__prev_message");
commands.push("__sort_by_date");
commands.push("__sort_by_thread");
commands.push("__sort_by_subject");
commands.push("__sort_by_author");
commands.push("__more_from_this_list");
commands.push("__other_w3c_lists");
commands.push("__respond_to_this_message");
commands.push("__mail_new_topic");
commands.push("__reply_to");

//activate takes a command word, looks it up in the commands
// map, and activates the link.
function activate (command) {

var length = commands.length;
for (var i=0;i<length;i=i++) {

if (command == commands[i]) {
document.getElementById(commands[i]).click();
break;

}
}

}
}
</script>

<script ev:target="#command-and-control" ev:event="vxmldone">
activate(application.lastresult$[0].interpretation);

</script>

<vxml:form id="command-and-control">
<!-- your word is my command. -->
<vxml:field name="word">

Page 37 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

<vxml:grammar jsgf="mail.jsgf"/>
<vxml:catch event="help nomatch">
This mail reader is speech-enabled. You can
perform available actions via speech input.

</vxml:catch>
</vxml:field>

</vxml:form>
</head>

<body ev:event="load" ev:handler="#command-and-control">
<h1>preliminary draft for W3C multimodal activity</h1>

From: Dave Raggett (
<a id="__reply_to"
href="mailto:dsr@w3.org?Subject=Re:%20preliminary%20draft%20for\
%20W3C%20multimodal%20activity&In-Reply-To=<Pine.WNT.4.10.10\
110301232270.-1031403-100000@hazel>&References=<Pine.WNT.\
4.10.10110301232270.-1031403-100000@hazel>">

dsr@w3.org
)

Date: Tue, Oct 30 2001

<p><!-- next="start" --></p>
<ul class="noindent">

Next message:

mxd@cisco.com: "Re: [dialog] <record>'s dest attribute"

Previous message:

Harish Varanasi: "RE: [dialog] <record>'s dest attribute"

<!-- nextthread="start" -->
<!-- reply="end" -->

Messages sorted by:

[date]

[thread]

[subject]

[author]

Other mail archives:

Page 38 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

[this mailing list]

[other W3C mailing lists]

Mail actions:
<a id="__respond_to_this_message"

href="mailto:w3c-voice-wg@w3.org?Subject=Re:%20preliminary\
%20draft%20for%20W3C%20multimodal%20activity&In-Reply-To=\
<Pine.WNT.4.10.10110301232270.-1031403-100000@hazel>&\
References=<Pine.WNT.4.10.10110301232270.-1031403-100000@hazel>

[respond to this message]

[mail a new topic]

<hr noshade="noshade" />
<p><!-- body="start" --></p>
<pre>
Message body was here.
</pre>
<p><!-- body="end" --></p>

<hr noshade="noshade" />
<!-- next="start" -->

<!-- trailer="footer" -->

</body>
</html>

B.4 Reusable VoiceXML Subdialogs

A flight query is processed with two reusable VoiceXML subdialogs. One
subdialog processes the departure city or airport, the other the departure date.

<?xml version="1.0"?>
<html
xmlns="http://www.w3.org/1999/xhtml"
xmlns:vxml="http://www.w3.org/2001/vxml"
xmlns:ev="http://www.w3.org/2001/xml-events"
xmlns:xv="http://www.voicexml.org/2002/xhtml+voice"
>

<head>
<title>Flight Query</title>
<link type="text/css" rel="stylesheet" href="style.css" />
<script src="cityorairport.es">

var objCityOrAirport = new CityOrAirport();
</script>

Page 39 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

<script src="dateinfo.es">
<var objDateInfo = new DateInfo();

</script>

<vxml:form id="voice_city_from">
<vxml:subdialog name="cityorairport"

src="cityorairport.vxml#cityorairportform">
<vxml:param name="paramSubdialogObj" expr="objCityOrAirport"
<vxml:param name="paramPromptQuestion"

expr="'What city or airport are you departing from?'"/
<vxml:filled>
<vxml:prompt>
You are departing from

<value expr="cityorairport.returnCityOrAirport"/
</vxml:prompt>
<vxml:assign name="document.from"

expr="cityorairport.returnCityOrAirport"/>
</vxml:filled>

</vxml:subdialog>
</vxml:form>

<vxml:form id="voice_date_from">
<vxml:subdialog name="dateinfo" src="dateinfo.vxml#dateform">

<vxml:param name="paramSubdialogObj" expr="objDateInfo"/>
<vxml:param name="paramPromptQuestion"

expr="'What day, month, and year are you leaving?'"/>
<vxml:filled>
<vxml:prompt>
You are departing on

<value expr="dateinfo.returnDateInfo"/>.
</vxml:prompt>

<vxml:assign name="document.fromDate"
expr="dateinfo.returnDateInfo"/>

</vxml:filled>
</vxml:subdialog>

</vxml:form>
<xv:cancel id="voice_cancel"/>

</head>
<body>

<h1>Multimodal Flight Query</h1>

<form method="post" action="/servlet/flightServlet">

<table border="0"
summary="Departure airport, date, and time">

<tr>
<td width="15%">
<label for="from">Leaving From:</label>

Page 40 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

</td>
<td colspan="2">
<input type="text" id="from" size="20"

ev:event="click"
ev:handler="#voice_city_from" />

</td>
</tr>

<tr>
<td width="15%">
<label for="fromDate">Travel Date:</label>

</td>
<td width="35%">
<input type="text" id="fromDate" size="20"

ev:event="click"
ev:handler="voice_date_from"/>

</td>
<td width="50%">
<div class="c1"><label>Time of Day:</label>

<table width="100%" border="0"
summary="leave am or pm">

<tr>
<td align="left">
<input type="checkbox" id="departam"

value="checkbox"/>
<label for="departam">am</label> </td>

<td align="left">
<input type="checkbox" id="departpm"

value="checkbox"/>
<label for="departpm">pm</label></td>

</tr>
</table>

</div>
</td>

</tr>
</table>

<table align="center">

<tr>
<td align="center" width="80%">
<input type="submit" value="Submit"/>

</td>
<td>
<input type="reset" value="Reset"

ev:event="click" ev:handler="#voice_cancel"/>
</td>

</tr>
</table>

Page 41 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

</form>
</body>

</html>

C FIA for XHTML+Voice
This section is informative.

An XHTML+Voice voice handler is processed according to the VoiceXML 2.0
form interpretation algorithm (FIA). Because many of the VoiceXML tags, as well
as forms with document grammar scope, are not supported, XHTML+Voice
simplifies the FIA. Below is the FIA pseudo-code taken from Appendix C of
[VoiceXML 2.0]. Comments are placed above the sections that are not supported
and the sections are crossed-out. For example, the comment "no script tag" is
above the crossed-out section that processes the VoiceXML 2.0 <script>
element.

At any time during the running of the FIA a cancel message from the visual
browser may have to be processed. This will terminate the FIA. The other
external message is sync for declarative synchronization of visual and speech
inputs. Sync modifies the selection phase of the FIA as follows. The guard
condition of the field associated with the sync is cleared and the field is selected.
If the sync carries with it data entered from XHTML during processing of the FIA,
then sync will update the field with the data and set its guard condition. Finally,
sync returns the utterance collected in the field to the visual browser.

//
// Initialization Phase
//

foreach (<var>, <script> and form item, in document order)
{

if (the element is a <var>)
Declare the variable, initializing it to the value of
the "expr" attribute, if any, or else to undefined.

// No script tag

else if (the element is a <script>) No script tag
Evaluate the contents of the script if inlined or else
from the location specified by the "src" attribute.

else if (the element is a form item)
Create a variable from the "name" attribute, if any, or
else generate an internal name. Assign to this variable
the value of the "expr" attribute, if any, or else

Page 42 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

undefined.

foreach (input item and <initial> element)
{

Declare a prompt counter and set it to 1.
}

}

// No document-level grammars

if (user entered this form by speaking to its
grammar while in a different form)

{
Enter the main loop below, but start in
the process phase, not the select phase:
we already have a collection to process.

}

//
// Main Loop: select next form item and execute it.
//

while (true)
{

//
// Select Phase: choose a form item to visit.
//

// No goto

if (the last main loop iteration ended
with a <goto nextitem>)

Select that next form item.

// if there is a sync event, the form item associated with the
// sync is selected after clearing its guard condition
// else

if (there is a form item with an
unsatisfied guard condition)

Select the first such form item in document order.

else

Do an <exit>

return -- the form is full and specified no transition.

//
// Collect Phase: execute the selected form item.
//

Page 43 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

// Queue up prompts for the form item.

unless (the last loop iteration ended with
a catch that had no <reprompt>,

// cannot change active dialogs

and the active dialog was not changed

)
{

Select the appropriate prompts for an input item or <initial
Queue the selected prompts for play prior to
the next collect operation.

Increment an input item's or <initial>'s prompt counter.
}

// Activate grammars for the form item.

if (the form item is modal)
Set the active grammar set to the form item grammars,
if any. (Note that some form items, e.g. <block>,
cannot have any grammars).

else
Set the active grammar set to the form item
grammars and any grammars scoped to the form,
the current document, and the application root
document.

// Execute the form item.

if (a <field> was selected)
Collect an utterance or an event from the user.
// If the sync event is received set the guard condition

else if (a <record> was chosen)
Collect an utterance (with a name/value pair
for the recorded bytes) or event from the user.

// no <object>

else if (an <object> was chosen)
Execute the object, setting the <object>'s
form item variable to the returned ECMAScript value.

else if (a <subdialog> was chosen)
Execute the subdialog, setting the <subdialog>'s
form item variable to the returned ECMAScript value.

Page 44 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

// no <transfer>

else if (a <transfer> was chosen)
Do the transfer, and (if wait is true) set the
<transfer> form item variable to the returned
result status indicator.

else if (an <initial> was chosen)
Collect an utterance or an event from the user.

else if (a <block> was chosen)
{

Set the block's form item variable to a defined value.
Execute the block's executable context.

}

//
// Process Phase: process the resulting utterance or event.
//

Assign the utterance and other information about the last
recognition to application.lastresult$. // Must have an utteranc

// no link

if (the utterance matched a grammar belonging to a <link>)
If the link specifies an "next" or "expr" attribute,
transition to that location. Else if the link specifies an
"event" or "eventexpr" attribute, generate that event.

// no choice

else if (the utterance matched a grammar belonging to a <choice
If the choice specifies an "next" or "expr" attribute,
transition to that location. Else if the choice specifies
an "event" or "eventexpr" attribute, generate that event.

// no grammar outside the current <form> except command & contro
if (the utterance matched a grammar from outside the current <f
{

Transition to the command & control handler for the utterance.
}

else if (the utterance matched a grammar from outside the curre
<form> or <menu>)

{
Transition to that <form> or <menu>, carrying the utterance
to the new FIA.

}

// Process an utterance spoken to a grammar from this form.
// First copy utterance result property values into correspondin

Page 45 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

// form item variables.

Clear all "just_filled" flags.

if (the grammar is scoped to the field-level) {
// This grammar must be enclosed in an input item. The input
// has an associated ECMAScript variable (referred to here as
// item variable) and slot name.

if (the result is not a structure)
Copy the result into the input item variable.

elseif (a top-level property in the result matches the slot
or the slot name is a dot-separated path matching a
subproperty in the result)

Copy the value of that property into the input item variabl
else

Copy the entire result into the input item variable

Set this input item's "just_filled" flag.
}
else {

foreach (property in the user's utterance)
{

if (the property matches an input item's slot name)
{

Copy the value of that property into the input item's f
item variable.

Set the input item's "just_filled" flag.
}

}
}

// Set all <initial> form item variables if any input items are

if (any input item variable is set as a result of the user utte
Set all <initial> form item variables to true.

// Next execute any <filled> actions triggered by this utterance

foreach (<filled> action in document order)
{

// Determine the input item variables the <filled> applies t

N = the <filled>'s "namelist" attribute.

if (N equals "")
{

if (the <filled> is a child of an input item)
N = the input item's form item variable name.

Page 46 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

else if (the <filled> is a child of a form)
N = the form item variable names of all the input

items in that form.
}

// Is the <filled> triggered?

if (any input item variable in the set N was "just_filled"
AND (the <filled> mode is "all"

AND all variables in N are filled
OR the <filled> mode is "any"

AND any variables in N are filled))
Execute the <filled> action.

If an event is thrown during the execution of a <filledgt;,
event handler selection starts in the scope of the <fil

which could be an input item or the form itself.
}
// If no input item is filled, just continue.

}

D DTD
This section defines the DTD used to formally define the XHTML+Voice 1.1
integration profile. This section is normative.

D.1 xhtml+voice11.dtd

The individual modules making up the DTD for profile xhtml+voice11 along with
the top-level driver file are packaged together and available with this document.
Note that use of the DTD in place of the SCHEMA requires the elements and
attributes specified by both [Speech Grammars] and [SSML 1.0] to be placed
within their respective namespaces. The speech grammar namespace is
"http://www.w3.org/2001/06/grammar" and the SSML namespace is
"http://www.w3.org/2001/10/synthesis."

E Schema
This section defines the formal XML Schema used to define the XHTML+Voice
1.1 profile. This section is normative.

E.1 xhtml+voice11.xsd

The individual modules making up the SCHEMA for the XHTML+Voice 1.1 profile
along with the top-level driver file are packaged together and available with this

Page 47 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

document.

F References

F.1 Normative References

XHTML Basic
XHTML Basic , 19 December 2000, Mark Baker, Masayasu Ishikawa,
Shinichi Matsui, Peter Stark, Ted Wugofski, Toshihiko Yamakami

CSS2
Cascading Style Sheets, level 2 (CSS2) Specification, Bert Bos, Håkon
Wium Lie, Chris Lilley, Ian Jacobs, 1998. W3C Recommendation available
at: http://www.w3.org/TR/REC-CSS2/.

DOM2 Events
Document Object Model (DOM) Level 2 Events Specification, Tom Pixley,
2000. W3C Recommendation available at: http://www.w3.org/TR/DOM-
Level-2-Events/.

HTML 4.01
HTML 4.01 Specification, Dave Raggett, Arnaud le Hors, Ian Jacobs, 1999.
W3C Recommendation available at: http://www.w3.org/TR/html4/.

RFC 2396
RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax., Tim
Berners-Lee, et. al, 1998. Available at: http://www.ietf.org/rfc/rfc2396.txt.

XML Events
xml Events - An events syntax for XML, Steven Pemberton, T. V. Raman
and Shane P McCarron, 2001. W3C Working Draft available at:
http://www.w3.org/TR/xml-events/.

Speech Grammars
Speech Recognition Grammar Specification Version 1.0, Andrew Hunt and
Scott McGlashan. W3C Candidate Recommendation, June, 2002 available
at: http://www.w3.org/TR/speech-grammar/.

SSML 1.0
Speech Synthesis Markup Language Specification, Mark Walker, Dan
Burnett, and Andrew Hunt. W3C Working Draft, December, 2002 available
at: http://www.w3.org/TR/speech-synthesis/.

VoiceXML 2.0
Voice Extensible Markup Language (VoiceXML) , Scott McGlashan et al,
W3C Candidate Recommendation available at:
http://www.w3.org/tr/voicexml20/.

XHTML Modularization
Modularization of XHTML Murray Altheim, Frank Boumphrey, Sam Dooley,
Shane McCarron, Sebastian Schnitzenbaumer, Ted Wugofski available at:
http://www.w3.org/TR/xhtml-modularization/.

Page 48 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

XHTML 1.1
XHTML 1.1 - Module-based XHTML Murray Altheim, Shane McCarron
available at: http://www.w3.org/TR/xhtml11/.

XML 1.0
Extensible Markup Language (XML) 1.0 (Second Edition), Tim Bray, Jean
Paoli, C. M. Sperberg-McQueen, Eve Maler, 2000. W3C Recommendation:
available at: http://www.w3.org/TR/REC-xml.

XML Names
Namespaces in XML, Tim Bray, Dave Hollander, Andrew Layman, 1999.
W3C Recommendation available at: http://www.w3.org/TR/REC-xml-
names/.

XSchema-1
XML Schema Part 1: Structures, Henry S. Thompson, David Beech, Murray
Maloney, Noah Mendelsohn, 2001. W3C Recommendation available at:
http://www.w3.org/TR/xmlschema-1/.

XSchema-2
XML Schema Part 2: Datatypes, Paul V. Biron, Ashok Malhotra, 2001. W3C
Recommendation available at: http://www.w3.org/TR/xmlschema-2/.

XHTML 1.0
XHTML 1.0: The Extensible HyperText Markup Language - A Reformulation
of HTML 4 in XML 1.0, Steven Pemberton, et. al, 2000. W3C
Recommendation available at: http://www.w3.org/TR/xhtml1/.

F.2 Informative References

ECMA 262
ECMA-262: ECMAScript Language Specification, European Computer
Manufacturers' Association (ECMA), 1999. Available at
ftp://ftp.ecma.ch/ecma-st/Ecma-262.pdf.

RFC 2141
RFC 2141: URN Syntax, R. Moats, 1997. Available at:
http://www.ietf.org/rfc/rfc2141.txt.

XForms
XForms 1.0 , Micah Dubinko, Josef Dietl, Roland Merrick,Dave Raggett, T.
V. Raman, Linda Bucsay Welsh 2001. W3C Candidate Recommendation
available at: http://www.w3.org/TR/xforms/.

XSchema-0
XML Schema Part 0: Primer, David C. Fallside, 2001. W3C
Recommendation available at: http://www.w3.org/TR/xmlschema-0/.

XSLT
XSL Transformations (XSLT) Version 1.0, James Clark, 1999. W3C
Recommendation available at: http://www.w3.org/TR/xslt.

Page 49 of 49XHTML+Voice Profile 1.1

1/24/2003http://bubbles.almaden.ibm.com/~tvraman/multimodal/x+v/11/spec.html

