
Abstract

The Web services platform offers a distributed
computing environment where autonomous applications
interact using standard Internet technology. In this
environment, diverse applications and systems become
the components of intra- and inter-enterprise
integration. Yet, transactional reliability, an often
critical requirement on such integration, is presently
missing from the Web services platform. In this paper,
we address this shortcoming and propose the WSTx
framework as an approach to Web service reliability.
WSTx introduces transactional attitudes to explicitly
describe the otherwise implicit transactional semantics,
capabilities, and requirements of individual
applications. We show how explicit transactional
attitude descriptions can be used by a middleware
system to automate the reliable composition of
applications into larger Web transactions, while
maintaining autonomy of the individual applications.

1. Introduction

The development of software systems frequently
entails the need to integrate diverse applications within
an enterprise and across enterprises. Different kinds of
application integration technologies, such as object-ori-
ented middleware, message-oriented middleware, and,
more recently, the Web services platform, have been
proposed for this purpose.

Transactions are a commonly employed approach to
address system reliability and fault-tolerance. Object-
oriented middleware and message-oriented middleware
support transaction processing; examples of middleware
transaction models are CORBA OTS/JTS distributed
object transactions, EJB declarative transactions, and
messaging transactions. The Web services platform,
however, is lacking reliability features; no Web transac-
tion model and corresponding Web transaction infra-
structure support has been established so far.

In this paper, we address this shortcoming of the
Web services platform and propose a solution for intro-
ducing transactional reliability to Web services.

Web transactions are a difficult matter, as unlike con-
ventional middleware transactions, no common transac-
tion semantic, transaction context representation, and
coordination protocol can be assumed to exist for trans-
action participants (the individual applications) in a

Web services environment. It is more likely that partici-
pants are autonomous (with respect to their implementa-
tion and execution environment), that different,
seemingly incompatible transaction models and middle-
ware technologies may be involved in the same Web
transaction, and that context representation and service
coordination and management must be achieved in a
decoupled, decentralized manner.

In this paper, we describe first results in the develop-
ment of the WSTx (Web Services Transactions) frame-
work addressing these challenges. We introduce the
concept of “transactional attitudes”, where Web ser-
vice providers declare their individual transactional
capabilities and semantics, and Web service clients
declare their transactional requirements (of providers).
We further propose a Web service middleware, based on
intermediaries, which supports different Web service
transactional capabilities, and provides global context
management for execution monitoring, transaction com-
pletion, failure-detection, and recovery.

2. Web Services

The Web services platform comprises different kinds
of technologies and standards that are organized into the
five layers of network, transport, packaging, descrip-
tion, and discovery, as illustrated in Figure 1.

The Web services standard of primary interest in this
paper is WSDL [1]. WSDL is the Web Services Descrip-
tion Language; it is used to describe a Web service in
terms of ports (addresses implementing the service),
port types (the abstract definition of operations and
ordered exchanges of messages), and bindings (the con-
crete definition of which packaging protocols, such as
SOAP [2], are used).

Network (TCP/IP)

Transport (HTTP, HTTPR)

Packaging (SOAP, XML)

Description (WSDL)

Discovery (UDDI, WS-Inspection)

Figure 1. Web Services Technology Stack

Transactional Attitudes:
Reliable Composition of Autonomous Web Services

Thomas Mikalsen, Stefan Tai, Isabelle Rouvellou

IBM T.J. Watson Research Center, Hawthorne, New York, USA
{tommi | stai | rouvellou@us.ibm.com}

WSDL is an interface standard that abstracts from
any platform and programming language-specific
details of how application code is actually invoked. As
such, Web services are independent of any particular
implementation technology used; they can be deployed
anywhere that common Internet technology is sup-
ported.

Therefore, individual (implementations of) Web ser-
vices may use different kinds of (middleware) transac-
tion technology. A Web services transaction model that
aims to support transactions across Web services hence
must tolerate such autonomy; a Web transaction is a
global transaction that spans across diverse transac-
tional (and non-transactional) service implementations.

3. WSTx

In this section, we introduce the Web services trans-
action (WSTx) framework comprising provider transac-
tional attitudes (Section 3.2) and client transactional
attitudes (Section 3.3.). We then show how this frame-
work is supported as middleware (Section 3.4). We
begin by describing a travel booking scenario (Section
3.1), which is used throughout the paper to motivate
and illustrate the WSTx approach.

3.1. Travel Booking Scenario

In the Travel Booking scenario illustrated in Figure
2, a client application wishes to arrange a trip using
three independent travel services: a flights Web service,
a rooms Web service, and a taxis Web services. These
services are defined below.

The Flights Web Service. The Flights Web ser-
vice provides the three operations reserveFlight ,
confirmReservation , and cancelReservation .
The reserveFlight operation returns a reservation
number to the client, which the client needs to either
confirm a reservation, or to cancel a reservation. This
service is defined by the following WSDL specifica-
tion:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Flights reservation Web service -->
<definitions name="Flights"

xmlns="http://schemas.xmlsoap.org/wsdl/"
...
<!-- abstract messages -->
...
<message name="ReserveFlightOut">

<part name="resvNo" type="xsd:string"/>
</message>
<message name="ConfirmReservationIn">

<part name="resvNo" type="xsd:string"/>
</message>
<message name="CancelReservationIn">

<part name="resvNo" type="xsd:string"/>
</message>
...
<!-- port type -->
<portType name="FlightsPortType">
<operation name="reserveFlight">

<input message="ReserveFlightIn"/>
<output message="ReserveFlightOut"/>

</operation>
<operation name="confirmReservation">

<input message="ConfirmReservationIn"/>
<output message="ConfirmReservationOut"/>

</operation>
<operation name="cancelReservation">

<input message="CancelReservationIn"/>
<output message="CancelReservationOut"/>

</operation>
</portType>
</definitions>

The Taxis Web Service. The Taxis Web service
offers operations to group multiple taxi leg requests
into a single (atomic) reservation. The newBooking
operation is used to start a reservation; it returns a
booking number which the client uses for all subse-
quent operations. The addLeg operation is used to add
taxi legs, the submitBooking operation is used to sub-
mit the request, and the confirmBooking and the
cancelBooking operations are used to complete or
cancel a reservation. The Taxis Web service is
described as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Taxis reservation Web service -->
<definitions name="Taxis"

xmlns="http://schemas.xmlsoap.org/wsdl/"
...
<!-- abstract messages -->
...
<message name="NewBookingOut">

<part name="bookingNo" type="xsd:string"/>
</message>
<message name="ConfirmBookingOut">

<part name="confNo" type="xsd:string"/>
</message>
...
<!-- port type -->
<portType name="TaxisPortType">
<operation name="newBooking">

<input message="NewBookingIn"/>
<output message="NewBookingOut"/>

</operation>

Rooms Web
Service

Taxis Web
Service

Flights Web
Service

Client

reserveFlight
confirmReservation
cancelReservation

reserveRoom
cancelReservation

newBooking
addLeg

submitBooking
confirmBooking
cancelBooking

Figure 2. Travel Booking Services

<operation name="addLeg"> ...
</operation>
<operation name="submitBooking"> ...
</operation>
<operation name="confirmBooking">

<input message="ConfirmBookingIn"/>
<output message="ConfirmBookingOut"/>

</operation>
<operation name="cancelBooking"> ...
</operation>
</portType>
</definitions>

The Rooms Web Service. The Rooms Web service
provides the two operations reserveRoom and can-
celReservation . The reserveRoom operation
returns a confirmation number to the client, which is
needed for the client to cancel (undo) a reservation later
on. The following WSDL fragment shows the interface
of the service:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Hotel room reservation Web service -->
<definitions name="Rooms"

xmlns="http://schemas.xmlsoap.org/wsdl/"
...>

<!-- types -->
<types ...>
<schema>
<complexType name=”ConfInfo”>
<sequence>

<element name=”confNo” type=”xsd:string”/>
...

</sequence>
</schema>
</complexType>
</types>
<!-- abstract messages -->
...
<message name="ReserveRoomOut">

<part name="conf" type="types:ConfInfo"/>
</message>
<message name="CancelReservationIn">

<part name="confNo" type="xsd:string"/>
</message>
...
<!-- port type -->
<portType name="RoomsPortType">
<operation name="reserveRoom">

<input message="ReserveRoomIn"/>
<output message="ReserveRoomOut"/>

</operation>
<operation name="cancelReservation">

<input message="CancelReservationIn"/>
<outputmessage="CancelReservationOut"/>

</operation>
</portType>
</definitions>

Each Web service implements a different transac-
tional behavior, which, using standard WSDL, is only
implicitly described. For example, in the Flights Web
service, the cancelReservation operation aborts a

tentative reservation, whereas in the Rooms Web ser-
vice, the cancelReservation operation compensates
for a completed reservation.

If the client application wishes to establish a transac-
tional dependency between the individual services, so
that only well defined combinations of reservations/
bookings are possible, ad hoc code will be required to
weave these services into a meaningful transaction.

3.2. Provider Transactional Attitudes

In order to avoid ad hoc programming of composi-
tions of Web services that have different transactional
semantics, we propose the concept of Provider Trans-
actional Attitudes.

Provider transactional attitudes (PTAs) are a mecha-
nism for Web service providers to explicitly describe
their specific transactional behavior. By making trans-
actional semantics explicit, PTAs can be used in auto-
mating the composition of individual transactional Web
services into larger transactional patterns, while main-
taining the autonomy of the individual services.

A PTA includes the name of an abstract transac-
tional pattern, plus any additional port-specific infor-
mation needed to make the pattern concrete. The
abstract pattern implies a well-defined state machine
describing the valid transactional states, state transi-
tions, and transition-triggering events. The name and
semantic of each state is implied by the name of the
transactional pattern. State transitions are triggered by
externally observable events, such as operation invoca-
tions on ports and time-outs. To complete a pattern, a
provider must

• identify transactional port operations (i.e., the
port operations that can trigger transactional-state
transitions),

• describe how invocations on these operations are
associated with corresponding state machines
instances (e.g., operation correlation encoding),
and

• describe how transactional-operation outcomes
are encoded.

We propose using the standard WSDL extensibility
mechanisms (so called extensibility elements) to anno-
tate port bindings with transactional semantics (i.e., to
define an XML vocabulary for transactions).

The WSTx includes the following extension ele-
ments (applied to wsdl:binding):

• a binding extension element for declaring the
transactional attitude (i.e., transactional pattern)
of a port,

• operation extension elements for declaring trans-
actional-event triggering operations,

• input/output extension elements for describing
operation correlation encoding, and

• output/fault extension elements for describing
operation-outcome encoding.

For example, a WSTx port binding element is used
to declare a port’s transactional attitude: annotating a
port binding with

<wstx:binding
attitude=’pending-commit’/>

declares that the port has a pending-commit attitude
towards transactions. The name pending-commit
refers to a well-defined WSTx transactional pattern.

The WSTx vocabulary presently defines three pro-
vider transactional attitudes:

• “pending-commit” (PC),
• “group-pending-commit” (GPC), and
• “commit-compensate” (CC).
We have found these PTAs to describe transactional

behavior that is common to many Web services; in par-
ticular, these PTAs can be used to describe the transac-
tional behavior of the three Web services in our Travel
Booking scenario. We expect the number attitudes sup-
ported by the WSTx to grow as additional transactional
Web service patterns emerge.

Following, we describe each of these transactional
attitudes in detail, and describe the associated WSTx
extension elements used to represent them.

3.2.1. Pending-commit PTA

The pending-commit (PC) attitude describes a trans-
actional port of a single Web service where the effect of
a single forward operation invocation can be held in a
pending state; the operation-effect remains pending
until the subsequent occurrence of an event (e.g., the
invocation of a commit or abort operation) triggers
either acceptance or rejection (of the operation-effect).

Forward operations are annotated with a
<wstx:forwardOperation> element. The effect of a
forward operation is brought to a pending state if the
operation is invoked successfully; otherwise, the effect
is rejected.

The effect of a forward operation can be explicitly
realized by invoking a commit operation. Commit oper-
ations are annotated using a <wstx:commitOpera-
tion> operation extension element.

The effect of a forward operation can be explicitly
dismissed by invoking an abort operation. Abort opera-
tions are annotated using a <wstx:abortOperation>
operation extension element.

In order to associate a forward operation with a com-
mit (or abort) operation, a PC attitude must include a
correlation encoding. WSTx provides the <wstx:sim-
pleCorrelation> input/output extension element for
describing simple correlation encodings, where a corre-
lation identifier is embedded in a message part. This
element allows the provider to specify the part, and
optionally the sub-part (e.g., using an XPath [3] expres-
sion), of a message that holds the correlation identifier.

Returning to the Travel Booking scenario from
above, the Flights Web service implicitly describes the
transactional semantics of a pending-commit PTA: the
process of reserving a flight includes a pending state,
before the reservation is either committed (using the
confirmReservation operation) or aborted (using
the cancelReservation operation). This transac-
tional behavior can be made explicit in a WSDL bind-
ing using WSTx extension elements as follows1:

<binding name="FlightsPortBinding"
 type="tns:FlightsPortType">

<wstx:binding attitude="pending-commit"/>

<operation name="reserveFlight">
<wstx:forwardOperation/>
<output>
<wstx:simpleCorrelation partName="resvNo"/>
</output>

</operation>
<operation name="confirmReservation">

<wstx:commitOperation/>
<input>
<wstx:simpleCorrelation partName="resvNo"/>
</input>

</operation>
<operation name="cancelReservation">

<wstx:abortOperation/>
<input>
<wstx:simpleCorrelation partName="resvNo"/>
</input>

</operation>
</binding>

3.2.2. Group-pending-commit PTA

The group-pending-commit (GPC) attitude describes
a transactional port of a single Web service where the
effects of a group of forward operation invocations can
be held in a pending state; the group-effect remains
pending until the subsequent occurrence of an event
(e.g., the invocation of a commit or abort operation)
triggers either acceptance or rejection (of the group-
effect).

A new operation group is created either explicitly
with a begin operation, or implicitly as part of a for-
ward operation.

Explicit begin operations are annotated with a
<wstx:beginOperation> element. Forward opera-
tions are annotated with a <wstx:forwardOpera-
tion> element.

The group-effect is brought to a pending state by
invoking a single prepare operation. Prepare operations
are annotated with a <wstx:prepareOperation>
element. The group-effect is brought to a pending state
if the prepare operation is invoked successfully; other-
wise, the group-effect is rejected.

The group-effect of all forward operations can be
explicitly accepted by invoking a single commit opera-
tion. A commit operation is annotated with a
<wstx:commitOperation> element. The group-
effect is accepted if the commit operation is invoked
successfully; otherwise, the group-effect is rejected.

The group-effect of all forward operations can be
explicitly rejected by invoking a single abort operation.
Abort operations are annotated using the
<wstx:abortOperation> element.

In order to associate individual operations (forward
operations, prepare operations, etc.) with a group, a
GPC attitude must include a correlation encoding. As
with the pending-commit PTA (see ”Pending-commit
PTA”above), simple correlation encodings can be

1. The bindings illustrated here have been abbreviated to save
space; a complete binding would likely include additional
communication protocol elements, such as SOAP extension
elements.

described using the <wstx:simpleCorrelation>
element.

The “Taxis” Web service (from the scenario above)
implicitly describes a group-pending-commit PTA: the
Web service provides control operations to begin, pre-
pare, commit or abort a group of actions, and it pro-
vides a forward operation that represents the group
action. This transactional behavior can be described
using WSTx as follows:

<binding name="BookingBinding"
type="tns:BookingPortType">

<wstx:binding
attitude="group-pending-commit"/>

<operation name="newBooking">
<wstx:beginOperation/>
<output>

<wstx:simpleCorrelation
partName="bookingNo"/>

</output>
</operation>
<operation name="addLeg">
<wstx:forwardOperation/>
<input>

<wstx:simpleCorrelation
partName="bookingNo"/>

</input>
</operation>
<operation name="submitBooking">
<wstx:prepareOperation/>
<input>

<wstx:simpleCorrelation
partName="bookingNo"/>

</input>
</operation>
<operation name="confirmBooking">
<wstx:commitOperation/>
<input>

<wstx:simpleCorrelation
partName="bookingNo"/>

</input>
</operation>
<operation name="cancelBooking">
<wstx:abortOperation/>
<input>

<wstx:simpleCorrelation
partName="bookingNo"/>

</input>
</operation>
</binding>

3.2.3. Commit-compensate PTA

The commit-compensate (CC) attitude describes a
transactional port of a single Web service where the
effect of a single forward operation invocation is
immediately accepted, yet can later be semantically
reversed by invoking an associated compensation oper-
ation on the port.

Forward operations are annotated with a
<wstx:forwardOperation> element. The effect of a
forward operation is immediately accepted if the opera-

tion is invoked successfully; otherwise, the effect is
rejected.

The effect of a forward operation can be semanti-
cally reversed by invoking a compensation operation.
Compensation operations are annotated using a
<wstx:compensationOperation> element.

The transactional behavior of the Rooms Web ser-
vice (from above) is consistent with the commit-com-
pensate PTA: an incoming request that can be executed
is immediately committed. A compensating operation
(the cancelReservation operation) is defined for a
client to undo a previously committed reservation. This
behavior can be made explicit using the following
WSTx port binding:

<binding name="ReservationBinding"
type="tns:ReservationPortType">

<wstx:binding attitude="commit-compensate"/>
<operation name="reserveRoom">
<wstx:forwardOperation/>
<input>
<output>

<wstx:simpleCorellation
partName="conf" select="confNo"/>

</output>
</operation>
<operation name="cancelReservation">
<wstx:compensationOperation/>
<input>

<wstx:simpleCorrelation partName="confNo"/>
</input>
</operation>
</binding>

In the examples above, a default operation-outcome
encoding is assumed. Each operation, in all three Web
services, has an associated single fault message
(which has been elided to save space). If an operation
generates a fault, then the operation-outcome is
failure; otherwise, the operation-outcome is suc-
cess.2 The meaning of success and failure for a
given operation is defined by the PTA; for example,
failure of a prepareOperation in the group-pending-
commit PTA results in the immediate rejection of the
group-effect (as if an abortOperation was invoked).

Figure 3 illustrates in summary the provider transac-
tional attitudes of the three autonomous Web services
of the Travel Booking scenario. Using WSTx, the oth-
erwise implicit transactional behavior of the Web ser-
vices are now explicit as part of the WSDL interface.

3.3. Client Transactional Attitudes

Reconsider the client of the travel booking example.
Let us assume that the client wants to reserve two
flights, one hotel room, and multiple taxis, using the
three independent Web services. The client wishes to
establish a transactional dependency between the ser-
vices, so that only the following defined outcomes of
the combined use of the Web services are possible:

2. Other, more flexible, operation-outcome encodings are being
considered.

• the two flight reservations, the hotel reservation,
and the taxis reservation are all committed

• the two flight reservations and the hotel reserva-
tion are committed, but the taxis reservation is
aborted

• the two flight reservations, the hotel reservation,
and the taxis reservation are all aborted.

Therefore, the flights reservations and the hotel res-
ervation in combination are vital to the success of the
client transaction, whereas the taxis reservation is not
critical to the success of the transaction (but is never-
theless part of the transaction).

3.3.1. Implicit client attitudes

Without the WSTx framework, the client needs to
manually program the use of the Web services to ensure
that exactly one of the desired outcomes is reached.
This is a complex exercise; a possible naive solution
(neglecting any management of system failures) is
illustrated below.

// pseudo-code for client without WSTx
cR = Rooms.reserveRoom // commit room
pF1 = Flights.reserveFlight //prepare flight1
pF2 = Flights.reserveFlight //prepare flight2
Taxis.newBooking {

Taxis.addLeg *
pT = Taxis.submit // prepare taxis

}
if(cR && pF1 && pF2) { // commit condition

cF1 = Flights.confirmFlight // commit flight1
cF2 = Flights.confirmFlight // commit flight2
if(cF1 && cF2) {

if(pT){
cT = Taxis.confirmBooking // commit

}
} else {

Rooms.cancelResv; // compensate room
if(pT){

Taxis.cancelBooking // abort
}

}
} else { // rollback

if(pF1) {
Flights.cancelResv // abort flight1

}

if(pF2) {
Flights.cancelResv // abort flight2

}
if(pT) {

Taxis.cancelBooking // abort taxis
}
if(cR) {

Rooms.cancelResv // compensate room
}

}
Here, the client implicitly describes the transactional

expectations: which of the providers’ commit opera-
tions are critical (form an atomic group), and which
providers’ commit operations are non-critical, but asso-
ciated to the atomic group.

3.3.2. Explicit client attitudes

The WSTx framework proposes to describe such cli-
ent expectations explicitly using Client Transactional
Attitudes (CTAs).

A client’s transactional attitude is established by its
use of a particular WSDL port type to manage (create,
complete, etc.) Web transactions, where the port type
represents some pre-defined transactional pattern.
Within the scope of a Web transaction, the client exe-
cutes one or more named actions, where each action
represents a provider transaction (associated with some
PTA) executing within the context of the larger Web
transaction.

The client initiates an action by binding to an action
port, which serves as a proxy to a participating pro-
vider’s transactional port. Each action port represents a
unique provider transaction executing within the con-
text of the client’s Web transaction. When using an
action port, the client may invoke only the forward
operations of the provider; that is to say, the client can-
not invoke completion operations (commit, abort, and
compensation operations). (Actions and action ports are
described in more detail below in Section 3.4.)

Flexible Atom CTA. The flexible atom (FA) attitude
describes a client transaction where a set of client
actions (i.e., provider transactions) are grouped into an
atomic group that can have one out of a set of defined
group outcomes; that is to say, some actions are
declared to be critical to the success of the transaction,
whereas other actions are part of the transaction though
not pivotal to its success. The client specifies the
acceptable outcomes as an outcome condition,
described in terms of the success or failure of the indi-
vidual actions, and when ready (i.e., after executing the
forward operations of these actions), requests the com-
pletion of the flexible atom according to that condition.
The WSTx middleware (described below in Section
3.4) then attempts to satisfy the condition by invoking
the appropriate completion operations on the providers
represented by the associated actions.

The code below illustrates the client for the Travel
Booking example using the WSTx:

// Create a new Flexible Atom
wstxId = flexAtom.beginAtom();

Rooms Web
Service

Taxis Web
Service

Flights Web
Service

Client

PTA: Pending-commit
reserveFlight // fwdOp

confirmReservation // commitOp
cancelReservation // abortOp

PTA: Group-pending-commit
newBooking // beginOp

addLeg // fwdOp
submitBooking // prepareOp
confirmBooking // commitOp

cancelBooking // abortOp

PTA: Commit-compensate
reserveRoom // fwdOp
cancelReservation //

compensationOp

Figure 3. Travel Booking Services with PTAs

// Action-port bindings
FlightsPortType flight1 =

wstxPort.bindAction(wstxId, "flight-1",
"FlightsPort","url:FlightsService.wsdl")

FlightsPortType flight2=
wstxPort.bindAction(wstxId, "flight-2",

"FlightsPort","url:FlightsService.wsdl")
RoomsPortType room1 =

wstxPort.bindAction(wstxId, "room-1",
"RoomsPort","url:RoomsService.wsdl")

TaxisPortType taxis =
wstxPort.bindAction(wstxId, "taxis",

"TaxisPort","url:TaxisService.wsdl")

// invoke forward operations on participants
room1.reserveRoom(/*...*/);
flight1.reserveFlight(/*...*/);
flight2.reserveFlight(/*...*/);
String t = taxis.newBooking(/*...*/);

taxis.addLeg(t,/*...*/);
taxis.addLeg(t,/*...*/);

taxis.submit(t);

// Establish condition (valid outcomes)
String condition = "(flight-1 && flight-2 &&
room-1 && (taxis || !taxis)) || !(flight-1 ||
flight-2 || room-1 || taxis)";

// End the atom
String outcome = flexAtom.endAtom(wstxId,

condition);

Here, the client initiates four actions named
flight-1, flight-2, room-1, and taxis. Each
action is bound to an action port using the WSTx mid-
dleware bindAction operation. The action ports serve
as proxies to the providers transactional ports, allowing
invocations to be associated with the correct client Web
transaction. The client invokes forward operations
using the action ports, and then establishes an outcome
condition representing the desired group outcomes and
requests that the flexible atom Web transaction be com-
pleted according to this condition.

3.4. WSTx Middleware

As suggested earlier, explicit transactional semantic
descriptions, such as the PTAs and CTAs described
above, can be used to automate the reliable execution of
Web transactions. To support such automation, the
WSTx framework includes middleware which acts as
an intermediary between a client and a set of Web ser-
vice providers. This middleware harmonizes client
transactional requirements (CTAs) with the diverse
transactional capabilities of individual providers
(PTAs), and reliably executes and monitors Web trans-
actions accordingly.

In the following, we first enumerate some general
requirements on a WSTx middleware implementation.
We then offer a conceptual design for one possible
implementation – the Smart Attitude Monitor – which
supports the flexible atom CTA and the pending-com-

mit, group-pending-commit, and commit-compensate
PTAs described above.

3.4.1. General requirements

In general, the WSTx middleware must provide the
following functions:

• understand and support some set of PTAs (and
the proposed WSTx binding extensions used to
describe them)

• understand and support some set of CTAs (i.e.,
provide port and port bindings for the supported
CTA port types)

• intercept all transactional interaction between a
client and the participating Web service providers

• establish and manage Web transaction contexts
(i.e., global contexts) on behalf of the client

• associate transactional interactions (messages)
with the corresponding global contexts and par-
ticipating local provider transaction contexts

• provide records (logs) of the actions performed
for each (global) transaction

To ensure reliable execution, the WSTx middleware
must comprise

• a persistent log of all ongoing transactions and
their state,

• a persistent log of all relevant transactional-state
transformations for each global transaction, and

• a time service that serves for detecting timeouts
in transactional interactions with participants.

The WSTx middleware includes interfaces to man-
age Web transactions according to specific CTAs. Once
a client ends a WSTx transaction, it is the middleware’s
responsibility to reliably perform the completion of the
transaction (e.g., invoking commit, abort, and compen-
sation operations on the providers). Thus, the WSTx
middleware must further comprise components that
monitor participants to guarantee that completion oper-
ations are successfully performed.

3.4.2. SAM - the “Smart” Attitude Monitor

We now describe the conceptual design of a specific
WSTx middleware implementation – the Smart Attitude
Monitor, a.k.a. SAM.

SAM is itself a Web service, and serves as an inter-
mediary between a transactional client and one or more
transactional providers. Figure 4 illustrates SAM,
within the context of the Travel Booking scenario, sup-
porting the flexible atom CTA and the pending-commit,
group-pending-commit, and commit-compensate PTAs
described above.

SAM comprises three types of ports and a recovery
log:

WSTx Port. This port provides general Web transac-
tion and configuration operations, and is independent of
any particular CTA. An example is the bindAction
operation (described above).

CTA Ports. These ports are used to manage Web
transactions associated with specific CTAs. In the fig-
ure, a CTA port supporting the flexible atom CTA is

shown. Sample operations are the beginAtom opera-
tion and endAtom operation.

Action Ports. These are proxy ports through which a
client interacts with providers. An action port is created
dynamically (by SAM) whenever a client initiates an
action (representing a provider transaction) within the
context of a Web transaction.

Recovery Log. SAM’s recovery log is used to dura-
bly record all critical interactions and transactional state
transitions, in order to recover in the event of a failure.

With reference again to Figure 4, we will now elabo-
rate on the client programming model introduced
above, and further describe how SAM supports this
model to execute Web transactions.

In the example, the client uses SAM’s FA-CTA port
to create a new flexible atom Web transaction:

wstxId = flexAtom.beginAtom();

The client then initiates actions using SAM’s WSTx
port bindAction operation. For example, the client
creates an action called “flight-1” associated with the
FlightsPort port provided by the Web service
described in url:FlightsService.wsdl 3:

FlightsPortType flight1 =
wstxPort.bindAction(wstxId, "flight-1",

"FlightsPort","url:FlightsService.wsdl")

In response, SAM creates a new action proxy port
for the action named “flight-1”, and associates it with
the given Web transaction context (wstxId). Subse-
quent client invocations on this port, which are
expected to be forward operations within the same pro-
vider transaction context, are routed to the Flight-
sPort port of the FlightsService provider. For
example, the invocation flight1.reserveFlight is
routed to the FlightsService provider, which cre-

ates a new provider transaction context identified by the
returned reservation number correlator.

For each client action, SAM observes the transac-
tional events (e.g., client invocations) that can affect the
state of the associated provider transaction. In particu-
lar, SAM intercepts all messages exchanged through its
action ports, and uses the provider’s PTA to determine
the meaning of these messages within the context of the
provider’s transaction. In doing so, SAM reflects the
state of all provider transactions associated with the cli-
ent’s actions (i.e., the client’s Web transaction). SAM
persistently records the events associated with critical
state transitions, and uses these records to recover in the
event of a failure.

When completing a Web transaction, SAM drives
the associated provider transactions to completion
according to the client’s CTA. For example, when com-
pleting a flexible atom Web transaction, SAM evaluates
the actions named in the outcome condition, and
attempts to satisfy this condition by invoking the appro-
priate completion operations (e.g., commit, abort, com-
pensate) on the providers represented by those actions.

4. Summary and Discussion

In this paper, we introduced the WSTx framework for
building reliable transactional compositions from Web
services with diverse transactional behavior. We
showed how transactional attitudes are used to capture
and communicate otherwise implicit transactional
semantics and requirements, without compromising the
autonomy of the individual transaction participants.
Provider transactional attitudes (PTAs) use WSDL
extension elements to annotate Web service provider
interfaces for Web transactions, according to well-
defined transactional patterns; client transactional atti-
tudes (CTAs) are described in terms of well-defined
WSDL port types and outcome acceptance criteria. We
further outlined the requirements on a middleware sys-
tem which uses these explicit transactional attitude
descriptions to reliably execute web transactions, and
offered a conceptual design for a specific middleware
implementation that meets these requirements.3. The specified WSDL file is expected to include the PTA of the

provider.

Smart Attitude
Monitor (SAM)
Web serviceClient

Flights
Web

service

Rooms
Web

service

Taxis
Web

service

WSTx

FA-CTA
PC-PTA

GPC-PTA

CC-PTA

flight1
flight2
room1
taxisFA-CTA

action "proxy" ports Recovery
log

Figure 4. Travel Booking Scenario using SAM

The WSTx framework uniquely enables a client to
program a Web transaction without requiring transac-
tion participants to agree on a common transaction
semantic, transaction context representation, and coor-
dination protocol.

Further, the concept of transactional attitudes fol-
lows and promotes a clean separation of concerns for
software engineering. Transactional properties can be
isolated from other aspects of a service description,
allowing, for example, capability-based service queries.

Regarding the system implementation, the design of
the WSTx framework uses standard Web services tech-
nology only; WSDL and existing WSDL extension
mechanisms are sufficient to support the idea of trans-
actional attitudes. The design is also open to accommo-
date some technologies (such as those described below)
emerging in the highly dynamic field of Web services.

The implementation design for SAM can easily be
realized using existing Web services toolkits and stan-
dard Web Application servers (such as IBM’s Web Ser-
vices Toolkit [4]).

There are, however, open issues that need to be fur-
ther explored. For example, it is possible that comple-
tion operations (such as commit, abort, and compensate
operations) have signatures for which application spe-
cific actual arguments will be needed, or that there are
alternative operations for the same completion function
(e.g., multiple commit operations). In such cases, the
client must somehow communicate this additional
information in order for the WSTx middleware to com-
plete a Web transaction.

There are also issues related to the implementation
of a mature WSTx middleware. In order to scale, the
WSTx middleware may not be a single Web service,
but a distributed system of networked entities, or a set
of Web service intermediaries. Appropriate message
routing support is required for messages traveling
through multiple WSTx components and WSTx inter-
mediaries to a specific provider, though no agreed stan-
dard for Web service routing exists to date.

The WSTx approach also creates additional opportu-
nities. For example, WSTx clients do not necessarily
need to understand the PTAs of the participating pro-
viders. Rather, a client is required only to understand its
chosen CTA and the semantics of the forward opera-
tions of the providers it uses. The CTA itself may
impose restrictions on the PTAs that can be included in
a Web transaction, and this may result in the client’s
erroneous attempt to bind an action to an unsupported
provider. However, the client’s CTA can be used to
select appropriate providers (e.g., to dynamically locate
providers with compatible transactional attitudes).

5. Related Work

The Web services framework to-date does not pro-
vide a model for the reliable (fault-tolerant, transac-
tional) execution of a group of Web services. The need
to address this problem, however, has been identified in
the context of a number of diverse activities. These
activities relate to Web services transactions and the
WSTx as follows.

Process modeling support. Extensions to WSDL
have been proposed to model application process
(work-) flows that involve multiple Web services invo-
cations. IBM’s Web Services Flow Language (WSFL)
[5] and Microsoft’s XLANG [6] fall in this category.
Though neither WSFL nor XLANG support distributed
transactions, they define constructs that support the
composition (coordination) of Web services based on
rules. These include constructs for defining invocation
orders and dependencies, exception handling, and ser-
vice correlation and (basic) compensation.

Thus, languages like WSFL and XLANG promise to
be very suitable for modeling the client application
flow in a WSTx CTA.

Web transaction protocols. A number of specific
transaction protocols for the Web are currently being
discussed. These include the OASIS Business Transac-
tion Protocol (BTP) [7], and the W3C Tentative Hold
Protocol (THP) [8]. These protocols define a model for
the automatic coordination of loosely-coupled Web ser-
vices based on a defined set of transaction messages.
They also suggest new notions of transactions that relax
some of the ACID properties of conventional transac-
tions. BTP, for example, introduces the notion of a
cohesion, which allows the individual participants of a
transaction to have different outcomes.

Transactions like BTP cohesions are supported by
the WSTx. In fact, the travel booking example dis-
cussed in this paper describes a cohesion-like client
model. The WSTx is a framework to support diverse
transaction protocols; different protocols are regarded
as particular transactional attitudes.

Enterprise Java and XML transactions. The
state-of-the-art in transaction processing for enterprise
systems is arguably reflected in the emergence of trans-
action coordination frameworks such as the J2EE
Activity Service specification [9] and related XML
Transactioning API for Java [10]. These frameworks
are proposed as implementation-level frameworks for
building the transaction monitors that modern Java or
Web-based applications use. They define a set of inter-
faces and XML messages to achieve coordination
among application participants and transaction middle-
ware components, independent of the particular trans-
action protocol that is to be supported.

We believe that these frameworks can help in the
design and implementation of a concrete WSTx mid-
dleware implementation (SAM).

Dependency-Spheres. In our previous work on
Dependency-Spheres (D-Spheres) [11], we developed a
transaction model and middleware for applications that
communicate with each other using synchronous and/or
asynchronous messaging. A D-Sphere is a global trans-
action context that can include various local transaction
contexts of individual participants. WSTx extends
some D-Spheres concepts for the Web.

6. References

[1] E. Christensen, F. Curbera, G. Meredith, S.
Weerawarana. Web Services Description Language
(WSDL) 1.1, W3C Note 15 March 2001. http://
www.w3.org/TR/wsdl.html

[2] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N.
Mendelsohn, H.F. Nielsen, S. Thatte, D. Winer. Simple
Object Access Protocol (SOAP) 1.1, W3C Note 08 May
2000. http://www.w3.org/TR/SOAP

[3] XML Path Language (XPath) Version 1.0, W3C
Recommendation 16 November 1999. http://
www.w3.org/TR/xpath

[4] IBM Web Services Toolkit (WSTK).
http://www.alphaworks.ibm.com/tech/
webservicestoolkit

[5] F. Leymann. Web Services Flow Language (WSFL 1.0),
IBM Software Group, May 2001. http://www-
4.ibm.com/software/solutions/Webservices/pdf/
WSFL.pdf

[6] S. Thatte. XLANG: Web Services for Business Process
Design. Microsoft Corporation, 2001. http://
www.gotdotnet.com/team/xml_wsspecs/xlang-c/
default.htm

[7] OASIS Business Transaction Protocol (BTP). http://
www.oasis-open.org/committees/business-transactions/

[8] J. Roberts, K. Srinivasan. Tentative Hold Protocol Part
1: White Paper, W3C Note 28 November 2001. http://
www.w3.org/TR/tenthold-1/

[9] JSR 95 J2EE Activity Service for Extended
Transactions. http://jcp.org/jsr/detail/95.jsp

[10] JSR 156 XML Transactioning API for Java (JAXTX).
http://www.jcp.org/jsr/detail/156.jsp

[11] S. Tai, T. Mikalsen, I. Rouvellou, S. Sutton.
Dependency Spheres: A Global Transaction Context for
Distributed Objects and Messages. In Proceedings 5th
International Enterprise Distributed Object Computing
Conference (EDOC 2001, Seattle, Washington, USA),
IEEE Computer Society, September 2001.

