HTTPR Specification

Advanced search
IBM home | Products & services | Support & downloads | My account

|BM developerWorks: Web services: Web servicesarticles devﬂmperwurks

HTTPR Specification
01 April 2002

Thisversion:
http://www.ibm.com/devel operworks/library/ws-httprspec/
Authors:
Andrew Banks, IBM Software Group
Jim Challenger, IBM Software Group
Paul Clarke, IBM Software Group
Doug Davis,
Richard P King
Karen Witting
Andrew Donoho
Time Holloway
John Ibbotson
Stephen Todd
Editor:
Francis Parr

Copyright© 2002 International Business Machines Corporation

Abstract

HTTPR isaprotocol for the reliable transport of messages from one application program to another over the Internet, even in the
presence of failures either of the network or the agents on either end. It is layered on top of HTTP. Specifically, HTTPR defines how
metadata and application messages are encapsulated within the payload of HT TP requests and responses. HTTPR aso provides
protocol ruleswhich make it possible to ensure that each message is delivered to its destination application exactly once or is
reliably reported as undelivered.

Status of this Document

Version 1.1 2001-12-03

Table of Contents

1. Introduction
1.1. Overview
1.2. HTTPR commands
1.2.1. GetResponder Info
1.2.2. Push
1.2.3. Pull

1.2.4. Exchange

1.2.5. Report
1.3. HTTPR message structure and datastream

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (1 of 44) [4/22/2002 4:39:32 PM]

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-109.ibm.com/redirectdWPS.htm
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/webservices/
http://www-105.ibm.com/developerworks/papers.nsf/dw/webservices-papers-bynewest?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
http://www.ibm.com/developerworks/library/ws-httprspec/
http://www.ibm.com/

HTTPR Specification

1.4. |dentifying HTTPR clients, servers and channels
1.5. Levels of HTTPR functionality and capability negotiation
1.6. Structure of the rest of this document
2. Notation Conventions and Generic Grammar
2.1. Requirements
2.2. Augmented BNF
2.3. Basic Rules
3. Design and Concepts
3.1. Relationship between HTTPand HTTPR
3.2. Uniform Resource Identifier
3.3. Unit of Work
3.4. Resolution of In-Doubt Transactions
3.5. Message Ordering Assumption
3.6. Session Lifetime
3.7. Capabilities
3.8. Reconnection
3.9. Pipelining
3.10. Data conversion
3.11. Security
3.12. State Information
3.12.1. Source State Information
3.12.2. Sink State Information
4. Example message flow scenarios
4.1. Moving messages from the client to the server
4.1.1. PUSH (without session)
4.2. Client initiates PUSH, using a session
4.3. Client fails then restarts PUSH
4.4, Client initiates PUSH, server rolls back.
45, Client initiates PULL
4.6. Client fails then restarts PUL L
4.7. Client initiates pipelined PULL
4.8. Client initiates EXCHANGE
4.9, Client PUSH followed by PULL
5. HTTPR Command Specification
5.1. GET-RESPONDER-INFO
5.2. PUSH
5.3. PULL
5.4. EXCHANGE
5.5. REPORT
5.6. Error Responses
6. Header Fields
6.1. Reguest Header Fields
6.1.1. Version
6.1.2. Requester
6.1.3. Channel
6.1.4. Responder
6.1.5. Capabilities
6.1.6. Sessionld
6.1.7. AgentType
6.1.8. Transactionid
6.1.9. CompletedTransactionid
6.1.10. ForgetTransactionid
6.1.11. LastPushedld
6.1.12. LastPulledld
6.1.13. ProductSpecificField
6.2. Payload and Message Header Fields

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (2 of 44) [4/22/2002 4:39:32 PM]

HTTPR Specification

6.2.1. MessageHeader
6.2.2. MessageSize
6.2.3. TargetUri

6.2.4. ClassOf Service

6.2.5. Priority
6.2.6. Userld:
6.2.7. Encoding
6.2.8. ReplyUri:

6.2.9. Messageld:
6.2.10. Correlationld:

6.2.11. PutTime:
6.2.12. Expiry

6.2.13. ContentType
6.2.14. ProductSpecificM essageField

6.2.15. MessageData
6.2.16. Terminator
6.2.17. Outcome
6.2.18. ErrorNumber
6.2.19. ErrorText
7. Appendix
7.1. Glossary

1. Introduction

1.1. Overview

HTTPR isaprotocol for the reliable transport of messages from one application program to another over the Internet, even in the
presence of failures either of the network or the agents on either end. It is layered on top of HTTP. Specifically, HTTPR defines how
metadata and application messages are encapsulated within the payload of HT TP requests and responses. HTTPR aso provides
protocol rules which make it possible to ensure that each message is delivered to its destination application exactly onceor is
reliably reported as undelivered.

Messaging agents use the HTTPR protocol and some persistent storage capability to provide reliable messaging for application
programs. This specification of HTTPR does not include the design of a messaging agent, nor doesit say what storage mechanisms
should be used by a messaging agent; it does specify what state information needs to be stored safely and when to store it, for a
messaging agent to provide reliable delivery using HTTPR.

HTTP/1.1 serves as the base on which HTTPR builds. As such, all of the facilities of HTTP/1.1 (keep-alive, communication through
proxies and firewalls, etc.) are available. One feature, the chunked transfer encoding, is especially convenient in the construction of
batches of messages where the size of the entire batch is not known a priori. It should not be assumed, however, that this feature, nor
any other feature, is actually being used on any particular occasion; any correct use of HTTP/1.1, as defined in RFC 2616, when
used by one messaging agent, should be acceptable to any other messaging agent.

Layering HTTPR on HTTPin thisway has the additional benefit that HTTPR can be used for reliable messaging with enterprises
whose only presence on the Internet is a Web server behind afirewall admitting only Web-related traffic.

Given the asymmetries of HTTP (client connectsto server, client sends request, server sends response), it will be convenient to use
the terms client and server even though messaging agents may, in other senses, regard themselves as peers. The agent initiating an
HTTPR interaction (the client) does so by sending a POST command, in the HTTP sense, including within its payload an HTTPR
command, status information, and, for certain commands, a batch of messages. (A single message is handled as the special case of a
batch with only one member.) The server sends back a response, whose payload includes status information and, if the client
reguested, a batch of messages intended for that client. The messages, and any accompanying meta-data, are uninterpreted bytes as
far asHTTPR is concerned and are assigned no other meaning by it.

Messages flow from a source to asink. Both clients and servers can be sources and sinks. When the client is the source it uses the
PUSH command to send messages to the server. When the client is the sink it uses the PULL command to retrieve messages from
the server. Each batch of messagesis assigned an identifier by its source, which is sent along as HTTPR metadata with the batch.
Correctly functioning messaging agents will, in accordance with the specification, store this identifier and the state of their
processing of that batch of messages, in stable storage at the appropriate times. In the event of afailure, thisinformation can be
recovered from stable storage and used by the messaging agents, through specified interchanges of that state information, to resolve
the status of the batch of messages, thereby achieving exactly-once delivery.

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (3 of 44) [4/22/2002 4:39:32 PM]

HTTPR Specification

The HTTPR protocol places no constraints on the interface used by an application program to pass messagesto itslocal agent
implementing HTTPR. SOAP and JM S are two examples of application messaging interfaces for which reliable delivery using the
HTTPR protocol can be provided, but we do not specify those, or any other. programming interfaces.

In addition to providing reliable messaging over a"single hop", HTTPR is intended to enable application programs to communicate
reliably in a"multihop” environment. Specifically if two application programs are connected by a sequence of messaging agents,
each agent uses the HTTPR protocol to exchange messages reliably with itsimmediately adjacent agents in the sequence and the
intervening agents store and forward the messages reliably, then this use of HTTPR will provide reliable end-to-end messaging.

1.2. HTTPR commands

This section provides short, informal descriptions of the function and purpose of each of the HTTPR commands. Note that in
addition to the specific information directly related to these commands, HTTPR requests and responses may contain information
acknowledging or otherwise related to previous commands. The detailed description of each HTTPR command follows in section 4,
"HTTPR Command Specification”.

1.2.1. GetResponder Info

This command is used by an HTTPR client to inform an HTTPR server of the client's level of HTTPR protocol capabilities (size
limits, etc.). The server is alowed to respond with reduced values that then become the agreed parameters for all following HTTPR
interactions for this client/server pair. This sequence of interactionsisan HTTPR session. HTTPR sessions are ended by a Report
reguest with end-session indicated. Capability negotiation for HTTPR client/server pairs that are not using HTTPR sessions, is
supported by allowing capability information to be included in the requests and responses of all the other commands - Push, Pull,
Exchange, and Report.

1.2.2. Push

This command alows an HTTPR client to send a batch of one or more messages to an HTTPR server and get back aresponse
indicating whether this message batch has been received and saved reliably. (The response may also/instead indicate status of
previous batches. See the discussion of pipelining in section 1.5.) The batch of messages sent on a Push command is uniquely
identified with a transaction identifier. (More precisely, the transaction identifier is unique across the sequence of related
interactions between this client and server - defined more formally as a channel in subsection 1.4.)

1.2.3. Pull

This command allows an HTTPR client to ask an HTTPR server to send it any messages waiting for delivery to applications located
at the client and also to report on the status of previously pulled batches of messages. The response to a pull command may be
"empty" (if the server has nothing waiting for delivery to this client) or may include a batch of one or more messages. A batch of
messages returned in the response to a Pull command is uniquely identified with a transaction identifier.

1.2.4. Exchange

The Exchange command combines a Push and a Pull command into a single request. It allows an HTTPR client to send a batch of
one or more messages to an HTTPR server. Unlike a Push command, Exchange also invites any waiting messages at the HTTPR
server to be returned to the HTTPR client in the response along with the indicator of whether the sent messages were safely received
and saved at the HTTPR server. Exchange can sometimes be used to get asingle service request delivered and (if the serving
process responds quickly enough) to get the reply returned to the initiating HTTPR client in asingle HTTPR command flow.
However, the HTTPR protocol does not assume any relationship in general between the outgoing and the returning message batches
in an Exchange. Both outgoing and returning message batches in an exchange are uniquely identified with transaction identifiers
generated by their respective sources.

1.2.5. Report

The Report command enables an HTTPR client to report to an HTTPR server exactly which batches of messages this client has
received and saved (from that server); the response from the server alows the client to determine exactly what has been safely
received by that server. Use of Report may be prompted either by a communications error, by the need to relieve the server's doubts
about messages having been received by the client, or by the need to relieve the HTTPR server from having to continue saving state
information about the last interactions with thisHTTPR client.

The Report command request includes the unique transaction identifier of the last batch of messages successfully received by this
HTTPR client from this server, and the transaction identifier of the last batch of messages sent by this client to this server.

The HTTPR server responds with the unique identifier of the last batch it tried to send to thisHTTPR client and discards copies of
messages now known to be safely delivered. The server also includes in its response the transaction identifier of the last batch of
messages it received from the client. In response to subsequent Pull commands, the server will resend any messages shown by a

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (4 of 44) [4/22/2002 4:39:32 PM]

HTTPR Specification

preceding Report command to have been lost in transit to the client. In response to subsequent Push commands, the HTTPR server
will reject any "late arriving" message batches, i.e. those with transaction identifiers showing them to have been sent by the client
before it sent the Report, and therefore indicated by the server as not received in its Report response.

Similarly, the client, once it receives the Report response, will rollback its status information on any message batches sent but
(according to the response to Report) not received at the HTTPR server.

1.3. HTTPR message structure and datastream

This subsection provides a high level overview of the structure of the HTTPR data stream. The complete and detailed description is
provided in section 4, "HTTPR command flows" and section 6, "Header fields".

The structure of the datastream for simple HTTPR command flows (flows where no HTTPR payload isincluded) isillustrated
below in Figure 1.

Figure 1: overview of datastream for smple HTTPR command flows

Client Request message Server Response message
hitp POST hitpr command http POST | http command
reader header response | response header
header
-— &
—-—
body of hitp POST body of http POST response

Each HTTPR command flows as the body of an HTTP POST request; the response from the server flows as the body of the POST
response.

Some HTTPR commands and responses can also include a payload, which is typically a batch of one or more application messages.
The general structure of an HTTPR command or response including a batch of application messagesin its payload isillustrated in
Figure 2 below.

Following the HTTPR command or response header is a batch of one or more HTTPR application message structures. Each
application message structure represents a separate message from some sending application on its way to a specified destination
application being passed over thisHTTPR channel as one step in its path. The HTTPR client and server messaging agents are
responsible for knowing that moving these application messages across this channel is getting each of them either to, orin a
multihop path at least one step closer to, their destinations.

Figure 2. HTTPR command or response with a message batch payload

Http-r request or response Message

hittp hitpr httpr hitpr hittpr hitp
POST command | application| application payload [chunk
or Rsp | orRsp message | message etc. ... termin= [termin-
header | header structure 1| structure 2 ator ator

httpr message batch payload

" chunked body of http POST or response

When an HTTPR command or response message includes a payload containing application messages, the size of the HTTPR
message is open ended and potentially large. To ensure that this amount of data can be handled at the HTTPR endpoints and indeed
at intermediate nodes in the network, HTTPR messages with payload are often sent using the HT TP chunked transfer encoding.
Intermediate nodes in the network may rechunk this data as it passes through them to meet their needs. Hence HTTPR requests and
responses including a payload will usually be terminated with an HT TP data chunk terminator as specified in the HTTP protocol.

The sequence of HTTPR application message structuresin a payload is terminated by an HTTPR payload terminator. This has the
additional function of indicating at the end of the payload whether the sending agent detected some error condition during
transmission of the messages which will require the entire message batch to be discarded at the receiver and resent.

Each HTTPR application message structure included in a message batch payload has the form illustrated in Figure 3 below.
Figure 3. Datastream for HTTPR application message structure

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (5 of 44) [4/22/2002 4:39:32 PM]

HTTPR Specification

http-r application message structure

http-r
application
IS S ace
header

application message data

http-r chunked application message structure

hitp-r hitpr | hittpr

application application | application st msg
message message message chunk
header data chunk1 | data chunk2 term'n

The HTTPR application message header includes essential information such as the destination address of this application message
and either the length of the application message data or an indication that it will be chunked at the HTTPR level. The application
message data is an uninterpreted stream of bytesin which any values are alowed. If the size of an individual application message
cannot be determined in advance of sending it (e.g. if it is generated by a stream and may be too large for the sending agent to hold it
in memory at one time), it may be encoded as a sequence of HTTPR message data chunks each with their own length indication and
with the sequence terminated by anull chunk. ThisHTTPR level of message data chunking may occur in addition to regular HTTP
data chunking of the entire command or response message when, for example, the source of a particular message is a data stream
whose size or origin is unknown to the HTTPR agent. (In such a case, the chunking of individual messages allows the receiver to
parse the batch into individual messages.) The two levels of chunking will not interfere destructively.

Simple HTTPR agents may choose to use commands with the message batches containing a single message only. Support for
message batches in the HTTPR protocol aids scalability and efficiency, bringing the transmission of several messages within the
scope of asingle unit of work being performed by the persistent stores of the sender, and correspondingly at the receiving end.

1.4. Identifying HTTPR clients, servers and channels

The HTTPR client and HTTPR server participating in an HTTPR interaction are uniquely and globally identified by their URI's.
However, at any point in time there could be several independent HTTPR conversations in progress between a particular HTTPR
client and HTTPR server. Each of these conversations might represent adifferent quality of service and therefore need to be
managed and recovered independently from the others. This specification defines the use and behavior of the HTTPR protocol over
asingle channel. An HTTPR server and client serialize their use of HTTPR command flows for any one channel. When multiple
channels are in use between an HTTPR client and HTTPR server, each one follws the protocol rules independently.

Channels are uniquely identified by the ordered triplet:
< HTTPR client URI ; channel identifier ; HITPR server URl >

This enables the channel identifier to be used to distinguish different qualities of service supported as separate channels between the
same client and server. Inclusion of the client and server in the full channel name ensures that this name identifies the channel
globally and uniquely. Note also that a channel has only one client initiating requests and one server responding to them. Hence a
channel with A asaclient and B as a server is necessarily distinct from a channel with A asaserver and B asaclient.

HTTPR channels, optionally, can be created dynamically without any preconfiguration, by a client sending an HTTPR command to
aserver and the server accepting it and responding (although some clients or servers may choose not to implement this feature,
instead requiring explicit administrative control of channel creation). The channel will continue to exist aslong as client and server
maintain persistent records protecting the reliable transmission of messages across that channel. The Report command can be used
by the client to indicate to the server that no memory of this channel need be retained.

1.5. Levels of HTTPR functionality and capability negotiation

Severa functional levels of the HTTPR protocol are defined:
o Sessionless
o simple session
« pipelined session

These levels of functionality and other parameters of the HTTPR implementation at the client and server such as timeout values and
maximum message Sizes are summarized in a capability vector which may be included in the HTTPR command and response
headers.

Sessionlessis the simplest mode for operating an HTTPR channel. In this mode each HTTPR command flow on the channel is
independent and carries its own capability negotiation. The HTTPR client may include its capability vector in each command
header. If the required capabilities are not supported in the HTTPR server, the command will be rejected. If the server can accept the

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (6 of 44) [4/22/2002 4:39:32 PM]

HTTPR Specification

HTTPR command but wishes to process it with different, "lesser" capahilities, it processes the request but also returns its capability
vector in the response. The intent is that the client should expect to use these lower capabilities on future commands on that channel.

In sessionless mode the command flows for a single channel are carried on a single TCP/IP connection or on a sequence of TCP/IP
connections. These connections do not use HTTP pipelining nor do they overlap in any other sense.

Smple session mode HTTPR is a higher level capability in which a session spanning one or more TCP/IP connections is established
between HTTPR client and HTTPR server, but pipelining of commands on the session is disallowed. In this mode the
GetResponderlnfo command is used to set up a session and agree on the exact capabilities to be used by client and server before any
transfer or messages is attempted. The agreed upon capabilities will be in use for the lifetime of the session. The HTTPR client can
terminate the session using a Report command, thereby allowing the server to free any space occupied by information regarding this
Session.

Pre-negotiating capabilities allows for better tuning of the communication properties of both the client and the server. It also
simplifies error recovery. This provides potential for greater performance and scalability when the extra command flow can be
amortized over significant amounts of message transfer traffic within the session.

At any point intime, any one HTTPR channel is either in session based use by exactly one session, or is available for sessionless
use. Support of sessions by HTTPR implementations is optional .

In session based HTTPR (asin the sessionless case) the command flows on a single channel may flow over asingle TCP/IP
connection or over a sequence of TCP/IP connections. However, there is at most one TCP/IP connection asociated with the session
at any time. Furthermore, in simple session mode, HTTP pipelining of the HTTPR commands on this connection is disallowed.

Pipelined session mode is the third and most sophisticated mode of HTTPR in which the restriction on HTTP pipelining of
commands is removed. It provides potential for further scalability and performance. In this mode the maximum depth of the
command pipelineis specified in the capability vector. In some error situations, the HTTPR protocol requires that the current
session be terminated and a new session started for communication on this channel to continue. Start of a new session alows
messages, which are being resent following an abort and resynchronization of HTTPR client and server, to be distinguished from old
HTTPR commands in the HTTP pipeline behind the command which caused the abort.

1.6. Structure of the rest of this document

Section 2 defines the formal notational conventions used in the remainder of the specification.
Section 3 definesin detail common concepts used in several of the command flow definitions
Section 4 provides the formal definition and processing rules for each command flow.

Section 5 provides examples of simple command flows.

Section 6 defines the exact meaning of each of the fields appearing in HTTPR headers

Section 7 defines how to set message header fields for transport of a SOAP request over HTTPR.
Appendix A1 provides aglossary of frequently used terms.

2. Notation Conventions and Generic Grammar

2.1. Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 .

An implementation is not compliant if it fails to satisfy one or more of the MUST or REQUIRED level requirements for the
protocols it implements. An implementation that satisfies all the MUST or REQUIRED level and all the SHOULD level
requirements for its protocolsis said to be "unconditionally compliant”; one that satisfies all the MUST level requirements but not
al the SHOULD level requirements for its protocolsis said to be "conditionally compliant.”

2.2. Augmented BNF

All of the mechanisms specified in this document are described in both prose and an augmented Backus-Naur Form (BNF) similar
to that used by RFC 822. Implementors will need to be familiar with the notation in order to understand this specification. The
augmented BNF includes the following constructs:

name = definition

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (7 of 44) [4/22/2002 4:39:32 PM]

HTTPR Specification

The name of aruleis simply the name itself (without any enclosing "<" and ">") and is separated from its definition by the
equal "=" character. White space is only significant in that indentation of continuation linesis used to indicate a rule definition
that spans more than one line. Certain basic rules are in uppercase, such as SP, LWS, HT, CRLF, DIGIT, ALPHA, etc. Angle
brackets are used within definitions whenever their presence will facilitate discerning the use of rule names.

"literal"

Quotation marks surround literal text. Unless stated otherwise, the text is case-insensitive.
rulel | rule2

Elements separated by abar ("|") are alternatives, e.g., "yes | no" will accept yes or no.
(rulel rule2)

Elements enclosed in parentheses are treated as a single element. Thus, "(elem (foo | bar) elem)" allows the token sequences
"elem foo elem” and "elem bar elem".

*rule

The character "*" preceding an element indicates repetition. The full form is"<n>*<m>element” indicating at least <n> and
at most <m> occurrences of element. Default values are 0 and infinity so that "* (element)" allows any number, including
zero; "1*element” requires at least one; and "1* 2element™ allows one or two.

[rule]

Square brackets enclose optional elements; "[foo bar]" is equivalent to "* 1(foo bar)".
N rule

Exact repetition: "<n>(element)" is equivalent to "<n>*<n>(element)"; that is, exactly <n> occurrences of (element). Thus
2DIGIT isa2-digit number, and 3ALPHA isastring of three a phabetic characters.
#rule

A construct "#" is defined, similar to "*", for defining lists of elements. The full form is"<n>#<m>element" indicating at least
<n> and at most <m> elements, each separated by one or more commas (",") and OPTIONAL linear white space (LWS). This
makes the usual form of lists very easy; arule such as:

(*LW5 element * (*LWS "," *LW5 elenent))
can be shown as
1#el enent

Wherever this construct is used, null elements are alowed, but do not contribute to the count of elements present. That is,
"(element), , (element) " is permitted, but counts as only two elements. Therefore, where at least one element is required, at
least one non-null element MUST be present. Default values are 0 and infinity so that "#element” alows any number,
including zero; " 1#element” requires at least one; and "1#2element” allows one or two.

: comment

A semi-colon, set off some distance to the right of rule text, starts acomment that continues to the end of line. Thisisasimple
way of including useful notesin parallel with the specifications.

implied *LWS
The grammar described by this specification is word-based. Except where noted otherwise, linear white space (LWS) can be
included between any two adjacent words (token or quoted-string), and between adjacent words and separators, without

changing the interpretation of afield. At least one delimiter (LWS and/or separators) MUST exist between any two tokens
(for the definition of "token" below), since they would otherwise be interpreted as a single token.

2.3. Basic Rules

The following rules are used throughout this specification to describe basic parsing constructs. The US-ASCII coded character set is
defined by ANSI X3.4-1986 .

CCTET = <any 8-bit sequence of data>

CHAR = <any US-ASCII| character (octets 0 - 127)>

UPALPHA = <any US-ASCI| uppercase letter "A".."Z">

LOALPHA = <any US-ASCI| |owercase letter "a".."z">

ALPHA = UPALPHA | LOALPHA

DAT = <any US-ASCI| digit "0".."9">

CTL = <any US-ASCI| control character (octets 0 - 31) and DEL (127)>

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (8 of 44) [4/22/2002 4:39:32 PM]

HTTPR Specification

CR = <US-ASCII CR, carriage return (13)>
LF = <US-ASCI| LF, linefeed (10)>

SP = <US-ASCI | SP, space (32)>

HT = <US-ASCI | HT, horizontal-tab (9)>
<"> = <US- ASCI | doubl e-quote mark (34)>
CRLF = CR LF

HTTP/1.1 header field values can be folded onto multiple lines if the continuation line begins with a space or horizontal tab. All
linear white space, including folding, has the same semantics as SP. A recipient MAY replace any linear white space with asingle
SP before interpreting the field value or forwarding the message downstream.

LWs = [CRLF] 1*(SP | HT)
The TEXT ruleisonly used for descriptive field contents and values that are not intended to be interpreted by the message parser.

Words of *TEXT MAY contain characters from character sets other than 1SO-8859-1 only when encoded according to the rules of
RFC 2047.

TEXT = <any OCTET except CTLs, but including LWs>

A CRLF isalowed in the definition of TEXT only as part of a header field continuation. It is expected that the folding LWS will be
replaced with a single SP before interpretation of the TEXT value.

Hexadecimal numeric characters are used in several protocol elements.

HEX ="A"| "B*| "C | "D"| "E*"| "“F" | "a" | "b" | "c" | "d" | "e" |

“fr] DAT

Many HTTP/1.1 header field values consist of words separated by LWS or special characters. These specia characters MUST bein
aquoted string to be used within a parameter value (as defined in section 3.6).

t oken = 1*<any CHAR except CTLs or separators>
separators ="M< @
R R I S e
A T S 0 A B B
| {1yl osPoHT

Comments can be included in some HTTP header fields by surrounding the comment text with parentheses. Comments are only
alowed in fields containing "comment” as part of their field value definition.

In al other fields, parentheses are considered part of the field value.

comrent
ct ext

"(" *(ctext | quoted-pair | conment) ")"
<any TEXT excluding "(" and ")">

A string of text is parsed asasingleword if it is quoted using double-quote marks.

quot ed-string
gdt ext

(<"> *(qdtext | quoted-pair) <">)
<any TEXT except <">>

The backslash character ("\") MAY be used as a single-character quoting mechanism only within quoted-string and comment
constructs.

guot ed- pai r = "\" CHAR
3. Design and Concepts
3.1. Relationship between HTTP and HTTPR

All HTTPR exchanges are carried as an HTTP POST request payload and its response. By definition, proxies MUST NOT cache the
result of POST, unless, in HTTP/1.1, the server requests the proxy to cacheit, by virtue of explicit indication that the response is
publicly cacheable. No specific assumptions are made about the use of HTTP/1.1 headers.

An alternative approach would have been to use the framework for extending HT TP commands to expose the HTTPR specific
request field. Thiswould have exposed the protocol detail to web servers, proxies and firewalls in the web, requiring specia
versions of this software to be deployed to handle HTTPR. To avoid this exposure, and because it is anticipated that HTTPR will be
aminority web protocol, this approach was not taken.

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (9 of 44) [4/22/2002 4:39:32 PM]

HTTPR Specification
3.2. Uniform Resource Identifier

The messaging service represented by a particular agent (client or server) isidentified in HTTPR requests using a URI constructed
asfollows:

"httpr://"[host[":"port]"/"] Servi ceNane

The intended recipient of each message is identified by another URI:
"httpr://"[host[":"port]"/"] ServiceNane#Destination

where Destination is interpreted only by that messaging service (and its agents) identified by the portion of that URI to the left of the
H#.

3.3. Unit of Work

An agent sends a number of messages in the HTTP request or HTTP response. These are part of asingle unit of work named by the
"transactionid” .

"request:" "PUSH' Version CRLF
"transactionid:" Transactionid CRLF

Once the messages have been sent, the source isin doubt as to whether or not they have been received by the sink. The sink
acknowledges receipt and natifies the source as to the outcome of the transaction by using the:

["outcone: " Qutcone CRLF
"conpl eted: " Conpl et edTransacti oni d CRLF]

fields. In making the explicit acknowledgment of the last completed transaction the sink is aso notifying commitment of all earlier,
unacknowledged transactions that have passed on this channel. See Pipelining for more details on this subject.

If, for example, the client is the message source and it is no longer in doubt about its units of work because it has received an
outcome for al transactionid's that it generated, the client sends:

[“forget:" ForgetTransactionid CRLF]

as part of a REPORT request. It does this when it wishes to notify the server that it intends to remove all trace of atransaction
identifier that it generated. Once the client receives the OK responseit can forget all of its state associated with transactions for this
channel prior to and including the ForgetTransactionid. The client can send a ForgetTransactionid in sessionless and simple session
HTTPR, only when there are no transactions left in doubt on this channel.

Once a ForgetTransactionid has been sent, REPORT will not resolve that particular unit of work. If the ForgetTransactionid is not
known to the server, the server should still respond OK, because this might be a repeat flow where an earlier response to the client
was |ost.

When the client isthe sink for server originated messages, it indicates an outcome by flowing:

["outcone:" Qutcone CRLF
"compl eted: " Conpl et edTransacti onid CRLF]

as above. On receipt, in the server, aswell aslifting thein doubt state for the Conpl et edTr ansacti oni d , the server may
forget al of the state it has associated with the Conpl et edTr ansact i oni d. If the Conpl et edTr ansact i oni d isnot
known to the server it should still respond OK, because this might be arepeat flow where an earlier response was lost. The server
may also forget all prior transactionid's that it generated.

The asymmetry in the behaviour of client agents versus server agents seen here isthe result of the asymmetry inherent in HTTP. The
client, by its very nature, isin control of when a server receives arequest and of what that request is. Thus, the burden falls on the
client to make those requests necessary to allow the appropriate communication of the state of transaction processing.

3.4. Resolution of In-Doubt Transactions

As soon as aclient sends a batch of messages using a PUSH request, it isin doubt as to the status of that transaction. Only when a
response is received from the server with an outcome of either COMMIT or ROLLBACK for that transaction isthe client certain
what to do with its copy of those messages. Whenever the client fails to get such aresponse (when, for example, the network
connection to the server is broken before the response is received), the client MUST issue a REPORT request next (or a
GET-RESPONDER-INFO request), to solicit information from the server on the status of that transaction. The client MUST NOT
proceed with the sending of other messages until this problem has been fixed, as this could otherwise lead to their being received out
of their proper order.

As soon as a server sends a batch of messagesin the responseto a PULL request, it isin doubt as to the status of its transaction.
Those doubts will remain until the server receives an appropriate outcome for that transaction from the client. Whenever the client

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (10 of 44) [4/22/2002 4:39:32 PM]

HTTPR Specification

failsto get aresponseto a PULL request, the client MUST issue a REPORT request next, to provide infomation on what transaction
the client did receive last, thereby allowing the server to deduce the status of any transactions that had been in doubt. The client
MUST NOT proceed with the requesting for other messages to be sent to it until this problem has been fixed, as the server could
otherwise be lead to believe that the lost batch had actually been received, |eading to message loss.

3.5. Message Ordering Assumption

The messages delivered to atarget application from any one sending application should be received in exactly the same order as
they were sent. In one transmission of a batch of messages from one agent to another over HTTPR, the sink agent will indeed see the
messages arrive in the same order as the source agent sent them because they are flowing over asingle TCP/IP connection and are
therefore reliably ordered. If the agent isto present the messages to its application or forward them to other agents in the same order
it will need to preserve the order when it stores them. To preserve ordering across a network of agents there must be only one path
for the messages through the network, if there are multiple paths then ordering may be lost. For example, allowing two different
channels to carry messages between the same source and sink could cause an arbitrary interleaving of messages that flow over those
two paths. Since both storage mechanisms and the network configuration are outside the scope of the HTTPR standard, we simply
claim that it is possible to build an order preserving messaging network with HTTPR.

3.6. Session Lifetime

A session consists of a sequence of requests and responses; they may flow over a single TCP/IP connection or over a sequence of
TCP/IP connections. Sessions are begun by the "session: begin" on a GET-RESPONDER-INFO request and ended by the
"session:end” fields. The session ends when the client indicates "session:end” in its REPORT request and receives the response, or
when the server indicates "session:end" in its response to any client command.

Support of sessionsis optional. The client is not obliged to use sessions; if the server sees arequest that requires it to support
sessionsit can reply with a SESSION-NOT-SUPPORTED error. Not supporting session may simplify the implementation of the
agent. Supporting sessions means that |ess data about the requester and responder identities and their capabilities needs to be carried
as part of each request or response. Sessions must be used if pipelining is used.

The client and server retain the set of capabilities they have negotiated until the session ends; if they lose this information they
MUST start a new session. Neither the client or server make any commitment to store the negotiated capabilities in a durable way
and it is accepted that they will belost if either of them terminates. If the server fails and loses the negotiated capabilitiesit should
return

"error:" "528" "SESS|I ON-| DENTI FI ER- NOT- RECOGNI SED' CRLF
"session: end" CRLF

in its response.

If asession isinterrupted, for instance because the TCP/IP connection fails, the client SHOULD attempt to make another connection
and then end the session in an orderly way so that the server knows that it need no longer retain the negotiated capabilities.
Transaction state MUST be remembered after the session has ended; the agents SHOULD attempt to end sessions only when they
know the partner has no in-doubt transactions and when they know the partner has been able to forget all transaction state.

When the server receives:
sessi on: begin
It returns a Sessionld to the client, the client MUST include the Sessionld in all requests that are part of the session so that the server

is ableto identify the session that the requests relate to. The server uses the Sessionld to identify which session the request relates to.
The client MUST NOT pipeline requests until it has established a Sessionld.

If the sessions are not being used the server is obliged to return

"responder:"” Responder CRLF

On every response it makes so that the client has the opportunity to check the responder identity.

3.7. Capabilities

The capabilities are a set of parameters that govern the way messages are exchanged between the client and server. They indicate
limits on timeouts, message and batch sizes, and which commands will be used for message transmission. For example, some
servers are only intended for the receiving of messages, and will negotiate a capability indicating that only PUSH is acceptableto it.
The capabilities are negotiated using a GET-RESPONDER-INFO request, which MUST be the first request and response of each
session. Capabilities in the response to GET-RESPONDER-INFO must be less than or equal to those proposed in the request.
Capabilities last for the lifetime of the session. The client MUST NOT assume that the server has the same capabilities or identity as

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (11 of 44) [4/22/2002 4:39:32 PM]

HTTPR Specification

those used in any previous session, for example because the agent administrator may have changed them in the meantime. The client
MAY NOT assume its new capabilities are in effect until it has seen aresponseto its request. The capabilities revert to the default
values when the session ends or when anew one begins. If a TCP connection breaks without the end of the session being indicated,
the client will start a new connection with the intention of indicating the session has ended. This behavior allows both partiesto
forget the negotiated capabilities. They may forget the negotiated capabilities at other times but they MUST start a new session if
they do so.

3.8. Reconnection

If thereis any request in progress and the server determines that a new request arrives for the same channel on adifferent TCP
connection, it is an indication that there is something wrong with the first request. The server SHOULD attempt to terminate the first
request and proceed with what it has determined to be the later request.

The client MUST NOT process a response to a previous request in another TCP connection once it has made a new connection, if a
response does eventually reach it after it has started a new connection it MUST discard the response. This avoids a situation where
two requests are outstanding (in separate TCP connections), and network or internal processing delays cause them to be reordered.

There can be multiple connections between a pair of agents aslong as a separate channel is used for each one.
3.9. Pipelining

In order to support pipelining an agent must also support sessions. Several requests may be outstanding with the client waiting for a
response, as described by HTTP pipelining. Even if persistent HT TP connections are being used the allowed depth of the pipeline
may be reduced, by using the capabilities MaximumPipelineDepth, limiting the number of unacknowledged requests and in doubt
units of work. The client MUST NOT send its next request message until it has received aresponse, thereby draining one request
from the pipeline, and possibly until it has received a response that includes the "outcome:" and "completed:” fields, thereby
draining one or more of the client'sin-doubt units of work from the pipeline. If the client attempts to pipeline further requests, the
server MAY reject them.

Thereisan additiona constraint for pipelining in HTTPR beyond the constraint imposed by HTTP. The server MUST process
requests for each session in the order that it receives them. The client MUST process the responses to its requests associated with
each session in the same order that it makes the requests. Thisis necessary to preserve message sequencing in the event where one
of the batchesin the pipelineis rolled back.

A well-behaved server will acknowledge completed units of work to the client as soon asit has the opportunity. This will enhance
the performance and scalability of HTTPR operation.

3.10. Data conversion

Data conversion is always the responsibility of the sink. The Encoding and Content-type fields describe the format of the incoming
message and the sink must convert it into aform that is usable by its applications. The sink MAY choose not to convert a message it
issimply forwarding to another agent. There can be a mixture of Encodings and Content-types in a payload.

3.11. Security

HTTPR may flow over SSL connections to achieve point to point authentication and privacy of the messages; no special
considerations are necessary to achieve thislevel of security. If used appropriately, SSL can achieve mutual authentication of the
source and sink, privacy and protection of the data exchanged. The HTTPR agent has to behave like any browser on the web. Either
it negotiates a secure SSL connection to the agent hosted at ServiceName on port 443 or it gets a proxy to do this on its behalf. Any
web server at the remote side would expect legal HTTP, as would a proxy.

Security can aso be achieved by running HTTPR over 1PSec (with HTTP and TCP in between, as usual). In addition to providing
authentication and encryption, 1PSec provides secure tunneling of private connections over the public internet without requiring any
change to the HTTPR protocol or to the agents implementing it.

The HTTPR protocol does not make provision for end to end authentication and privacy where a message flows over a number of
HTTPR links. However, end to end security can be enabled over HTTPR links by suitably encrypting the messages before they are
given to the agents.

On the assumption that the HTTPR exchanges are authentic the agents may choose to impose their own access control over the
resources used by using the Userld from the payload.

3.12. State Information

In order for an HTTPR agent to function correctly it must save state information persistently. The state information that must be
stored can be divided into source information and sink information. Whether a client is acting as a message source (using PUSH) or

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (12 of 44) [4/22/2002 4:39:32 PM]

HTTPR Specification

aserver is providing messages (responding to PULL), the same source state information must be maintained. Similarly, the same
sink information must be maintained whether the client or server is receiving messages. We provide a description of one way to
represent thisinformation and, in terms of that representation, indicate when and how the information would be updated so that
correct functioning can be achieved. Thisis not a definition of what must be done, but, rather, an illustrative suggestion. See, also,
the examples in section 4, for diagrams showing how the updates of persistent storage relate to the sending and receiving of HTTPR
requests and responses.

3.12.1. Source State Information

The source is responsible for persistently saving any messages that have not yet been safely received by the message sink as well as
status information regarding the source's attempts to send messages. The status information can be represented as follows:

» last-source-id: thet ransact i on-i d for the last batch of messages sent by this source
« indoubt-ids: thoset r ansact i on- i dsnot known to have been received by the sink
« indoubt-messages: which messages are in doubt, and whicht r ansact i on- i d relatesto each

The sourceisfreeto use whatever t r ansact i on-i d valuesit chooses, as long as they are strictly increasing (see section 6.1.8.
Transactionid), but initially the source should set thel ast - sour ce-i d and| ast - ack- i d valuesto O, while last-ack-outcome
starts as COMMIT.

As part of sending abatch of messages, anew t r ansact i on-i d isgenerated and | ast - sour ce-i d isset to that value. The
messages in the batch are marked as being part of that transaction and in doubt as to whether the sink has received them. All of these
updates to persistent storage should be committed as a single transaction just before sending out the payload terminator that

compl etes the batch transmission.

When the source receives an outcome from the sink, the related messages can be removed (for an outcome of COMMIT) or marked
as available to be sent again (on ROLLBACK) or some other recovery action may be taken (in the case of INDOUBT). When using
sessions, where there can be multiple indoubt transactions, if any messages related to smaller (earlier) t r ansact i on- i dsarestill
in doubt, those messages can be removed, as though a COMMIT outcome had been received for them. (No ROLLBACK from the
sink could have been lost, as that would violate the session-breaking rules related to ROLLBACK.) Also, if there are any indoubt
transactions with greater (more recent) ids, those should be marked as available again (on any ROLLBACK or on COMMIT as part
of a REPORT).

The source will pass| ast - sour ce- i d to the sink when the status of a transaction needs to be determined. When the sourceis a
client it would use the REPORT command and specify | ast - pushed-id = | ast-source-i d. Whenthesourceisaserver it
would respond to the REPORT command setting | ast - pul | ed-i d=I ast - sour ce-i d. These actions will allow the sink to
avoid accepting late arriving transactions, since the source promises never to use any smaller transaction id value in the future.

3.12.2. Sink State Information

The sink isresponsible for safely storing messages received and keeping sufficient state information to determine when a batch of
messages has been lost or has arrived late. Aside from the messages themselves, this can be represented by the following variables:

« last-received-id: thet ransact i on-i d most recently received from the message source

« last-received-outcome: how that last transaction was disposed of here at the sink

« last-sent-id: thelargestt ransact i on-i d known to have been used by the message source
Initialy | ast-recei ved-i dandl ast - sent -i d are set to 0, while last-received-outcome is COMMIT.

When the sink receives a batch of messagesit verifiesthat thet r ansact i on- i d assigned them by the source is greater than both
thel ast-recei ved-idandl ast - sent -i d. The message are placed in persistent storageand | ast -r ecei ved-i dis
updated to contain the newly receivedt r ansact i on- i d. These updates to persistent storage would be commited before
acknowledgement is returned to the sender, since the sender is already committed to the sending of these messages and they should
be made available to applications on the receiving side as quickly as possible.

Of coursg, if the payload disposition is abort, the sink can abort these updates to persistent storage. This leaves the sink without the
newly updated values in persistent storage. In the event of afailure of the sink, recovery to the previously saved state will allow a
misbehaving source to incorrectly reissueat r ansact i on- i d without complaint from the sink. This causes no injury to the sink,
or to any correctly operating source and, since this behavior is (nearly) indistinguishable from a sink that failed before processing
the request in the first place, thisis not a major concern.

| ast - sent - i d isupdated when the message source provides that information on a REPORT request (by aclient source) or
response (by a server source).

When a client acting as a source provides, as part of the REPORT command, avalue for forget which matches

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (13 of 44) [4/22/2002 4:39:32 PM]

HTTPR Specification
| ast -recei ved-i d, then the server can forget all the values, effectively setting them back to their initial values.

4. Example message flow scenarios

This sections shows some typical HTTPR interactions. Messages between HTTPR agents will flow either from the client to the
server, from the server to the client, or both.

4.1. Moving messages from the client to the server

The PUSH HTTPR command is used to send message from the client to the server. The client initiates a PUSH command by
sending the command headers, along with a batch of messages, to the server. The server responds to the PUSH with status of the
batch of messages sent. Under special, unusual, circumstances the server may not choose to respond to the PUSH command with the
status of the messages sent.

4.1.1. PUSH (without session)

In thisinteraction the client chooses to use a sessionless PUSH command to send a batch of messages.

In preparing to send the first batch of messages, the client assigns a unique transaction id (1), sets the messages to be sent to be
associated with that transaction id, and puts the transaction id in doubt. After saving its state, with last-source-id = 1, the client sends
the HTTPR command. Upon receiving the request the server reads in the batch of messages and savesthem in its persistent
mechanism. It also keeps a record of the last transaction id received from the client, last-received-id. Once thisinformation is
successfully saved in the persistent store, the server returns a response indicating that the messages have been committed. On
subsequent requests the client assignes a new, unique, transaction id, saves updated information in its persistent store, and sends the
request. The server updates its own information, including committing the messages, and responds with an indicator that the
messages were successfully received.

When the client decides it will not be sending any more messages it may choose to send a REPORT, allowing the server to clean up
its persistent store information associated with this channel.

The server will respond to the "forget” header by removing transaction information about messages received on this channel. If the
client did not issue the REPORT with forget the server would be oblidged to keep the incoming transaction information indefinately.

Figure 4. PUSH (without session)

Request: PUSH

requester: ...

channel: primary

responder:

capabilities:
Transactionid:0000000000000002
=hatch of messages>

4.2. Client initiates PUSH, using a session

The client uses simple session HTTPR to push messages to the server which makes them available for processing to applications
located there. When the client has no more messages to send, it terminates the session.

Figure5. Client initiates PUSH using a session

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (14 of 44) [4/22/2002 4:39:32 PM]

HTTPR Specification

Client

GET-RESPONDER-INFO
reguesier:me

channel primary
FESpOnGaryoau
capabilities xxx
waaaion Egin

Create ransactionid=1
Selecl messages

Set transaction 1 indoubt
Save last-source-ideq
Send HTTP payload.

Regquest: PUSH
seREd; 1
transactionid: 1
wirabch of mesaajes>

Commit parsistant store
Send terminator: Message
terminator

Ramove transaction 1
from indoubt state
Commit persistent store
Create fransactionid=2
Salect messages

Sat transaction 2 indoubt
Sava last-source-id=2
Sand HTTP payload:

Request: PUSH

aepsionid! |
transactionid: 000 GAEH0G000000:32
cirateh of mesaagess

Commit parsistent store
Send terminator: Message
terminator

Remove transaction 2
from In doubt

Commit parsistent store
Datact that commumni-
cation on this channel is
compleate

Send HTTF payload:

Ragquest: REPORT
sessionad: 1

forget: 1D00NMNMO00000032
segsionid:1

seasionemnd

Remove last-source-id
value

Server

completed: 00 0000000000000
outcome: SOMMIT
sesslonid-1

Save messages in store
Set last-recaived-id=1
Commit parsistent store
Send HTTP responss
payload:

complated: DO EI0ON000000001
outcome: COMMIT

Save messages in store
Sat last-recaived-id=2
Commit parsistant store
Send HTTP responsa
paykoad:

completed: 0000000000000:02
outcomiz: COMMIT

Ramove last-recaived-tid
valua

Ramowve channel
information, if appropriate
Sand HTTF responsa
payload:

Fast-pulled-id- 00000 :0000000000 I

4.3. Client fails then restarts PUSH

Continuing an aternative path for the last example in the case where the first PUSH fail ed:
Figure 6. Client initiates PUSH then fails

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (15 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification

Client

Creale ransactionide=q
Select messages o =and
Sel transaction 1 indoubl
Save last-zource=idei
Send HTTP payload:

Request: PUSH

requastar; myhostiservice
channal: primary
respanderyourhostiservics

<hatch of messages>

capabilities;max_batch_limit=10
Transactionid: 0000000000 000001

Cormmit persistent shore
Send terminalor: Message
lerminator

After the failure the client, does not receive the expected response and so MUST establish whether the previous PUSH was
committed or rolled back, before it can continue with other PUSH, PULL or EXCHANGE requests. The client chooses to start a

L

Failure

Server

Save messages in store
Set last-received-id=1
Commit persistent store
Send HTTP response
payload:

cormnpléted D00 00000000 0007
ourbeome COMMIT

new session to accomplish this, then it sends REPORT and ends the session.

Figure 7. Client restarts PUSH

Client

GET-RESPONDER-INFO
requesier:me
chanmal:primary
responderyou
capabilities: X
session:bagin

Remove transaction 1
from indoukt {commit)
Send HTTF payload:

Regquast: REFORT
sesssonad: 2

sessionend

Torget: ND00NMIO000000

Remove last-source-id
walue

Y

Server

completsd: ME0000000000001
outcomi: COMMIT
sessionid: 2

Remove last-recebhed-tid
value

Remowe channel
Information, if appropriate
Send HTTP responss
payload:

last-pulled-id: 0000000000000000 I

4.4, Client initiates PUSH, server rolls back.

The client uses simple session HTTPR to push messages to the server but the server's resource manager's disk is full so the Push

request is aborted.

Figure 8. Client initiates PUSH, server rolls back

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (16 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification

Client

Create transactionid=1
Selact messages to send
Set transaction 1 indoubt
Save last-source-id=1
Sand HTTP payload:

Regueest: PUSH

sessionid: 1
Transactionid-0000000000000004
<batch of messages=

Commit persistent store
Send terminator: Message
terminator

Restore indoubt
messages

Remove transactionid 1
Create transactionid=2
Set last-source-id=2
Send HTTP payload:

Raquast: FLSH

sassionid: 1

Tramsactionid: 0000000000 k10002
CMETa OF 19S5 SAME MEssagas

Commit persistent store
Send terminator: Message
terminator

Remove transaction 2
from indoubt {commit)
Detact that communi-
cation on this channel is
complete

Send HTTP payload:

Reguast REPORT
sessionid: 1

wARSI0N: and

Torget: 0000000000 000002

Remove |ast-source=id
value

Server

(Disk is Full)

Rollback persistent store
Send HTTP responss
payload:

completad; 0000000000009
outcome: ROLLBACK

(Disk is Empiy)

Save messages in store
Set last-received-id=2
Commit persistent store
Send HTTP responss
payload:

cormpleted: 0000000000002
ortoome - COMMIT

Remove last-received-tid
valug

Remowve chanmel
information, if appropriate
Send HTTP response
payload:

I last-pulbad-id; QOON000000000

4.5. Client initiates PULL

The client uses simple session HTTPR to pull messages from the server and make them available to for processing to applications
located at the client.

Figure9. Client initiates PUL L

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (17 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification

Client Server

mequast GET-RESPONDER-INFQ
reguesier:me

chanmel primary

respondaryau

capabilities xxx

wedsjon bEgin

comipleted 0000 MO000000000
outcome: COMMIT
sagsionid: 1

Send HTTP payload:

rageast PULL

spzsionid:1

comipleled 00000000 E000000
outcome: COMMIT

Create iransactionid=
Select messages

Sel ransaction 1 indolibt
Bave last-source-id=1
Send HTTP responsa:

transactiomid: Q00000 0000001
whaleh of mesaageas

i mEasagas in store Commit persistent store
Set last-recaived-id=1 Send terminator Message
Commit persistant store e
Send HTTP responsa
payload;
request: PULL Remove transaction 1
segsionid:d from indoubt {commit)
conmgbe ted: 00000000 00000001 Creats transactionid=2
oulsome: COMMIT Sabect messages

Sal transaction 2 indoubt

Save last-source-id=2
Sand HTTP response:

transactionid: Q000000000 000002
=hatch of messages=

Commit persistent store

Save messages in store Send terminatoriessage
Set last-recelved-id=2 terminator
Cammit parsistent stone
Decide to stop
Send HTTP request: Remove iranesction

. fram indoubt (commit)
L:l'é?:.:}:f PoRT Femove last-source-id
sassion;end walue

camgpheted: 0000000000 000002
auteome; COMMIT

Sand HTTP response:

inst-pulied-id: (OBO000G0M 0000 I

Remove last-recaived-tid
valua

The CompletedTransactionid flowed in the PULL message indicates to the server that it can now forget the state of that transaction
and remove any messages associated with it. Thiswill be the transactionid received as the response to a previous PULL. The client
may discard the state of the transaction once it receives a new transactionid from the server in response to a PULL request. The
client flows a REPORT request on receipt of aresponse from aprevious PULL without delay. Thisis so that the responder is not |eft
in doubt as to whether the messages have been received, for any longer than necessary.

4.6. Client fails then restarts PULL

Figure 10. Client initiates PULL then fails

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (18 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification

Client

Send HTTP payload:

requesi: PULL
sasslonid: 1

Save Mmessages I stare
Set last-recelved-ld=1
Commit pEI‘Sl!-IIEﬂT slore
Send HTTP response

payload:

rediest; PLILL
sessionid: 1
comphated; 0000000000000001

Failure

Server

Create transactionid=1
Salect messages

Set transaction 1 indoubt
Save last-source-id=1
Send HTTP response:

tran&aclion id: 00000000000 00001
<batch of messages>

Commit persistent store
Send terminator Message
terminator

Remove transaction 1
from indoubt {commit)
Create transactionid=2
Salect messages

Set transaction 2 indoubt
Save last-source-id=2
Send HTTF response:

transactionid:0000000000000002
=batch of messages>

Commit persistent store
Send terminatorMessage
terminator

After the failure the client sends the last PULL request again.

Figure 11. Client restarts PUL L

Client

requast GET-RESPONDER-INFO
requesier:me

chanpel prirmary

respanden you

capabilities: xxx

segsion begin

Send HTTP payload:

reqgeast REFORT

sessionid:2

completed -000000000000000 1
autcome:COMMIT

Sot last-sent-id=2
Send HTTP request:

requast: PULL
segsionid:2

Save messages in store
Set last-received-id=3
Commit persistent store
Decide to stop

Send HTTF reauest:

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (19 of 44) [4/22/2002 4:39:33 PM]

Server

{Transactionid=2
still in doubt)

completed 0000000000 00000
outcome:COMMIT
FEERNKT

Restore transaction 2's
messages

Remove transaction 2
Commit persistent store
Send HTTP response:

last-pulled-wd- 0000000000000 02

Create transactionid=3
Select (same) messages
Sel transacticn 3 Indoubi
Send HTTP response:

tranaactionid; 0000000000000003
<{same) balch of messages=

Commit persistent store
Send terminatorhless.age
erminator

I Remove transaction 3 I

HTTPR Specification

from indoubt {commit)

/

request: REPORT Remove last-sournce-id
sasslonid;2 e
oumg;b:ggmmmm " Send HTTP responsea:

last-pulliad-d-0000000000000000
session-end

Ramove last-recaived -tid
value

Note that because the unit of work associated with transactionid=2 was rolled back and then prepared again, the new transactionid is
set to 3, underscoring the fact that the new payload may not be identical to the one that was sent at the earlier failure.

4.7. Client initiates pipelined PULL

The client uses pipelines session HTTPR to pull messages from the server and make them available for processing to applications
located at the client . It uses pipelining in order to achieve improved throughput so that the flow of messages from the server is not
interrupted by the need to wait for client requeststo arrive. All of the flows here must be completed as one pipelined sequence of
HTTP requests and responses, in a single unbroken TCP connection. Thisisto prevent any possibility of requests and responses
being missing or out of sequence. When the client se it does not wish to receive any more messages, it terminates the session
allowing the server to forget the last transactionid.

Figure 12. Client initiates pipelined PUL L

. 1
Client 1 Server
1
I
i
raquast; GET-RESPONDER-ANFD I
requesbarme
channelprirmarny comgleted: 00000 00000000000
resganderyou | sl COMMIT
capabilities:xxx | sessionid:
sesaion:begin I

requast: PULL
sassionid:

Create transactienid=1
Select messages

Set transaction 1 indoubt
raquast: FLULL Save last-source-id=1

1

I

1

1

\:\
saggionid: 1 I Send HTTF response:

1 transaciianid; 1O G0G0000
i <batch of messages>

1

1

1

I

1

1

i

1

1

1

I

1

Commit persistant store
Sand terminator Message
terminator

Save messages in store
Set lagt-recaived-id=1
Cammit parsistent stors

Creats transactionid=2
Select messages

Set transaction 2 indoubt
Save last-source-id=2
Sand HTTP response:

transacticomd; Q00000 E0EI00E

I =balch of messages=
Save messages ir_| store 1 Commit persistent store
Set last-received-id=2 1 Sand terminatorMessage
Commit parsistant stora I terminator
Send HTTP request: I
ﬂu:lﬂdp_':-“-l- : Ramw!}trﬂnsal:tinn ‘I_Emd
completed 00M0000000000002 I 2 from indoubt {commit)
outcome; COMMIT 1 Create transactionid=2

1 Salect massages

I Save last-source-id=3

Send HTTP response:

Save messages to store !
Sat last-recsived-id=3 {ransactionid: 000000000 0 M00F
Commit persistent store I Shateh of massages>
Decide to end channs| i Commit persistent store

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (20 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification

Sand HTTF paylead: Sand terminatorMessage

terminator

raquast REFORT sassionid: 1
segsamend

completed 0000000000000003
autcoma: SOMMIT

Remove transaction 3
from indoubt [commit)

Remove last-source-id
valua

Send HTTP response:
Ilasl-pulleu-i-d = (R0 0000000000000

|

1

Remove last-recelved-tid I
walue 1
|

1

1

4.8. Client initiates EXCHANGE

The client uses simple session HTTPR and an Exchange command. Thisis equivalent to first pushing messages to the server, which
makes them available for processing to applications located there, and then pulling any available reply messages to make them
available for processing to applications located back at the client. The pulled reply messages may be generated by application level
processing of messages pushed to the server in thefirst part of the Exchange flow, or they may be any other messages from other
sources waiting to be returned to the client on this channel. The client setsits batch size and batch interval to restrict how long it
waits for reply messages and to limit how many messages it expects.

Figure 13. Client initiates EXCHANGE

Client Server

requeast GET-RESPONDER-INFQ
reguesiesme

ehanmel primary
respondaryou
capabilities:xxx
seasian: EEgin

Create transactionid=1
Select messages

Sat ransaction 1 indoukbt
Save last-source-id=1
Send HTTP payload:

request:EXCHANGE
segaionid: 1
transactionid- 00000000 000001

<katch of messages=

Commitl persistent slore
Send terminator: Message
terminator

Remove transaction 1
from indowbt (commit)
Bave messages o store
Sef last-received-id=101
Commit persistent store
Creafe transactionid=2
Select messages

Set transaction 2 indoubt
Save last-source-id=2
Send HTTP payload:

request EXCHANGE

sesaionid:1

transactionid; 10000000000:00002
compleled 000000 E000000101
oo G OMMIT

zhatch of messagess

Commit persistent store
Send terminafor: Message
ferminator

Remove transaction 2
from indoubt (commit)
Save messages o store
Sat last-recelved-id=102
Commit parsistant store
Decide to stop

Sand HTTP request:

reguest-REPORT
sasgionid

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (21 of 44) [4/22/2002 4:39:33 PM]

completed:; D000 (000
outcome:COMMIT
Eaagiind 1

Save messages to store
Set last-received-id=1
Commit persistent store
Create transactionid=101
Select messages

Sel transaction 101
indaubt

Save last-source-id=101
Sand HTTP responsa:

transaction d;0000000000000101
complated; QIRIEI000000000Y
cfcoms COMMIT

<batch of messages=

Commit persistent store
Send terminator: Message
terminator

Remove transaction 101
from indowbt ([commit)
Save messages to store
Sol last-received-id=2
Commit persistent store
Create transactionid=102
Select messages
Set transaction 102
indoubt
Save last-source-id=102
Send HTTP responsae:
transactiomnd: 0000000000102
completed: D0G0000000000 00

oculcome COMMIT
<batch of messagess

Commit persistent store
Send terminator: Message
terminator

Remove transaction 102
from indoubt (commit)
Remove last-sounca-id
valus

Remove last-received-tid

HTTPR Specification

SRESIONRNa

compleied: (0000000000001 02 \ value
outcome; COMMIT Remove chanmel
e gt 00000000 BDOO0002 information

Send HTTP respomse:

I Isst-pulled-4: D0H0H00000000000]

Remove last-source-id
il

Remove kast-received-tid
il

4.9. Client PUSH followed by PULL

The client PUSHes a message to the server and then issues a PULL request to receive the application message it expects as aresult
of the oneit just PUSHed.

Figure 14. Client initiates PUSH then PULL

Client Server

reque sl GET-RESPONDER-INFO
Ta s 5160 ma

channel-primary

respondaryaL

capabilities: xx

sessian bagin

compleded 2000 00000000000
autcome: SOMMIT
sessionid:1

Create transactionid=1
Select messages

Set transaction 1 indoubt
Save last-source-ld=1
Send HTTP payload:

requesi:PLISH
sossinonic-1
transactionid= 00000000000 00001

Save messages bo slore
Set last-received-id=1
Commit persistent store
Send HTTP responsae;

completed: D000R00000000 001
autcoma DOMMIT

Remove Iransaction id
fram indoubt [commit)
Send HTTP payload:

Create transactionid=101

raquastPLULL Select messages
sessionid:1 Sel transaction 102
Iindoubt

Save last-source-id=102
Send HTTP response:

transactionid 0000000000 000101
=batch of messages>

Coammit persistent store

Save messages fo siore e

Sat last-received-id=101

Commit persistent store o r

Decide to stop

Send HTTF payload: Remove transaction 101

- from indoubt [commit)

raquast:REPORT
,,imm:q Remove last-source-id
SsaRsI0N and walue
completed; S000E0RI00000401 Remaove last-received-tid
ouicoes COMMIT vale
Torget DON0 FIMOND0000

2 Remove channel

informaticn

Send HTTP responsa:
I Instpulledsd; nuwwmuuuwwo]

Ramove last-source-id
walue

Remove last-recelved-tid
walue

5. HTTPR Command Specification

This chapter describes the HTTPR commands, giving their request and response structures. Details on the definition and meaning of
individual headers fields will be found in Section 6, A“Header FieldsA”. The HTTPR commands may be used in any sequence on
any single HTTPR channel. Each HTTPR interaction consists of aclient request sent from the client to the server and aresponse
sent from the server to the client. The HTTPR request is passed in the entity body of an HTTP POST; the HTTPR response goesin

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (22 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification

the entity body of the corresponding HT TP response. HTTPR requests related to a single HTTPR channel may pass over the same
TCP connection or on a series of TCP connections, except where thisis limited by specific pipelining or session requirements. In the
following, the use of the HTTP command POST and related HT TP request and response headers are shown. The explicit use of
these headers does not imply that no other HTTP headers may be used; we have only included those headers relevant to the
demonstration of how HTTPR relatesto HTTP. In the case of transfer-encoding, we have included that header in preference to
content-length on certain regquests and responses not because it is necessary for the HTTPR protocol, but because it is the more
likely to be used, given that those requests/responses are amenabl e to dynamic construction on the fly.

5.1. GET-RESPONDER-INFO

Used to begin a session, to agree on capahilities, and to determine the responder identity associated with a URL. No message
payload is carried in either direction. If it isused, it is alwaysthe first flow of a session; subsequent flows of the session will carry
the sessionid returned in the response to this command. For channels not using GET-RESPONDER-INFO (and, hence, being
sessionless), each command flow MUST include, in the request, the full identification of the channel and the client MUST wait to
receive the servers response before sending another request on the same TCP connection. Aswith the REPORT request, an Outcome
and CompletedTransactionid can be exchanged to allow in doubt messages sent on this channel in a previous session to be resolved.

However the client may defer sending this information until alater stage if it wants to discover the server identity in the returned
Responder field first.

« Client request message.
"POST" /ServiceNanme "HTTP/1.1" CRLF
["Host:"host[":port]" CRLF]
["Content-length:" | ength CRLF]
CRLF
"request : GET- RESPONDER- | NFO' Ver si on CRLF

"requester:" Requester CRLF

“channel : " Channel CRLF

["responder:" Responder CRLF]

"session: begin" CRLF

["capabilities:" Capabilities CRLF]
["agent-type:" Agent Type CRLF]
["outcone:" CQutcome CRLF

"conpl eted: " Conpl etedTransacti oni d CRLF]
*[Product Speci fi cFi el d CRLF]

CRLF

« Server response message.
"HTTP/1.1" "200" "OK" CRLF
CRLF
HTTPR/ 1.0 CRLF
"responder:" Responder CRLF["session:end" CRLF

| “sessionid:" Sessionld CRLF]

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (23 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification

["capabilities:" Capabilities CRLF]
["agent-type:" Agent Type CRLF]

"outcone:" Qutcone CRLF

"conpl eted: " Conpl etedTransacti onid CRLF
["error:" Er r or Number Er r or Text CRLF]
*[Product Speci ficField CRLF]

CRLF

The response will include a Sessionld unless thereis an error, in which case it will, instead, indicate the session is ended.
Capabilitieswill beincluded in the response if the server decided to negotiate them down from the defaults or, if present on the
reguest, from those proposed by the client. If the server does not support the Session capability, it will both indicate that the session
is ended and return capabilities showing support only for Sessionless interaction.

5.2. PUSH

The client wishes to transfer application messages to the server but does not want to receive any application messages in return.

« Client request message.

"POST" [/ ServiceName "HTTP/1.1" CRLF

["Host:"host[":port]" CRLF]

["Transfer-Encodi ng: " "chunked" CRLF]

CRLF

1*HEX CRLF ; size of 1st HTTP chunk
"request:" "PUSH' Version CRLF

(("requester:" Requester CRLF

"channel : " Channel CRLF

["responder:" Responder CRLF]

["capabilities:" Capabilities CRLF])

| "sessionid:" Sessionld CRLF)

“"transactionid:" Transactionid CRLF

["outcone:" Qutcone CRLF

"conpl eted: " Conpl et edTransacti oni d CRLF]
["agent-type: " Agent Type CRLF]

["error:" Er r or Number Er r or Text CRLF]
[Product Speci ficField CRLF]

CRLF

* Payl oad

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (24 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification

Ter m nat or
0 CRLF

CRLF

Inclusion of an outcome on the request is to allow the client to indicate arrival of messages received in response to previous
PULL or EXCHANGE commands.

o Server response message.
"HTTP/ 1. 1" "200" "OK" CRLF
["Content-length:" | ength CRLF]
CRLF
["responder:" Responder CRLF]
["session:end" CRLF]
["outcone:" CQutcome CRLF
"conpl eted: " Conpl etedTransacti oni d CRLF]
["agent-type:" Agent Type CRLF]
["error:" Er r or Nunber Error Text CRLF]
*[Product Speci ficField CRLF]

CRLF

The Outcome indicates that the server has committed, rolled back, or does not know what happened to the unit of work the client
sent. It may be omitted only when requests are being pipelined within a session. If the server did not return an outcome of in doubt,
the client may commit or rollback the messages, as indicated by the outcome, and forget the CompletedTransactionid. All of the
prior units of work, if any had been pipelined and left unmentioned in previous responses, are assumed by the client to have been
committed in the server.

If an INDOUBT outcome has been returned in the response (caused, for example, by afailure of its database subsystem), the server
MUST aso end the session, if any, without processing any further requests for this channel. The client may choose to restart the
communications and restart the message flow, using the REPORT request to try to determine the outcome of the transaction. Thisis
necessary to maintain message sequencing, as the client must now reestablish which was the last unit of work that was committed by
the server. This behavior is preferable to the server simply waiting until it knows the outcome of the transaction, because the client
will now also know immediately that there is a problem at the server and that there will probably be some delay while the problem is
resolved.

5.3. PULL
The client isinviting the server to send it messages. In the request the client may acknowledge receipt and commitment, rollback of
messages it received from the server in prior requests. The acknowledgment of a unit of work implies commitment of al of the

previous unacknowledged units of work on this channel. If the client wishes to notify the server of in doubt state it should use a
REPORT request to achieve this.

« Client request message.

"POST" /ServiceNanme "HTTP/1.1" CRLF
["Host:"host[":port]" CRLF]

["Content-length:" Length]

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (25 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification

CRLF
"request:" "PULL" Version CRLF
(("requester:" Requester CRLF

"channel : " Channel CRLF
["responder:" Responder CRLF]
["capabilities:" Capabilities CRLF])
| "sessionid:" Sessionld CRLF)
["outcone:" Qutcone CRLF
"conpl eted: " Conpl et edTransacti oni d CRLF]
["agent-type:" Agent Type CRLF]
["error:" Err or Nunber Error Text CRLF]
*[Product Speci fi cFi el d CRLF]

CRLF

« Inclusion of an outcome on the request isto allow the client to indicate arrival of messages received in response to previous
PULL or EXCHANGE commands.

Server response when it has messages to return to the client

"HTTP/1.1" "200" "OK" CRLF

["Transfer-Encoding:" "chunked" CRLF]

CRLF

1*HEX CRLF : size of 1st chunk

["responder:"” Responder CRLF]

["session:end" CRLF]

"transactionid:" Transactionid CRLF

["outcone:" Qutcome CRLF

"conpl eted: " Conpl et edTransacti oni d CRLF]
["agent-type:" Agent Type CRLF]

["error:" Er r or Nunber Error Text CRLF]
*[Product Speci ficField CRLF]

CRLF

*Payl oad

Ter m nat or

0 CRLF

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (26 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification

CRLF

e Or, if the Server has no messagesto return:

"HTTP/ 1. 1" "200" "OK" CRLF

["Content-length:" length] CRLF

["responder:" Responder CRLF]

["session: end" CRLF]

["outcone:" Qutcome CRLF

"conpl eted: " Conpl et edTransacti oni d CRLF]
["agent-type:" Agent Type CRLF]

["error:" Err or Nunber Error Text CRLF]
*[Product Speci fi cFi el d CRLF]

CRLF

Inclusion of outcome on the response is only optional when commands are pipelined within a session.

5.4. EXCHANGE

The client wishesto transfer messages to the server and wishes to receive messages. It isaPULL piggybacked with a PUSH; all
comments about those commands therefore apply here.

« Client request message.

"POST" /ServiceNanme "HTTP/ 1. 1" CRLF
["Host:"host[":port]" CRLF]

[Transfer-Encodi ng: " "chunked" CRLF]

CRLF

1*HEX CRLF ; size of 1st chunk
"request:" "EXCHANGE" Version CRLF

(("requester:" Requester CRLF

"channel : " Channel CRLF

["responder:" Responder CRLF]
["capabilities:" Capabilities CRLF])
| “sessionid:" Sessionld CRLF)
"transactionid:" Transactionid CRLF

["outcone:" CQutcome CRLF

"conpl eted: " Conpl etedTransacti oni d CRLF]

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (27 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification

["agent-type:" Agent Type CRLF]

["error:" Er r or Nunber Error Text CRLF]
*[Product Speci ficField CRLF]

CRLF

*Payl oad

Ter m nat or

0 CRLF

CRLF

« Server response message

"HTTP/1.1" "200" "OK" CRLF

["Transfer-Encodi ng:" "chunked" CRLF]

CRLF

1*HEX CRLF : size of 1st chunk

["responder:" Responder CRLF]
["session:end" CRLF]

"transactionid:" Transactionid CRLF
["outcone:" CQutcome CRLF

"conpl eted: " Conpl etedTransacti oni d CRLF]
["agent-type:" Agent Type CRLF]

["error:" Er r or Nunber Error Text CRLF]
*[Product Speci ficField CRLF]

CRLF

* Payl oad

Ter m nat or

0 CRLF

CRLF

« Or if the Server has no messages to return:

"HTTP/1.1" "200" "OK" CRLF
["Content-length:" length] CRLF
["responder:" Responder CRLF]

["session:end" CRLF]

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (28 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification

["outcone:" Qutcome CRLF

"conpl eted: " Conpl et edTransacti oni d CRLF]
["agent-type:" Agent Type CRLF]

["error:" Err or Nunber Error Text CRLF]
*[Product Speci ficFi el d CRLF]

CRLF

If acompleted transaction outcome other than COMMIT is returned then the session MUST also be ended.

5.5. REPORT

This command is used when the client does not wish to send or receive messages but does wish to notify the server about the state of
transactions related to messages previously received from the server asaresult of a PULL, about which the server may till bein
doubt. (Since EXCHANGE isboth aPUSH and a PULL, all references hereto PULL also apply to the PULL part of an
EXCHANGE.) REPORT isalso sent if the client isin doubt that messages sent in a previous request were received. This might be
when a previous connection failed without a response to a PUSH request being received, or when an INDOUBT Outcome was
returned.. (Since EXCHANGE isboth aPUSH and a PULL, all references hereto PUSH aso apply to the PUSH part of
EXCHANGE.)

REPORT is sent by the client as soon as possible after it has received a payload, if it does not wish to send or receive a new payload.
This allows the responder to complete its transaction and not remain in doubt for longer than necessary. After the client has received
aresponse with no HTTPR error indication, the client may forget all state associated with the CompletedTransactionid.

Thisrequest is aso sent after a PULL request when the requester does not want to commit the messages it received. Once a
REPORT request with an INDOUBT outcome has been sent, the responder MUST also terminate the session, if any. If thereisa
session in progress, the requester MUST not process any further, pipelined responses to requests on this channel (particularly PULL
requests that carry a payload) it may have outstanding, and MUST, instead, start a new session. Thisis necessary to maintain
application message ordering, because the payload in the transaction that is in doubt must be resolved before new payloads can be
committed.

It may be necessary for an agent to respond INDOUBT if its resource manager fails to return from its COMMIT or ROLLBACK
instruction. In this case the agent does not know the outcome of the transaction and may wish to communicate this to the requester
rather than blocking or failing itself.

Thisflow isalso used, typically asthe last flow in a session when the client wishes to allow itself and the server to forget the
CompletedTransactionid. After thisflow has been exchanged neither side need retain any transaction state.

« Client request message
"POST" /ServiceNanme "HTTP/1.1" CRLF
["Host:"host[":port]" CRLF]
["Content-length:" Length]
CRLF
"request:" "REPORT" Version CRLF
(("requester:" Requester CRLF
“channel : " Channel CRLF

["responder:" Responder CRLF]
["capabilities:" Capabilities CRLF])

| “(sessionid:" Sessionld CRLF

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (29 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification

["session:end" CRLF]))

["outcone:" Qutcone CRLF

"conpl eted: " Conpl et edTransacti oni d CRLF]

"l ast-pushed-id:" LastPushedld CRLF

["forget:" ForgetTransactionid CRLF]
["agent-type:" Agent Type CRLF]

["error:" Err or Nunber Error Text CRLF]
*[Product Speci fi cFi el d CRLF]

CRLF

« Server response message.

"HTTP/ 1. 1" "200" "OK" CRLF

["Content-length:" | ength CRLF]

["responder:" Responder CRLF]

["session: end" CRLF]

"l ast-pulled-id:" LastPulledld CRLF
["agent-type:" Agent Type CRLF]

“outcone:" Qutcone CRLF

"conpl eted: " Conpl etedTransacti onid CRLF
["error:" Err or Nunber Error Text CRLF]
*[Product Speci fi cFi el d CRLF]

CRLF

The response's CompletedTransactionid MUST be returned as 00000000 00000000 if thereis no last transaction known at the server
for this channel. This might be because thisis the first request ever on this channel or the first request after the server has forgotten
the state of completed transactions on this channel. To avoid duplication of messages that are sent by the server, the client MUST
NOT process any responses to any other outstanding requests once it sends a REPORT request and until it receives the response. A
PULL response with atransactionid less than or equal to the LastPulledld must then be rejected by the client, as the server will
retransmit the affected messages, in batches with new, larger transactionids, at the next opportunity, given the client's REPORT of
having failed to receive those messages. To prevent the duplication of messsages that are sent by the client, once a REPORT request
has been processed, the server MUST NOT accept requests with transactionids that are less than or equal to the LastPushedid sent
by the client. The client will, having seen the server's claim not to have received those transactions, retransmit the affected messages
at the next opportunity with new, larger transactionids.

5.6. Error Responses

The requester and responder both need a capability to report errors. These errors are carried in the error field of both the requests and
replies, according to whether the client or server detected an error.

If the server cannot handle the capabilities of the client, not even by negotiating them down then the following error is returned. Any
transaction associated with the request is rolled back.

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (30 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification
"["error:" "510" "I NCOVPATI BLE" CRLF]

"[out come:" "ROLLBACK" CRLF
"conpl eted: " Conpl et edTransacti oni d CRLF]
"session: end" CRLF

[payl oad to explain why we don't |ike or know the capabilities]

If the server does not recognise the name of the responder to be itself then the following error is returned. Any transaction associated
with the request is rolled back.

"error:" "511" "RESPONDER- | NVALI D' CRLF
"[outcome: " "ROLLBACK" CRLF
"conmpl eted: " Conpl et edTransacti onid CRLF]

"session: end" CRLF

If the server does not recognise the name of the channel then the following error isreturned. Any transaction associated with the
request is rolled back.

"error:" "512" "CHANNEL-I| NVALI D' CRLF
"[outconme: " "ROLLBACK" CRLF
"conpl eted: " Conpl et edTransactionid CRLF]

"session: end" CRLF

If the server's resource manager is unavailable the following error is returned. Any transaction associated with the request isrolled
back.

"error" "513" "RESOURCE- MVANAGER- UNAVAI LABLE" CRLF
"[out come: " "ROLLBACK" CRLF
"compl eted: " Conpl et edTransacti onid CRLF]

"session: end" CRLF

If the server's resource manager is terminating the following error is returned. Any transaction associated with the request isrolled
back.

"error:" "514" "RESOURCE- MANAGER- TERM NATI NG' CRLF
"[outcome: " "ROLLBACK" CRLF
"conpl eted: " Conpl et edTransacti onid CRLF]

"session: end" CRLF

If the server's resource manager is unable to store the message the following error isreturned. Any transaction associated with the
reguest is rolled back.

"error:" "515" "RESOURCE- MANAGER- CAN- NOT- STORE" CRLF

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (31 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification
"[outcome: " "ROLLBACK" CRLF

"conpl eted: " Conpl et edTransactionid CRLF]

"session: end" CRLF

If the server's session was ended at the request of the administrator the following error is returned.

“error:" "516" "ADM NI STRATOR- CLOSED"' CRLF"
[outcome: " Qutconme CRLF

"conpl eted: " Conpl et edTransactionid CRLF] "session: end" CRLF

If the server had no messages to return to the client within the Disconnectinterval the following error is returned.

"error:" "517" "Dl SCONNECT- TI MEQUT- EXPI RED' CRLF

"session: end" CRLF

If the server's resource manager is unable to store the message because it cannot identify the sink resource the following error is
returned. Any transaction associated with the request is rolled back.

"error:" "518" "SI NK- NOT- KNOWN' CRLF
"[outcome:" "ROLLBACK" CRLF
"conpl eted: " Conpl et edTransacti onid CRLF]

"session: end" CRLF

If the server discovers that the request does not begin with the characters A“POSTA” "httpr:" the following error is returned. This
error islikely to occur if some program other than an HTTPR agent attempts to communicate with the responder. The requester will
not interpret any of the datain the request so there will be no transaction assumed to be associated with the request.

"error:" "519" "NOT-HTTP-R' CRLF"session: end" CRLF

If the request received in the server begins with the characters POSTA” "httpr:" but the server believes that the protocol that follows
does not meet the HTTPR specification the following error is returned. Any transaction associated with the request is rolled back.

"error:" "520" "HTTP-R- PROTOCOL- ERROR' CRLF
"[out come: " "ROLLBACK" CRLF
"conpl eted: " Conpl et edTransacti onid CRLF]

"session: end" CRLF

If the request contains a message longer than the MaximumM essageSize in the currently negotiated capabilities the following error
isreturned. Any transaction associated with the request is rolled back.

"error:" "521" " MAXI MUM MESSAGE- S| ZE- EXCEEDED' CRLF
"[outcome: " "ROLLBACK" CRLF
"conmpl eted: " Conpl et edTransacti onid CRLF]

"session: end" CRLF

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (32 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification

If the request contains a more messages than the MaximumBatchSize in the currently negotiated capabilities the following error is
returned. Any transaction associated with the request is rolled back.

"error" "522" "MAXI MUM BATCH S| ZE- EXCEEDED' CRLF
"[out come: " "ROLLBACK" CRLF
"conpl eted: " Conpl et edTransacti onid CRLF]

"session: end" CRLF

If the request would cause the number of in doubt or un forgotten transactions to exceed the MaximumPipelineDepth in the currently
negotiated capabilities the following error is returned. Any transaction associated with the request is rolled back.

"error:" "523" "MAXI MUM Pl PELI NE- DEPTH EXCEEDED' CRLF
"[outcome: " "ROLLBACK" CRLF
"conpl eted: " Conpl et edTransacti onid CRLF]

"session: end" CRLF

If the request contains a flow other than one in the currently negotiated capabilities the following error is returned. Any transaction
associated with the request is rolled back.

"error:" "524" "I NVALI D- FLOW CRLF
"[outcone: " "ROLLBACK" CRLF
"conpl eted: " Conpl et edTransacti onid CRLF]

"session: end" CRLF

If in the processing of the request the agent is denied access to aresource it needs for security reasons then the following error is
returned. Any transaction associated with the request is rolled back.

“error:" "525" "AGENT- SECURI TY" CRLF
"[out come: " "ROLLBACK" CRLF
"conpl eted: " Conpl et edTransacti onid CRLF]

"session: end" CRLF

If the server cannot process a message because the Userid associated with a message causes it to be denied access to aresource it
needs the following error is returned. Any transaction associated with the request isrolled back.

"error:" "526" "USERI D- SECURI TY" CRLF
"[out come: " "ROLLBACK" CRLF
"conpl eted: " Conpl et edTransacti oni d CRLF]

"session: end" CRLF

If the session isterminated at the request of a user module the following error is returned.

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (33 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification
“error:" "527" "USER- MODULE- CLOSED' CRLF

[hptt pr-user-nodul e-data: " User Modul eDat a CRLF]

"session: end" CRLF

If the Sessionld is not recognised by the server the following error is returned.

"error:" "528" "SESS|I ON-1 DENTI FI ER- NOT- RECOGNI SED" CRLF

"session: end" CRLF

If the server receives an out-of-sequence, old transaction identifier and discards the associated payload.

"error:" "529" "QUT- OF- SEQUENCE- TRANSACTI ON- DI SCARDED' CRLF
["out cone: " "ROLLBACK" CRLF
"conpl eted: " Conpl etedTransactionid CRLF]

"session: end" CRLF

If the HTTPR Version is not supported by the server, the following error is returned.

"error:" "530" "HITP- R VERSI ON- NOT- SUPPORTED" CRLF

"session: end" CR

6. Header Fields

Implementations of this protocol SHOULD describe how the fields in the message flows are affected by the application interfaces
exposed to the application writer.

6.1. Request Header Fields

6.1.1. Version

Version = "HITPR/ 1. 0"

Identifies the version of the HTTPR protocol being used.
6.1.2. Requester
The identity of the client agent making the request. ThisMUST be constant for all time and SHOULD uniquely identify the agent.

An agent MAY assume multiple Requester identities. As the Requester field will be used by servers to determine which messages to
send to thisclient, it SHOULD have the form

Requester = "httpr:"["//"host[":port]]"/"Servi ceNane

athough HTTPR does not require the contents of the Requester field to have this interpretation.
6.1.3. Channel

The name that the agent associates with a particular stream of HTTPR flows. This may be used to construct a class of service for a
particular set of messages; for example, large messages may flow over one channel while small ones flow over another.

6.1.4. Responder

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (34 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification

Responder = "httpr:"["//"host[":port]]"/"Servi ceNane

Theidentity of the server agent receiving the request, i.e. the agent that did not initiate contact. It is contacted at the corresponding
HTTP URL

"HTTP:"["//"host[":port]]"/"Servi ceName

This Responder value MUST be constant for al time for a particular agent and SHOULD uniquely identify the agent. An agent
MAY assume multiple Responder identities. The responder MUST check that it is the intended responder and return an error
indication if it is not.

6.1.5. Capabilities

In the request, thisisthe list of attributes that the client supports; if a capability is not specified in the client's list, then the default
value is assumed. In the response, thisisthelist of attributes that the server will accept and use for this session; if a capability is not
specified then the value sent or default assumed by the client is used. The each capability in aresponse MUST be less than or equal
to the corresponding value specified in the request.

Capabilities = *Capability
*[Product Speci fi cFi el d]
Capability "idl e_session_interval ="1dl eSessi onl nterval]
"enpty_bat ch_del ay="Enpt yBat chDel ay]

max_| at ency="MaxLat ency]
"max_wai t _next =" MaxWai t Next |

= [
| [
| [
| [
| ["max_wai t _bat ch="MaxWai t Bat ch]

| [" maxi mum nmessage_si ze=" Maxi mumvessageSi ze]

| [

| [

| [

| [

n

T

"maxi mum _bat ch_si ze=" Maxi nunBat chSi ze]
"maxi mum _pi pel i ne_dept h="Maxi munPi pel i neDept h]
"fl ows="Fl ows]

[

'sessi on_support =" Sessi onSupport]

If the request contains a ProductSpecificField as a capability, the client MUST assume that it is not supported, if it is absent from the
response. A ProductSpecificField may not be included in aresponseif it is not already present in the request.

| dl eSessionlinterval = 1*DIG T

The number of seconds that the server SHOULD keep on hand the information about a session and thereby allow the session to
remain active without a new request being submitted by the client. The default value is 10 seconds. The response value (if any)
MUST be less than or equal to the request value

EmptyBatchDelay = 1*DIA T

When a PULL request is received, the server may not have any messages intended for this client on hand. The EmptyBatchDelay is
the number of milliseconds that the server should wait for the first message to appear (from whatever message queuing subsystem,
or other message source, it might be using). If, after thislength of time, there are still no messages, the server MUST complete its
response immediately, indicating that no messages are available. The default value is 10 seconds. The response value (if any) MUST
be less than or equal to the request value.

MaxLatency = 1*DIA T

When a PULL request is received, as soon as the server has found one messages intended for this client, the server can start sending
the response payload. If the server cannot fill abatch because it has run out of messages, it can wait for more to appear, but the
server MUST complete the payload by the time MaxLatency milliseconds have elapsed since the batch was begun with that first
message. The default value is 100 milliseconds. The response value (if any) MUST be |less than or equal to the request value.

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (35 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification
MaxWai t Next = 1*DIG T

When aPULL request is received, as soon as the server has found one messages intended for this client, the server can start sending
the response payload. If the server cannot fill abatch because it has run out of messages, it can wait for more to appear, but the
server MUST complete the payload once MaxWaitNext milliseconds have elapsed since the last message was placed in the batch.
The default value is 100 milliseconds. The response value (if any) MUST be less than or equal to the request value.

MaxWai t Batch = 1*DIG T

When a PULL request is received, whether there are messages or not, the server MUST compl ete the payload once MaxWaitBatch
milliseconds have elapsed since the request arrived. The default value is 100 milliseconds. The response value (if any) MUST be
less than or equal to the request value.

Maxi mumvessageSi ze = 1*DIG T

Thelargest number of bytesthat MAY comprise a single message. The default value is 100 000 000 bytes. Implementations that do
not support messages of unlimited size SHOULD use MaximumM essageSi ze to avoid the unnecessary transmission of messages
that it knows will be rejected a priori. The response value (if any) MUST be less than or equal to the request value.

Maxi nrunBat chSize = 1*DIG T

The largest number of messages that MAY flow in asingle request or response. The default value is 10 messages. The response
value (if any) MUST be less than or equal to the request value.

Maxi munPi pel i neDepth = 1*DIG T

The maximum number of outsanding requests that the client can make without having received the corresponding response from the
server. The default value is 1 request. The response value (if any) MUST be less than or equal to the request value.

Fl ows= 1*Fl ow

Fl ow = PUSH| PULL| EXCHANGE

The particular requests that the client and server are willing to make. The delimiter for the list of Flowsis A“+A” not A“,A”.
Sessi onSupport = 1*Sessi onLevel

Sessi onLevel = SESSI ONLESS| SESSI ON

An agent MUST support either SESSIONLESS or SESSION, but need not support both. The default value is SESSIONLESS. The
delimiter for thelistisA“+A” not A“,A”.

Example:

capabilities: disconnect interval =15, batch_i nterval =31, max_nessage_si ze=10000,
bat ch_si ze=5, f| ows=PUSH+PULL, sessi on_support =SESSI ON CRLF

6.1.6. Sessionld

1*12(ALPHA| DIG T)

Identifies the session uniquely in the server. The server generates a unique session identifier for each new session and returnsit to
the client. The client includes the session identifier in each request it sends to the server. The server must allocate Sessionlds that it
knows are unique for all time, one way to achieve thisisto use atime stamp for part of the Sessionld.

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (36 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification
6.1.7. AgentType

The type of agent installed in the client if thisis sent in arequest. The agent installed in the server if thisissent in aresponse. It is
RECOMMENDED that this string be of the form.

OrganisationA” .A” ProductName
Example:

"i bm MXeri es"
This SHOULD be part of the first request and first response in the lifetime of a connection, to serve as documentation that will be
useful in the event of afailure.

6.1.8. Transactionid

16HEX

Identifies the unit of work. The transactionid MUST be unigque until such time as both parties agree to forget all previous transaction
state. Successive values of transactionid used on a channel MUST form a strictly increasing sequence. It was decided to place the
transactionid in the request headers instead of in the terminator of the payload for purposes of documentation. A transmission that is
interrupted will, thereby, certainly contain atransactionid if it contains any part of the payload, which may aid administrators during
problem determination. This may lead to the inclusion of a transactionid when none of the messages in the payload have a A“class
of serviceA” of assured or reliable, in which case the transactionid is irrelevant, and the sink need not remember it.

The Transactionid MUST NOT be equal to 0000000000000000 (16 zeros).

6.1.9. CompletedTransactionid

16HEX

The transactionid which was received in conjunction with a previous payload and which has now been committed. The recipient
may assume that al prior transactions that are still in doubt have aso been committed. The reserved value 0000000000000000 (16
zeros) MUST be used if there is no transaction which has just been committed, for instance because thisis the first PULL request.

6.1.10. ForgetTransactionid

16HEX

The transactionid of aunit of work, generated by the client, that is no longer in doubt and which the client wishesto forget.

6.1.11. LastPushedld

16HEX

The largest transactionid of any unit of work to have been generated by the client.

6.1.12. LastPulledld

16HEX

Thelargest transactionid of any unit of work to have been generated by the server.

6.1.13. ProductSpecificField

ProductSpecificField is any field compliant with the HTTP format rules that is not defined in the version of HTTPR being used.
Product Specific fields SHOULD begin with the characters A“app-A” in order to avoid a conflict with names that might be used in

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (37 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification

future versions of HTTPR. They enable product specific data to be exchanged that is not defined within the HTTPR protocol.
Product specific fields may not be blank otherwise it would indicate a delimiter for message header etc.

Example:

app-i bm ngseri es-accounti ngt oken: 00000001

The sink MUST ignore these fields if it does not understand their meaning. Product owners SHOULD document all of the product
specific fields that their products generate and interpret on receipt. Product owners SHOULD use an HTTPR field in preferenceto a
product specific field, as this would inhibit interoperability.

6.2. Payload and Message Header Fields

The payload is the message header followed by the message data.

The message header is parsed by the agent to find information useful to this receiving agent. However, some fields may be relevant
only to the ultimate message sink and are simply be copied unchanged to the next link in the chain of agentsin a multi-hop
connection.

Payl oad=MessageHeader
CRLF ; End of the nessage header
MessageDat a

CRLF
6.2.1. MessageHeader

MessageHeader = ("nessage-size:" MessageSi ze CRLF |
"message- encodi ng: chunked")
["target-uri:" Target Ui CRLF]
["class-of -service:" O assO Service CRLF]
["priority:" Priority CRLF]
["user-id:" Userld CRLF]

["encodi ng: " Encodi ng CRLF]
["reply-uri:" ReplyUri CRLF]

["nmessage-id:" Messageld CRLF]
["correlation-id:" Correlationld CRLF]
["put-time:" PutTime CRLF]

["expiry:" Expiry CRLF]
["content-type: Content Type CRLF]

*[Product Speci fi cMessageFi el d CRLF]

6.2.2. MessageSize
MessageSize = 1*DIGIT
The number of bytesin the MessageData itself, excluding the CRLF following the MessageData

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (38 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification

6.2.3. TargetUri

The destination for the message.

TargetUi = "httpr:"["//"host[":"port]]"/"Servi ceNane"#" Desti nati on

Host specifies the network address of the agent or its proxy and port is the port, default 80. The ServiceName identifies the agent.
Destination identifies the sink for the message as interpreted by the agent. There are no specific rules for interpreting the
Destination. Providers SHOULD document how the Destination is interpreted. Among other possible formats, one way a messaging
system might construct Destination is QueueNameA* @A” QueueM angerName.

Examples:
Target-uri: httpr: QV# QueueQuery@ML CRLF

target-uri: httpr://gateway. orgl. com soapAgent #SOCAPQ@ML_SERVER CRLF
6.2.4. ClassOfService

C assOf Servi ce = "assur ed" ;once and only once

| "reliable ;at | east once

| " dat agr ant' ;at nost once

Default = "datagram”

Once-and-only-once delivery requires full transaction coordination between sender and receiver. The agent where messages
originate will be in doubt as to whether they have arrived for some period during the transfer, messagesin this state would not
normally visible to applications.

At least once délivery allows lazy confirmation from receiver.

Datagram or at most once delivery requires no coordination between sender and receiver.
6.2.5. Priority

The priority of the message. Agents should make their best effort to transfer higher priority messages before lower priority
messages.

Priority = DAT

Default = 4.

6.2.6. Userld:

t oken

The user identifier of the user that originally created the message, or the user identifier of the user who has assumed ownership since
it was created. Thisfield may be used by the source agent to determine authority of the message to flow to the sink. It may
aso/instead be used by the sink agent to determine if the message is acceptable and can use the resources it needs.

6.2.7. Encoding

Encodi ng = [Encodi ngl nt eger Type]

[", " Encodi ngFl oat Type]

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (39 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification

[", "Encodi ngDeci mal Type]

Encodi ngl nt eger Type = "i nt eger-normal "

"integer-reversed"

The default isinteger-normal.

Encodi ngFl oat Type = "fl oat-ieee-normal”
| "float-ieee-reversed"

| "float-s390"

The default is float-ieee-normal.

Encodi ngDeci mal Type= "deci mal - normal "

"deci mal -rever sed"

The default is decimal-normal.

The default encodi ng

6.2.8. ReplyUri:

ReplyUri = "httpr:"["//"host[":"port]]"/"Servi ceNanme"#" Desti nation

6.2.9. Messageld:

t oken

Anidentifier of the message provided by the sending application. See the discussion of Correlationld (next) for further details.

6.2.10. Correlationld:

t oken

Ancther identifier associated with the message. Where areply isto be generated by a receiving application, the message-id of the
request is often copied by that application into the correlation identifier of itsreply. It isthe responsibility of the application
generating the request, or the agent acting on its behalf, to ensure that message identifiers contain adequate information so that the
correlation-ids can correctly distinguish replies.

HTTPR is not aware of the request/reply relationship. Thereis no HTTPR header information to indicate that a particular messageis
arequest expecting reply, though this might be inferred from the presence of the reply-uri: field. HTTPR does not specify any
relationship between the application request/reply and HTTPR EXCHANGE sequences.

Where the HTTPR agent and application are tightly coupled, an application request and resulting reply may flow within asingle
HTTP flow using HTTPR EXCHANGE. Transactional requirements for loosely coupled HTTPR agent and application will almost
certainly involve multiple HTTP flows.

6.2.11. PutTime:

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (40 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification
http-r-date

The time of day when the messages was created. For example:

06 Nov 1994 08:49: 37

All HTTPR date/time stamps MUST be represented in Greenwich Mean Time (GMT), without exception. For the purposes of
HTTP, GMT isexactly equal to UTC (Coordinated Universal Time). http-r-date is case sensitive and MUST NOT include additional
LWS beyond that specifically included as SP in the grammar.

http-r-date = datel SP tine
dat el = 2DIAT SP nonth SP 4DIG T
; day nmonth year (e.g., 02 Jun 1982)
time =2DDGT ":" 2D T ":" 2DGA T
: 00:00:00 - 23:59:59
mont h = "Jan" | "Feb" | "Mar" | "Apr"
| "May" | "Jun" | "Jul" | "Aug"
| "Sep" | "Cct" | "Nov" | "Dec"

Note: HTTP requirements for the date/time stamp format apply only to their usage within the protocol stream. Clients and servers
are not required to use these formats for user presentation, request logging, etc.

6.2.12. Expiry

After this number of seconds have elapsed the message need not be presented to an application. The total time MAY exclude time
spent in transmission of the message on the communications link.

Expiry = 1*DIAT
6.2.13. ContentType
Pcf/ pcf; charset =i so- 8859-4

6.2.14. ProductSpecificMessageField

ProductSpecificMessageField is any field compliant with the HTTP format rules that is not defined in the version of HTTPR being
used. Product Specific message fields SHOUL D begin with the characters A“app-A” in order to avoid a conflict with names that
might be used in future versions of HTTPR. They enable product specific datato be exchanged that is not defined within the
HTTPR protocol. Product specific fields may not be blank otherwise it would indicate a delimiter for message header etc.

Example:

app-i bm ngseries-correlid: 00000001

The sink SHOULD ignore these fields if it does not understand their meaning, but MUST save them, as they may be intended for
same later consumer of the message. Product owners SHOULD document all of the product specific fields that their products
generate and interpret on receipt. Product owners SHOULD use an HTTPR field in preference to a product specific field, as this
would inhibit interoperability.

6.2.15. MessageData

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (41 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification

The application message datais an uninterpreted sequence of bytes unless the chunked message encoding is used. The encoding of
the message data s, in that case, exactly as specified in RFC 2616, in section 3.6.1, for an HTTP/1.1 chunked encoding:

Chunked- Body = *chunk
| ast - chunk
trailer
CRLF
chunk = chunk-si ze [chunk-extension] CRLF

chunk-data CRLF

chunk-si ze = 1*HEX

| ast - chunk = 1*("0") [chunk-extension] CRLF
chunk-extension= *(";" chunk-ext-name ["=" chunk-ext-val])
chunk- ext - name = token

chunk- ext - val token | quoted-string

chunk-dat a chunk- si ze(OCTET)

trailer = *(entity-header CRLF)

As these chunks are passing over an HTTP/1.1 session, there is the possibility of double chunking, with messages chunked for
HTTPR being re-chunked for HTTP. However, no confusion should result, as dechunking is applied first at the HTTP level, and
then, separately, at the HTTPR level.

6.2.16. Terminator

Thefinal part of the message following the payloads.

Term nator = "payl oad-di sposition:" Payl oadDi sposition CRLF
Payl oadDi sposition = "last"
| "abort™

Thisisthelast part of the HTTP message body and indicates that the payload is valid and can be used by the recipient. Once the
terminator has been received the recipient may proceed to process or abort the request or response.

Last means that the recipient may attempt to commit the contents of the message where the class of serviceis assured.

Abort means that the recipient MUST discard all of the request response flow. The response to a payload where the terminator is
A“abortA” MUST contain

"outcone:" " ROLLBACK"

Similarly the sink MUST discard the payload if the connection is broken before the terminator is received.

6.2.17. Outcome

Qutcone = "COW T"

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (42 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification
| " ROLLBACK"

| "1 NDOUBT"

COMMIT meansthe sink has received and permanently recorded the payload and any other state it might need.
ROLLBACK meansthe sink has been unable to receive the payload.

INDOUBT meansthe sink is uncertain asto what it did with the payload, perhaps because there was a partial system failure during
the processing.

6.2.18. ErrorNumber

ErrorNunber = 1*DIA T

The number that uniquely identifies the error as listed above. Either the client or server may generate asingle error on each HTTPR
message.

6.2.19. ErrorText

English text that describes the error being reported as described above.

7. Appendix

7.1. Glossary

agent The software transferring the message payload on behalf of the application, also
the resource manager for transactions.

application message The message being transferred as the application seesit, as distinct from the
HTTP message.

capabilities A vector describing the HTTPR protocol capabilities and parameters requested or
agreed to on this command flow or session.

capabilities A vector describing the HTTPR protocol capabilities and parameters requested or
agreed to on this command flow or session.

channel Anindependent HTTPR conversation globally uniquely identified by the triplet:
<client URI, channel identifier, server URI >.
client The agent initiating the communication. The agent sending the HTTP request
message.
command flow The basic unit of HTTPR interaction; a request message from client to server and

aresponse message from server to client. The request flows as the body of an
HTTP POST; the response as its POST response.

commit The action of permanently recording that the payload has been received, or sent.

connection The TCP/IP communications used to carry the requests and responses. This has
the same lifetime as the TCP/IP socket.

forget The point at which the agent is no longer required to have knowledge of the
transaction associated with a payload.

HTTP HyperText Transfer Protocol.

HTTPR payload The application messages being transferred, togrether with their HTTPR message
header information.

multi-hop A series of Agentsthat a message passes through, each acts as a source for the
next agent in the chain. Messages are stored at each Agent and then passed
unaltered to the next Agent.

multi-hop A series of Agentsthat a message passes through, each acts as a source for the
next agent in the chain. Messages are stored at each Agent and then passed
unaltered to the next Agent.

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (43 of 44) [4/22/2002 4:39:33 PM]

HTTPR Specification
Prepare The action of permanently recording that a payload isin doubt as to whether the
partner agent has received it or not.
request The HTTPR request message sent by the client.
resource manager The software that stores persistent state and manages transactions.
response The HTTPR response message sent by the server.

server The agent accepting the communication initiated by the client. The agent
responding to the request message sent by the client.

session A uniquely identified, grouped sequence of command flows which use a fixed,
prenegotiated set of capabilities.

sink The agent with the application messages after the transfer.
source The agent with the application messages before the transfer.

About IBM | Privacy | Lega | Contact

http://www-106.ibm.com/developerworks/library/ws-httprspec/ (44 of 44) [4/22/2002 4:39:33 PM]

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	ibm.com
	HTTPR Specification

	GKNDPNKALOFHLPDBEMCDPIIGBMDLKINI:
	form1:
	x:
	f1: [dW]
	f2:

	f3:

