
Extreme Markup Languages 2005® Montréal, Québec
August 1-5, 2005

A unified type hierarchy for discourse
A potential direction for DITA 2

Erik Hennum
IBM

Abstract
A type hierarchy enables extension of general types by specialized types for more precise
semantics, thus allowing for flexibility of design and processing. A formal type hierarchy
for discourse can realize benefits similar to those already seen for type hierarchies in OO
design and ontologies. Because schema languages declare elements and content
models, discourse types may be defined by specifying relationships between more
specific (often pragmatic) models and more general models. Because refinement of
discourse models may entail changes in containment structure, the type relationships
must declare a mapping between containment structures. A Design Annotation
Specialization Language can be used to declare type relationships and can be embedded
as annotation elements within XML Schema or RelaxNG files or maintained externally as
an annotation file for DTDs. Using the declared type hierarchy, an instance of a discourse
model can be processed against base types to inherit formatting or behaviors and can be
generalized to base types for interoperability. The author is proposing these strategies to
the OASIS DITA Technical Committee as a possible direction for a future release of DITA.

A unified type hierarchy for discourse
A potential direction for DITA 2
Table of Contents
Benefits of a type hierarchy..1
Current DITA and substitution of specialized types in discourse..1
Design motivations for more flexible specialization..4
Perspectives on discourse typing..5
The Object Oriented perspective and addition of properties to discourse..5
Semantic precision through subdivision of discourse..6
Variation in XML expression...7
Modelling inheritance and composition relationships for types...8
The XML expression of the type relationships model..9
Annotating designs with type relationships..10
Embedding type annotations in schemas..11
Representing and locating the model for processing..11
Processing discourse objects against types...12
Generalizing discourse objects...12
Generic discourse types and non-DITA specializations...13
Summary...14
Footnotes...14
Acknowledgements...14
Bibliography...15
The Author..16

A unified type hierarchy for discourse
A potential direction for DITA 2
Erik Hennum

§ Benefits of a type hierarchy
Type hierarchies have had great success in the Object-Oriented Design, ontology, and other areas. For
instance, an API for UI programming often defines a general UI component that serves as the base type
for specialized UI components such as a button, list, or text box. Some benefits of defining a type hierarchy:

Shared design In the UI example, the size dimensions and position coordinates can be
defined for the base component and inherited by the specialized button, list,
and text box.

Shared processing The basic layout functions can be developed for the base component and
applied to a specialized button, list, or text box.

Easier understanding The base component expresses the commonality of the button, list, and text
box.

Interoperability A component developer can define a new type of specialized component such
as a UI thermometer, and an application developer can use the unknown
component in existing UI form logic because the unknown component can
be treated as a base component.

Composability An instance of a specialized type anywhere that allows an instance of the
general type. This approach, called polymorphism in object-oriented systems,
allows for design and processing flexibility without compromising the
validity of designs.

A formal type hierarchy can realize similar benefits for discourse. By discourse, this paper means a
discussion with sequential flow whose content is structured and classified by constructs such as paragraphs,
tips, phrases, product names, and so on. These structuring and classifying constructs can be considered
types defined in a markup languages. Thus, a formal type hierarchy establishes relationships between more
general and more specialized constructs. For instance, a product name might be considered a special kind
of phrase. Overall, a set of information conforming to a formal type hierarchy would be composed of
discourse objects (each of which retains its type integrity) as opposed to an indefinite mix of namespaced
content.

This paper proposes a strategy for building on the existing DITA type mechanisms to provide a more
flexible type hierarchy. Thus, a review of the existing mechanism provides the background for the
proposal.

§ Current DITA and substitution of specialized types in discourse
The DITA standard has two fundamental aspects:

• An architecture [DITA Architecture 2005] for strongly typed content objects with inheritance
relationships between types.

• A set of general types [DITA Language 2005] and some initial specialized types that populate the
architecture to support technical content (in particular, User Assistance) as well as other information
deliverables that lend themselves to aggregation.

In the DITA architecture, a specialized type distinguishes a subset of the instances of a more general type.
For example, we might notice that the instances of a general ordered list include chronological, structural,
and task lists:

IBM 2005

A unified type hierarchy for discourse

Extreme Markup Languages 2005® page 1

Table 1
Chronological list Structural list Task list

<p>The lifecycle:</p>

Four legs in
 the morning
Two legs in
 the afternoon
Three legs in
 the evening

<p>The management chain:</p>

Sancho Panza
Don Quixote
Cervantes

<p>Edit the file:</p>

Execute emacs.
 <p>Emacs displays.</p>

Open the file.

A DITA specialization recognizes a subset of instances with a common semantic by substituting a new
element for the existing element when marking up those instances. For example, we might substitute a
new steps element for the existing ol element for marking up the subset of ordered lists that have a task
semantic:

Table 2
General type Specialized type

Execute emacs.
 <p>Emacs displays.</p>

Open the file.

<steps>
<step><cmd>Execute emacs.</cmd>
 <stepresult>Emacs displays.</stepresult>
</step>
<step><cmd>Open the file.</cmd></step>
</steps>

Besides declaring a more precise semantic, the substituted element can also add constraints to the general
content model. In the example, the content model for the new step element can require a specialized
cmd inline phrase to delimit the imperative content of the step.

By refining the markup semantics and restricting the content model, DITA specialization realizes the
benefits of type hierarchies discussed earlier. The particular benefits for discourse include:

Better authoring The specialized markup language reinforces the semantics of the content
instead of merely declaring the structure of the content. The constrained
content models minimize semantic errors such as providing a step without
instruction, reducing the need for low-level editorial review. The user
experience for the author can take on some qualities of a wizard where a
validating editor prompts the author for the next piece of content.

Easier processing The developer for the processing can work with well-defined input instead
of having to handle cases that are valid in the markup but don't match the
intent. In addition, because the markup declares a more precise semantics,
the rules that match the markup declare a more precise semantic as well,
making the purpose of the processing easier to understand. Effectively, the
specialized markup becomes a better contract between the author and the
developer. Finally, because the special instances remain valid general
instances, the general processing still applies. The developer only needs to
override the general processing where desirable.

Interoperability on a
general base

Because a specialized type restricts a general type to recognize a subset of its
instances, every instance of the specialized type is guaranteed to be valid for
the general type. As a result, the general element can always be substituted
for the specialized element, a process known as generalization.
Generalization of specializations has benefits over transforms between
arbitrary document types because it provides a reliable, standard operation.
By contrast, a transform between document types is an empirical exercise in
finding an acceptable equivalent for every possible instance. Such transforms
typically have special cases where the equivalence between the source and
target element is strained. In addition, a new document type entails new
transforms to every other known document type.
The practical consequence of generalization is that content can be shared
across communities with the semantics accepted generally by that
community. The visual equivalent would be a set of Russian nesting dolls
where the innermost doll has the narrowest community and the most precise

Hennum

page 2 Extreme Markup Languages 2005®

semantic and the outermost doll has the broadest community and the most
general semantic. For instance, a telecommunications company could
specialize to represent the unique knowledge culture of its company but still
generalize to accepted telecommunications semantics when sharing content
with other telecommunications companies and or generalize to generic
technical semantics when sharing content outside the telecommunications
industry.

The following illustrations shows the inheritance relationships for the core DITA topic types and some
specialized topic types:

Figure 1: The type hierarchy for some topic type specializations

In XML Schema [XML Schema 2004], the DITA definition for type specialization can be implemented
with a combination of restriction and substitution groups. The architecture also provides design patterns
for implementing the DITA architecture using entities in DTDs.

The DITA architecture identifies types in XML using schema-agnostic architectural attributes. In
particular, the schema defines a class attribute by which each element identifies its type ancestry. For
instance, when the class attribute is normalized in the instance, the steps element resembles the following
example:

<steps class="- topic/ol task/steps ">

In the value of the class attribute, the initial hyphen distinguishes the type of specialization (topic as
opposed to domain). The value can contain any number of ancestry tokens, which are value pairs that
consist of the identifier of the module supplying the type, a separating solidus, and the name of the supplied
type. Thus, in the example above, the class attribute declares that the current element:

1. Is provided through topic specialization.
2. Has a base type of ol from the topic module.
3. Has a type of the steps from the task module.

For XSLT processing, DITA uses a standard idiom to match elements based on a type listed in the class
attribute rather than on the element name. As a result, processing rules written against base types match

A unified type hierarchy for discourse

Extreme Markup Languages 2005® page 3

specialized types as well by default. For instance, the processing rule for ordered lists also processes task
steps because the class attribute contains the "topic/ol" string:

<xsl:template match="*[contains(@class, ' topic/ol ')]">

A specialized type can override the base rule, however, in an XSLT module that imports the base
processing:

<xsl:template match="*[contains(@class, ' task/steps ')]">

In the same way that classes can be assembled for an application, the type and processing modules for a
specialization are pluggable. That is, the specialization modules can be assembled to create application-
specific document types. For instance, topic type specializations that define content structure can be
combined with domain specializations that define vocabularies for specific subject areas.

This pragmatic approach has worked well. DITA content has been authored and deployed by both large
and small organizations for web sites, help systems, books, papers, and so on. The base types have been
extended for communities, problem domains, and organizational cultures including special vocabularies
for the telecommunications industry, reference types for API libraries, and so on.

§ Design motivations for more flexible specialization
As designers have gone deeper into the DITA architecture, the benefit of additional capabilities has become
clear. Designers want the flexibility to meet goals such as the following through their specializations:

Element aliasing Conforming to community culture by using a different label for an existing
element. For instance, different communities may prefer the "p," "para," or
"paragraph" label (or a localized label) but the paragraph element should be
processed in the same way.

Content model restriction Simplifying the discourse instances by restricting the model of existing
elements. For instance, a community might prefer to restrict the content
models of block elements to prevent nesting of blocks (and thus paragraphs
can't nest lists).

Element addition Adding new elements to content models that introduce a new kind of content
without a semantic ancestor. For instance, a code example might contain a
structure that provides parameters for checking out the source file and
extracting the code fragment.

Attribute addition Adding new properties to existing elements without losing interoperability
with others. Many problem domains have special metadata that must be
represented in the document instance. For instance, warning notes for
hardware might have an attribute that identifies the regulation that motivates
the warning.

Attribute specialization Refining the attribute semantic by renaming and restricting the value. For
instance, an organization might want to specialize the platform attribute to
provide an enumeration of operating systems or to distinguish separate
machine, programming language, and operating system attributes.

Token specialization Adding tokens to an enumeration to indicate a semantic subset of an existing
token. For instance, the audience element has a type attribute with an
administrator token, which might legitimately have system administrator and
system operator specializations.

Contextual specialization Substituting a specialized element within a specific, existing content model
rather than globally. For instance, a community might need to introduce legal
inline phrases that should only appear in the content models of admonition
notes.

These design requirements strain the capabilities of the existing approach to specialized typing in the
DITA architecture and suggest a reexamination of discourse typing. The challenge for this reexamination
is to meet as many of these requirements as possible without losing the integrity of the type hierarchy or
the pragmatic benefits of the existing approach.

Hennum

page 4 Extreme Markup Languages 2005®

§ Perspectives on discourse typing
A number of initiatives and investigations are relevant to discourse typing:

• Ontological models, which have a standard representation in the Web Ontology Language
[OWL], define a set of classes that constitute a type hierarchy. The literal content in the instances
of these classes, however, are data values rather than discourse text. That is, because the Web
Ontology Language is designed for a machine-processable web, it doesn't provide a useful
representation for discourse.

• Architectural Forms [HyTime] provides for mappings between a client document type and a meta
document type, but this relationship constitutes a subset relationship rather than a type hierarchy.
In particular, a single client document type can have any number of meta document types.

• The DocBook and TEI communities have defined a way to substitute appropriate elements in a
context using RelaxNG [Rahtz et al 2004]. As the cited paper notes, however, this solution doesn't
address the larger question of semantic and structural validity of those substitutions

• The Datatype Library Language (DTLL) initiative championed by Jeni Tennison [DTLL] defines
a type hierarchy mechanism for RelaxNG, but for atomic values rather than discourse semantics.

• The Markup Semantics initiative of the BECHAMEL project recognizes the value of a type
hierarchy for markup [Renear et al. 2002] as part of a set of limitations on the semantic transparency
of markup but solves these limitations through more sophisticated strategies of interpretation [Dubin
and Birnbaum 2004]. This paper suggests that a subset of pragmatic benefits can be realized at the
markup level through additional annotation.

• The Secondary Structuring initiative [Sasaki 2004], like the approach suggest in this paper, seeks
to identify semantic equivalence between markups but at arbitrary points of equivalence rather than
through the design discipline of a type hierarchy.

• The Schematron notion of abstract patterns [Ogbuji 2004] provides for the concept of a general type
but provides for only a single generation of derivation and requires that the general type be abstract.

• Object Oriented Design [OOP] has a well-defined strategy for type specialization. Because this
strategy has been so successful, is important to consider carefully the extent to which it applies or
doesn't apply for any system of type specialization including discourse typing.

§ The Object Oriented perspective and addition of properties to discourse
In the Object Oriented approach, a specialized class inherits all of the properties of the base class. These
properties are often accessed through extensible behaviors, but that nuance doesn't alter the basic principle.
The specialized class introduces variation by adding new properties (in XML Schema parlance, through
extension by addition).

The following example shows the specialization of a class for generic structural nodes to define a class
for tree nodes.

Table 3
General class Specialized class

Node
 data: Object
 next: Node

TreeNode
 data: Object
 next: Node
 parent: TreeNode

A program can treat objects of the specialized type as objects of the general type through a casting operation
that hides the added properties. For instance, the parent property of the TreeNode class isn't visible when
a program is treating a TreeNode object as a Node object. Such casting makes it easy for a program to
process objects in shared or distinct ways as appropriate.

Adding properties to a discourse object can be important for metadata processing and for hybrid documents
that include record data as well as discourse text. For instance, a lab report type might need metadata about
the institution that produced the report or record data expressing the raw data analyzed in the report. If
added content is restricted to properties outside the main flow of discourse, the standard object-oriented
strategy of hiding the additions can maintain the validity of the discourse when generalizing to a type that
doesn't have the added properties. That is, after the added properties are hidden, the remaining discourse
remains a valid instance of the general type.

A unified type hierarchy for discourse

Extreme Markup Languages 2005® page 5

One strategy is to put the addition inside a processing instruction that occupies the position of the hidden
content during generalization. It should even be possible to add properties to a specialization of an empty
element because, when generalized, the empty element should be able to contain the processing instruction
for the hidden addition.

Table 4
Special type General type after hiding the addition

<fig>
 <title>Quantum
 engines</title>
 <labloc>B52-FA-RA13</labloc>
 <image href="qengines.jpg"/>
</fig>

 <fig>
 <title>Lab report</title>
 <?HIDDEN-ELEMENT <labloc>B52-FA-RA13</labloc> ?>
 <image href="qengines.jpg"/>
 </fig>

Thus, addition complements substitution by supporting extensible properties about discourse.1

§ Semantic precision through subdivision of discourse
The discourse text itself, however, doesn't lend itself to specialized typing by addition. Specialized typing
of discourse adds more precise semantic markup without adding to the discourse text.

For instance, compare a fragment of discourse with progressively more specialized markup:

Table 5
Discourse text Discourse structure Discourse semantic structure

<content>
Execute emacs.
Emacs displays.
Open the file.
</content>

Execute emacs.
 <p>Emacs
 displays.</p>

Open the file.

 <steps>
 <step>
 <cmd>Execute
 <cmdname>emacs</cmdname>.
 </cmd>
 <stepresult>
 <wintitle>Emacs</wintitle>
 displays.
 </stepresult>
 </step>
 <step>
 <cmd>Open the file.</cmd>
 </step>
 </steps>

Increasing the semantic precision requires additional levels of containment and more fine-grained pieces
of text. That is, the semantic precision results from subdivision of the existing value rather than addition
of new values as in the Object Oriented approach.

The gap between the object-oriented perspective and the discourse perspective becomes evident when
examining the DOM (Document Object Model). The markup above would result in the following DOM
trees:

Table 6
Text DOM Structure DOM Semantic structure DOM

 <content>
 "Execute emacs.
 Emacs displays.
 Open the file."

 "Execute emacs."
 <p>
 "Emacs displays."

 "Open the file."

 <steps>
 <step>
 <cmd>
 "Execute "
 <cmdname>
 "emacs"
 "."
 <stepresult>
 <wintitle>
 "Emacs"
 " displays."
 <step>
 <cmd>
 "Open the file."

If the object-oriented strategy of extension by addition explained semantic refinement, we would be able
to revert to a more general semantic by pruning the branches added to the DOM tree. Applied to the third
case above, pruning the cmd and wintitle branches would prune most of the text as well, producing
the following result:

Hennum

page 6 Extreme Markup Languages 2005®

Table 7
Generalizing from 3rd to 2nd DOM by pruning

added branches and renaming elements
Generalization from 3rd to 2nd case through DOM-

based pruning

 <p>
 " displays."

 <p>" displays."</p>

As with added properties, a subdivision container element must be hidden in the general form. What's
different is that the contents of the subdivision container must not be hidden. In the following example,

Table 8
Special type with subdivision General type after hiding the subdivision

<productFeatures>
 <productModule function="editor">
 <productFeature>XML
 support</productFeature>
 <productFeature>Styled</productFeature>
 </productModule>
 <productModule function="composer">
 <productFeature>Dynamic
 </productFeature>
 <productFeature>Conditional
 </productFeature>
 </productModule>
</productFeatures>

 <?HIDDEN-CONTAINER-START
 <productModule function="editor">
 ?>
 XML support
 Styled
 <?HIDDEN-CONTAINER-END
 </productModule>
 ?>
 <?HIDDEN-CONTAINER-START
 <productModule function="composer">
 ?>
 Dynamic
 Conditional
 <?HIDDEN-CONTAINER-END
 </productModule>
 ?>

Elements introduced by subdivision can remove the need for textual delimiters. For instance, dates are
commonly expressed with solidus or hyphen separators between the fields of the date, which become
unnecessary if those fields are declared by the markup:

Table 9
General date with textual delimiters Specialized date with subdivision elements

<date>2005-06-24</date> <date>
 <year>2005</year>
 <month>06</month>
 <day>24</day>
</date>

An address provides another example because the linebreaks, spacing, and punctuation that provide a
parseable format for a single-value address are no longer part of the subdivided fields of the address.2
These textual delimiters pose an additional requirement for generalization from a specialized subdivision.
Textual delimiters may need to be inserted during generalization and deleted during respecialization.

Because semantic precision is obtained through subdivision of the text, discourse typing differs from
object-oriented typing. A complete strategy for specializing discourse types should include not only
substitution of specialized types and addition of properties but also subdivision of content models by new
elements. In other words, specialization of discourse must support changes in containment within the
specialized XML representation.

§ Variation in XML expression
In practice, an actual document type often makes accommodations for authoring or processing
considerations that are unrelated to the fundamental semantics or structure of the discourse model. Such
pragmatic accommodations can include the following:

• Specifying a sequence for properties so authors have a more limited set of options in a validating
XML editor even if the properties have no actual sequential relationship.

• Adding grouping for the convenience of processing or so authors can consider a smaller set of
options.

A unified type hierarchy for discourse

Extreme Markup Languages 2005® page 7

• Removing semantic containment so authors see more text than markup because, from an author's
perspective, too much markup looks like noise.

• Altering the semantics or structure for reasons of community culture -- in particular, preserving
legacy markup for the sake of existing processing or author familiarity.

In short, these accommodations can result in variant content models. The resulting XML document types
define one possible expression of a fundamental discourse model.

§ Modelling inheritance and composition relationships for types
To summarize the preceding analysis, the goals of the DITA community for more flexible design can be
met through more precise control of substitution, addition of properties, subdivision of containment, and
tolerance for variance in the XML expression. Identifying the type relationships between the elements,
attributes, and content models provided by general and specialized (often pragmatic) document types calls
for a model that is independent of and simpler than the schemas for the document types.

The model for the type hierarchy (the IS-A relationships) can be a straightforward tree3. The following
example gives a simplified view of some basic discourse types and some specialized types for task content:

DiscourseFragmentType
 NullType
 TextType
 ValueType
 IDType
 DiscourseUnitType
 PhraseType
 BlockType
 ParagraphType
 TitleType
 ListType
 OrderedListType
 TaskStepsType
 UnorderedListType
 ListItemType
 TaskStepType
 DivisionType
 SectionType
 TaskContextType
 BodyType

The model for the composition relationships (the PART-OF relationships) poses more of a challenge. To
express the relationship of the specialized composition to the base composition, we must be able to address
parts of the composition structure. One possible approach for simplifying this problem would be, first, to
define a content option as a union of content types. The following example defines some typical content
options:

PhraseOption: TextType | PhraseType
BlockPhraseOption: PhraseOption | BlockType | ListType

The model could then define composition relationships as assertions of cardinality on either a content type
or content option. A content type can only appear once (whether explicitly or in a content option) within
a composition definition. While this constraint might seem severe, XML content models with mixed text
in DTD or with sequential or regular repeating elements conform to this restriction. Because the content
models for the base DITA elements conform, existing DITA specializations can also be modelled in this
way.

The following example (using UML [UML] notation for cardinality) defines the composition of a simple
section consisting of an optional id, an optional title, and block, list, phrase, or text content as well as the
composition of a specialized section describing task context that removes the optional title:

SectionType: 0..1 IDType
 0..1 TitleType
 0..* BlockPhraseOption
TaskContextType: 0..1 IDType
 0..* BlockPhraseOption

The purpose of this model is not to provide a new schema language for validating document instances or
to capture all of the information provided by a schema language but, instead, to identify type relationships.
In particular, there's no need to model the sequence of an element's content model or the distinction between
elements and attributes.

Hennum

page 8 Extreme Markup Languages 2005®

This approach identifies specialization by adding new content types, content options, and composition
definitions to the model. The composition definition for a specialized content type must be a variant on
the composition definition of the base content type. A variant composition definition could differ from
the base definition in the following ways:

• Narrow the range of the cardinality of any composed item within the bounds in the base composition
definition.
In the example, the specialized section composes zero titles.

• Replace any composed item with a semantic subset of the composed item.
A composed content type can be replaced with a single specialized content type or with a content
option that includes several specialized content types. In the example, a specialized title could be
substituted for the base title.
Similarly, a composed content option can be replaced with a single content type (or specialization
thereof) from the option or with a new option that lists a subset of the content types (or specializations
thereof). In the example, the content option for block, list, and phrase text could be replaced with
the block type.

• Replace any composed item with multiple composed items that constitute a semantic subset and
that have an aggregate cardinality that's the same or narrower than the original cardinality.
For example, an unordered list composed of zero or more list items could be specialized as a product
features list with zero or more critical features and zero or more important features.

• Add a composed item.
In the example, the task context could add a product identifier as part of the context. On
generalization, composed items introduced through extension by addition would be hidden.

• Replace a composed item with a proxy content type to subdivide the content.
The composition definition for the proxy content type must be a valid replacement for the composed
item. For example, a product features list could introduce a product module proxy that groups the
subset of critical and important features for each product module. On generalization, the proxy
composed item would be hidden but not its contents.
The text content type can be proxied, which allows text to be grouped in units that are hidden on
generalization without hiding the textual content.

This model could be represented in OWL, which offers some significant processing options.

§ The XML expression of the type relationships model
To realize the type relationship model, an XML document does the following:

• Selects an attribute or element representation for content types that should be manifest in the XML
vocabulary.
A content type cannot be represented as an attribute if it has cardinality larger than 1 in any
composition definition within the model.

• Assigns names to the content types.
A content type might have multiple named elements in an XML document type (for instance, to
support legacy associations).

• Defines element or attribute groups (in XML Schema terms) for the content options.
• Represents the composition definitions as either attribute value definitions or as element content

models, imposing a sequence on the composed items.

A content type and a specialized type might have the same name in different XML vocabularies. For
instance, some DITA adopters would like to change the composition definition of the paragraph type,
either to exclude phrase and text content or to add metadata values. Such adopters would be able to define
a specialized paragraph type with the appropriate composition definition but still give their content type
the element name "p" within their document type.

A unified type hierarchy for discourse

Extreme Markup Languages 2005® page 9

§ Annotating designs with type relationships
To declare the type relationships for the model, a more expressive mechanism than architectural attributes
(which provide simple values) is desirable. Given the representation of other aspects of design in XML,
the natural approach is to represent type relationships in XML as well.

In many cases, the schema for the XML document type has a close parallel with the type model. Thus, it's
important for clarity and maintainability to be able to write the type declaration close to the schema. The
existing DITA practice of declaring type ancestry with architectural attributes provides a precedent, in
decoupling the type declaration from the schema declaration but maintaining the type declaration close
to the schema declarations. In addition, a goal is to extract the type declaration where possible from the
schema notation using a process sensitive to the schema language. At one level, this approach leverages
the schema declarations as a shorthand. At another, we can blur the distinction between the type and the
element as the XML expression of the type for the typical case but recognize the distinction when we need
the precision.

Because the type declarations can annotate a schema, let's call the vocabulary for type declaration the
Design Annotation Specialization Language or DASL. DASL can follow the RDF principle of combining
the namespace and the element or attribute name to produce a globally unique identifier for assertions
about the element or attribute.

Some potential core statements for DASL follow:

dasl:type Identifies the type within the model that corresponds to the element or
attribute. As a shorthand, this statement can be omitted to use the element
identifier as the type identifier.

dasl:baseType Identifies the general type for the type corresponding to the element or
attribute. If the general type is declared in some other resource available for
processing, this statement can be omitted.
Where the base type is equivalent to an element type (that is, where the
shorthand for dasl:type has been used to declare the base type), this statement
identifies that element. Thus, using the shorthand, the DITA steps element
could identify the DITA ol element as a base type. The shorthand base type
for an element could be an attribute and visa versa (with the exception of the
root element of the discourse object). A shorthand base type could be
provided by the same document type module.

dasl:option Defines a content option as a union of content types or other content options
for use in defining content composition. In XML Schema, this statement
might annotate an element or attribute group.

dasl:composition Defines content composition for the type as a list of composition items and,
in the context of the XML document type, declares the sequence of the
composition items. If the content composition is defined in another resource
or if the content composition can be determined from the declaration of the
content model in the schema language, this statement can be omitted.

dasl:compositionItem Identifies a composed content type or content option and defines the
cardinality for the composed item. The statement can also identifies the
composed item as an unchanged item, a replacement, an addition, or a proxy
for a composed item within the base content composition.
In the case of a proxy, the statement can declare textual delimiters to use for
the proxied content on generalization.
It might be possible for the statement to identify a composed item as virtual
within the specialized content composition, in effect, flattening a base
container element. For instance, a definition list element might provide a
virtual list item that implicitly groups the definition term and data elements
(as in the XHTML document type). The statement would have to provide a
grouping instruction to assign the appropriate part of the specialized content

Hennum

page 10 Extreme Markup Languages 2005®

model to the base content position during generalization. The grouping
instruction might resemble Schematron abstract patterns.
It might be possible for the statement to specify fixed content for a
composition item. The fixed content should be inserted into a document
instance during generalization.

§ Embedding type annotations in schemas
The DASL declarations of type relationships would be possible to embed in the schema definition as
annotations. Each annotation applies to the element or attribute whose schema definition contains the
DASL declaration.

For instance, here is a skeleton of a Relax NG annotation:
<rng:element name="ol">
 <dasl:design
 xmlns:dasl="http://ibm.com/experimental/dasl/design"
 xmlns:discourse="http://ibm.com/experimental/dasl/discourse"
 xmlns:topic="http://oasis-open.org/dita/2005/topic">
 <dasl:type href="discourse:OrderedListType"/>
 ... other DASL design declarations about the type ...
 </dasl:design>
 ... Relax NG element and attribute content definition ...
</rng:element>

Similarly, here is a skeleton of an XML Schema annotation:
<xs:complexType name="ol.class">
 <xs:annotation>
 <xs:appinfo source="http://ibm.com/experimental/dasl/design"
 xmlns:dasl="http://ibm.com/experimental/dasl/design"
 xmlns:discourse="http://ibm.com/experimental/dasl/discourse"
 xmlns:topic="http://oasis-open.org/dita/2005/topic">
 <dasl:type href="discourse:OrderedListType"/>
 ... other DASL design declarations about the type ...
 </xs:appinfo>
 </xs:annotation>
 ... XML Schema element and attribute content definition ...
</xs:complexType>

The DASL declarations of type relationships could also be maintained outside of the schema definition,
which would be useful for DTD definitions, which have no standard annotation mechanism. In addition,
this approach would be useful where the schema definition is maintained by someone other than the type
relationship annotator. The schema construct annotated by the definition could be declared explicitly as
in the following example:

<dasl:types
 xmlns:dasl="http://ibm.com/experimental/dasl/design"
 xmlns:discourse="http://ibm.com/experimental/dasl/discourse"
 xmlns:topic="http://oasis-open.org/dita/2005/topic">
 <dasl:element href="topic:ol">
 <dasl:type href="discourse:OrderedListType"/>
 ... other DASL design declarations about the type ...
 </dasl:element>
 ...
</dasl:types>

A designer could choose to maintain the type relationships in the embedded form in one schema language
and generate an external DASL representation for use with other schema languages.

Using the type relationships and a base schema definition, it should be possible to generate a specialized
schema definition. The specialized schema would preserve the same attribute and element assignments
and content sequences as the base schema. This capability would allow the designer to work by specifying
the deltas on a base design, which would greatly reduce the maintenance effort on specialized designs.

§ Representing and locating the model for processing
From the DASL statements and the annotated schema, the type hierarchy can be expressed naturally as
an XML tree:

<dasl:types
 xmlns:dasl="http://ibm.com/experimental/dasl"
 xmlns:discourse="http://ibm.com/experimental/dasl/discourse"
 xmlns:topic="http://oasis-open.org/dita/2005/topic"
 xmlns:task="http://oasis-open.org/dita/2005/task">
 <dasl:type id="discourse:ListType">
 <dasl:type id="discourse:OrderedListType">
 <dasl:element name="html:ol">

A unified type hierarchy for discourse

Extreme Markup Languages 2005® page 11

 ...
 </dasl:element>
 <dasl:element name="topic:ol">
 ...
 </dasl:element>
 <dasl:type id="task:TaskStepsType">
 <dasl:element name="task:steps">
 ...
 </dasl:element>
 </dasl:type>
 </dasl:type>
 <dasl:type id="discourse:UnorderedListType">
 <dasl:element name="topic:ul">
 ...
 </dasl:element>
 </dasl:type>
 ...
 </dasl:type>
 ...
</dasl:types>

Processing can climb the tree to traverse the type hierarchy from specialized to general types. The
composition declarations can be represented in similar structures that are convenient for processing.

In the same way that a document instance can use an attribute to point to a schema definition for the
document instance, the root element for a discourse object could point to the assembled type declarations:

<task:task
 xmlns:topic="http://oasis-open.org/dita/2005/topic"
 xmlns:task="http://oasis-open.org/dita/2005/task"
 xmlns:dasl="http://ibm.com/experimental/dasl"
 dasl:typeref="http://ibm.com/experimental/dasl/task/type.xml"
 ...>

For authoring convenience, this architectural type reference attribute could be set by default in the schema
language.

§ Processing discourse objects against types
The type relationships aren't used to validate the XML expression, which remains the task of a schema
language processor. Instead, the type relationships are used to:

• Match processing rules with a typed discourse object
• Compare two typed discourse objects
• Generalize and respecialize the XML expression of a typed discourse object
• In general, interpret the semantics of a typed discourse object

In particular, for base processing to match specialized instances, the processor must read the type hierarchy.
A processor could read the external type hierarchy using the architectural type reference attribute. As an
alternative for more efficient repeated processing, a preprocess might normalize the document instance
by wrapping the content and the type hierarchy in a container element:

<dasl:typedContent
 xmlns:dasl="http://ibm.com/experimental/dasl"
 xmlns:discourse="http://ibm.com/experimental/dasl/discourse"
 xmlns:topic="http://oasis-open.org/dita/2005/topic"
 xmlns:task="http://oasis-open.org/dita/2005/task">
 <dasl:types xml:id="types">
 <dasl:type id="discourse:ListType">
 ...
 </dasl:types>
 <task:task dasl:typeref="#types" ...>
 ...
 </task:task>
</dasl:typedContent>

To enable convenient processing in XSLT, a library might define a key on the type identifier and provide
an isType() function and other, complementary functions to use in matching instances (whether using the
declared type or a specialized type). For example, the following idiom matches a title in any XML
representation, whether of the base type or a specialized type and even whether an element or attribute:

<xsl:template match="node()[dasl:isType(.,'discourse:TitleType')]">

§ Generalizing discourse objects
A type system requires that instances of a specialized type can be treated as instances of the base type
(sometimes known as casting). The previous section indicated how base processing might match

Hennum

page 12 Extreme Markup Languages 2005®

specialized instances (in XSLT, with an isType() library function). It can also be useful to serialize a
specialized discourse object as an XML expression of the base type. For instance, the discourse object
might be exchanged with someone who is not adopting the specialized type, or the specialized type might
be retired.

The input to the generalization process would consist of the input discourse object, the type model for the
input, the type model for the output, and an identification of the target document type. The generalization
process would traverse the discourse object, comparing the two type hierarchies to find the lowest point
of agreement and expressing the content in the appropriate XML representation. In particular, the
generalization process must make the following changes:

• Renaming substitutions.
• Hiding the start and end but not the content of subdivision containers.
• Hiding the entire branch for added content.
• Changing the form of attributes and elements.
• Rearranging the content sequence.
• Inserting fixed content.

As noted previously, content can be hidden in processing instructions. The generalized serialization of the
instance must be possible to respecialize. The process could use the processing instructions embedded in
the instance and the type declarations for the document type to restore the original form of the instance.

§ Generic discourse types and non-DITA specializations
As hinted in the previous examples, the type hierarchy shouldn't stop with the existing DITA general types.
Instead, the type hierarchy can support a much broader range of instances by providing a more general
declaration of standard discourse types such as list, table, block, and in-line phrase. Because the standard
discourse types underlay many document types, it may be possible to recognize some existing document
types with close similarity to DITA as specializations and thus share a unified type hierarchy. As always
with a shared type hierarchy, the advantages would include interoperability in general and shared
processing in particular.

For instance, compare the basic representation of a unit of discourse in XHTML and DITA:

Table 10
XHTML DITA

<html>
 <head>
 <title>Editing</title>
 <meta
 name="publisher"
 content="ABC"/>
 </head>
 <body>

 Execute emacs.
 <p>Emacs displays.</p>

 Open the file.

 </body>
</html>

<topic>
 <title>Editing</title>
 <prolog>
 <publisher>ABC</publisher>
 </prolog>
 <body>

 Execute emacs.
 <p>Emacs displays.</p>

 Open the file.

 </body>
</topic>

The differences in the two markup languages reflect legitimate differences in their primary goals:

XHTML The discourse object participates in a distributed hypertext system, so the
markup first provides the browser with the properties about the discourse (the
head) and then with the discourse itself (the body).

DITA The discourse object is aggregated by reference into many different navigable
information sets, so the markup distinguishes the referenceable label (the
title) from the properties (the prolog) and discourse (the body).

The fundamental model of a discourse object, however, the same in both markup languages. The two
languages merely express the model in different ways. That is, the same mechanisms for expressing
substitution, addition, subdivision, and variation between DITA types can also serve to identify XHTML
and the base DITA topic as specializations of a more general, shared discourse type.

A unified type hierarchy for discourse

Extreme Markup Languages 2005® page 13

For a sample, here is the DASL declaration to express the commonality of the ordered list type in XHTML
and DITA:

<dasl:types
 xmlns:dasl="http://ibm.com/experimental/dasl"
 xmlns:discourse="http://ibm.com/experimental/dasl/discourse"
 xmlns:html="http://www.w3.org/1999/xhtml"
 xmlns:topic="http://oasis-open.org/dita/2005/topic">
 <dasl:type id="discourse:ListType">
 <dasl:type id="discourse:OrderedListType">
 <dasl:element name="html:ol">
 ...
 </dasl:element>
 <dasl:element name="topic:ol">
 ...
 </dasl:element>
 </dasl:type>
 ...
 </dasl:type>
 ...
</dasl:types>

Because most Wiki [Wiki] markup languages are a subset of XHTML, Wiki text can be seen as a non-
XML serialization of a very simple discourse object:

= Editing
1. Execute emacs.
 Emacs displays.
2. Open the file.

The fundamental discourse models of the DocBook section element and DITA topic are also similar
enough to raise the possibility of a common type ancestry.

While recognizing common discourse models has the potential for considerable benefit, the overall goal
remains realizing the benefits of a type hierarchy through disciplined specialization of types rather than
general interoperability between arbitrary document types. The plausibility of incorporating an existing
document type through specialization into the type hierarchy depends entirely on the degree to which the
existing document type reflects a common type model. For instance, XBRL[XBRL] clearly represents
financial data rather than discourse.

§ Summary
This paper has presented a strategy for improving the capabilities of DITA extensibility. In particular, the
paper has argued the benefits of a unified type hierarchy, the importance of containment changes for
specialization of discourse, and the need to decouple the declaration of type relationships from the schema
declarations that validate the XML expression of those types. We plan to submit this strategy for the
consideration of the OASIS DITA Technical Committee. Discussion and refinement of the strategy by
interested parties there and generally is welcome and important.

Notes
1. It's worth noting that Object-Oriented languages have more recently incorporated notions of

extension by substitution. For instance, the Java feature of generics is a type substitution
mechanism.

2. From the perspective of subdivision, the most general form of any discourse object might be a
purely textual object with no markup but embedded newlines, spaces, and other textual
delimiters.

3. An issue for investigation is whether it might be desirable to express a complex semantic through
multiple base type relationships, though possibly with a single IS-A parent.

Acknowledgements
I am especially indebted to Michael Priestley for generous, thought-provoking conversation and
correspondence about specialization. Additional thanks go to the DITA OASIS Technical Committee, to
Indi Liepa, Sirpa Ruokangas, and their colleagues at Nokia as well as to Dave Schell, Don Day, Eric Sirois,
John Hunt, Nancy Harrison, and other colleagues at IBM for the discussions that helped stimulate this
paper.

Hennum

page 14 Extreme Markup Languages 2005®

Bibliography
[DITA Architecture 2005] OASIS DITA Architectural Specification, Michael Priestley, editor, OASIS

Committee Draft 01 First Edition, 17 February 2005, http://xml.coverpages.org/DITA-CD11428-
ArchSpec.pdf

[DITA Language 2005] OASIS DITA Language Specification, Michael Priestley, editor, OASIS
Committee Draft 01 First Edition, 17 February 2005, http://xml.coverpages.org/DITA-CD11428-
LangSpec.pdf

[DTLL] Jeni Tennison, Datatype Library Language (DTLL), http://www.jenitennison.com/datatypes/
DTLL.html

[Dubin and Birnbaum 2004] David Dubin and David J. Birnbaum, Interpretation Beyond Markup, paper
presented at Extreme Markup Languages 2004, Montreal, August 2004, http://www.mulberrytech.com/
Extreme/Proceedings/html/2004/Dubin01/EML2004Dubin01.html

[HyTime] ISO/IEC 10744:1997: Information processing - Hypermedia/Time-based Structuring
Language (HyTime), second ed. International Organization for Standardization, Geneva, May 1997,
appendix A.3 Architectural Form Definition Requirements, http://www.y12.doe.gov/sgml/wg8/docs/
n1920/html/clause-A.3.html

[Ogbuji 2004] Uche Ogbuji, Discover the flexibility of Schematron abstract patterns, DeveloperWorks,
8 Oct 2004, http://www-106.ibm.com/developerworks/xml/library/x-stron.html

[OOP] Wegrzanowski et al, Object-oriented programming, Wikipedia, 2005, http://en.wikipedia.org/wiki/
Object-oriented_programming

[OWL] OWL Web Ontology Language Overview, Deborah L. McGuinness and Frank van Harmelen,
editors, W3C Recommendation, 10 February 2004, http://www.w3.org/TR/owl-features/

[Rahtz et al 2004] Sebastian Rahtz, Norman Walsh, and Lou Burnard, A unified model for text markup:
TEI, Docbook, and beyond, paper presented at XML Europe 2004, Amsterdam, April 2004, http://
www.idealliance.org/papers/dx_xmle04/papers/03-08-01/03-08-01.html

[Renear et al. 2002] Allen Renear, David Dubin, C. M. Sperberg-McQueen, and Claus Huitfeldt, Towards
a Semantics for XML Markup, paper presented at DocEng 2002, 8 November 2002, McLean, Virginia,
http://wam.inrialpes.fr/people/roisin/mw2004/Renear.pdf

[Sasaki 2004] Felix Sasaki, Secondary Information Structuring - A Methodology for the Vertical
Interrelation of Information Resources, paper presented at Extreme Markup Languages 2004,
Montreal, August 2004, http://www.mulberrytech.com/Extreme/Proceedings/html/2004/Sasaki01/
EML2004Sasaki01.html

[UML] OMG, Unified Modeling Language Specification, Version 1.5 Recommendation, 3 March 2001,
http://www.uml.org/

[Wiki] Sunir Shah et al, WikiMarkupStandard, MeatballWiki, 11 April 2005, http://www.usemod.com/
cgi-bin/mb.pl?WikiMarkupStandard

[XBRL] Phillip Engel et al,Extensible Business Reporting Language (XBRL), 2.1 Recommendation, 25
April 2005,http://xbrl.org/SpecRecommendations/

[XML Schema 2004] XML Schema Part 1: Structures, Henry S. Thompson, David Beech, Murray
Maloney, and Noah Mendelsohn, editors, W3C Recommendation Second Edition, 28 October
2004,http://www.w3.org/TR/xmlschema-1/

A unified type hierarchy for discourse

Extreme Markup Languages 2005® page 15

http://xml.coverpages.org/DITA-CD11428-ArchSpec.pdf
http://xml.coverpages.org/DITA-CD11428-ArchSpec.pdf
http://xml.coverpages.org/DITA-CD11428-LangSpec.pdf
http://xml.coverpages.org/DITA-CD11428-LangSpec.pdf
http://www.jenitennison.com/datatypes/DTLL.html
http://www.jenitennison.com/datatypes/DTLL.html
http://www.mulberrytech.com/Extreme/Proceedings/html/2004/Dubin01/EML2004Dubin01.html
http://www.mulberrytech.com/Extreme/Proceedings/html/2004/Dubin01/EML2004Dubin01.html
http://www.y12.doe.gov/sgml/wg8/docs/n1920/html/clause-A.3.html
http://www.y12.doe.gov/sgml/wg8/docs/n1920/html/clause-A.3.html
http://www-106.ibm.com/developerworks/xml/library/x-stron.html
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://www.w3.org/TR/owl-features/
http://www.idealliance.org/papers/dx_xmle04/papers/03-08-01/03-08-01.html
http://www.idealliance.org/papers/dx_xmle04/papers/03-08-01/03-08-01.html
http://wam.inrialpes.fr/people/roisin/mw2004/Renear.pdf
http://www.mulberrytech.com/Extreme/Proceedings/html/2004/Sasaki01/EML2004Sasaki01.html
http://www.mulberrytech.com/Extreme/Proceedings/html/2004/Sasaki01/EML2004Sasaki01.html
http://www.uml.org/
http://www.usemod.com/cgi-bin/mb.pl?WikiMarkupStandard
http://www.usemod.com/cgi-bin/mb.pl?WikiMarkupStandard
http://xbrl.org/SpecRecommendations/
http://www.w3.org/TR/xmlschema-1/

The Author
Erik Hennum
Information Architect
IBM
78 St. Mary's Avenue
San Francisco
CA
94112
ehennum@us.ibm.com

Erik Hennum works on the design and implementation of User Assistance for the IBM Storage
Systems Group. For DITA, he has helped shape the principles of domain specialization. He
participates in the OASIS DITA Technical Committee as a member.

Extreme Markup Languages 2005®
Montréal, Québec, August 1-5, 2005

This paper was formatted from XML source via XSL
by Mulberry Technologies, Inc.

Hennum

page 16 Extreme Markup Languages 2005®

mailto:ehennum@us.ibm.com

