
Combining UML, XML and relational database technologies – the
best of all worlds for robust linguistic databases

Larry S. Hayashi
SIL International

7500 W. Camp Wisdom Rd.
Dallas, TX USA 75236
larry_hayashi@sil.org

John Hatton
SIL International

7500 W. Camp Wisdom Rd.
Dallas, TX USA 75236

john_hatton@sil.org

Abstract

This paper describes aspects of the data
modeling, data storage, and retrieval
techniques we are using as we develop the
FieldWorks suite of applications for
linguistic and anthropological research.
Object-oriented analysis is used to create the
data models. The models, their classes and
attributes are captured using the Unified
Modeling Language (UML). The modeling
tool that we are using stores this information
in an XML document that adheres to a
developing standard known as the XML
Metadata Interchange format (XMI).
Adherence to the standard allows other
groups to easily use our modeling work and
because the format is XML, we can derive a
number of other useful documents using
standard XSL transformations. These
documents include 1) a DTD for validating
data for import, 2) HTML documentation of
diagrams and classes, and 3) a database
schema. The latter is used to generate SQL
statements to create a relational database.
From the database schema we can also
generate an SQL-to-XML mapping schema.
When used with SQL Server 2000 (or
MSDE), the database can be queried using
XPath rather than SQL and data can be
output and input using XML. Thus the
Fieldworks development process benefits
from both the maturity of its relational
database engine and the productivity of
XML technologies.

With this XML in/out capability, the
developer does not need to translate between
object-oriented data and relational
representation. The result will be, hopefully,
reduced development time. Another further
implication is the potential for an increased
interoperability between tools of different
developers. Mapping schemas could be
created that allow FieldWorks to easily
produce and transfer data according to
standard DTDs (for example, for lexicons or
standard interlinear text). Data could then be
shared among different tools –in much the
same way that XMI allows UML data to be
used in different modeling tools.

Introduction

In our current development project, called
FieldWorks, we are using the following
technologies and methodologies: object-oriented
analysis, the Unified Modeling Language, XML,
XSL transformations, XSchema1 and SQL
Server 2000. This paper examines how we are
combining these, the problems we have run into
and the real and potential advantages that this
strategy provides for linguistic databases.

1 FieldWorks Philosophy

FieldWorks is one of SIL International’s
software development projects geared to help
field researchers gather language and culture
data. FieldWorks is based on the same
computational philosophy used in the
Computing Environment for Linguistic, Literary
and Ethnographic Research, henceforth

1 For XML, XSL Transforms and Xschema
specifications, refer to http://www.w3c.org.

CELLAR (Simons, 1998). The CELLAR
environment was first implemented in a product
called LinguaLinks2, which FieldWorks will
eventually replace.

1.1 The nature of language and culture data

CELLAR was designed on the premise that
language and culture data is highly integrated.
For example, recorded vernacular stories
provide material for a variety of cultural and
linguistic analyses. If the researcher wants to
transcribe and parse the text, the system will use
morphological information from the lexicon.
Parsed texts may be used in a variety of
discourse analyses. The researcher might also
want to employ the lexicon and morphological
grammar to check “spelling” in non-elicited
translated material.

2 FieldWorks data models

The FieldWorks data models are derived using
object-oriented analysis methodology
(Rumbaugh et al. 1991). OOA is particularly
well suited for the hierarchical structures found
in linguistic data. We currently capture these
models and classes using a notation called the
Unified Modeling Language (UML).

UML has become the industry standard for
specifying, visualizing, and documenting the
artifacts of software systems.3 It is similar to
other modeling languages, especially those
developed by Booch, Jacobson or Rumbaugh, as
these three were the primary creators of UML.
Adopted as a standard by the Object
Management Group4 in late 1997, it is now
supported by a number of data modeling tools.
These tools allow the software analyst to
simultaneously create visual models while
creating a repository of data classes, attributes
and their documentation. Because the repository
of classes is normalized, the user can use the
same class in a number of visual models. This is
very helpful when modeling integrated linguistic
data structures. For example, a particular

2 http://www.ethnologue.com/lingualinks.asp
3 Refer to http://www.uml-zone.com/umlfaq.asp for
an excellent summary of UML.
4 Refer to http://www.omg.org for more information
about the Object Management Group.

linguistic class for “text transcription” might be
used in an acoustic analysis model, a lexical data
model, a discourse model, etc. The software
analyst can customize the class for each of the
tasks and models that the class is involved in,
knowing that this change will be reflected
throughout all diagrams. The analyst is thus
better able to see the ramifications of his model
changes.

A UML tool5 has been indispensable to keeping
documentation, diagrams and the database as up-
to-date as possible. Our development process
previously maintained three sets of files that had
to be kept in sync via human intervention. We
had diagram files, class definitions for
generating the database, and a separate MS-
Word document for describing the classes and
their attributes. These have been unified into one
source file in the UML tool that we use.

2.1 Storing UML models as XMI

Some UML applications have the capability to
store their data in the XML Metadata
Interchange format (XMI)6 – an emerging
standard for storing UML and other types of
meta-data. There are a number of benefits to
using this format. Research groups can easily
exchange their data modeling work if they are
using XMI conformant applications.7 More
importantly, because XMI is an instantiation of
XML, standard XSL transformations can be
applied on this meta-data to easily create other
documents. The UML tool that we are using
employs XSLT to create HTML documentation,
including visual models8 with hyper-links to

5 There is an excellent comparison of UML tools at
http://www.objectsbydesign.com/tools/modeling_tool
s.html. The UML tool that we use, MagicDraw, is
commercially available at
http://www.magicdraw.com.
6 XMI is a DTD for validating meta-data documents.
For the actual specification, refer to
http://www.omg.org/technology/xml/index.htm.
7 Although classes and their attributes, relationships,
etc. will transfer, the visual models will not as these
are not yet part of the standard.
8 The UML tool generates a PNG compressed
graphic with an associated HTML <map>. The user
can click on a class or association and get to the

relevant class documentation. Using other XSL
transformations, we also generate:

(1) SQL statements that generate the

FieldWorks database.
(2) an XML Schema that is used to validate data

documents before importing them into the
generated database.

In order to create the SQL statements in (1)
above, we first create a simplified version of the
XMI file. This simplified file, henceforth
CELLAR XML, is a distillation of the verbose
XMI file containing only the bare essentials to
generate the database. The file is processed by a
small SIL-developed executable that generates
SQL statements.9 These statements are then
executed to create the database in Microsoft
SQL Server 2000.

3 The FieldWorks database

Despite our preference to use a truly object-
oriented database (such as LinguaLinks/Cellar
which was programmed in object-oriented
SmallTalk), we chose to use SQL Server 2000.
We felt we needed to do this for a number of
reasons. Our users were requesting multi-user
capability, where two or more users can
simultaneously work on the same linguistic
database over a network (for example, two users
simultaneously editing data in the same lexicon).
Developing our own multi-user OO database
proved to be a daunting task. We recognized that
our small team of developers could not compare
to the number of resources Microsoft poured
into making SQL Server reliable under all sorts
of conditions. Cost was also a factor.
Commercial multi-user object-oriented
databases were outside the price range of our
users while the Desktop Edition of SQL Server
was essentially free.10 Thus we chose to use the

relevant documentation.
9 Specifically, we generate a sequence of SQL insert
statements which insert rows into two meta-tables,
Class$ and Field$ (not shown). Triggers on these
tables generate the tables for the model.
10 MSDE is one of two database engine choices that
can be used in MS-Access 2000 and later. It is
essentially the same as SQL Server 2000 except that
it only allows up to five concurrent users. SQL

SQL Server database – inexpensive, reliable,
fast, and it provides network support.

3.1 OO models in a relational database

In moving to a relational DB, we did not want to
lose the OO perspective of our data models
because OO methodologies have proved so
helpful to us in modeling linguistic data.
Fortunately, we have been able to implement our
OO models within a relational database in a way
that supports inheritance and hierarchy.11
Below, we see how a part of a FieldWorks OO
model (3) is translated to the relational
equivalent found in (4).

(3) FieldWorks Lexical Database OO Model

LexicalDatabase

IsHeadwordCitationForm : boolean
IsBodyInSeparateSubentry : boolean

LexEntry

HomographNumber : integer
IsIncludedAsHeadword : boolean
CitationForm : multiUnicode
OrthographicVariants : multiUnicode
DateCreated : time
DateModified : time

LexMajorEntry

LiteralMeaning : multiString
SummaryDefinition : multiString
IsBodyWithHeadword : boolean

CmMajorObject

Name : multiUnicode
DateCreated : time
DateModified : time
Description : multiBigString

CmObject

LexMinorEntry

Comment : multiString LexSense

Definition : multiString
Gloss : multiUnicode
ScientificName : string

MoMorphoSyntaxInfo

CmAnthroItem

1

MorphoSyntaxInfo

0..*
{ordered}

Senses

0..* AnthroCodes

0..*
MorphoSyntaxInfo

0..*

Entries

0..*
{ordered}

Senses

Server 2000 will scale to thousands of concurrent
users. Programmers using Visual Studio or MS-
Office can distribute MSDE for free to their user-
base.
11 Jacobsen et al. (1993) and Rumbaugh et al. (1991)
discuss a number of principles to consider when
doing this type of implementation.

(4) FieldWorks Relational Implementation

CmObject

PK Id

U1 Guid$
Class$

FK1,I1 Owner$
OwnFlid$
OwnOrd$
UpdStmp
UpdDttm

LexicalDatabase

PK ID

IsHeadwordCitationForm
IsBodyInSeparateSubentry

LexEntry

PK ID

HomographNumber
IsIncludedAsHeadword
DateCreated
DateModified

LexMajorEntry

PK,FK1 ID

SubentryType
IsBodyWithHeadword

LexMinorEntry

PK,FK1 ID

Condition

LexSense

PK ID

FK1 MorphoSyntaxInfo
ScientificName
ScientificName_Fmt
SenseType

LexSense_AnthroCodes

FK1,I1 Src
I1 Dst

CmAnthroItem

PK ID

MoMorphoSyntaxInfo

PK ID

Stratum

For every class in (3), both abstract and
concrete12, there is a corresponding table in (4)
with the same name. Each of these tables
contains a single row for each object in the
system that is an instance of this class, either
directly or through inheritance. These rows are
tied together by the value of the ID column
which is unique to each object. Note that even
the highest level of abstraction, the CmObject in
(3), has a corresponding table in (4).

For each attribute on a class that has a primitive
signature (integer, boolean, time, etc.), the table
that represents the class has a corresponding
column. Our atomic associations (e.g.

12 Abstract class names in (3) are in italics.

MorphoSyntaxInfo on LexSense) are directional
and represented by a column on the source
containing the ID of the destination object. Non-
atomic associations (e.g. AnthroCodes on
LexSense) are represented by a separate joiner
table whose name combines the class name and
property name (e.g. LexEntry_Senses). Owning
relationships13 (e.g. Senses are owned by
LexMajorEntry) are represented in the
CmObject table in a row keyed to the owned
object. The ID of the owner is found in the
Owner$ column, while the OwnFlid$ column
contains a “field id” indicating which field of the
owner is associated with this object14. For non-
atomic relationships that are ordered, a sequence
number is stored in OwnOrd$.

The signatures multiString and multiUnicode
(e.g. Gloss: multiUnicode on LexSense in (3))
allow us to store data in more than one language.
For example, we might want to gloss the sense
of a lexical entry in English, French and a
regional trade language. MultiUnicode and
multiString signatures allow us to add as many
different languages as the user deems necessary
without having to create new attributes for each
language in the OO model. This implementation
separates the multilingual requirement of a field
from the function or semantics of that field.
MultiString signatures also allow the user to
specify formatting (font, bold, italic, etc.) for
spans of the string15.

The SQL Server database contains a number of
special meta-tables that are used for identifying
the field names for aggregations and to capture
the multiUnicode and multiString signatures.
Combined, the SQL statements necessary to
look at the data can be very complex. As a
result, when the database generator builds the
database, it also builds SQL views16 that the

13 Our term for UML composite aggregations. An
aggregation is a whole-part relationship between
classes.
14 Thus OwnFlid$ represents the name of the
aggregation.
15 For more information on the FieldWorks
implementation of MultiUnicode and MultiString
fields, refer to Thomson (2001).
16 A SQL View is essentially a predefined query that

programmer can use to more easily access the
data. The name of the view is a decorated
version of the ‘real’ table’s name. In (5) below,
the default view for the class LexSense is shown
and has the name LexSense_ (note the trailing
underscore). These views take into account
inheritance and some of the specialized fields
found in the meta-tables.

(5) Pre-built views on LexSense and

LexSense_Definition (a multiString
signature) and LexSense_Senses (an
aggregation)

LexSense_Senses

Src
Dst
Ord

LexSense_Definition

Obj
Flid
Enc
Txt
Fmt

LexSense_

Id
Guid$
Class$
Owner$
OwnFlid$
OwnOrd$
UpdStmp
UpdDttm
MorphoSyntaxInfo
ScientificName
ScientificName_Fmt
SenseType

These fields are
inherited from
superclass/table
CmObject.

3.2 Using XML as a conduit for data

FieldWorks will eventually allow the user to
parse textual data into morphemes based on a
word grammar and an inventory of morphemes
found in the lexicon. For years, some SIL field
teams have been using AMPLE17 (Weber et al.,
1988), an SIL-developed morphological parser.
We have been working on extending the
linguistic capabilities of this parser in addition to
adding XML in/out capabilities (its native data
transfer format is SIL standard format18).

can be used in other queries.
17 AMPLE is an acronym for A Morphological Parser
for Linguistic Exploration.
18 SIL Standard format is a text file which delimits
fields using a backslash followed by a two or three

As in many other database applications, XML is
becoming a standard way to represent data
coming out of a database. This format makes an
excellent conduit because it represents both the
mark-up for the data elements (unlike raw, tab
and comma-delimited formats) and the data
itself. In addition, the data contained within the
elements can be easily validated against a DTD
or schema before moving on to other processes.

In FieldWorks we employ XML as a conduit
between the SQL Server database and the
extended AMPLE parser. The following sections
describe how we can get XML data out of SQL
Server 2000.

3.3 XML Functionality in SQL Server 2000

Because XML is becoming a standard way to
deliver data on the web, most of the major
relational databases now have built in XML
functionality. SQL Server 2000 supports a
number of methods to return XML results. For
example, the simple addition of some XML
keywords to the SQL statement in (6) will return
results like those found in (7).

(6) SELECT ID, MorphoSyntaxInfo

FROM LexSense
FOR XML AUTO

(7) <LexSense ID="1563"

MorphoSyntaxInfo="1561"/>
<LexSense ID="1567"
MorphoSyntaxInfo="1562"/> …

SQL Server also provides a mechanism for a
developer to output XML according to a
particular schema. One advantage is that the
output does not have to match the table and field
names found in the database. Imagine that we
want to deliver data from FieldWorks to some
other tool that can use XML input that conforms
to a particular DTD. SQL Server allows the
developer to build these queries and return the
results directly as XML.19 We employ one of

letter field code followed by a space followed by data
(e.g. \lx iguana). Data is followed by a paragraph
return and another field. Records are delimited by a
key field.
19 Techniques for reshaping XML data in SQL Server

these techniques to deliver morphological data
as XML from the FieldWorks database to a
parser using the process outlined in (8). This
XML data conforms to the DTD for data that the
parser is expecting. The words of the Text are
then parsed using this information and Parsed
Text is output as a file.

(8) Delivering XML data to the parser

F
ie

ld
W

or
ks

D
at

ab
as

e

SQL Statements
XML

Lexicon and
Grammar

Morphological
ParserText

Parsed Text

If standard XML interchange formats are
developed for general purpose linguistic
annotation and lexical database tools, the
FieldWorks database could deliver appropriately
marked up data to the tool using this XML
mechanism.

3.4 XML Views in SQL Server 2000

As described in 3.1, the representation of our
object model in the SQL Server database
requires the developer to create complex SQL
statements to get at the data – which of course,
means that the developer needs to have a good
handle on SQL. As Williams et al. (2000) asks
“Wouldn’t it be great if we could query the
database as though it were an XML document
using XPath and other XML query languages?”
As XML becomes a prevalent standard, more
developers and users will become familiar with
it. And wouldn’t it be great if the XML
document better reflected the object structure of
the original object model so that we could query
in an object-oriented manner? The XML Views
feature in SQL Server 2000 provides us with this
functionality.

are covered in Williams et al. (2000).

Using XML Views, we feed SQL Server an
XSD (XML Schema Definition) that defines
what we want the XML output to look like. In
addition to this, we define supplementary SQL
annotations for each element and attribute in the
schema. These annotations instruct SQL Server
how to retrieve the corresponding data from the
database as in (9) below (arrows è identify
placement of SQL annotations). For each
element, a sql:relation20 defines the
corresponding table or SQL view to use. Where
a join is required between tables, a
sql:relationship defines the parent table and its
key along with the child table and the matching
child key. The sql:relation attribute on an
element definition ties the element to a table in
the database. Attribute definitions include the
sql:field attribute to indicate the corresponding
column.

(9) XML schema with SQL annotations

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:sql="urn:schemas-microsoft-com:mapping-
schema"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:element
 name="LexicalDatabase"
 sql:relation="LexicalDatabase_">
 <xs:complexType>
 <xs:sequence>
 <xs:element
 name="Entries"
 sql:is-constant="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element
 ref="LexMajorEntry"
 maxOccurs="unbounded"
 sql:relation="LexMajorEntry_">
 <xs:annotation>
 <xs:appinfo>
 <sql:relationship
 parent="LexicalDatabase_"
 parent-key="ID"
 child="LexMajorEntry_"
 child-key="Owner$"/>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
 </xs:sequence>

20 The sql :relation, sql :relationship and sql :field
supplementary schema annotations are not general
standards, that is to say that they are only used in
Microsoft SQL Server implementations.

LexMajorEntry
is referenced to
element
definition
below.

è

è

è

è

 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute
 name="id"
 type="xs:byte"
 use="required"
 sql:field="ID"/>
 </xs:complexType>
 </xs:element>
 <xs:element
 name="LexMajorEntry"
 sql:relation="LexMajorEntry_">
 <xs:complexType>
 <xs:sequence>
 <xs:element
 name="Senses"
 sql:is-constant="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element
 ref="LexSense"
 maxOccurs="unbounded"
 sql:relation="LexSense_">
 <xs:annotation>
 <xs:appinfo>
 <sql:relationship
 parent="LexMajorEntry_"
 parent-key="ID"
 child="LexSense_"
 child-key="Owner$"/>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute
 name="id"
 type="xs:byte"
 use="required"
 sql:field="ID"/>
 </xs:complexType>
 </xs:element>
<xs:element name="LexSense" sql:relation="LexSense_"
sql:key-fields="Id" sql:max-depth="2">
 <xs:complexType>
 <xs:sequence>
 ...
 <xs:element
 name="Senses"
 sql:is-constant="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element
 ref="LexSense"
 maxOccurs="unbounded"
 sql:relation="LexSense_">
 <xs:annotation>
 <xs:appinfo>
 <sql:relationship
 parent="LexSense_"
 parent-key="ID"
 child="LexSense_"
 child-key="Owner$"/>

 </xs:appinfo>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence> …
 </xs:complexType>
</xs:element>…
</xs:schema>

Once SQL Server has been set up to allow
XPATH queries21, the developer can submit a
query (e.g. in 10) and receive the results as an
XML document that conforms to the schema.

(10) XPATH query and results

XPATH query:
LexicalDatabase/Entries/LexMajorEntry[@id="1578"]

Results:
<root>
 <LexMajorEntry id="1578">
 <Senses>
 <LexSense id="1582">
 <Definition
 enc="740664001"
 txt="An English definition would go here."/>
 <Gloss enc="-1240214295" txt="Spanish gloss"/>
 <Gloss enc="740664001" txt="English gloss"/>
 <AnthroCodes>
 <CmAnthroItem id="862"/>
 </AnthroCodes>
 <Senses/>
 </LexSense>
 <LexSense id="1583">
 <Definition
 enc="740664001"
 txt="This is a definition of sense 2."/>
 <AnthroCodes/>
 <Senses/>
 </LexSense>
 </Senses>
 </LexMajorEntry>
</root>

Note in the XSD in (9) that each class (e.g.
LexMajorEntry) is defined as its own root
element. UML associations and aggregations,
such as Entries on LexicalDatabase, are only
defined within the elements in which they occur.
This allows us to create XPATH queries that
search for all members of a class rather than

21 The procedure for setting up XML Views in SQL
Server can be found in Williams et al. (pp. 582-
624 :2000). It is also available in the SQLXML 2.0
Web release documentation downloadable from
http://msdn.microsoft.com.

LexMajorEntry
element

Recursive depth
specificaion.

è

è

è

è

è

è

è

è

è

having to navigate the entire hierarchy. For
example, the query in (10) could also be done as

(11) LexMajorEntry[@id=”1578”]

and return the same results found in (10).

The XML Views feature of SQL Server works
by translating the XPATH query into a SQL
statement. In our hybrid relational-OO
implementation, this SQL statement can get
rather large. Because we have root elements
defined in the schema for each class, SQL
Server can create a SQL statement based on that
class and anything down the hierarchy rather
than having to create the larger query necessary
for navigating the entire hierarchy. The SQL
statement is thus much smaller. Presumably, this
should result in better performance.

Given an XSL transform along with the XPATH
query, SQL Server can transform and deliver the
results in presentation format (e.g. XHTML) or
into another XML file that conforms to yet
another schema.

One might think that defining the SQL
annotations like those in (9) requires a lot of
effort. Depending on the complexity of the
database and the relationships between the
tables, SQL Server can automatically determine
the annotations. For more complex table
relationships, the Microsoft SQL Server XML
View Mapper22 can be used to graphically draw
relationships between XML elements and their
relational table equivalents (12). The mapper
lists tables and views on the left and schema
elements on the right. Using a drag-and-drop
interface, the user can establish the mapping
relationships.

22 The Microsoft SQL Server XML View Mapper can
be downloaded at :
http://www.microsoft.com/sql/downloads/

(12) SQL Server XML View Mapper

Due to its hybrid OO-relational nature,
Fieldworks has many tables, and the
relationships are complex. However, once the
SQL annotations were determined for each type
of relationship (there are approximately 15
different types of annotations), we were able to
automatically transform the XMI file from our
UML model into an XML Views schema with
all necessary SQL annotations (we used an XSL
transform). Here again, we found that we could
readily exploit the XMI representation of our
UML models to reduce the amount of human
effort.

3.5 Current problems with XML Views

There are a few problems worth noting in using
the XML Views strategy. For objects that have
potentially recursive hierarchy (for example, in
(3), LexSense can own another LexSense), it is
necessary to explicitly state the maximum
possible depth of the recursion. For every level
of recursion, the SQL statement generated
becomes larger, having to generate extra
columns for the nested objects. As a result, SQL
Server takes more time to create the SQL
statement and then, subsequently, to execute it.
For example, running a query on the XPATH
“LexSense” takes less than 2 seconds on a
control machine23 when the depth is set to 2
compared to more than 15 seconds when set to 9
(this difference was noted on a data set that did
not have recursive LexSenses).

Currently, we automatically generate one XML
View schema that can query any part of the
model. Because SQL Server is generating one
large SQL statement for the XPATH statement,

23 Pentium II 350 MHz with 384 MB RAM.

classes that have many attributes and
associations will create very large SQL
statements resulting in unacceptable
performance.

Therefore, rather than create a single schema for
the entire Fieldworks database, we find that we
will need to create smaller, specialized ones.
For example, for the purpose of feeding data to
the AMPLE parser, we only need information
relevant to a word grammar. We do not need all
of the human generated prose that describes the
grammatical objects. Thus, we plan to add UML
tags to classes and their attributes which specify
which schemas they should be included in.
Then, our XSL transform which generates the
schemas will be parameterized to include only
those classes and attributes which are necessary
for a particular task.

4 Future possibilities

4.1 XML as the business layer

SQL Server also has the capability to update
data in the relational tables using the XML
Views and XML Updategrams – in other words,
it provides XML-in capabilities. We have not
yet experimented with this functionality.

Eventually, OO databases will be more
affordable and robust, multi-user XML
databases will become available. Given that we
have XML in and out capability, ideally, we
should be building the FieldWorks interface in a
way that it is database-independent and conduit-
dependent. XML could be the conduit for the
business layer (13). If we find it advantageous to
switch databases in the future, we could do so
with low cost to reprogramming the interface.

(13) XML as the business layer

Relational

OODB

XML DB

XML Business
Layer

User Interface

4.2 Automatically generating user interfaces

In SIL, most of our linguistic field teams are
using Shoebox24, a linguistic database which
operates on SIL standard format data25. In
Shoebox, the user can specify a custom database
model and immediately have a user-interface to
populate the database. The data model definition
is also the interface definition. In FieldWorks
development so far, we have been designing
interfaces specific to tasks that use the data.
Although this should make for a friendlier user
experience, the design and coding of such
interfaces has slowed development considerably.

For data model testing and prototype
development, it should be feasible to
automatically generate user-interfaces for major
objects. However, we do not want to create
separate application programs for every class in
the system. For example, it is sufficient to have a
single application for editing lexical entries,
their allomorphs, and their senses. Therefore, we
may add another UML tag26 to our model that
would specify the editors to which a class would
belong. Using another UML tag, we could also
define what type of user-interface widget a
particular attribute or association should use.
Thus in the UML model, we would have
everything necessary to automatically generate
an application for viewing and modifying data.
Then, using yet another XSL transform, we
could generate an XML file that a FieldWorks
user-interface generator could use.

24 Refer to http://www.sil.org/computing/shoebox/
25 Refer to footnote 18.
26 In UML, tags can be added to any class or class
attribute. They are used to specify information not
accounted for by standard UML fields.

Conclusion

Stroustrup (1997) states that “constructing a
useful mathematically-based model of an
application area is one of the highest forms of
analysis. Thus, providing a tool, language,
framework, etc., that makes the result of such
work available to thousands is a way for
programmers and designers to escape the trap of
becoming craftsmen of one-of-a-kind artifacts.”
UML is an excellent example of such a language
and framework. UML tools that make use of
XMI provide even greater longevity and
availability to the modeling work. XML is also
such a language and framework. Because XMI
is XML, we have been able to use standard
XML tools and the XML functionality of SQL
Server to easily derive a number of
implementation specific products, as shown in
(14).

(14) Derivatives of XMI in FieldWorks
development

UML Models
XMI Representation

HTML Docs

SQL Server
XML Views schemas

Relational DB
generation schema

Data validation
schema

Interface definition
files

X
S
L
T

LexEntry

Homograph
Date

LexSense

UML, XMI and XML provide a stable
foundation for data modeling and software
development. We expect our UML models to
have longevity and we trust that the XMI
representation will allow us to easily derive new
functionality and better interface
implementations as technology changes.

Acknowledgements

Our thanks go to the rest of the WordWorks
development team (Andy Black, Randy Regnier,
Mike Maxwell, Gary Simons), the FieldWorks
development team, the volunteers who helped in
the SQL database implementation (Shon
Katzenberger, Paul Panek, Jonathan Richards
and Valerie Hamm), Gary Duncanson of No

Magic Inc., funding providers for both
WordWorks and FieldWorks development, and
organizers and funding providers of the IRCS
Workshop including the University of
Pennsylvania and the NSF.

References

Jacobsen, Ivar et al. (1993) Object-Oriented Software
Engineering – A Use Case Driven Approach. ACM
Press, Wokingham, England, pp. 269-283.

Rumbaugh, James et al. (1991) Object-oriented
modeling and design. Prentice Hall, Englewood
Cliffs, New Jersey, pp. 367-396.

Simons, Gary F. (1994) Conceptual modeling versus
visual modeling: a technological key to building
consensus. SIL.
http://www.sil.org/cellar/ach94/ach94.html.

Simons, Gary F. (1998) The nature of linguistic data
and the requirements of a computing environment
for linguistic research. In “Using Computers in
Linguistics: a practical guide”, John M. Lawler and
Helen Aristar Dry (eds.). London and New York:
Routledge, pp. 10-25.

Stroustrup, Bjarne (1997) The C++ Programming
Language, 3rd edition. Addision Wesley. Reading,
Massachusetts, p. 731.

Thomson, John (2001) Representing multilingual text
in memory in a relational database in these
Proceedings of the IRCS Workshop on Linguistic
Databases. University of Pennsylvania,
Philadelphia, USA.

Weber, David J. et al. (1988) AMPLE: A tool for
exploring morphology. SIL International, Dallas,
USA.

Williams, Kevin et al. (2000) Professional XML
Databases. Wrox Pres Ltd., Birmingham, UK.

Additional SIL Computing Resources

FieldWorks Development Web Site:
http://fieldworks.sil.org

SIL Computing website:
http://www.sil.org/computing

SIL Language Software products including fonts,
Shoebox, LinguaLinks, Ethnologue:
http://www.ethnologue.com

