
Template Resolution in XML/HTML

Anders Kristensen
Extended Enterprise Laboratory
HP Laboratories Bristol
HPL-1999-42
March, 1999

E-mail: ak@hplb.hpl.hp.com

templates,
web-based
applications,
markup languages,
XML, HTML,
macros,
OO frameworks

This paper describes a framework for applying
templates to applications and documents on the Web.
The primary motivation is the need of Web application
developers to separate program logic from presentation
logic. A template is a prototypical document or part
thereof. It consists of content in the target language,
HTML, XML, or plain text, plus markup specifying
variable parts of the document. The Template Markup
Language (TML) is an application of XML which
defines a generic and flexible set of template markup
elements. TRiX (Template Resolution in XML/HTML)
is a framework for processing TML. It excels in being
highly extensible – both in the types of values variables
can take, variables being URLs, and in the set of
template elements recognized.

 Copyright Hewlett-Packard Company 1999

Template Resolution in XML/HTML
Anders Kristensen

HP Labs (Bristol), Filton Road, Bristol, BS34 8QZ, U.K.
ak@hplb.hpl.hp.com

Abstract
This paper describes a framework for applying templates to applications and documents on the Web.
The primary motivation is the need of Web application developers to separate program logic from
presentation logic. A template is a prototypical document or part thereof. It consists of content in the
target language, HTML, XML, or plain text, plus markup specifying variable parts of the document.
The Template Markup Language (TML) is an application of XML which defines a generic and
flexible set of template markup elements. TRiX (Template Resolution in XML/HTML) is a framework
for processing TML. It excels in being highly extensible - both in the types of values variables can
take, variables being URLs, and in the set of template elements recognized.

Keywords: Templates, Web-based applications, Markup Languages, XML, HTML, Macros, OO
Frameworks.

1. Introduction
Applications on the World-Wide Web use the Common Gateway Interface or Web server APIs in order to
generate content dynamically in response to HTTP invocations. Typically program logic embeds the
HTML document directly in the application source code but customizes it in small ways whenever the
HTML is output in response to a request.

Experience with writing Web applications has demonstrated the importance of separation between
program logic and presentation logic, the latter typically being in the form of HTML. This is especially
true as applications get bigger and more mission critical. As the skills and tools required for writing Web
application code and authoring the GUI are so clearly different there is a lot to gain from separating the
two activities. First, the HTML code can be modified without access to the application source code and
without needing to recompile and retest the application. Second, HTML and application code can be
edited with whatever tools are most appropriate for each task. Third, localization is done on documents
rather than on program code and is hence much easier and cheaper.

1.1 Web Applications as FSMs
The request-response style of interactions between client-side user agents and server-side applications on
the Web naturally leads to the application being structured as a finite state machine (FSM). When a client
makes an HTTP request it triggers a state transition in the application which then returns a response in the
form of a new HTML page. The FSM corresponding to a medium sized Web service could consist of,
say, 5-10 nodes.

The notion of HTML templates relies on two observations. First, different invocations triggering a
transition to the same "node" in the service FSM will receive roughly the same HTML page but with key

Template Resolution in XML/HTML

Page 2

bits differing, and second, HTML pages corresponding to different nodes will more often than not have
markup such as headers, footers, and other structure in common. Defining such structures in one place
guarantees consistency in the pages and simplifies maintenance.

1.2 Templates
The idea of templates is to separate the presentation logic from application logic. HTML documents are
stored separately from program logic but contain special markup which places key parts of HTML code
under application control. The typical scenario is that a Web server receives an HTTP request and passes
the request on to the application. The application figures out which "node" (corresponding to an HTML
template) to transition to next, computes the set of name-value parameters for this template, and asks the
template processor to resolve the template in the context of these parameters. The result of this process,
which contains no template markup, is what gets send back to the user-agent.

The template markup defined in this paper allows

l definition of variables— as literal values or content of Web resources

l variable substitution

l flow control directives used to specify conditional content

The most basic function of the template language is variable substitution. A variable is a binding between
a name and a value in some context. Variable names are URLs and values are pieces of content— text
strings which can themselves contain markup including variable substitution and flow control directives.

The template mechanism described here has the following properties:

l Modularity: provides the highly beneficial separation of work between programmers and authors.

l Nesting: template directives (definitions, substitutions, and conditionals) nest.

l Consistency: we use XML markup for template syntax and URLs for variable names.

l Programming language independent: although templates are envisioned as being particularly useful
for generating content at the control of a program the interactions between the program and templates
are very simple and not specific to any particular programming language.

l Extensibility: the template resolution framework allows applications to extend the set of known URLs
and template elements via handlers.

It is useful to contrast templates with a time-proven technology. The analogy between our template
processor and the C preprocessor, cpp, is quite good. Template definitions are like macro definitions and
flow control directives are like cpp conditional compilation (but allows more powerful conditions).
However there are some important differences. First, unlike cpp the TRiX template processor respects the
target language syntax by doing transformations on parse trees rather than source text. Second, the
equivalent of macro definitions can have a number of sources, only one of which is the source text itself.
And third, the TRiX framework is extensible in ways cpp is not; TRiX handlers are pieces of code and
can thus do arbitrary transformations on the parse tree.

The rest of this paper is structured as follows. Section 2 discusses the template "lifecycle". Section 3
presents the Template Markup Language (TML), and section 4 shows how this is realized in the TRiX
framework. Section 4 also discusses how TRiX extensions are written and how they interact with each
other, using a database access component for the purpose of illustration.

Template Resolution in XML/HTML

Page 3

2. The Template Processing Model
A template consists of "static" portions in the target language (e.g. straight HTML) together with dynamic
template elements which are resolved at template load or write time.

Templates are loaded in a template context. The context associates variable names with values and knows
about template handlers configured with the processor.

Figure 1 shows the steps taken by the TRiX engine in handling templates.

Figure 1: Loading Templates.

The steps are as follows:

l Parsing. The template document is loaded from a file and parsed. The resulting parse tree has support
for tree navigation, attribute and content management, as well as for writing itself on an output stream
in a specific context.

l Template handlers. The context in which the template is loaded recorded which nodes in the parse
tree correspond to template elements. After completely constructing the parse tree the handler
associated with each template element is invoked. These handlers have full access to the parse tree, and
can rewrite the document in any way they like. They also have access to the context. In particular the
define TML element stores variable bindings in the context during this phase.

l Optimization. In Web applications templates are loaded once but written all the time. The purpose of
the optimization phase is to "flatten" the parse tree as much as possible prior to resolution.

l Resolution. The result of the resolution process is that the template document is written to an output
stream with all template elements substituted for content in the target language. A template can be
repeatedly resolved.

Templates are resolved in a context but not necessarily the same one in which they were loaded. In Web
applications we wrap the original context with a context which is specific to the HTTP request in
question. Hence the internal representation of a template can refer to properties of HTTP requests yet to
be received. This is discussed in more detail in section 4.1.

The model doesn't assume a client-server content delivery model. Server-side template resolution is of
interest to writers of server-side Web applications but templates could be interesting in other
environments, e.g., as a client-side mechanism for dealing with variances in user-agent capabilities. Also,
the distinction between template load-time and resolution-time is important for some applications, such as
server-side Web applications, but for others a template may be resolved at the same time as it is loaded.

Template Resolution in XML/HTML

Page 4

3. The Template Markup Language
The template framework defined in this document is intended to be usable with a variety of target
languages. The primary motivator is the need for HTML templates in Web services but we expect that the
application of TML (or something similar) to XML languages will become increasingly important as the
latter start to appear.

Template definitions are given as XML Document Type Definitions (DTDs) in the text. XML
applications can use these elements without change to their DTD by using namespaces. Extending the
HTML DTD to include the template DTD given here would be straightforward. The examples are given
using HTML but sometimes with an XML syntax (without namespaces).

3.1 Variable Definition
Within an HTML or XML document content can be associated with a variable name using the define
element:

<!ELEMENT define (#PCDATA | subst | if)* >
<!ATTLIST define id ID #REQUIRED
 href CDATA #IMPLIED
 delayed (true|false) "false" >

Attribute definitions:

id = name
The value of the id attribute is used to refer back to the element content later.

href = URL
This attribute specifies the location of the data which is being associated with the id. If the href
attribute isn't specified or if retrieving that resource fails the variable is set be the contents of
this element, if any. This provides for a simple and robust error handling mechanism.

delayed = true|false
This attribute specifies whether to evaluate the define element at template load time (the
default) or at resolution time.

Upon encountering a define element the template processor associates the definition with the id. The
contents of the define element isn't sent to a client or written to an output stream until this is explicitly
requested by the subst element. The following example associates the variable brown-addr with some
HTML address markup:

<define id="brown-addr">
 <address>
 J. R. Brown

 8723 Buena Vista, Smallville, CT 01234

 Tel: +1 (123) 456 7890
 </address>
</define>

Unlike other TML elements the define element is typically interpreted and resolved at the time the
template in which it occurs is loaded. Setting the delayed attribute to true changes this behaviour.

Template Resolution in XML/HTML

Page 5

3.2 The var URL Scheme
Before proceeding to present the subst element we need to discuss the nature of template variables and
in particular how they are referenced in more depth.

We define the var URL scheme to denote TML variables. By denoting variables using a URL syntax the
semantics of template elements can be extended to have a useful function for URLs in general— in
particular anything in URL space can be assigned to variables.

The var form of URLs is one of:

var:<variable-name>
var:<subscheme>:<variable-name>
where variable-name is an identifier taken from the URL alphabet as defined in [RFC1738].

3.2.1 Relative URLs and Default Protocols
Within template documents we define the default protocol for relative URLs to be var [RFC1808]. This
means that the var: part of URLs can be omitted. Hence the address variable defined above can be
referred to either as var:brown-addr or simply brown-addr.

It also means we can refer to template variables using relative URLs and fragment identifiers as in
"../defs.tml#brown-addr". Such a reference causes the template processor to load the resource
defs.tml relative to the template itself (typically from a file system) and search for an element with the
specified name within that resource.

Note that this scheme for variable substitution is readily generalized to content defined using ordinary
HTML/XML elements using the id attribute or the name attribute of the HTML a element. Assuming
that the following markup is part of file "foo.html":

<H1 id="title">My Beautiful Document</H1>
then a TML element may refer to that definition as "foo.html#title" and the template processor
would evaluate this to "My Beautiful Document".

3.2.2 var Subschemes

The subscheme variation of var URLs can be used to allow access to an open-ended set of variable
spaces. We have defined and implemented the following:

var:http:<variable-name>
var:form:<variable-name>
var:query-string:<variable-name>
var:cookie:<variable-name>
var:sys:time;format=d+m+y+H:M

The first four var subschemes correspond to typical sources of parameters to Web applications. The
var:http: URL scheme, for example, defines variables corresponding to HTTP headers. A server-side
Web application can read HTTP request headers by referencing, for example, var:http:user-agent
and can set HTTP response headers such as var:http:server. Some subschemes, such as
var:cookie:, might allow assignment to variables belonging to it while others, such as var:query-
string: might not.

The TRiX template resolution engine recognizes all of the above URLs and can be extended to
understand more. Handlers implementing subschemes may define additional structure in the variable-
name part of the URL, e.g. allowing the specification of a set of named parameters in the URL.

Template Resolution in XML/HTML

Page 6

3.3 Variable Substitution Using the subst Element
Variables are substituted into documents in two ways depending on the context in which they're
substituted. Ordinarily variables are resolved using the subst element, but within attribute values
variables are dereferenced using the $ (dollar) syntax known from various shell programming languages.
This section presents the subst element and section 3.4 discusses substitution within attribute values.

The subst element is defined as a simple XLL link [XLL]. Attributes other than href and cond are
defined simply for conformance with XLL and all have fixed values.

<!ELEMENT subst (#PCDATA | define | subst | if)* >
<!ATTLIST subst href CDATA #REQUIRED
 cond CDATA #IMPLIED
 xml-link CDATA #FIXED "SIMPLE"
 inline (true|false) #FIXED "true"
 show (embed|replace|new) #FIXED "embed"
 actuate (auto|user) #FIXED "auto" >

An HTML DTD for subst would allow arbitrary HTML markup as element content. The intention is that
if the subst operation fails, e.g. because the variable isn't defined, then the contents of the element is
displayed. This is like the behaviour of the HTML 4.0 object element and again provides for a more
robust protocol by including content for error messages.

Attribute definitions:

href = locator
Specifies the variable whose value is to be written to the output stream. The value is an XLL
locator.

cond = condition
An expression in the condition language defined in section 3.6. If the condition evaluates to
false or the variable designated by href is undefined then the contents of this element is written
to the output stream. Otherwise the value of href is written.

The following examples demonstrate different use of variable substitution.

<subst href="brown-addr"/> <!-- var defined in same doc -->
<subst href="defs.tml#brown-addr"/> <!-- different doc; rel. URL -->
<subst href="http://foo.net/scripts.js"/> <!-- entire remote resource -->

An XLL locator is a string which can be used to locate a resource. Locators are URLs with a (very)
generalized notion of '#'-fragments. Locator "fragments" (XPointers) allow addressing part of a document
in a number of ways based on the structure of the document. This allows us to address Web resources in a
very powerful manner. The following is a simple example which expands into the title of a remote Web
document (assuming it has one):

<subst href="http://www.acme.org/index.html#DESCENDANT(1,TITLE)"></subst>
Since TML elements operate on XLL locators it is possible to do quite sophisticated processing with
remote Web applications. A related approach would be to address using paths as defined by the
Document Object Model [DOM]. This is the approach taken in webObjects Web Interface Definition
Language [Allen].

Template Resolution in XML/HTML

Page 7

3.4 Variable Substitution Within Attribute Values
Within attribute definitions in the target document variables are dereferenced using syntax like
"$var:name". The variable name may be delimited by curly braces, as in "${var:name}", to avoid
ambiguities. Curly braces are considered unsafe in URLs so can safely be used as URL delimiters
[RFC1738].

What appears within the braces can be any URL, not just ones belonging to the var scheme (which is the
default scheme). When a template document is loaded all attribute values are scanned for embedded
variable references. The template is stored as a tree structure which supports efficient resolution.

An example of attribute-embedded variable references:

The result of resolving this TML code against the set of variable bindings {
var:http:path="/servlets/maps", map="uk", longitude="2-33", latitude="54-30"} would be

The ability to dereference template variables within attribute values is important in many applications. It
has a special role in TML as the conditional inclusion directives encode conditions in attribute values and
need to refer to variables within these.

3.4.1 Computed Variable Names

Another use of substitution in attribute values is that variable names in the subst element needn't be
known "statically", i.e. at template load time. The effect of writing something like

<subst href="$addr"></subst>
is that "$addr" is first substituted to, say, "brown-addr" which is then dereferenced to substitute in the
value that will actually appear on the output stream. Basically both the subst element and the
$variable syntax provides a level of indirection and they can be combined to achieve a double
indirection.

3.5 Conditional Inclusion
The conditional inclusion elements in this proposal are modelled over the flow control features of server-
side includes in the Apache Web server.

The general format of the if element is:

<!ELEMENT if (#PCDATA | define | subst | if | elif | else)* >
<!ATTLIST if cond CDATA #REQUIRED >

<!ELEMENT elif (#PCDATA | define | subst | if)* >
<!ATTLIST elif cond CDATA #REQUIRED >

<!ELEMENT else (#PCDATA | define | subst | if)* >

Attribute definitions:

cond = condition

Template Resolution in XML/HTML

Page 8

An expression in the condition language. If the condition is satisfied the content of the element
is recursively resolved and written to the output stream.

An example of the if element in action:

<if cond="$tel-work && ${var:sys:time;format=H} < 17">
 Work telephone number: <subst href="tel-work"></subst>.
<elif cond="$tel-home">
 Home telephone number: <subst href="tel-home"/></subst>.
</elif>
<else>
 No phone number available.
</else>
</if>

The sequencing rules of the if elements are those commonly found in programming languages. Any
number of elif elements (possibly none) can follow the if element after which follows an optional
else element. The conditions are evaluated in order and the content associated with the first condition
which evaluates to true gets emitted by the template processor. if elements may be nested to any depth.

3.6 The Condition Language
A condition is of one of the following forms (same as Apaches flow control expressions):

string
true if string is not empty

string1 op string2
Compares string1 with string2 using one of the relational operators =, !=, <, <=, >, >=. If
string2 is of the form /string/ then string1 is matched against it as a regular expression.

(condition)
grouping of conditions using parentheses.

!condition, condition1 && condition2, condition1 || condition2
boolean negation, conjunction, and disjunction respectively.

Strings can be either literal text or the result of variable substitution. Literal strings may be delimited by
single-quotes. This may be necessary e.g. if the string contains white space characters.

Example:

<if cond="${var:sys:time;format=H} < 9">
It's early morning here. Please don't call me yet.
</if>

The conditional language could itself be expressed in XML but this quickly becomes quite bulky and less
readable for a small gain. A possible extension would be to allow more data types in conditions variables
hodling integer values coupled with teh ability to do simple arithmetic operations. However, it is not clear
that there is a need for this and it was deemed preferable to keep the language minimal.

Template Resolution in XML/HTML

Page 9

4. The TRiX Framework
TML is recognized in TRiX (Template Resolution in XML/HTML). TRiX is a Java framework consisting
of an XML parser with hooks for handling HTML, a parser for the TML condition language, and a set of
interfaces and classes representing parse trees, var URLs, contexts, etc.

The framework has been used to create three incarnations of a template processor: a standalone processor,
a Web server filter which resolves any files with the MIME type "text/x-thtml" as template HTML
before sending it to the client as "text/html", and an API which can be used from Web applications
written to the standard servlet API [Servlet API]. We'll take a closer look at the latter two.

4.1 Web Applications Using Templates
The TRiX API allows any Java application use of its template model and is often useful when there's a
need to generate text in a stylized form. It has, for example, been used to generate parameterized email
messages.

As previously mentioned a typical Web application loads the set of templates it uses at startup and then
repeatedly resolves them in the context of different HTTP requests. In TRiX templates are loaded and
resolved via a TemplateContext object. Variables defined within template files are stored in the
TemplateContext in which the template was loaded. These variables are shared amongst all HTTP
invocations. Other variables are specific to individual requests; those assigned a value within the service
logic or defined implicitly by properties of HTTP requests (e.g. var:http:user-agent URLs). A
separate HttpContext object is constructed for each request. This wraps the orginal TemplateContext
but additionally provides access to request-specific variables, see Figure 2.

Figure 2: Servlet Template API.

During resolution references to variables which are undefined in the HttpContext are dereferenced by
the TemplateContext. This mechanism allows for sharing of variables across servlet invocations.

The following skeleton code gives e feel for how to program with templates. shows what it takes to use
TRiX templates from within servlets.

Template Resolution in XML/HTML

Page 10

import hplb.trix.Template;
import hplb.trix.TemplateContext;
import hplb.trix.servlet.HttpContext;
// other imports...

public class MyServlet extends HttpServlet {
 static TemplateContext ctxt = new TemplateContext();
 static Template page1, page2

 // we load templates servlet startup
 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 try {
 page1 = ctxt.loadTemplate("page1.tml");
 page2 = ctxt.loadTemplate("page2.tml");
 } catch (IOException ex) {
 throw new ServletException("Template not loaded: " + ex.getMessage());
 }
 }

 public void service(HttpServletRequest req, HttpServletResponse res)
 throws IOException, ServletException
 {
 Hashtable args = new Hashtable(); // contains variable def's
 Template template;

 // service implementation...
 if (...) {
 template = page1;
 } else {
 template = page2;
 }

 // Define variables - these are presumably referenced in the templates:
 args.put("name", "John Doe");
 args.put("url", "http://www.foobar.org/");

 // write template to servlet output stream in new HttpContext:
 new HttpContext(ctxt, args, req, res).write(template);
 }
}

Here we see an additional interesting advantage of using templates rather than code generating HTML,
namely that it is easy to reload template files at runtime, thus updating the UI of a running Web
application. This can significantly speed up the development and debugging of the UI.

Template Resolution in XML/HTML

Page 11

4.2 Serving Static Files with Templates
It's convenient to be able to include TML markup in Web pages without having to write, install, and
manage any service logic. Although TML wasn't intended to replace Web application logic entirely— just
separate logic from presentation— it's actually possible to do simple services without writing any code at
all (apart from the template markup).

We have integrated a template processing filter servlet with the Nexus Web server which intercepts all
requests for files with a particular suffix, e.g. ".tml", and resolves template markup in the context of the
HTTP request without requiring additional application code.

4.3 Writing a var Subscheme Handler
The TRiX framework is extensible in two dimensions: by adding handlers for var URL subschemes and
template elements. The framework is mostly independent of TML. TML is implemented simply as a
particular set of template element handlers— one for each of the define, subst, and if elements.
Handlers are registered with the TemplateContext by applications either explicitly through an API call
or implicitly by adding the class name to the trix.handlers Java property.

A var subscheme handler is simply a factory for representations of URLs. This is realized by the
VarScheme interface. Representations of var URLs themselves implement the VarURL interface and
knows how to set and get values for that scheme. The following is the simplest possible example of a var
subscheme. We define a var:sys:time URL whose value is the current time in some fixed format
defined by the Java Date class. (The var:sys scheme defined in TRiX does a lot more than shown
here.)

// VarScheme handlers map URL strings of the form var:sys:xxx
// to instances of classes implementing the VarURL interface
public class SysScheme implements VarScheme {
 static {
 // register the var:sys URL subscheme with the template context:
 TemplateContext.regVarScheme(new SysScheme(), "sys");
 }

 // invoked as part of the template loading process.
 public VarURL getVarURL(String url) throws IllegalArgumentException {
 // check url matches expected values...
 return new SysURL();
 }
}

class SysURL implements VarURL {
 // return the current time as a string
 public String getValue(TemplateContext ctxt) {
 return new java.util.Date().toString();
 }

 // empty; we don't allow templates to set the system clock:
 public void setValue(Object value, TemplateContext ctxt) { }
}

Template Resolution in XML/HTML

Page 12

Having done this we can now use var:sys:time in subst template elements, in conditional
expressions, and in other contexts expecting a var URL.

4.4 Writing a Template Element Handler
The TML elements are adequate for most applications, but the ability to add handlers for new template
elements is quite powerful. It is fairly easy to implement new elements which mix well with existing
ones.

The steps required for implementing a new template element are analogous to those for implementing a
var URL handler: a method is invoked on the handler during template loading. The handler has access to
the template node and the rest of the XML/HTML parse tree. The handler method returns a tree node
which replaces the original node.

An example use of this extension mechanism is our database-to-Web connectivity markup. This allows
content to be generated from a database by including query and iter elements in HTML pages (several
commercial products work in a similar way). The query element associates a name with an SQL query,
while the iter element causes the query to be executed and then iterates over all rows in the result set.

The following shows a full, working example:

<html><body>
<h1>JDBC Access from HTML Templates</h1>

<query id="books" datasource="jdbc:odbc:books-db">
select author,title,year from <subst href="var:form:database"/>
order by <subst href="var:form:sort-field"/>
</query>

<table>
 <tr bgcolor="d0d0d0"><th>Author</th><th>Title</th><th>Year</th></tr>
 <iter id="books">
 <tr>
 <td><subst href="author"/></td>
 <td><subst href="title"/></td>
 <td><subst href="year"/></td>
 </tr>
 </iter>
</table>
</body></html>

This retrieves a set of records from a database and displays the result as an HTML table without requiring
additional code to run. Note that the query in this example is composed "dynamically" using subst
elements to retrieve information from a just-submitted form. The query element handler must be written
so as to allow such "late binding" (this is exactly what the define element does with the delayed
attribute).

Since all code runs in a single Java virtual machine the connection to the database can be shared amongst
all requests for this page. Combined with query precompilation this potentially makes this type of
database access very fast.

Template Resolution in XML/HTML

Page 13

Displaying database query results by mapping directly onto HTML tables is quite natural and is a very
common thing to do. However one might certainly want to display the result set in a different way. An
example might be a set of reservations stored using one record per reservation. One might want to display
the result as a table with a row per time-unit, rather than as a row per reservation.

There are (at least) two ways of accommodating such "alternative" styles. One is either to write custom
template elements or extend existing ones to do what is needed. The other possibility is to use a client-
side scripting language, such as JavaScript, to assign the result of the database query to an array and then
use the scripting language to perform special-purpose layout in the client. The client-side code can itself
be auto-generated from a GUI development environment but that is outside the scope of this paper.

4.5 The XML/HTML Parser
As HTML has become the universal GUI of the Web it has become obvious that it cannot adequately
satisfy everybodys needs. Hence non-standard extensions for various domains have been proposed. XML
will provide a much better framework within which to define such custom languages and furthermore
enables better separation between structure and presentation than has been the case with HTML.

In the immediate future it will be necessary to find ways in which HTML and XML can coexist. Often
this can be done by keeping XML and HTML resources separate and at the most combining them in the
browser, e.g. using the HTML object element and XML linking. In the case of TML applied to HTML
documents, however, we have fine-grained mixing of an SGML application with an XML application
which is bound to give problems. Since this is likely to be a recurring problem it is worthwhile reviewing
the simple measures taken in the development of the TRiX XML parser to increase its ability to deal
correctly with HTML without "understanding" SGML DTDs.

The XML parser currently used in the TRiX implementation is a straight-forward non-validating parser.
That it's non-validating means that it doesn't understand XML DTDs, i.e. it has to reconstruct the structure
of XML documents without a priori knowledge of this structure. HTML use features of SGML which
have been eliminated in XML. This includes optional start and end tags, and SGML empty elements. The
TRiX XML parser interface has methods for, programmatically, providing it with some of the information
that is included in an XML or SGML DTD. This includes the ability to tell the parser

l that an element is empty, i.e. not to expect an end tag. This is used for HTML BR, IMG, and HR elements
amongst others. This mechanism is not necessary for correct parsing of XML documents without a
DTD because of the special <name/> XML empty element syntax.

l that an end tag is optional (HTML only). Within unordered lists (UL element), for example, the end tag
for the LI elements delimiting list items is optional. Hence in order to correctly parse HTML unordered
lists the parser must know that an LI element is terminated by either an LI end tag, another LI start
tag, or the UL end tag.

The case where a start tag is implicitly ended by an end tag for its ancestor is taken care of by letting an
end tag close parsing of the "nearest" element of the same type still open. This mechanism also catches
accidentally missed end tags.

Another piece of information which a more clever parser can derive from a DTD concerns how to handle
whitespace. It is not immediately obvious where in a markup document whitespace is significant. In XML
whitespace is significant in mixed content and is insignificant in element content. This information is in
the DTD but our XML parser allows it to be provided programmatically by the XML application (TRiX
in this case).

Template Resolution in XML/HTML

Page 14

The template processor implementation has some other special requirements on the XML/HTML parser.
We're generally interested in reproducing the static parts of template documents exactly as they appear in
the original document. In some ways this means that the more stupid the parser is the better. For example,
all XML processing instructions and DTDs should pass through to the output stream. A simple and very
efficient way of achieving this is not to recognize such markup except as part of PCDATA. Another
special requirement is that all comments should reappear on the output stream and that template markup
within comments should be recognized and expanded appropriately. One use of this is to make client-side
scripting of database query results work (see section 4.4), as such scripts are typically enclosed in HTML
comments to hide them from ignorant browsers.

5. Related Work
XML has some support for macros and conditional inclusion through its notion of text entities and
conditional sections. It is possible to share common elements between large document collections using
only features build into XML. However this requires a declaration in the DTD section of documents for
each "macro" used and an indirection in each use of the macro. HTML (and XML) avoided using this
mechanism and went for the simpler approach of using URLs directly in attribute values. As HTML
authors and tools generally don't know about DTDs and probably doesn't care it is unnatural to base TML
on entities. Another problem is that XML marked sections are too simple to make an appropriate basis for
doing flow control in template documents.

It seems that an approach based on an XML language and namespaces is neater as it will be more readily
approachable by most people and it would seem to be exactly the kind of application XML was designed
to address.

Another important body of related work is that of commercially available Web-database integration tools,
such as Bluestone's Sapphire Web, Allaire's Cold Fusion, Oracle's Developer/2000, etc. These tools
provide functionality comparable to the database template elements presented in section 4.4. However
they don't typically provide such a high degree of openness and integration as is attainable in TRiX.

Mawl is a domain-specific language for programming form-based services [Atkins]. Like TRiX it
attempts to solve the problem of separating application logic from presentation logic but in very different
way. Being a special-purpose language Mawl has built-in support for setting and retrieving variables from
forms, where forms is an abstraction covering, for example, HTML pages and IVR systems. A Mawl
template contains GUI details and is specific to the medium on which the form is rendered. TRiX differs
in allowing Web applications access to details of the request and can thus be highly protocol and media
dependent. In our experience such low-level control is actually needed when writing Web applications.

6. Summary
Writing numerous Web applications has shown to us that TRiX does indeed solve the problem of
entangled application and presentation logic. TML combined with the notion of variables as URLs
provides for a powerful and general language for the construction of documents from templates on-the-
fly. We applied it to server-side Web applications but it could equally well be applied on the client-side as
an alternative to using scripting languages.

The major benefit of the TRiX framework lies in its extensibility, both in the number of var URL
subschemes and the set of template elements it knows about, and in the high level of integration that is
readily achievable between template elements. Modelling variables as URLs has proven itself very useful.

Template Resolution in XML/HTML

Page 15

The URL has the same unifying role in the template processor as it has on the Web at large in making
TML elements independent of the sources of data they operate on.

XML and XLL has made it possible to define languages which extend HTML in various ways. We
believe it would be worthwhile standardizing TML and var URL schemes pertaining to different
environments such as Web servers and browsers. Later more specific extensions for vertical domains,
such as server-side database access markup, could be standardized.

7. Acknowledgements
The TML language and the notion of the template processor were first proposed on the servlet API
mailing list. The work described in this paper evolved partly from feedback from people on that list.
Particularly, thanks goes to Cimarron Taylor for his interesting ideas on arrays and iteration and to Dave
Hollander for numerous helpful comments on this paper.

References
[Allen]

"WIDL— Application Integration with XML", Charles Allen, In "XML: Principles, Tools, and
Techniques", World-Wide Web Journal, Winter 1997, Vol. 2, No. 4.

[Atkins]
"Experience with a Domain Specific Language for Form-based Services", D. Atkins et al.,
Proceedings of the Conference on Domain-Specific Languages, Oct. 1997.
 http://www.usenix.org/publications/library/proceedings/dsl97/atkins.html

[DOM]
Document Object Model Specification.
http://www.w3.org/TR/WD-DOM/

[RFC1738]
"Uniform Resource Locators", T. Berners-Lee, L. Masinter, and M. McCahill, December 1994.
ftp://ds.internic.net/rfc/rfc1738.txt

[RFC1808]
"Relative Uniform Resource Locators", R. Fielding, June 1995.
 ftp://ds.internic.net/rfc/rfc1808.txt

[Servlet API]
The Servlet API, Sun Microsystems.
 http://jserv.javasoft.com/products/java-server/servlets/

[XLL]
"Extensible Markup Language (XML): Part 2. Linking", Tim Bray, Steve DeRose.
http://www.w3.org/TR/WD-xml-link

[XML]
"Extensible Markup Language (XML): Part 1. Syntax", Tim Bray, Jean Paoli, C. M. Sperberg-
McQueen (eds.).
http://www.w3.org/TR/WD-xml-lang

Template Resolution in XML/HTML

Page 16

URLs
Apache SSI http://www.apache.org/docs/mod/mod_include.html

The Nexus Web Server http://www-uk.hpl.hp.com/people/ak/java/nexus/

Bluestone Sapphire/Web http://www.bluestone.com/

Allaire Cold Fusion http://www.allaire.com/

Oracle Developer/2000 http://www.oracle.com/products/tools/dev2k/

Appendix A. TML DTD

<!ELEMENT define (#PCDATA | subst | if)* >
 <!ATTLIST define id ID #REQUIRED
 href CDATA #IMPLIED
 delayed (true|false) "false" >

 <!ELEMENT subst (#PCDATA | define | subst | if)* >
 <!ATTLIST subst href CDATA #REQUIRED
 cond CDATA #IMPLIED
 xml-link CDATA #FIXED "SIMPLE"
 inline (true|false) #FIXED "true"
 show (embed|replace|new) #FIXED "embed"
 actuate (auto|user) #FIXED "auto" >

 <!ELEMENT if (#PCDATA | define | subst | if | elif | else)* >
 <!ATTLIST if cond CDATA #REQUIRED >

 <!ELEMENT elif (#PCDATA | define | subst | if)* >
 <!ATTLIST elif cond CDATA #REQUIRED >

 <!ELEMENT else (#PCDATA | define | subst | if)* >

