
Proving a WS-Federation Passive Requestor Profile

Thomas Groß
IBM Research Division
Rüschlikon, Switzerland

tgr@zurich.ibm.com

Birgit Pfitzmann
IBM Research Division
Rüschlikon, Switzerland

bpf@zurich.ibm.com

ABSTRACT
Currently, influential industrial players are in the process of
realizing identity federation, in particular the authentication of
browser users across administrative domains. WS-Federation
is a joint protocol framework for Web Services clients and
browser clients. While browser-based federation protocols,
including Microsoft Passport, OASIS SAML, and Liberty be-
sides WS-Federation, are already widely deployed, their secu-
rity is still unproven and has been challenged by several anal-
yses. One reason is a lack of cryptographically precise pro-
tocol definitions, which impedes explicit design for security
as well as proofs. Another reason is that the security proper-
ties depend on the browser and even on the browser user. We
rigorously formalize a strict instantiation of the currentWS-
Federation Passive Requestor Interop profile and make explicit
assumptions for its general use. On this basis, we prove that
the protocol provides authenticity and secure channel estab-
lishment in a realistic trust scenario. This constitutes the first
positive security result for a browser-based identity federation
protocol.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; K.4.4 [Computers and Society]:
Electronic Commerce—Security

General Terms
Security, Theory, Standardization

Keywords
Web service security, identity federation, federated identity
management, single signon, web browser, browser-based,
WS-federation passive requestor profile, WSFPI, security
proof of protocols, security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM Workshop on Secure Web Services,October 29, 2004, Fairfax VA,
USA.
Copyright 2004 ACM 1-58113-973-X/04/0010 ..$5.00

1. INTRODUCTION
Major industrial players are currently striving for solutions

in identity federation. This technology implements user au-
thentication and identity management across administrative
domains. Identity federation is most relevant in business-to-
business applications and aims at reducing user management
costs dramatically, e.g., the cost of password helpdesks and
of user registration and, even more importantly, the deletion
of users from systems. Hence industry developed several pro-
posals for suitable message formats as well as multi-party au-
thentication and attribute exchange protocols. They are being
widely implemented in middleware such as access control and
user management products.

Protocols only based upon a standard web browser play an
important role in identity federation, in particular for multi-
party authentication and attribute exchange. These browser-
based protocols do not require the installation of special client
software and, therefore, have no footprint on client systems.
This is called zero-footprint property. They are cost-efficient
to deploy and form an easy entry point into identity federa-
tion. Thus they are the spearhead of identity federation tech-
nology and are expected to be widely used in the near future.
Microsoft Passport [5] was the first proposal in this area. Al-
though the protocol details were not public, several vulner-
abilities were identified. The most detailed analysis can be
found in [12]. However, some problems stated there are in-
herent in browser-based protocols. The Security Assertion
Markup Language (SAML) [23] was the first open standard.
It defines authentication and attribute tokens usable for iden-
tity federation, as well as basic profiles (protocols in typical
security terms) for using these tokens. Several problems were
recently found in a SAML profile [8]. The Shibboleth project
for university identity federation can be seen as a more com-
plex SAML profile [4]. SAML was also the basis for the
Liberty Alliance project [19]. A vulnerability was found in
one of the original Liberty protocols, the enabled-client pro-
tocol [17]; this problem was removed in subsequent versions.
WS-Federation [10] is part of the IBM/Microsoft web services
security roadmap. It links the Web Services world and the
browser world by defining a joint identity-federation basisfor
both client types. Special aspects for the browser case are de-
fined as a Passive Requestor Profile [11].

All analyses available for browser-based identity federation
protocols have in common that they only state negative results,
i.e., vulnerabilities; there is no positive security analysis in
the whole area. Individual standards proposals typically come

with security considerations; however, these are all sorted ac-
cording to certain known threats and countermeasures taken.
Today it is commonly acknowledged that vulnerability analy-
ses give no security guarantee and that security proofs are de-
sirable for all new cryptographic protocols. We will give the
first proof of a browser-based federation protocol in the fol-
lowing. There were multiple obstacles to overcome. First, the
protocols rely on a browser as one of the protocol participants.
All prior protocols analyzed cryptographically are assumed to
be carried out by specific protocol machines that do nothing
but executing the protocol as specified (unless the machine is
corrupted). Hence we need a model of necessary browser ca-
pabilities as well as assumptions on what a browser willnot
do. Secondly, due to the limited capabilities of browsers, the
user at the browser is an active participant and certain assump-
tions must be made about the user as well. Thirdly, all the
relevant protocols are defined in the form of standards, i.e.,
with precise message formats but less precise descriptionsof
the protocols themselves. We therefore have to provide a more
rigorous definition, but nevertheless remain faithful to the ac-
tual standards proposal.

We chose the WS-Federation Passive Requestor Interop sce-
nario [9] as the first identity federation protocol to prove.Orig-
inally intended for interoperability testing, this scenario offers
a concrete instantiation of WS-Federation similar to profiles
in other standards proposals and corresponding to a partic-
ular cryptographic protocol. It is a natural basis for initial
deployments of WS-Federation, in particular in cases where
third-party authentication of browser users is the main goal.
We consider a strict instantiation of the WS-Federation Pas-
sive Requestor Interop profile, i.e., we regard discretionary
security-relevant constraints (“should” or “recommended”) as
mandatory and prescribe the use of secure channels. While
these measures are not necessary in certain scenarios, we in-
clude them to get a general-purpose protocol. We also elabo-
rate on issues like the choice of metadata, setup, and tests dur-
ing the protocol. We call this version of the WS-Federation
Passive Requestor Interop that we actually prove the WSFPI
protocol. The property we prove is correct authentication of
the browser user, including the possibility to further use ase-
cure channel set up with this user during the protocol. Many
of the techniques used here could be reused in the analysis
of other browser-based protocols, in particular the submodule
interfaces, the assumptions on browsers and users, and the se-
curity requirement and overall proof structure.

1.1 Related Work
As long as we only consider the authenticity of the user at

the end of an identity-federation protocol, we are dealing with
3-party entity authentication. This was introduced by Need-
ham and Schroeder [14]. There is a large body of literature on
the tool-supported analysis of such protocols based on abstrac-
tions of cryptography, starting with [13]. As typical classical
3-party authentication needs no specific cryptographic tricks,
it was not a favorite object of study in cryptography, and we
are not aware of any cryptographic proof before recent first
proofs of the Needham-Schroeder-Lowe protocol [24, 1]. Es-
tablishment of a secure channel by a 3-party protocol is typ-
ically handled by the exchange of a session key. This holds
for practical protocol proposals such as Kerberos and public-
key infrastructures as well as for cryptographic protocolsand

for tool-supported protocol analysis. In particular, [2] intro-
duced a rigorous cryptographic treatment for protocols an-
alyzed hitherto only based on unproven abstractions. The
channel-establishment technique of browser-based federated
identity-management cannot be modularized as key exchange
followed by key usage because a standard browser would not
use a key established in this way. Instead, the technique is
to establish a channel with unilateral authentication first(con-
cretely SSL or TLS without client certificates) and to use addi-
tional information sent in this channel for third-party authenti-
cation of the so far anonymous user of this channel. We there-
fore need slightly different security requirements than usual,
besides the novel need to model a browser and its user. Se-
cure channels without mutual authentication were first treated
in [22]. Federated identity-management proposals typically
treat such channels as a blackbox submodule, and so will we.

Federated identity protocols can also be analyzed for pri-
vacy. A detailed but informal treatment can be found in [16].
Some of the submodule definitions we use here were already
made in [18] to describe a research proposal of browser-based
federation protocol with optimal privacy. However, no secu-
rity analysis was made there based on these definitions.

Web services security protocols were first analyzed in [7],
which considers an abstraction of WS Security and the vali-
dation of the authentication of requests and responses. A sec-
ond step in this direction is the development of a semantics
for WS Security authentication [3], which is done by extend-
ing the XML data model and embedding it into the�-calculus.
This work is over abstractions from cryptography, and does not
treat federation protocols yet, in particular no protocolsusing
browsers.

1.2 Organization
The remainder of the paper is structured as follows: We

present an overview of the WSFPI protocol in Section 2. We
define the submodules used by the protocol in Section 3 and
describe the protocol steps in detail in Section 4. In Section 5,
we specify the trust scenario and prove the authenticity and
correct channel establishment of the protocol. Section 6 con-
cludes the paper.

2. OVERVIEW OF THE WSFPI PROTO-
COL

We first give an overview of the interop scenario from [9]
in the strict instantiation mentioned in Section 1 and includ-
ing details about the submodules and their set-up. We call this
the WSFPI protocol. Figure 1 shows the message flow of the
WSFPI protocol when no error occurs. Browser

�
communi-

cates on behalf of user�with two other principals,� and�.
User�wants to sign-in at an identity consumer� (“resource”
or “destination site” in other terminologies) using WSFPI.An
identity supplier� authenticates�and confirms its identity to
identity consumer� by means of a signed SAML assertion.

Steps 1 and 10 show that user� is assumed to browse at
identity consumer� before the protocol (Step 1) and to get
some application-level response after the protocol (Step 10).
In [9] these arrows are drawn to a “WS resource” different
from the “resource IP/STS” that executes the protocol and
thus corresponds to our identity consumer. This reflects that
the browser will typically be intercepted or redirected when

Browser
B

ID Supplier

S

ID Consumer

C

User

U

1. GET resource / local redirect

4. Redirect
 (
URI

S

,
(
wa
,
wtrealm
, [
wreply
,
wctx
,
wct
]
))

5. End of redirect

5.1 Authenticate user

6. POSTForm(
 a’
,
(
wresult
 , [
wctx
]
))

7. POST

10. Return result

a’
:=
wreply
v
a‘
:=
wtrealm;

wresult
 :=

sign(
name

S

, (
URI

S

,
URI

C

, id

U

, att
))

Figure 1: WSFPI protocol with abstract parameters. Steps with uninterrupted lines are actually specified in the protocol.
The grey boxes denote secure channels.

accessing the resource. However, as [9] says nothing about
Steps 1 and 10 except that they must be supported, this does
not matter: we will in fact only analyze Steps 4 to 7. Steps
4-5 redirect the browser to identity supplier�, the unspec-
ified Step 5.1 authenticates the user to the identity supplier,
and Steps 6-7 essentially redirect the browser back to identity
consumer� with a signed SAML assertion as response. The
assertion contains an authentication statement and an attribute
statement about user�.

The figure contains all the exchanged top-level parameters
with their original names. In addition, the most important ele-
ments of������� are shown. For simplicity, we have omitted
the time stamps in������� and corresponding verifications be-
cause they are not necessary for the authenticity property that
we show. This may be added in the future. In both abstract
messages, Redirect and POSTForm, the first parameter in the
figure is the address and the second parameter the payload,
here a list of the protocol parameters. Square brackets mean
that parameters are optional. The end of a redirect message
gets its parameters from the redirect message, and the POST
message gets them from the payload of the message denoted
POSTForm. In the latter case a form, typically including a
script, is used to make the browser or user POST the message
described.

3. REQUIRED SUBMODULES AND
SET-UP

In this section, we review the submodules used by the
WSFPI protocol. In addition, we define which data must be
exchanged in advance for the submodules and the WSFPI pro-
tocol itself. We consider the parameters exchanged by the
modules as metadata and summarize them in Table 1 at the
end of this section.

3.1 Notation
We use a straight font for��	
��	�
, including ��	
��	�

�
, ��	����	
, and
�������

, and italics forvariables. As-

signment by possibly probabilistic functions is written as�.

Assignment of a value to a tuple of variables means making
correspondingly many projections; if one of these fails theen-
tire assignment fails. We specify the communication with a
submodule similar to [15, 18]; an input�� to an asynchronous
submodule�����
 is written�����
����� and an output���
from it �����
������. Most of these submodules are dis-
tributed, i.e., they get inputs and make outputs for several
participants of the main protocol. Simple message sending is
shown as —� � or� �— between participants; concretely
it stands for HTTP messages sent over an insecure channel.

We denote the set of URL host names by� !"�
� and the
set of URL host and path names by� !"�
�#��$. We denote
an address% & � !"�
�#��$ as a pair�'()� of a host name' & � !"�
� and a path. The function

$�
� denotes host
extraction, i.e.,

$�
��*� + '
for * + �'()� & � !"�
�#��$.

3.2 Browser Channels
Every identity supplier and every identity consumer must be

able to maintain secure channels with standard browsers. In[9,
p. 3f], this is described by HTTPS requirements for sending
or receiving certain messages. We assume a particularly strict
interpretation of these requirements, which basically enforces
that the communication of Steps 5-10 is tunneled through uni-
laterally authenticated secure channels. We model such se-
cure channels in the module

��$�	, which resembles SSL3.0
or TLS1.0 with server authentication. Note that some imple-
mentations of [9] might not implement the version we analyze
here.

3.2.1 Submodule “

��$�	”
We denote the submodule for secure channels as

��$�	

and its possible actions as follows.
Browser Server

1 ,-../01231-45 6789 : ,-../01;31-45 <=75 6789
2 ,-../01;30..->?-@5 <=75 678 5 =79 A ,-../01230..->?5 <=75 =79
3 ,-../0123,-1@5 <=75B9 : ,-../01;3C-.-DE-5 <=75B9
4 ,-../01;3C-.-DE-5 <=75BF9 A ,-../0123,-1@5 <=75BF9
Line 1 shows that the browser initiates a secure channel to an
address%G� & � !"�
�. Recall that “!” denotes that this is

an input to an asynchronous module. The server is notified
with a channel identifier��G. Line 2 shows that the server
may accept the channel and identify itself under an identity
�G & � !"�
� (with �G + � for anonymity). The browser
is notified of the acceptance and of�G and ��G. Then both
parties may send messages. This is shown in Lines 3-4 with
messages� and�F.

As the security of the channel, we assume that at most
the partner from the channel initiation learns anything about
messages sent as in Lines 3-4 (confidentiality) and that mes-
sages arriving as in Lines 3-4 have been sent in exactly this
form by the partner (integrity). We also assume that the
browser verifies%G� � �G before outputting its acceptance
in Line 2, where “

�
” denotes the standard address matching

of HTTPS [21]. Essentially, this means that the chosen ad-
dress%G� is “covered by” or “under” the address�G in the
server certificate. Further aspects of the server authentication
are described in Section3.2.2.

3.2.2 Certificates Needed
Compared to [9], we fix in WSFPI how many keys per par-

ticipating site are distributed and for what purposes. Here, we
restrict WSFPI and model the secure channels as an indepen-
dent module. Thus, we assume that its keys are not reused.
Concretely, these keys have to come with SSL/TLS certificates
acceptable to browsers. Abstractly, we require that each iden-
tity supplier� has an identity�� �G� & � !"�
� such that, if
� uses�G �+ �� �G� in Line 2, a correct browser gets the out-
put

��$�	�����
��
�(��G(%G� (�� �G��. Nobody else must
be able to achieve this, i.e., to impersonate the identity supplier
under�� �G� as a secure-channel partner. More precisely, the
channel will always be with an entity authorized by� to have
such channels under�� �G�.

We make the same assumption for each identity consumer
� with an identity�� �G� & � !"�
�.
3.2.3 User Involvement

We assume that browsers reliably present secure channels
and the partner identity�G to their users. This is implicit in
the unspecified step 5.1 in WSFPI, but we need an assumption
about the security of this step for the security analysis. The
typical implementation is browser icons for windows with se-
cure channels and the possibility to look up certificates. Iden-
tity suppliers may support this by personalizing the window
content. We denote the outputs a user receives1, and inputs
that he makes, by

��$�	��	
�
�

(�G(�F��

��$�	��

	�(�G(���
We also assume that a browser user does not change during the
lifetime of a secure channel.

3.2.4 Specific Abstract Browser Messages
We define abstract messages to model HTTP redirects and

POST forms. The abstract message

	
��	
��
�%G� (�%�� (�������
We only model that the user sees the partner identity�G, not a

channel identifier, because he or she will not notice if a chan-
nel is interrupted. Usually, however, a user can distinguish
different channels with one partner by different windows.

models a redirect (HTTP 302 or 303) to

$���
 � ��%G���%�������������� (
where

����������� is an encoding of the abstract
�����. Its

consequence is that the browser establishes a secure channel
to the address%G� and then sends

�%�� and
����������� over

that channel [21]. Similarly,
#�
���	�
�%G� (�%�� (������

models a form containing a script that will POST a message
whose body encodes the abstract

����� to the address
$���
 �

��%G���%��.

3.3 Response Authentication
An identity supplier must authenticate SAML assertions in

WSFPI. Generally, SAML allows arbitrary XML signatures
[20], but WSFPI explicitly restricts this to public-key schemes
and to use with X509 certificates (Pre-established Trust Rela-
tionship [9, p.11]). We write such signing as a function

�F �
��	��G(��
for signing a message� under an identity�G, and

��G(�� � �

���F�
for verifying a received message and extracting an identity�G
and a payload�. We denote failure by��G(�� + ��(��. The
functions include all necessary exchange and verification of
keys and certificates.

In WSFPI, each identity supplier uses only one certificate
for such signing. We call it����� and the function that looks
up the name from an X.509 certificate	��
 ����, and we ab-
breviate�%��� �+ 	��
 ���������� �.2 We do not prescribe
whether�%��� + �� �G�.

We assume that the underlying signature scheme is secure
against adaptive chosen-message attacks [6], and that this
property is lifted to the name-based version described herevia
secure certification, i.e., nobody except� can sign any new
message� under�%���.

3.4 Submodule “�����” and User Registra-
tion

We formalize the user authentication with a password over
a secure channel by means of a submodule����$on top of the

��$�	 submodule. The goal is to identify the user for a spe-
cific secure channel with channel identifier��G. Let ������
be a set that is held by an identity supplier� and denotes the
user identities registered at�.

3.4.1 User Authentication Module “����$”
The user and the identity supplier set up a method for later

user authentication via a browser. We explicitly model pass-
words in order to analyze the security of the zero-footprint
and browser-stateless case. Users who do not insist on these
properties may set up higher-quality authentication, in partic-
ular with remote identity suppliers. The overall method must
comprise means to protect the user from fake-identity-supplier
attacks, because the browser arrives at the identity supplier
(or an adversary) by redirection from an untrusted site. This
means at least user education about verifying the identity-

We simplified the handling of alternate names as it is not of

central interest in this paper.

supplier certificate.3 We denote the submodule as����$ and
the possible actions as follows:

User Identity supplier
1 �0�?/;3,?0C?5 <� =7� 9 A �0�?/23,?0C?5 <=79
2 �0�?/23@�5 <� =7� 5 ���=�9 : �0�?/;3@�1-5 <=75 =7�9

Line 1 denotes that the identity supplier initializes user au-
thentication for a secure channel with identifier��G. At the
user, this leads to an output that asks for authentication. This
output contains the identity supplier’s identity�� �G� that the
browser obtained in the set-up of channel��G. With current
concrete implementations this happens automatically by the
browser window. The user inputs login information����� into
the same window (Line 2), and the identity supplier derives a
user identity�G� & ������ � 	�
, where� denotes failure.

3.4.2 Exchanged Parameters
After registration of user� at identity supplier�, the user

knows an identity�� �G� that the identity supplier can use for
secure browser channels (compare Section 3.2), and the iden-
tity supplier knows an identity�G� of the user. These identi-
ties of all registered users form the set������. Further, they
share login information��������. We have to assume that
the entropy of�������� is sufficiently large and the protocol����$ good enough so that, as long as� only uses correct
browsers, an attacker cannot achieve that� obtains an out-
put ����$����	
(��G(�G�� for a channel��G of which � is
not the channel partner. (There is at most one such partner by
Sections3.2.1and3.2.3.) Note that this assumption is not
always fulfilled in practice; then every purely browser-based
authentication protocol fails.

3.5 Attributes
If an identity supplier and an identity consumer interact,

they need a common vocabulary for user attributes. We sim-
plify this as sets���	����

��

 and���	����

 of attribute
names and name-value pairs. We denote the data store of user
attributes in identity supplier� by ��� and the lookup func-
tion by

%�� �

������ (�G� (%�� ���
The inputs are the identity supplier’s current data store���,
the identity �G� of a registered user, and a list%�� � &
���	����

��

�. The output is a list%�� & ���	����

� �	�
, where

�
, spoken “undefined”, stands for cases such as

missing attributes.
In WSFPI, it is in addition assumed that every identity sup-

plier � that will be called by an identity consumer� knows
which attributes� wants. This is modeled by a variable%�� �%����, and it is assumed that this variable is defined
at least if� + ���� ����� (see Section 3.6). WSFPI contains
no privacy provisions or strength considerations. Those could
probably be added very similar to [18].

3.6 Addresses
In this section, we name the addresses relevant for the proto-

col and briefly discuss the constraints that [11] and [9] impose
on them.�
A dangerous feature in Passport and Liberty is “inline single

signon”, where the identity supplier uses a part of the identity
consumer’s window, because it disables such methods.

3.6.1 Identity Supplier Address
WSFPI contains no provisions for selecting a user’s iden-

tity supplier; each identity consumer� is supposed to use
only one identity supplier, which we denote by���������.4

Each identity supplier� chooses an address���� &
� !"�
�#��$and makes it known to each identity consumer
� with ��������� + � in the set-up. We assume that����
is covered by channel identity�� �G�, i.e.,

$�
������� �
�� �G�. Further we assume that� always carries out the
WSFPI protocol at this address.

3.6.2 Identity Consumer Address and Security
Realm

Each identity consumer� chooses an address���� &
� !"�
�#��$and makes it known to��������� in the set-up.
We assume that���� is covered by channel identity�� �G�,
i.e.,

$�
������� � �� �G�.
Given an assumption discussed in Section3.6.3 that the

element����%�� in requests equals����, we assume that
���� is (part of) a security realm for�. (This is a SHOULD
in [11] for ����%��.) We interpret this as meaning that only
services trusted by the principal� can obtain any certificate
that covers any address% � ����. With respect to our se-
cure channels this means that if a correct browser obtains an
output

��$�	�����
��
�(��G($�
��%�(�G� for such an ad-
dress%, then the channel partner is�. In addition, we assume
that if principal � hosts a service at such an address%, this
service can handle the WSFPI protocol correctly and follows
the same trust assumptions as�, and otherwise requests to%
are mapped to the WSFPI base service at����.

3.6.3 Address Constraints for the Request Deriva-
tion

Requests have certain degrees of freedom, and we assume
that an identity consumer� chooses the requests dynamically
based on some context. The choice may be different for each
�, hence we write it as��� � ���
 	
��

�� �������� This
function for an honest participant� must guarantee that���
is of the form��� + ��%(����%��(������ (���� (����with

� �% + �
��	�	���,

� ����%�� + ����,

� ������ & � !"�
�#��$ � 	�
 with ������ �
����%�� if ������ �+ �

,

� ���� &
�	�	� � 	�
 where

�	�	� denotes the XML

string type,

� ��� & ���
 � 	�
 where
���
 denotes a particular

XML time format.

In all these cases,
�

means that the parameter is not present in
the XML representation.

3.7 Summary of Metadata
We summarize the metadata from the various submodules

in Table 1.
The rows denote who knows metadata, and the columns

about whom these metadata are. The first element in each field�
Note that��������� is not explicit metadata, but a “real iden-

tity” like � and�.

�
Who/about: � � �

� - *: <� =7�, ���=���� -� *:
=7�, ���=���� - *: ����, 6�� ��� - 1: <�8�� (: �6B��), ���� 1: <� =7�

Table 1: Summary of metadata

�
Who/about: � � �

� - ���6�: <� =7, ���=� -� ���6�:
=7, ���=� - ���6�: ��� , 6�� �� - <�8�� (: �6B��), ���� <� =7

Table 2: Summary of metadata in database notation

is the multiplicity of the given relationship. It shows thateach
identity consumer only knows one supplier in WSFPI, while
all other relationships are unrestricted. The field��� was
used for metadata that� needs but that is not pre-distributed
to other participants. Otherwise we tacitly assume that par-
ticipants know their own metadata. The arrow notation for�%��� means that it can be derived from�����.

The indices�, �, � are not metadata for the protocol, but
only for us in the analysis and definition. We assume that each
participant stores the metadata of a single other participant to-
gether, but we do not assume it knows any “real identity” of
that participant beyond the explicit metadata. For navigation,
i.e., lookups of one parameter given another, we use a database
representation for the	-relationships. The databases and at-
tributes are shown in Table 2; note the systematic relation to
the names in Table 1. An identity consumer� simply has vari-
ables for the metadata of its one identity supplier. No unique-
ness requirements for any attributes are made in WSFPI, but
we assume that�� �G in
��%� is a key attribute, i.e., unique,
and similarly�G in
��%� and��� in
��%�. This unique-
ness assumption implies a strict security of the certification
process and the user registration in the setup phase of WSFPI.
We denote the selection of an attribute from a database entry
by a dot, e.g.,�.%�� � denotes the attribute%�� � in entry �.
Selection in a database� by a predicate

���G is written as
�����G
.

4. WSFPI STEP BY STEP
We now define the individual steps of WSFPI, including pa-

rameter generation and tests. In contrast to Figure 1, which
showed the error-free case, we now use different variables for
values that can be different under attack, e.g.,���� at the iden-
tity consumer in Steps 4 and 7. We only do this per participant;
variables of different participants are implicitly qualified with
the participant name. In addition to the participants’ long-term
parameters, let����� denote the contexts of� in which the
current WSFPI execution starts.

4.1 Redirect to Identity Supplier
In Steps 4-5, the identity consumer� redirects the browser

to its identity supplier, i.e., to the address���� from its meta-
data. This is a secure redirect as defined in Section 3.2, in
which the query string transports the request parameters. Note
that the initial redirect message in Step 4 is sent through an
insecure channel and that the secure channel is not established

until Step 5. Thus Step 4 works as depicted in Figure 2.
Figure 2 also shows that the browser reacts in Step 5 by

establishing a secure channel and sending the path and query-
string over it. We call the channel identifier��G�� for browser-
supplier channel id. Typically, a message with the given

�%��
triggers a WSFPI execution at the identity supplier. As we
only specify WSFPI here, not the dispatching, we only abort
if the path is wrong.

The notation�G� on the browser side of Line 5b indicates
that this is an identity supplier identity, but not yet knownto
be that of a specific identity supplier� known by the address
�� �G� to �. In Step 5d, identity supplier� enforces the con-
straints on the request parameters as specified in Section 3.6.
Note that we include the timing parameter��� only for com-
pleteness; it is not relevant for the authenticity proof.

4.2 Authenticate User
After successful execution of Step 5, the identity supplier

authenticates a user over the established secure channel with
channel identifier��G��. With the notation from Section 3.4,
Step 5.1 is defined in Figure 3.

In Step 5.1a,�G� is the identity that the browser obtained in
Step 5b. The user checks whether this is the identity of one of
its identity suppliers. If yes, the user inputs the corresponding
login information. The identity supplier derives a registered
identity �G� or aborts.

4.3 Deriving a Response
If Step 5.1 was passed, the identity supplier tries to derive

a response. As no explicit request and no privacy are consid-
ered here, this is quite simple: The identity supplier looksup
which attribute names the supposed identity consumer wants,
and looks up the corresponding attributes of the user in its
database���. We assume that it identifies the identity con-
sumer� by the parameter����%�� of the request because
this is the only mandatory parameter related to�. Thus it can
reuse the metadata entry�� retrieved above.

The assignment to ������� stands for pro-
ducing a SAML assertion and wrapping it as a
��

�

��	������
	

��	

 as prescribed in WSFPI:
The identity supplier signs certain parameters under its
identity �%��� (and using the certificate�����). The main
parameters signed are the identity supplier’s address����
as the SAML�

�
	 element, the identity consumer’s identity������ + ����%�� as the����
	�
 element, the user
identity as the

���
��, and the attributes%��. Recall that we

Browser Identity consumer �
4a 3�5����9 �� ����;
4b A C-@DC-.?�3�5�6�� 5 �	�8
9— �	�8
 A �0�- C-
�-,?� 3<����9

Browser Identity supplier �
5a ,-../01231-45�9 : ,-../01;31-45 <=7�� 5�9
5b ,-../01;30..->?-@5 <=7�� 5�5 =7�9 A ,-../01230..->?5 <=7�� 5 <� =7� 9
5c ,-../0123,-1@5 <=7�� 5 3�6�� 5 �	�8
99 : ,-../01;3C-.-DE-5 <=7�� 5 3�6�� 5 �	�8
99
5d if 3�5�6��9 �� ���� then abort;3�65��8�6�B5�8���
5�<�� 5�<�9 A �	�8
;

if this failsor �6 �� 4,D�1D1���
or �� �� ���6����� � ��8�6�B� � �
or �8���
 �� � � �8���
 �� ��8�6�B
or �<� �� �

then abort

Figure 2: Redirect to identity supplier (Steps 4 and 5)

User � Identity supplier �
5.1a �0�?/;3,?0C? 5 =7�9; A �0�?/23,?0C?5 <=7��9

if �� �� ���6� �<� =7 � =7�� � �
then abort else�� �� �� ����=�

5.1b �0�?/23@�5 =7�5 ��9 : �0�?/;3@�1-5 <=7�� 5 =7	9;
if
=7	 � � then abort

6a 6�� A -E0�3��� 5 =7	5 ���6�� �9;
if 6�� � � then abort;�8��	�� A ,D�13�6B�� 5 3���� 5��8�6�B5 =7	5 6��99;8������� A 34,D�1D1���5�8��	�� 5�<��9

Figure 3: User authentication and response derivation (Steps 5.1 and 6)

have not represented time limits for simplicity because the
basic authenticity property does not depend on them. Further,
we have not represented how the subject and attributes are
distributed over one or two SAML statements; this does not
matter because the subject is unique in this representation
in WSFPI. We have also not represented that an�����

��
element outside the SAML assertion may repeat the informa-
tion from����
	�
. The most important aspect is that all the
parameters we represent as signed must indeed be signed in
WSFPI.

4.4 POST Form Back
The identity supplier now essentially redirects the browser

back to the identity consumer with the response�������.
However, this is done as a scripted POST, i.e., the submit com-
mand issuing the form with������� is fired by a script. The
script, in turn, is sent within the secure channel with the iden-
tifier ��G��. The return address is������ if this parameter was
present in the (correct) request, else����%��, and it must be
an HTTPS address. We depict the details of this flow in Fig-
ure 4.

In Step 7d, the identity consumer tests the signature and val-
idates that the issuer is its identity supplier as indicatedby the
name in its metadata. Then it retrieves the parameters from the
payload; this corresponds to the validation of the SAML token
and the
��

�

��	������
	

��	

 wrapper. Finally it
verifies that the����
	�
 element refers to itself. We repre-
sent the result of this protocol run as an output with the name���
��
� (similar to the outputs of the submodules), the chan-
nel identifier for which authentication was performed, and the

user identity�G� and attributes%��.
Typically � will now retrieve its context����� by the pa-

rameter���� and internally redirect the browser to its original
target URL, with the resulting identity and attributes translated
into an internal format. The user can, to some extent, also keep
track of the secure channel after the protocol by the identity
�� �G� that the browser obtains; recall Section3.2.3.

5. SECURITY
We provide a property-based security proof for the WSFPI

protocol specified in Section 4. The property we show is that
at the end of a WSFPI protocol run, the identity consumer�
has established a secure channel with a specific user�. This
is more than entity authentication of user�, because the au-
thentication is bound to the secure channel. Such binding is
important to guarantee that a potential result in Step 10 of Fig-
ure 1 really goes to the identified user and that potential future
requests in this channel come from the same user.

This authenticity only holds under additional assumptions.
Besides typical trust assumptions about the honesty of certain
participants (including correctness of their software), these are
assumptions that guarantee the separation of the WSFPI proto-
col from other protocols. For most other cryptographic proto-
cols, such separation assumptions are implicit in the definition
of the protocol machines, which do nothing but what one de-
fines for them, but for a protocol involving a browser and a
user, we have to make these assumptions separately.

Definition 1. (Trust and Protocol Separation Assumptions)
When we consider an identity consumer� and a potential user

Browser Identity supplier �
6b if �8���
 � � then 6F �� ��8�6�B else6F �� �8���
;

if 6F is not httpsthen abort;3865�6��9 �� 6F �
,-../01;3C-.-DE-5 <=7�� 5 A ,-../0123,-1@5 <=7�� 53������C��3865�6�� 5 8�������999 3������C��3865�6�� 5 8�������999

Browser Identity consumer �
7a ,-../01231-45 869 : ,-../01;31-45 <=7�� 5 869
7b ,-../01;30..->?-@5 <=7�� 5 865 <� =7�9 A ,-../01230..->?5 <=7�� 5 <� =7�9
7c ,-../0123,-1@5 <=7�� 5 3�6�� 5 8�������99 : ,-../01;3C-.-DE-5 <=7�� 5 3�6�� 5 8�������99
7d 3�65�8��	�� 5�<��9 A 8�������

if �6 �� 4,D�1D1��� then abort;3�6B�5�9 A ?-,?3�8��	��9;
if
�6B� �� �6B�� then abort;3=��	�8 5 ����5 =7	5 6��9 A�;

if
=��	�8 �� ��	
 then abort;

if ���� �� ��	� then abort;
7e output 30..->?-@5 <=7�� 5 =7	5 6��9.

Figure 4: Scripted POST to the identity consumer (Steps 6 and7)

identity �G�, we make the following assumptions in addition
to the assumptions already made about submodules:

� Honest parties:Identity consumer�, its identity sup-
plier �, and the (at most one) user� that is registered
under�G� at � are honest, and all browsers that� used
so far are correct.

� Information flow: None of these parties does anything
with information received in a WSFPI protocol includ-
ing setup except what the protocol and its submodules
prescribe, and with the exception that� can use the fi-
nal output from Step 7e.

� Cross-protocol key use:The overall use of the secret
key referred to in����� excludes cross-protocol attacks,
i.e., no other application uses this key to sign messages
that pass the verifications in Step 7d from the third line
onwards.

The information flow assumption is certainly not trivial for
the browsers, as they are protocol-unaware and follow their
own rules for the transactions of WSFPI. The cross-protocol
key use assumption is most easily realized if the secret key
corresponding to����� is only used for signing SAML tokens
for the WSFPI protocol, not even for other WS-Federation
subprofiles. Thus both assumptions need careful evaluation
in practice.

THEOREM 1 (AUTHENTICITY OF WSFPI). Let the as-
sumptions of Definition 1 for an identity consumer� and
a string �G� be true and let all the submodules of WSFPI
fulfill the corresponding security assumptions. Then the fol-
lowing holds: If the identity consumer� obtains an output����
��
�(��G�� (�G�(%��� from the WSFPI protocol, then the
secure channel with channel identifier��G�� is a channel with
the only user� that has the identity�G� at �’s identity sup-
plier �.

PROOF. Our proof is structured as follows: We first show
that� only gets the final positive output from the WSFPI pro-
tocol if its channel partner has a token������� from �’s iden-
tity supplier �, meant for� and designating the identity as

�G�. Then we show that only�, its browser
�

, and� can get
such a token from�. Here we exploit the provisions for secure
channels and correct addressing as well as the cross-protocol
key use assumption besides the protocol definition. Finally,
the trust and information flow assumptions imply that�,

�
,

and � will not pass such a token to others; hence� must
indeed be�’s current channel partner. We now show this in
detail.

If � obtains the output ����
��
�(��G�� (�G�(%���
from the WSFPI protocol, then this output is made
in Step 7e. This implies that� obtained a mes-
sage

��$�	��	
�
�

(��G�� (��%�� (���������� where�������� passed the tests of Step 7d. The assignment��%��(�� � �

���������� and the verification that�%�� + �%��� imply that �%�� �+ �

and thus the
signature test was successful, and�%��� is by definition of
the metadata the name of the identity supplier of�, which we
now call �. Hence, by the assumed adaptive chosen-message
security of the signature scheme, lifted to names, at some
point in the past� signed the message�. By the absence of
cross-protocol attacks, this must have happened in an execu-
tion of the WSFPI protocol by�. Recalling the assumption
that the secure channels use separate keys, this can only have
happened when signing a SAML assertion in the third line of
Step 6a.

Now we investigate where� might have sent the token
������� when it signed it. (We do not know yet whether this
is the same protocol run as where� receives the token.) A
precondition for Step 6a is that Step 5.1 was passed, i.e.,�
has a secure channel to the user mentioned in the token. More
precisely,� has obtained a message����$����	
(��G�� (�G��
with a registered user identity�G� and some channel identifier
��G��. Let � be our index for the user with this identity at�;
there is only one by the assumptions about metadata in Sec-
tion 3.7, and it has only used correct browsers so far by the
trust assumption. Hence the assumption on����$ implies that
� is indeed the partner for the channel with identifier��G��.
This same user identity�G� is what � puts into the token in
Step 6a.

The only action that� performs with the token�������

is to send it in the same secure channel with identifier��G��
in Step 6b. By the assumptions on secure channels in Sec-
tion 3.2.1, only one partner can obtain this message, and we
just saw that this must be the current browser

�
of user�.

By the information flow assumptions, neither
�

nor �
does anything with this token except what is explicitly pre-
scribed in the protocol. This is defined by the message�#�
���	�
��%(�%�� (���������� that

�
may obtain in

Step 6b. The assumptions on secure channels in Section3.2.1
imply that this message arrives completely or not at all. Here�
has constructed the POST address as��%(�%��� �+ %F, where%F is one of������ and����%��, which � derived in Step 5d.
The tests in Step 6b imply that this is an https address. Hence
POSTing to this address builds up a secure channel to address�% as described in Step 7a.

We show next that the partner for this channel is our identity
consumer�. The tests in Step 5d imply that%F � ����%��.
The identity supplier� uses the same value����%�� as the
second payload parameter in the signed token in Step 6a, i.e.,
as the����
	�
 element in the SAML realization. As� ac-
cepted the token������� with this element,�’s verification in
Step 7d implies����%�� + ����. Thus%F � ����. Hence
if the browser accepts the channel establishment in Step 7b
(and subsequently forwards the token�������), then the chan-
nel partner is� by the security realm assumption of Sec-
tion 3.6.2.

Furthermore, by the security realm assumption the service
of � at the address%F � ���� handles WSFPI correctly and
follows the information flow assumption about�. Hence�
does not forward or reuse this token either, as it is not part of
the output that�may reuse. Hence�’s receiving of the token
in the protocol run we originally considered must be a direct
consequence of the form posting from� via

�
, where� is the

current user. Hence the channel with identifier��G�� is indeed
with user�. This finishes the proof.

6. CONCLUSION
We have proven the security of the Web Services Passive

Requestor Federation Interop Scenario, here called WSFPI,
based upon a rigorous definition of the profile in the style of
cryptographic protocols. Our analysis points out assumptions
needed for the security of WSFPI in a general deployment be-
yond the original interop test scenario. Our proof is the first
positive security analysis for a browser-based identity federa-
tion protocol. As future work, we intend to elaborate on some
of the underlying assumptions by making more detailed mod-
els of the submodules, in particular of browsers and users and
the use of passwords. The need to model browsers and users
was a primary new factor when proving a browser-based iden-
tity federation protocol, compared with proofs of other authen-
tication protocols. We believe that the assumptions that we
had to make about the submodules, while not trivial to fulfill
in practice, are not specific to WSFPI, but largely shared by
browser-based identity federation protocols.

Acknowledgements
We thank many colleagues in IBM for discussions about fed-
erated identity over time, and specifically Christopher Giblin,
Daniel Lutz, and Michael Waidner for comments related to
this proof.

7. REFERENCES
[1] Michael Backes and Birgit Pfitzmann. A

cryptographically sound security proof of the
Needham-Schroeder-Lowe public-key protocol. InProc.
23rd Conference on Foundations of Software
Technology and Theoretical Computer Science
(FSTTCS), volume 2914 ofLecture Notes in Computer
Science, pages 1–12. Springer, 2003.

[2] Mihir Bellare and Phillip Rogaway. Provably secure
session key distribution: The three party case. InProc.
27th Annual ACM Symposium on Theory of Computing
(STOC), pages 57–66, 1995.

[3] Karthikeyan Bhargavan, Cédric Fournet, and Andrew D.
Gordon. A semantics for web services authentication. In
31st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), pages 198–209.
ACM Press, 2004.

[4] Scott Cantor and Marlena Erdos.
Shibboleth-architecture draft v05, May 2002.
http://shibboleth.internet2.edu/docs/
draft-internet2-shibboleth-arch-v0%5.
pdf.

[5] Microsoft Corporation. .NET Passport documentation,
in particular Technical Overview, and SDK 2.1
Documentation (started 1999), September 2001.

[6] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest.
A digital signature scheme secure against adaptive
chosen-message attacks.SIAM Journal on Computing,
17(2):281–308, 1988.

[7] Andrew D. Gordon and Riccardo Pucella. Validating a
web service security abstraction by typing. InProc.
2002 ACM Workshop on XML Security, pages 18–29,
Fairfax VA, USA, November 2002.

[8] Thomas Gross. Security analysis of the SAML Single
Sign-on Browser/Artifact profile. InProc. 19th Annual
Computer Security Applications Conference. IEEE,
December 2003.

[9] Matt Hur, Ryan D. Johnson, Ari Medvinsky, Yordan
Rouskov, Jeff Spellman, Shane Weeden, and Anthony
Nadalin. Passive Requestor Federation Interop Scenario,
Version 0.4, February 2004.
ftp://www6.software.ibm.com/software/
developer/library/ws-fpscenario2.d%oc.

[10] Chris Kaler and Anthony Nadalin (ed.). Web Services
Federation Language (WS-Federation), Version 1.0,
July 2003. BEA and IBM and Microsoft and RSA
Security and VeriSign,http:
//www-106.ibm.com/developerworks/
webservices/library/ws-fed/.

[11] Chris Kaler and Anthony Nadalin (ed.). WS-Federation:
Passive Requestor Profile, Version 1.0, July 2003. BEA
and IBM and Microsoft and RSA Security and VeriSign,
http://www-106.ibm.com/
developerworks/library/ws-fedpass/.

[12] David P. Kormann and Aviel D. Rubin. Risks of the
Passport single signon protocol.Computer Networks,
33(1–6):51–58, June 2000.

[13] Jonathan K. Millen. The interrogator: A tool for
cryptographic protocol security. InProc. 5th IEEE
Symposium on Security & Privacy, pages 134–141,

1984.
[14] Roger M. Needham and Michael D. Schroeder. Using

encryption for authentication in large networks of
computers.Communications of the ACM,
21(12):993–999, December 1978.

[15] Birgit Pfitzmann and Michael Waidner. A model for
asynchronous reactive systems and its application to
secure message transmission. InProceedings of the
IEEE Symposium on Research in Security and Privacy,
pages 184–200, Oakland, CA, May 2001. IEEE
Computer Society Press.

[16] Birgit Pfitzmann and Michael Waidner. Privacy in
browser-based attribute exchange. InACM Workshop on
Privacy in the Electronic Society (WPES), pages 52–62,
Washington, USA, November 2002.

[17] Birgit Pfitzmann and Michael Waidner. Analysis of
Liberty single-signon with enabled clients.IEEE
Internet Computing, 7(6):38–44, 2003.

[18] Birgit Pfitzmann and Michael Waidner. Federated
identity-management protocols — where user
authentication protocols may go.

In Security Protocols—11th International Workshop,
Lecture Notes in Computer Science, Cambridge, UK,
April 2003. Springer-Verlag, Berlin Germany. To
appear, 2004.

[19] Liberty Alliance Project. Liberty Phase 2 final
specifications, November 2003.
http://www.projectliberty.org/.

[20] W3C Recommendation. XML-Signature syntax and
processing, February 2002.
http://www.w3.org/TR/xmldsig-core/.

[21] E. Rescorla. Internet RFC 2818: HTTP over TLS, May
2000.

[22] Victor Shoup. On formal models for secure key
exchange. Research Report RZ 3120 (#93166), IBM
Research, April 1999. Version 4, November 1999,
available from
http://www.shoup.net/papers/.

[23] OASIS Standard. Security assertion markup language
(SAML), November 2002.

[24] Bogdan Warinschi. A computational analysis of the
Needham-Schroeder-(Lowe) protocol. InProc. 16th
IEEE Computer Security Foundations Workshop
(CSFW), pages 248–262, 2003.

