Proving a WS-Federation Passive Requestor Profile

Thomas Grol3 Birgit Pfitzmann
IBM Research Division IBM Research Division
Ruschlikon, Switzerland Ruschlikon, Switzerland
tgr@zurich.ibm.com bpf@zurich.ibm.com
ABSTRACT 1. INTRODUCTION
Currently, influential industrial players are in the proces ~ Major industrial players are currently striving for solris
realizing identity federation, in particular the autheation of in identity federation. This technology implements user au

browser users across administrative domains. WS-Fedgrati thentication and identity management across adminiggrati
is a joint protocol framework for Web Services clients and domains. ldentity federation is most relevant in busirtess-
browser clients. While browser-based federation progcol business applications and aims at reducing user management
including Microsoft Passport, OASIS SAML, and Liberty be- costs dramatically, e.g., the cost of password helpdestis an
sides WS-Federation, are already widely deployed, their-se ~ Of user registration and, even more importantly, the dateti
rity is still unproven and has been challenged by severdt ana Of users from systems. Hence industry developed several pro
yses. One reason is a lack of cryptographically precise pro- posals for suitable message formats as well as multi-party a
tocol definitions, which impedes explicit design for seturi thentication and attribute exchange protocols. They airggbe
as well as proofs. Another reason is that the security proper widely implemented in middleware such as access control and
ties depend on the browser and even on the browser user. WeuUser management products.

rigorously formalize a strict instantiation of the curraNs- Protocols only based upon a standard web browser play an
Federation Passive Requestor Interop profile and makecitxpli important role in identity federation, in particular for ftiu
assumptions for its general use. On this basis, we prove that party authentication and attribute exchange. These brewse
the protocol provides authenticity and secure channebesta based protocols do not require the installation of spedit

lishment in a realistic trust scenario. This constitutesftst software and, therefore, have no footprint on client system
positive security result for a browser-based identity faten This is called zero-footprint property. They are cost-&fit
protocol. to deploy and form an easy entry point into identity federa-

tion. Thus they are the spearhead of identity federatioh-tec
nology and are expected to be widely used in the near future.

Categories and SUbJeCt Descriptors Microsoft Passport [5] was the first proposal in this area. Al

C.2.0 [Computer-Communication Networks]: General— though the protocol details were not public, several vulner
Security and protectignK.4.4 [Computers and Society: abilities were identified. The most detailed analysis can be
Electronic Commerce-Security found in [12]. However, some problems stated there are in-
herent in browser-based protocols. The Security Assertion
Markup Language (SAML) [23] was the first open standard.
General Terms It defines authentication and attribute tokens usable fem-id
Security, Theory, Standardization tity federation, as well as basic profiles (protocols in ¢gpi
security terms) for using these tokens. Several problems we
Keywords recently found in a SAML profile [8]. The Shibboleth project

) o .)) for university identity federation can be seen as a more com-
Web service security, |Qent|ty federation, federated fidgn plex SAML profile [4]. SAML was also the basis for the
management, single signon, web browser, browser-based,| jherty Alliance project [19]. A vulnerability was found in
WS-federation passive requestor profile, WSFPI, security 5ne of the original Liberty protocols, the enabled-cliens-p
proof of protocols, security tocol [17]; this problem was removed in subsequent versions
WS-Federation [10] is part of the IBM/Microsoft web sendce
security roadmap. It links the Web Services world and the
Permission to make digital or hard copies of all or part of twork for browser world by defining a joint identity-federation bafgis

personal or class_room use is g_ranted withou_t fee providatabpies are hoth client types. Special aspects for the browser caseeare d
not made or distributed for profit or commercial advantage that copies fined as a Passive Requestor Profile [11]

bear this notice and the full citation on the first page. Toyooiherwise, to . . .
republish, to post on servers or to redistribute to listguies prior specific All analyses available for browser-based identity federat

permission and/or a fee. protocols have in common that they only state negative t®sul
ACM Workshop on Secure Web Servig@stober 29, 2004, Fairfax VA,i.e., vulnerabilities; there is no positive security amsiyin
USA. the whole area. Individual standards proposals typicalme

Copyright 2004 ACM 1-58113-973-X/04/001(55.00

with security considerations; however, these are all daate

for tool-supported protocol analysis. In particular, [Bfrb-

cording to certain known threats and countermeasures taken duced a rigorous cryptographic treatment for protocols an-

Today it is commonly acknowledged that vulnerability analy
ses give no security guarantee and that security proofseare d
sirable for all new cryptographic protocols. We will giveeth
first proof of a browser-based federation protocol in the fol
lowing. There were multiple obstacles to overcome. Fibst, t
protocols rely on a browser as one of the protocol partidgpan
All prior protocols analyzed cryptographically are assdrte

be carried out by specific protocol machines that do nothing
but executing the protocol as specified (unless the machine i

alyzed hitherto only based on unproven abstractions. The
channel-establishment technique of browser-based federa
identity-management cannot be modularized as key exchange
followed by key usage because a standard browser would not
use a key established in this way. Instead, the technique is
to establish a channel with unilateral authentication {zeh-
cretely SSL or TLS without client certificates) and to useiadd
tional information sent in this channel for third-party laemti-
cation of the so far anonymous user of this channel. We there-

corrupted). Hence we need a model of necessary browser ca-fore need slightly different security requirements thanals

pabilities as well as assumptions on what a browser natl

do. Secondly, due to the limited capabilities of browsédrs, t
user at the browser is an active participant and certaimgssu
tions must be made about the user as well. Thirdly, all the
relevant protocols are defined in the form of standards, i.e.
with precise message formats but less precise descriptions
the protocols themselves. We therefore have to provide @ mor
rigorous definition, but nevertheless remain faithful te t-
tual standards proposal.

besides the novel need to model a browser and its user. Se-
cure channels without mutual authentication were firstéea
in [22]. Federated identity-management proposals tyjyical
treat such channels as a blackbox submodule, and so will we.
Federated identity protocols can also be analyzed for pri-
vacy. A detailed but informal treatment can be found in [16].
Some of the submodule definitions we use here were already
made in [18] to describe a research proposal of browsermdbase
federation protocol with optimal privacy. However, no secu

We chose the WS-Federation Passive Requestor Interop sce+ity analysis was made there based on these definitions.

nario [9] as the first identity federation protocol to pro@ig-
inally intended for interoperability testing, this scepasffers
a concrete instantiation of WS-Federation similar to pegfil

in other standards proposals and corresponding to a partic-

ular cryptographic protocol. It is a natural basis for iliti
deployments of WS-Federation, in particular in cases where
third-party authentication of browser users is the mainl.goa
We consider a strict instantiation of the WS-Federation Pas
sive Requestor Interop profile, i.e., we regard discretipna
security-relevant constraints (“should” or “recommerifies

Web services security protocols were first analyzed in [7],
which considers an abstraction of WS Security and the vali-
dation of the authentication of requests and responsesc-A se
ond step in this direction is the development of a semantics
for WS Security authentication [3], which is done by extend-
ing the XML data model and embedding it into thecalculus.
This work is over abstractions from cryptography, and dags n
treat federation protocols yet, in particular no protoagng
browsers.

mandatory and prescribe the use of secure channels. While1.2 ~Organization

these measures are not necessary in certain scenarios; we in - The remainder of the paper is structured as follows: We
clude them to get a general-purpose protocol. We also elabo- present an overview of the WSFPI protocol in Section 2. We
rate on issues like the choice of metadata, setup, and sts d define the submodules used by the protocol in Section 3 and
ing the protocol. We call this version of the WS-Federation describe the protocol steps in detail in Section 4. In Sadio

Passive Requestor Interop that we actually prove the WSFPI we specify the trust scenario and prove the authenticity and

protocol. The property we prove is correct authenticatibn o
the browser user, including the possibility to further usea
cure channel set up with this user during the protocol. Many

of the techniques used here could be reused in the analysis

of other browser-based protocols, in particular the suhreod
interfaces, the assumptions on browsers and users, and-the s
curity requirement and overall proof structure.

1.1 Related Work

As long as we only consider the authenticity of the user at
the end of an identity-federation protocol, we are dealiiitty w
3-party entity authentication. This was introduced by Need
ham and Schroeder [14]. There is a large body of literature on
the tool-supported analysis of such protocols based oneabst
tions of cryptography, starting with [13]. As typical class
3-party authentication needs no specific cryptographikgi
it was not a favorite object of study in cryptography, and we
are not aware of any cryptographic proof before recent first
proofs of the Needham-Schroeder-Lowe protocol [24, 1]. Es-
tablishment of a secure channel by a 3-party protocol is typ-
ically handled by the exchange of a session key. This holds
for practical protocol proposals such as Kerberos and gubli
key infrastructures as well as for cryptographic protoeuid

correct channel establishment of the protocol. Sectionm co
cludes the paper.

2. OVERVIEW OF THE WSFPI PROTO-
COL

We first give an overview of the interop scenario from [9]
in the strict instantiation mentioned in Section 1 and idelu
ing details about the submodules and their set-up. We dall th
the WSFPI protocol. Figure 1 shows the message flow of the
WSFPI protocol when no error occurs. Browggicommuni-
cates on behalf of usdy with two other principalsC and.S.
UserU wants to sign-in at an identity consum@r(“resource”
or “destination site” in other terminologies) using WSFRh.
identity supplierS authenticated/ and confirms its identity to
identity consumelC by means of a signed SAML assertion.

Steps 1 and 10 show that usEris assumed to browse at
identity consumerC before the protocol (Step 1) and to get
some application-level response after the protocol (S@p 1
In [9] these arrows are drawn to a “WS resource” different
from the “resource IP/STS” that executes the protocol and
thus corresponds to our identity consumer. This reflects tha
the browser will typically be intercepted or redirected whe

(User) ID Supplier ID Consumer
U Browser B S C

1. GET resource / local redirect

——————————————————— —|
4. Redirect (URI g (wa, wirealm , [wreply , etx, wct]))
(5. End of redirect o
5.1 Authenticate user
-1 — — — — ra AP wreply v a‘:= wtrealm;
, wresult =
E. POSTForm(a’, (wresult , [wctx])) sign(name &, (URIg, URI, id , att))

(7.POST

10. Return result
[—

Y

Figure 1: WSFPI protocol with abstract parameters. Steps wih uninterrupted lines are actually specified in the protocd.
The grey boxes denote secure channels.

accessing the resource. However, as [9] says nothing aboutAssignment of a value to a tuple of variables means making
Steps 1 and 10 except that they must be supported, this doescorrespondingly many projections; if one of these failsehe

not matter: we will in fact only analyze Steps 4 to 7. Steps tire assignment fails. We specify the communication with a
4-5 redirect the browser to identity suppliét the unspec- submodule similar to [15, 18]; an input to an asynchronous
ified Step 5.1 authenticates the user to the identity supplie submodulenodule is writtenmodule!(in) and an outpubut

and Steps 6-7 essentially redirect the browser back toitglent from it module?(out). Most of these submodules are dis-
consumerC with a signed SAML assertion as response. The ftributed, i.e., they get inputs and make outputs for several
assertion contains an authentication statement and @vuédtr participants of the main protocol. Simple message sending i

statement about usér. shown as —m — or <— m— between participants; concretely
The figure contains all the exchanged top-level parameters it stands for HTTP messages sent over an insecure channel.
with their original names. In addition, the most importalete We denote the set of URL host namesUiRLHost and the

ments ofwresult are shown. For simplicity, we have omitted set of URL host and path names BRLHostPath. We denote
the time stamps imresult and corresponding verifications be- an addrese € URLHostPath as a pair(h, p) of a host name
cause they are not necessary for the authenticity progeatyt 2 € URLHost and a path. The functiohost denotes host
we show. This may be added in the future. In both abstract extraction, i.e.host(a) = h fora = (h,p) € URLHostPath.
messages, Redirect and POSTForm, the first parameter in the
figure is the address and the second parameter the payload3.2 Browser Channels
here a list of the protocc_)l parameters. Square b_rackets mean eyery identity supplier and every identity consumer must be
that parameters are optional. The end of a redirect messageype 1o maintain secure channels with standard browsef8, In
gets its parameters from the redirect message, and the POSTp_ 3f], this is described by HTTPS requirements for sending
message gets them from the payload of the message denotedy receiving certain messages. We assume a particulaidy str
POSTForm. In the latter case a form, typically including & jyterpretation of these requirements, which basicallperes
script, is used to make the browser or user POST the messag&at the communication of Steps 5-10 is tunneled through uni
described. laterally authenticated secure channels. We model such se-
cure channels in the modulecchan, which resembles SSL3.0
3. REQUIRED SUBMODULES AND or TLS1.0 with server authentication. Note that some imple-
SET-UP mentations of [9] might not implement the version we analyze

here.
In this section, we review the submodules used by the

WSFPI protocol. In addition, we define which data must be 3.2.1 Submodulesicchan”
exchanged in advance for the submodules and the WSFPI pro- ecchan
tocol itself. We consider the parameters exchanged by the
modules as metadata and summarize them in Table 1 at the

We denote the submodule for secure channelsashan
and its possible actions as follows.

end of this section. Browser Server)
1secchan!(new, adr) — secchan?(new, cid, adr)
3.1 Notation 2secchan?(accepted, cid, adr, id) < secchan!(accept, cid, id)
’ 3secchan!(send, cid, m) — secchan?(receive, cid, m)
We use a straight font fotonstants, including constant 4 secchan?(receive, cid, m') «+ secchan!(send, cid, m')
sets, functions, andsubmodules, and italics fowvariables As- Line 1 shows that the browser initiates a secure channel to an

signment by possibly probabilistic functions is written<as addressudr € URLHost. Recall that “I” denotes that this is

an input to an asynchronous module. The server is notified models a redirect (HTTP 302 or 303) to

with a channel identifiecid. Line 2 shows that the server

may accept the channel and identify itself under an identity

id € URLHost (with id = € for anonymity). The browser
is notified of the acceptance and @f and cid. Then both

parties may send messages. This is shown in Lines 3-4 with

messages: andm’.

As the security of the channel, we assume that at most

the partner from the channel initiation learns anythinguabo

messages sent as in Lines 3-4 (confidentiality) and that mes-
sages arriving as in Lines 3-4 have been sent in exactly this

https : //adr /path? querystring,

where querystring is an encoding of the abstragtery. Its
consequence is that the browser establishes a secure thanne
to the addresadr and then sendgath and querystring over

that channel [21]. SimilarlypOSTFormS(adr, path, query)
models a form containing a script that will POST a message
whose body encodes the abstracéry to the addreskttps :

//adr [path.

form by the partner (integrity). We also assume that the 3 3 Response Authentication

browser verifiesadr C id before outputting its acceptance

in Line 2, where C" denotes the standard address matching W
of HTTPS [21]. Essentially, this means that the chosen ad-

dressadr is “covered by” or “under” the addresg in the
server certificate. Further aspects of the server auttainic
are described in Sectiah.2.2

3.2.2 Certificates Needed

Compared to [9], we fix in WSFPI how many keys per par-
ticipating site are distributed and for what purposes. Heee

restrict WSFPI and model the secure channels as an indepen-

An identity supplier must authenticate SAML assertions in
SFPI. Generally, SAML allows arbitrary XML signatures
[20], but WSFPI explicitly restricts this to public-key snes
and to use with X509 certificates (Pre-established Trust-Rel
tionship [9, p.11]). We write such signing as a function

m' + sign(id, m)
for signing a message under an identityd, and

(id,m) < test(m')

dent module. Thus, we assume that its keys are not reused.fOr verifying a received message and extracting an idendity

Concretely, these keys have to come with SSL/TLS certificate
acceptable to browsers. Abstractly, we require that eas-id
tity supplierS has an identity:h_ids € URLHost such that, if

S usesid := ch_idg in Line 2, a correct browser gets the out-
putsecchan?(accepted, cid, adr, ch_ids). Nobody else must
be able to achieve this, i.e., to impersonate the identjppker
underch_ids as a secure-channel partner. More precisely,
channel will always be with an entity authorized Byto have
such channels undef._ids.

We make the same assumption for each identity consumer

C with an identitych_idc € URLHost.

3.2.3 User Involvement

and a payloadn. We denote failure byid, m) = (e, €). The
functions include all necessary exchange and verificatfon o
keys and certificates.

In WSFPI, each identity supplier uses only one certificate
for such signing. We call iterts and the function that looks
up the name from an X.509 certificateme_X509, and we ab-

the breviatenames := name_X509(certs).2 We do not prescribe

whethernames = ch_ids.

We assume that the underlying signature scheme is secure
against adaptive chosen-message attacks [6], and that this
property is lifted to the name-based version described Viare
secure certification, i.e., nobody exceptcan sign any new
messagen undernames.

We assume that browsers reliably present secure channels

and the partner identityd to their users. This is implicit in

the unspecified step 5.1 in WSFPI, but we need an assumption

about the security of this step for the security analysise Th
typical implementation is browser icons for windows with se
cure channels and the possibility to look up certificateenid
tity suppliers may support this by personalizing the window
content. We denote the outputs a user recéjvasd inputs
that he makes, by

secchan?(receive, id, m');

secchan!(send, id, m).

3.4 Submodule ‘tauth” and User Registra-
tion

We formalize the user authentication with a password over
a secure channel by means of a submoduleth on top of the
secchan submodule. The goal is to identify the user for a spe-
cific secure channel with channel identifiedl. Let Userss
be a set that is held by an identity supplieand denotes the
user identities registered &t

3.4.1 User Authentication Moduleduth”
The user and the identity supplier set up a method for later

We also assume that a browser user does not change during theiser authentication via a browser. We explicitly model pass

lifetime of a secure channel.

3.2.4 Specific Abstract Browser Messages

words in order to analyze the security of the zero-footprint
and browser-stateless case. Users who do not insist on these
properties may set up higher-quality authentication, inipa

We define abstract messages to model HTTP redirects andular with remote identity suppliers. The overall method mus

POST forms. The abstract message

redirectS(adr, path, query)

'We only model that the user sees the partner idegityot a
channel identifier, because he or she will not notice if a ehan
nel is interrupted. Usually, however, a user can distirtguis
different channels with one partner by different windows.

comprise means to protect the user from fake-identity-empp
attacks, because the browser arrives at the identity srppli
(or an adversary) by redirection from an untrusted site.sThi
means at least user education about verifying the identity-

2We simplified the handling of alternate names as it is not of
central interest in this paper.

supplier certificaté. We denote the submodule asuth and
the possible actions as follows:

User Identity supplier
1 uauth?(start, ch_ids) < uauth!(start, cid)
2 vauth!(do, ch_idg, login) ~ — uauth?(done, cid, idy)

Line 1 denotes that the identity supplier initializes user a
thentication for a secure channel with identifierl. At the
user, this leads to an output that asks for authenticatitnis T
output contains the identity supplier’s identity_ids that the
browser obtained in the set-up of chanméf. With current
concrete implementations this happens automatically by th
browser window. The user inputs login informatibigin into

the same window (Line 2), and the identity supplier derives a
user identityidy € Userss U {e}, wheree denotes failure.

3.4.2 Exchanged Parameters

After registration of usei/ at identity supplierS, the user
knows an identitych_ids that the identity supplier can use for

3.6.1 Identity Supplier Address

WSFPI contains no provisions for selecting a user’s iden-
tity supplier; each identity consume? is supposed to use
only one identity supplier, which we denote Bypplierc.*
Each identity supplierS chooses an addres#RIs €
URLHostPath and makes it known to each identity consumer
C with Supplierc = S in the set-up. We assume th&iRIs
is covered by channel identityh_ids, i.e., host(URIs) C
ch_ids. Further we assume th&t always carries out the
WSFPI protocol at this address.

3.6.2 Identity Consumer Address and Security

Realm

Each identity consume€ chooses an addred$RIc €
URLHostPath and makes it known tSupplierc in the set-up.
We assume thal’ R1¢ is covered by channel identigh_idc,
i.e.,host(URI¢) C ch_idc.

Given an assumption discussed in Sectif.3that the
elementwtrealm in requests equal®RIc, we assume that

secure browser channels (compare Section 3.2), and the iden UZt/c is (part of) a security realm fof’. (This is a SHOULD

tity supplier knows an identitydy of the user. These identi-
ties of all registered users form the déterss. Further, they
share login informatiorloginy,s. We have to assume that
the entropy ofloginy s is sufficiently large and the protocol
uauth good enough so that, as long &only uses correct
browsers, an attacker cannot achieve thabbtains an out-
put uauth?(done, cid, idy) for a channelcid of which U is

in [11] for wirealm.) We interpret this as meaning that only
services trusted by the principél can obtain any certificate
that covers any address C URIc. With respect to our se-
cure channels this means that if a correct browser obtains an
outputsecchan?(accepted, cid, host(a), id) for such an ad-
dressa, then the channel partner . In addition, we assume
that if principal C' hosts a service at such an addresshis

not the channel partner. (There is at most one such partner byService can handle the WSFPI protocol correctly and follows

Sections3.2.1and3.2.3) Note that this assumption is not
always fulfilled in practice; then every purely browser-4uhs
authentication protocol fails.

3.5 Attributes

If an identity supplier and an identity consumer interact,

the same trust assumptions @sand otherwise requests &0
are mapped to the WSFPI base servic& &t ¢.

3.6.3 Address Constraints for the Request Deriva-
tion
Requests have certain degrees of freedom, and we assume

they need a common vocabulary for user attributes. We sim- that an identity consumef’ chooses the requests dynamically

plify this as setdttribute_ZNames andAttributes of attribute

based on some context. The choice may be different for each

names and name-value pairs. We denote the data store of usef’» hence we write it ageq - make_request (ctzic). This

attributes in identity supplie§ by DBs and the lookup func-
tion by

att < eval(DBs, idy, att_n).

The inputs are the identity supplier’s current data stoigs,

the identity id;; of a registered user, and a ligtt_n €
Attribute_Names™. The output is a listtt € Attributes™ U
{L}, where L, spoken “undefined”, stands for cases such as
missing attributes.

In WSFPI, itis in addition assumed that every identity sup-
plier S that will be called by an identity consumér knows
which attributesC wants. This is modeled by a variable
att_namesc, and it is assumed that this variable is defined
at least ifS = Supplierc (see Section 3.6). WSFPI contains
no privacy provisions or strength considerations. Thossdco
probably be added very similar to [18].

3.6 Addresses

In this section, we name the addresses relevant for the-proto
col and briefly discuss the constraints that [11] and [9] isgo0
on them.

3A dangerous feature in Passport and Liberty is “inline sing|
signhon”, where the identity supplier uses a part of the ident
consumer’s window, because it disables such methods.

function for an honest participar® must guarantee thatgq
is of the formreq = (wa, wirealm, wreply, wetz, wet) with

e wa = wsigninl.0,
e wtrealm = URI¢,

e wreply € URLHostPath U {L} with wreply C

wtrealm if wreply # L,

e wctz € String U {_L} whereString denotes the XML
string type,

e wct € Time U {1} whereTime denotes a particular
XML time format.

In all these cased, means that the parameter is not present in
the XML representation.

3.7 Summary of Metadata

We summarize the metadata from the various submodules
in Table 1.

The rows denote who knows metadata, and the columns
about whom these metadata are. The first element in each field

“Note thatSupplierc is not explicit metadata, but a “real iden-
tity” like C andS.

JWho/about> U S

C

U - *:

ch_ids, loginy 5 -

S * idy, loginyg s | - * URIq, att_nc
C - 1: certs (— nameg), URIs | 1: ch_id¢o
Table 1: Summary of metadata
JWho/about» U S C
U - MetaS: ch_id, login -
S MetaU': id, login | - MetaC: URI, att_n
C - certS (— nameS), URIS | ch_id

Table 2: Summary of metadata in database notation

is the multiplicity of the given relationship. It shows thestch
identity consumer only knows one supplier in WSFPI, while
all other relationships are unrestricted. The fi€ld C was
used for metadata that needs but that is not pre-distributed
to other participants. Otherwise we tacitly assume that par
ticipants know their own metadata. The arrow notation for
nameg means that it can be derived froterts.

The indicesU, S, C are not metadata for the protocol, but

only for us in the analysis and definition. We assume that each

participant stores the metadata of a single other partitiga
gether, but we do not assume it knows any “real identity” of
that participant beyond the explicit metadata. For naiagat
i.e., lookups of one parameter given another, we use a dagaba
representation for the-relationships. The databases and at-
tributes are shown in Table 2; note the systematic relation t
the names in Table 1. An identity consunt@simply has vari-
ables for the metadata of its one identity supplier. No ugiqu

ness requirements for any attributes are made in WSFPI, but

we assume thath_id in MetaS is a key attribute, i.e., unique,
and similarlyid in MetaU and URI in MetaC'. This unique-
ness assumption implies a strict security of the certificati

process and the user registration in the setup phase of WSFPI

until Step 5. Thus Step 4 works as depicted in Figure 2.

Figure 2 also shows that the browser reacts in Step 5 by
establishing a secure channel and sending the path and-query
string over it. We call the channel identifieid;s for browser-
supplier channel id. Typically, a message with the giyeth
triggers a WSFPI execution at the identity supplier. As we
only specify WSFPI here, not the dispatching, we only abort
if the path is wrong.

The notationids on the browser side of Line 5b indicates
that this is an identity supplier identity, but not yet knoten
be that of a specific identity suppliér known by the address
ch_ids to U. In Step 5d, identity supplie$ enforces the con-
straints on the request parameters as specified in Secéon 3.
Note that we include the timing parameteet only for com-
pleteness; it is not relevant for the authenticity proof.

4.2 Authenticate User

After successful execution of Step 5, the identity supplier
authenticates a user over the established secure charthel wi
channel identifiercidy,s. With the notation from Section 3.4,
Step 5.1 is defined in Figure 3.

In Step 5.1ajds is the identity that the browser obtained in

We denote the selection of an attribute from a database entry Step 5b. The user checks whether this is the identity of one of

by a dot, e.g.¢.att_n denotes the attributett_n in entry e.
Selection in a databasP by a predicatepred is written as
Dipred].

4. WSFPI STEP BY STEP
We now define the individual steps of WSFPI, including pa-

its identity suppliers. If yes, the user inputs the corresiiog
login information. The identity supplier derives a registd
identity 7du or aborts.

4.3 Deriving a Response

If Step 5.1 was passed, the identity supplier tries to derive
a response. As no explicit request and no privacy are consid-

rameter generation and tests. In contrast to Figure 1, which ered here, this is quite simple: The identity supplier loogs

showed the error-free case, we now use different variables f
values that can be different under attack, ewgtz at the iden-
tity consumer in Steps 4 and 7. We only do this per participant
variables of different participants are implicitly quadifi with

the participant name. In addition to the participants’ khagn
parameters, lettztc denote the contexts af in which the
current WSFPI execution starts.

4.1 Redirect to Identity Supplier

In Steps 4-5, the identity consumérredirects the browser
to its identity supplier, i.e., to the addre&R IS from its meta-

which attribute names the supposed identity consumer wants
and looks up the corresponding attributes of the user in its
databaseDBs. We assume that it identifies the identity con-
sumer C' by the parametetvirealm of the request because
this is the only mandatory parameter relatedtoThus it can
reuse the metadata entty’' retrieved above.

The assignment to wresult stands for pro-
ducing a SAML assertion and wrapping it as a
RequestSecurityTokenResponse as prescribed in WSFPI:
The identity supplier signs certain parameters under its
identity names (and using the certificateerts). The main

data. This is a secure redirect as defined in Section 3.2, in parameters signed are the identity supplier's addiégds

which the query string transports the request parameterte N

as the SAMLlIssuer element, the identity consumer’s identity

that the initial redirect message in Step 4 is sent through an eC.URI = wtrealm as theAudience element, the user

insecure channel and that the secure channel is not es&dlis

identity as theSubject, and the attributestt. Recall that we

Browser

4a

4b + redirectS(a, path, query)—
Browser

5a secchan!(new,a) —

5b secchan?(accepted, cidys, a, ids) —

5c secchan!(send, cidys, (path, query)) —

5d

Identity consumer C
(a,path) := URIS;
query < make_request (ctzto)

Identity supplier S
secchan?(new, cidys, a)
secchan!(accept, cidy, ch-ids)
secchan?(receive, cidys, (path, query))
if (a, path) # URIg then abort;
(wa, wtrealm, wreply, wetz, wet) < query;
if this failsor wa # wsigninl.0
or eC := MetaC[URI = wtrealm] = L
or wreply # L A wreply Z wtrealm
or wet # L
then abort

Figure 2: Redirect to identity supplier (Steps 4 and 5)

Identity supplier S

uauth!(start, cidy;)

uauth?(done, cidys, idu);

if idu = e then abort

User U
5.1a uvauth?(start, ids); —
if S := MetaS[ch-id = ids] = L
then abort elselg := eS.login
5.1b uvauth!(do, ids, lg) —
6a

att < eval(DBg, idu, eC.att_n);

if att = L then abort;
wresult < sign(nameg, (URIg, wirealm, idu, att));
response < (wsigninl.0, wresult, wctz)

Figure 3: User authentication and response derivation (Sggs 5.1 and 6)

have not represented time limits for simplicity because the
basic authenticity property does not depend on them. Rurthe

user identityidu and attributesitt.
Typically C will now retrieve its contextizic by the pa-

we have not represented how the subject and attributes arerameterwctz and internally redirect the browser to its original

distributed over one or two SAML statements; this does not

target URL, with the resulting identity and attributes skated

matter because the subject is unique in this representationinto an internal format. The user can, to some extent, alep ke

in WSFPI. We have also not represented thatAppliesTo
element outside the SAML assertion may repeat the informa-
tion from Audience. The most important aspect is that all the

track of the secure channel after the protocol by the identit
ch_idc that the browser obtains; recall Sectidr2.3

parameters we represent as signed must indeed be signed i5, SECURITY

WSFPI.

4.4 POST Form Back

The identity supplier now essentially redirects the brawse
back to the identity consumer with the responseesult.
However, this is done as a scripted POST, i.e., the submit com
mand issuing the form withuresult is fired by a script. The
script, in turn, is sent within the secure channel with trenid
tifier cidys. The return address isreply if this parameter was
present in the (correct) request, eisgealm, and it must be
an HTTPS address. We depict the details of this flow in Fig-
ure 4.

In Step 7d, the identity consumer tests the signature and val
idates that the issuer is its identity supplier as indicéethe
name in its metadata. Then it retrieves the parameters fiem t
payload; this corresponds to the validation of the SAML toke
and theRequestSecurity TokenResponse wrapper. Finally it
verifies that theAudience element refers to itself. We repre-
sent the result of this protocol run as an output with the name
accepted (similar to the outputs of the submodules), the chan-
nel identifier for which authentication was performed, ama t

We provide a property-based security proof for the WSFPI
protocol specified in Section 4. The property we show is that
at the end of a WSFPI protocol run, the identity consur@er
has established a secure channel with a specific Uis€Fhis
is more than entity authentication of usér, because the au-
thentication is bound to the secure channel. Such binding is
important to guarantee that a potential result in Step 10gf F
ure 1 really goes to the identified user and that potentiaréut
requests in this channel come from the same user.

This authenticity only holds under additional assumptions
Besides typical trust assumptions about the honesty ddicert
participants (including correctness of their softwarke¢se are
assumptions that guarantee the separation of the WSF®BI prot
col from other protocols. For most other cryptographic grot
cols, such separation assumptions are implicit in the difini
of the protocol machines, which do nothing but what one de-
fines for them, but for a protocol involving a browser and a
user, we have to make these assumptions separately.

Definition 1. (Trust and Protocol Separation Assumptions)
When we consider an identity consum@mand a potential user

Browser Identity supplier S
6b if wreply = L then a’ := wtrealm elsea’ := wreply;
if a’ is not httpsthen abort;
(ra, path) := d';
secchan?(receive, cidys, + secchan!(send, cidy,,

(POSTFormS(ra, path, response))) (POSTFormS(ra, path, response)))

Browser
7a secchan!(new,ra)

Identity consumer C

secchan?(new, cidy,, ra)
7b secchan?(accepted, cidy,, ra, ch-idC') secchan!(accept, cidy., ch-id¢c)
7c secchan!(send, cidy., (path, response)) secchan?(receive, cidy., (path, response))
7d (wa, wresult, wetz) < response
if wa # wsigninl.0 then abort;
(name, m) < test(wresult);
if name # namesS then abort;
(issuer, URIC,idu, att) + m;
if issuer # U RIS then abort;
if URIC # URI¢ then abort;
7e output (accepted, cidy., idu, att).

L1l

Figure 4: Scripted POST to the identity consumer (Steps 6 and)

identity idu, we make the following assumptions in addition
to the assumptions already made about submodules:

e Honest parties:ldentity consumerC, its identity sup-
plier §, and the (at most one) uséf that is registered
underidu at S are honest, and all browsers tHatused
so far are correct.

e Information flow: None of these parties does anything
with information received in a WSFPI protocol includ-

idu. Then we show that only/, its browserB, andC can get
such atoken fron$. Here we exploit the provisions for secure
channels and correct addressing as well as the cross-plotoc
key use assumption besides the protocol definition. Finally
the trust and information flow assumptions imply ttiat B,
and C will not pass such a token to others; hengemust
indeed beC'’s current channel partner. We now show this in
detail.

If C obtains the output (accepted, cids., idu, att)

ing setup except what the protocol and its submodules from the WSFPI protocol, then this output is made

prescribe, and with the exception th@tcan use the fi-
nal output from Step 7e.

e Cross-protocol key useThe overall use of the secret
key referred to ircerts excludes cross-protocol attacks,

i.e., no other application uses this key to sign messages
that pass the verifications in Step 7d from the third line

onwards.

The information flow assumption is certainly not trivial for

in Step 7e. This implies thatC obtained a mes-
sage secchan?(receive, cid., (path, response)) where
response passed the tests of Step 7d. The assignment
(name,m) < test(wresult) and the verification that
name = nameS imply that name # L and thus the
signature test was successful, angneS is by definition of

the metadata the name of the identity supplie€ofwhich we

now call S. Hence, by the assumed adaptive chosen-message
security of the signature scheme, lifted to names, at some

the browsers, as they are protocol-unaware and follow their point in the pastS signed the message. By the absence of
own rules for the transactions of WSFPI. The cross-protocol cross-protocol attacks, this must have happened in an execu
key use assumption is most easily realized if the secret key tion of the WSFPI protocol bys. Recalling the assumption

corresponding taerts is only used for signing SAML tokens

that the secure channels use separate keys, this can o’y hav

for the WSFPI protocol, not even for other WS-Federation happened when signing a SAML assertion in the third line of
subprofiles. Thus both assumptions need careful evaluation Step 6a.

in practice.

THEOREM1 (AUTHENTICITY OF WSFPI). Let the as-
sumptions of Definition 1 for an identity consum@r and
a string idu be true and let all the submodules of WSFPI
fulfill the corresponding security assumptions. Then the fo
lowing holds: If the identity consumef' obtains an output
(accepted, cidy., idu, att) from the WSFPI protocol, then the
secure channel with channel identifietd;. is a channel with
the only userU that has the identitydu at C’s identity sup-
plier S.

PROOF Our proof is structured as follows: We first show
that C only gets the final positive output from the WSFPI pro-
tocol if its channel partner has a tokemesult from C'’s iden-
tity supplier S, meant forC and designating the identity as

Now we investigate wher& might have sent the token
wresult when it signed it. (We do not know yet whether this
is the same protocol run as whe€ereceives the token.) A
precondition for Step 6a is that Step 5.1 was passed,d.e.,
has a secure channel to the user mentioned in the token. More
precisely,S has obtained a messagguth?(done, cidps, idu)
with a registered user identitylu and some channel identifier
cidys. LetU be our index for the user with this identity &8t
there is only one by the assumptions about metadata in Sec-
tion 3.7, and it has only used correct browsers so far by the
trust assumption. Hence the assumptiomaith implies that
U is indeed the partner for the channel with identifiéd; .
This same user identitylu is what S puts into the token in
Step 6a.

The only action thatS performs with the tokenuresult

is to send it in the same secure channel with identifig .

REFERENCES

in Step 6b. By the assumptions on secure channels in Sec- [1] Michael Backes and Birgit Pfitzmann. A

tion 3.2.1 only one partner can obtain this message, and we

just saw that this must be the current browsSeof userU.
By the information flow assumptions, neithé& nor U

does anything with this token except what is explicitly pre-
scribed in the protocol. This is defined by the message

(POSTFormS(ra, path, response)) that B may obtain in
Step 6b. The assumptions on secure channels in Sétidrl

imply that this message arrives completely or not at all.e-fer

has constructed the POST addres§raspath) := o', where

a’ is one ofwreply andwtrealm, which S derived in Step 5d.
The tests in Step 6b imply that this is an https address. Hence 3]
POSTing to this address builds up a secure channel to address

ra as described in Step 7a.

We show next that the partner for this channel is our identity

consumerC. The tests in Step 5d imply that C wtrealm.
The identity supplierS uses the same valuetrealm as the

second payload parameter in the signed token in Step 6a, i.e.

as theAudience element in the SAML realization. A€ ac-
cepted the tokemresult with this element('’s verification in
Step 7d impliesvtrealm = URI¢. Thusa’ C URIc. Hence

if the browser accepts the channel establishment in Step 7b
(and subsequently forwards the tokeresult), then the chan-
nel partner isC' by the security realm assumption of Sec-

tion 3.6.2

Furthermore, by the security realm assumption the service
of C atthe address’ C URI- handles WSFPI correctly and

follows the information flow assumption aboGt. HenceC

does not forward or reuse this token either, as it is not fart o
the output thatC’ may reuse. Henc€''s receiving of the token
in the protocol run we originally considered must be a direct

consequence of the form posting frghvia B, whereU is the
current user. Hence the channel with identifiéf;. is indeed
with userU. This finishes the proof. [J

6. CONCLUSION

We have proven the security of the Web Services Passive [9]
Requestor Federation Interop Scenario, here called WSFPI,
based upon a rigorous definition of the profile in the style of
cryptographic protocols. Our analysis points out assumnpti
needed for the security of WSFPI in a general deployment be-
yond the original interop test scenario. Our proof is the firs

positive security analysis for a browser-based identitiefa-

tion protocol. As future work, we intend to elaborate on some
of the underlying assumptions by making more detailed mod-
els of the submodules, in particular of browsers and usets an
the use of passwords. The need to model browsers and users
was a primary new factor when proving a browser-based iden-

tity federation protocol, compared with proofs of othereau-

tication protocols. We believe that the assumptions that we
had to make about the submodules, while not trivial to fulfill
in practice, are not specific to WSFPI, but largely shared by

browser-based identity federation protocols.

Acknowledgements

We thank many colleagues in IBM for discussions about fed-
erated identity over time, and specifically Christopherli@jb
Daniel Lutz, and Michael Waidner for comments related to

this proof.

cryptographically sound security proof of the
Needham-Schroeder-Lowe public-key protocolPhoc.
23rd Conference on Foundations of Software
Technology and Theoretical Computer Science
(FSTTCS)volume 2914 ot ecture Notes in Computer
Sciencepages 1-12. Springer, 2003.

Mihir Bellare and Phillip Rogaway. Provably secure
session key distribution: The three party casePioc.

27th Annual ACM Symposium on Theory of Computing
(STOC) pages 5766, 1995.

Karthikeyan Bhargavan, Cédric Fournet, and Andrew D.
Gordon. A semantics for web services authentication. In
31st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (PORIlpages 198—-209.
ACM Press, 2004.

[4] Scott Cantor and Marlena Erdos.

Shibboleth-architecture draft v05, May 2002.
http://shibbol eth.internet?2. edu/ docs/
draft-internet2-shibbol et h-arch-v0%.
pdf .

Microsoft Corporation. .NET Passport documentation,
in particular Technical Overview, and SDK 2.1
Documentation (started 1999), September 2001.

[6] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest.

A digital signature scheme secure against adaptive
chosen-message attac&$AM Journal on Computing
17(2):281-308, 1988.

[7] Andrew D. Gordon and Riccardo Pucella. Validating a

web service security abstraction by typingRroc.
2002 ACM Workshop on XML Securipages 18-29,
Fairfax VA, USA, November 2002.

[8] Thomas Gross. Security analysis of the SAML Single

Sign-on Browser/Artifact profile. liProc. 19th Annual
Computer Security Applications ConferenteEE,
December 2003.

Matt Hur, Ryan D. Johnson, Ari Medvinsky, Yordan
Rouskoyv, Jeff Spellman, Shane Weeden, and Anthony
Nadalin. Passive Requestor Federation Interop Scenario,
Version 0.4, February 2004.

ftp://ww6. sof tware. i bm coni sof t war e/
devel oper/library/ws-fpscenario02. d%oc.

10] Chris Kaler and Anthony Nadalin (ed.). Web Services

Federation Language (WS-Federation), Version 1.0,
July 2003. BEA and IBM and Microsoft and RSA
Security and VeriSigrit t p:

[/ ww 106. i bm conml devel oper wor ks/
webservices/library/ws-fed/.

Chris Kaler and Anthony Nadalin (ed.). WS-Federation:
Passive Requestor Profile, Version 1.0, July 2003. BEA
and IBM and Microsoft and RSA Security and VeriSign,
http://ww+ 106. i bm comf

devel operworks/ i brary/ ws-fedpass/.

David P. Kormann and Aviel D. Rubin. Risks of the
Passport single signon protoc@lomputer Networks
33(1-6):51-58, June 2000.

Jonathan K. Millen. The interrogator: A tool for
cryptographic protocol security. Proc. 5th IEEE
Symposium on Security & Privagyages 134-141,

[14]

[15]

[16]

[17]

[18]

1984.

Roger M. Needham and Michael D. Schroeder. Using
encryption for authentication in large networks of
computersCommunications of the ACM
21(12):993-999, December 1978.

Birgit Pfitzmann and Michael Waidner. A model for
asynchronous reactive systems and its application to
secure message transmissionPhoceedings of the
IEEE Symposium on Research in Security and Privacy
pages 184—-200, Oakland, CA, May 2001. IEEE
Computer Society Press.

Birgit Pfitzmann and Michael Waidner. Privacy in
browser-based attribute exchangeAltM Workshop on
Privacy in the Electronic Society (WPE®pages 52-62,
Washington, USA, November 2002.

Birgit Pfitzmann and Michael Waidner. Analysis of
Liberty single-signon with enabled clientEEE
Internet Computing7(6):38—44, 2003.

Birgit Pfitzmann and Michael Waidner. Federated
identity-management protocols — where user
authentication protocols may go.

[19]

[20]

[21]

[22]

(23]

[24]

In Security Protocols—11th International Workshop
Lecture Notes in Computer Science, Cambridge, UK,
April 2003. Springer-Verlag, Berlin Germany. To
appear, 2004.

Liberty Alliance Project. Liberty Phase 2 final
specifications, November 2003.

http://wwv. projectliberty.org/.

W3C Recommendation. XML-Signature syntax and
processing, February 2002.

http://ww. w3. org/ TR/ xml dsi g- core/.

E. Rescorla. Internet RFC 2818: HTTP over TLS, May
2000.

Victor Shoup. On formal models for secure key
exchange. Research Report RZ 3120 (#93166), IBM
Research, April 1999. Version 4, November 1999,
available from

http://wwmv. shoup. net/ papers/.

OASIS Standard. Security assertion markup language
(SAML), November 2002.

Bogdan Warinschi. A computational analysis of the
Needham-Schroeder-(Lowe) protocol.Rroc. 16th
IEEE Computer Security Foundations Workshop
(CSFW) pages 248-262, 2003.

