
Proposal to provide sufficient interoperable key roles for financial 1

applications 2

 3

Administrative information 4

Proposal created by: Jon Geater, Thales E-Security 5

Contributors: Jon Geater, Thales E-Security 6

 Todd Arnold, IBM 7

 Chris Dunn, Safenet 8

Proposal Version: 1.6 9

Date: 2009-07-15 10

 11

Purpose 12

To a first approximation, in financial crypto all keys are DES keys of some length or another, and policy is 13

defined at the application layer (eg “VerifyPIN” rather than “encrypt” or “decrypt”) so basic crypto-level 14

access control does not work: at that level (algorithm, mechanism) all keys are effectively the same. In 15

order to prevent abuse of keys an application layer system of key usage called ‘key roles’ is employed. 16

By attaching a role to a key it is possible to differentiate it from other keys preventing a PIN validation 17

key from being used as a key encryption key, for example. 18

Concerns have been raised (most notably by Todd Arnold of IBM, KMIP liaison to ANSI X9F) that the set 19

of financial key roles currently defined in KMIP is insufficient to cover all the needs of financial 20

applications in the field. Augmenting KMIP to cover all the needs of the financial community would be 21

difficult: the world of financial crypto is a complex one with a significant history of regionalization, 22

customization and vendor ‘tweaks’, making it complex, divergent, and confounding interoperability. 23

However the financial community, under ANSI X9, has defined an interoperable key block for secure key 24

exchange which captures the set of key roles for keys that are commonly transferred between 25

implementations. 26

While all vendors of financial HSMs/APIs have larger sets of roles with improved security properties or 27

flexibility the workload implications of explicitly supporting all these specializations in the normative 28

document are many. Given that KMIP is an interoperability specification it is deemed sufficient to 29

include only those roles deemed relevant for interchange by the subject matter experts in X9. 30

31

 32

Proposal 33

 This proposal completely replaces specification lines 358 (section 3.6) and 1575 (section 9.1.3.2.15). In 34

addition it adds to the definition of Cryptographic Usage Mask in sections 3.12 and 9.1.3.3.1 to support 35

the new roles definitions. 36

Change 1: Line 358 change to: 37

 38

Key Role definitions are chosen to match those defined in ANSI X9 “TR-31 2005 Interoperable Secure 39

Key Exchange Key Block Specification for Symmetric Algorithms” and are defined as follows: 40

BDK Base Derivation Key (ANSI X9.24 DUKPT key derivation)

CVK Card Verification Key (CVV/signature strip number validation)

DEK Data Encryption Key (General Data Encryption)

MKAC EMV/chip card Master Key: Application Cryptograms

MKSMC EMV/chip card Master Key: Secure Messaging for Confidentiality

MKSMI EMV/chip card Master Key: Secure Messaging for Integrity

MKDAC EMV/chip card Master Key: Data Authentication Code

MKDN EMV/chip card Master Key: Dynamic Numbers

MKCP EMV/chip card Master Key: Card Personalization

MKOTH EMV/chip card Master Key: Other

KEK Key Encryption or Wrapping Key

MAC16609 ISO16609 MAC Algorithm 1

MAC97971 ISO9797-1 MAC Algorithm 1

MAC97972 ISO9797-1 MAC Algorithm 2

MAC97973 ISO9797-1 MAC Algorithm 3 (Note this is commonly known as X9.19 Retail MAC)

MAC97974 ISO9797-1 MAC Algorithm 4

MAC97975 ISO9797-1 MAC Algorithm 5

ZPK PIN Block Encryption Key

PVKIBM PIN Verification Key, IBM 3624 Algorithm

PVKPVV PIN Verification Key, VISA PVV Algorithm

PVKOTH PIN Verification Key, Other Algorithm

 41

Accredited Standards Committee X9, Inc. - Financial Industry Standards (www.x9.org) contributed to the 42

above table. Key role names and descriptions are derived from material in the Accredited Standards 43

Committee X9, Inc's Technical Report "TR-31 2005 Interoperable Secure Key Exchange Key Block 44

Specification for Symmetric Algorithms" and used with the permission of Accredited Standards 45

Committee X9, Inc. in an effort to improve interoperability between X9 standards and OASIS KMIP. The 46

complete ANSI X9 TR-31 is available at www.x9.org. 47

48

Change 2: Line 1575 change to: 49

 50

9.1.3.2.15 Role Type Enumeration 51

Role Type

Name Value

BDK 00000001

CVK 00000002

DEK 00000003

MKAC 00000004

MKSMC 00000005

MKSMI 00000006

MKDAC 00000007

MKDN 00000008

MKCP 00000009

MKOTH 0000000A

KEK 0000000B

MAC16609 0000000C

MAC97971 0000000D

MAC97972 0000000E

MAC97973 0000000F

MAC97974 00000010

MAC97975 00000011

ZPK 00000012

PVKIBM 00000013

PVKPVV 00000014

PVKOTH 00000015

Extensions 8xxxxxxx

 52

Note that while the set and definitions of key types are chosen to match TR-31 there is no necessity to 53

match binary representations. 54

55

Change 3.1: Section 3.12 modify as: 56

 57

[…] 58

448 � CRL Sign 59

449 � Generate Cryptogram 60

450 � Validate Cryptogram 61

451 � Translate Encrypt 62

452 � Translate Decrypt 63

453 � Translate Wrap 64

454 � Translate Unwrap 65

 66
449 455 This list takes into consideration values which may appear in the Key Usage extension in an 67

[…] 68

 69

Change 3.2: Line 1591 change to: 70

9.1.3.3.1 Cryptographic Usage Mask Values 71

Cryptographic Usage Mask

Name Value

Sign 00000001

Verify 00000002

Encrypt 00000004

Decrypt 00000008

Wrap 00000010

Unwrap 00000020

Export 00000040

MAC 00000080

Derive Key 00000100

Content Commitment

(Non Repudiation)

00000200

Key Agreement 00000400

Certificate Sign 00000800

CRL Sign 00001000

MAC Verify 00002000

Generate Cryptogram 00004000

Validate Cryptogram 00008000

Translate Encrypt 00010000

Translate Decrypt 00020000

Translate Wrap 00040000

Translate Unwrap 00080000

Extensions XXX00000

 72

Change 3.3: Usage guide explanation of asymmetric concepts with symmetric keys 73

 74

Asymmetric concepts with symmetric keys 75

 76

The ‘Cryptographic Usage’ field is intended to adequately support asymmetric concepts using symmetric 77

keys. This is fairly common practice in established crypto systems: the MAC is an example of an 78

operation where a single symmetric key is used at both ends, but policy dictates that one end can only 79

generate cryptographic tokens using this key (the MAC) and the other end can only verify tokens. 80

Security of the system fails if the verifying end is able to use the key to perform generate operations. 81

In these cases it is not sufficient to describe the usage policy on the keys in terms of cryptographic 82

primitives like “encrypt” vs. “decrypt” or “sign” vs. “verify”. There are two reasons why this is the case. 83

• In some of these operations, such as MAC generate and verify, the same cryptographic primitive 84

is used in both of the complementary operations. MAC generation involves computing and 85

returning the MAC, while MAC verification involves computing that same MAC and comparing it 86

to a supplied value to determine if they are the same. Thus, both generation and verification 87

use the “encrypt” operation and the two usages cannot be distinguished by considering only 88

“encrypt” vs. “decrypt”. 89

• Some operations which require separate key types use the same fundamental cryptographic 90

primitives. For example, encryption of data, encryption of a key, and computation of a MAC all 91

use the fundamental operation “encrypt”, but in many applications securely differentiated keys 92

must be used for these three operations. Simply looking for an attribute that permits “encrypt” 93

is not sufficient. 94

 Allowing use of these keys outside of their specialized purposes can compromise security. Instead, 95

specialized application-level permissions are required to control the use of these keys. KMIP provides 96

several pairs of such permissions in the Cryptographic Usage Mask (3.12), such as: 97

MAC

MAC VERIFY

For cryptographic MAC operations. Although it is

possible to compose using a series of encrypt calls,

the security of the MAC relies on the operation

being atomic and specific.

GENERATE CRYPTOGRAM

VALIDATE CRYPTOGRAM

For composite cryptogram operations such as

financial CVC or ARQC. To specify exactly which

cryptogram the key is used for it is also necessary

to specify a role for the key (see section 3.6

“Cryptographic Parameters” in the normative

specification).

TRANSLATE ENCRYPT

TRANSLATE DECRYPT

TRANSLATE WRAP

TRANSLATE UNWRAP

To accommodate secure routing of traffic and

data. In many areas that rely on symmetric

techniques (notably but not exclusively financial

networks), information is sent from place to place

encrypted using shared symmetric keys. When

encryption keys are changed it is desirable for the

change to be an atomic operation, otherwise

distinct unwrap-wrap or decrypt-encrypt steps risk

leaking the plaintext data in the middle.

TRANSLATE ENCRYPT/DECRYPT are used for data

encipherment.

TRANSLATE WRAP/UNWRAP are used for key

wrapping.

 98

In order to support asymmetric concepts using symmetric keys in a KMIP system the server 99

implementation needs to be able to differentiate between clients for generate operations and clients for 100

verify operations. As indicated by section 3 (“Attributes”) of the normative specification there will be a 101

single key object in the system to which all relevant clients refer, but when a client requests that key the 102

server is able to choose which attributes (permissions) to send with it based on the identity and 103

configured access rights of that specific client. There is thus no need to maintain and synchronize 104

distinct copies of the symmetric key: just a need to define access policy for each client or group of 105

clients. 106

The internal implementation of this feature at the server end is a matter of choice for the vendor: 107

storing multiple key blocks with all necessary combinations of attributes or generating key blocks 108

dynamically are both acceptable approaches. 109

