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Abstract

Usually subtyping relations are defined either syntactically by
a formal system or semantically by an interpretation of types in an
untyped denotational model. In this work we show how to define a
subtyping relation semantically, for a language whogerational
semantics idriven by types we consider a rich type algebra,
with product, arrow, recursive, intersection, union and comple-
ment types. Our approach is to “bootstrap” the subtyping relation
through a notion of set-theoretic mod#lthe type algebra

The advantages of the semantic approach are manifold. Fore-
most we get “for free” many properties (e.g., the transitivity of
subtyping) that, with axiomatized subtyping, would require tedious
and error prone proofs. Equally important is that the semantic ap-
proach allows one taerive complete algorithms for the subtyp-
ing relation or the propagation of types through patterns. As the <
subtyping relation has a natural (inasmuch as semantic) interpre-
tation, the type system can give informative error messages when
static type-checking fails. Last but not least the approach has an
immediate impact in the definiticand the implementatioof lan-
guages manipulating XML documents, as this was our original
motivation.

exhibit an element of the model which is in the inter-
pretation oft and not ofs, even in presence of arrow
types (this property can be used to return informative er-
ror messages to the programmer); in the syntactic ap-
proach one can just say that the formal system does not
provet < s, and there may be no clear criterion to as-
sert that some meaningful additional rules would not al-
low to prove it. This argument is particularly important
with a rich type algebra, where type constructors inter-
act in non trivial ways; for instance, when considering
arrow, intersection and union types, one must take into
account many distributivity relations, such as, for exam-
ple,(t1 \Y f,Q) — s~ (f,l — S) AN (tg — S).

In the syntactic approach deriving a subtyping algorithm
requires a strong intuition of the relation defined by the
formal system, while in the semantic approachitis a sim-
ple matter of “arithmetic”. Furthermore, as most of the
formal effort is done with the semantic definition of sub-
typing, studying variations of the algorithm (optimiza-
tions, different rules) results much simpler (this is com-
mon practice in database theory where, for example, op-
timizations are derived directly from the algebraic model
of data).

Many recent type systems rely on a subtyping relation. 3. while the syntactic approach requires tedious and error-
Its definition generally depends on the type algebra, and  prone proofs of formal properties in the semantic ap-

1. Introduction

on its intended use. We can distinguish two main ap-
proaches for defining subtyping: tegntacticapproach and
the semanticone. The syntactic approach (by far the most

proach many of them come for free: for instance, the
transitivity of the subtyping relation is trivial, which
makes proofs such as cut elimination or transitivity ad-

widespread) consists in defining the subtyping relation by
axiomatizing it in a formal system (a set of inductive or
coinductive rules); in the semantic approach (for instance, Although these properties seem quite appealing, the tech-
[1, 3]), instead, one starts with a model of the language and hical details of the approach hinder its development: in the
an interpretation of types as subsets of the model, then de-semantic approach, one must be very careful not to intro-
fines the subtyping relation as the inclusion of denoted sets,duce any circularity in the definitions: for instance, if the
and, finally, when the relation is decidable, derives a sub- type system depends on the subtyping relation—as this is
typing algorithm from the semantic definition. generally the case—one cannot use it to define the seman-
The semantic approach is much more technical and con-tic interpretation which must thus be untyped; also, usually
straining, and this may explain why it has obtained less the model corresponds to an untyped denotational seman-
attention than syntactic subtyping. However when used it tics, and types are interpreted as ideals and this precludes
presents several advantages: the interpretation of negative types. For these reasons all
the semantic approaches to subtyping previous to our work
1. When type constructors have a natural interpretation in presented some limitation: no higher-order functions, no
the model, the subtyping relation is by definition com- complement types, and so on. The main contribution of our
plete with respect to its intuitive interpretation as set in- work is the development of a formal framework that over-
clusion: whent < s does not hold, it is possible to takes these limitations.

missibility pointless.



The starting point of this work is XDuce [7, 5, 6] a language following BNF productions:
for defining transformations of XML documents. XDuce is

. . o ) Types T:=a|C| paC
a functional language with an elegant definition and it pro- o -
vides many features and solutions that are interesting both combinations ¢ == A [ =C | CVC | CAC
from theoretical and practical viewpoints. Its type system Atoms Auw=T—->T|TxT|[b]|0]1

relies on the observation that the types of XML documents \here o denotes type variables aridranges over a set

can be rep_resent_ed_as re_gular tree expressions where thgs (atomic) basic type®. The syntax above corresponds
typing relation coincide with (regular) language member- 4 the types we have in mind for our language but is un-

ship. fit to the technical developments that follow: if we used
XDuce fits well the semantic approach to subtyping: as such a presentation, then we would be obliged to introduce
functions are not first class, values are just XML docu- some syntactic congruence over types allowing us to de-
ments, and subtyping is exactly regular tree language in-duceua.C' = Clua.C/a] (in order to account for recursive
clusion. In this work we present the functional core of types in definitions and algorithms) and, s@y= C' v C or
our languag€Duce (read “seduce”) which extends XDuce 1 = =0 (in order that algorithms, which proceed by saturat-
with first class functions, and makes boolean connectivesing some sets of types, terminate), etc. For this reason, and
(union, intersection, complement) explicit in the type alge- because the algorithms we define next work “sort-wise” (ar-
bra. We also recast XDuce features in a less XML-specific rows with arrows, products with products, and basic types
framework. This yields the first, in our ken, subtyping sys- with basic types), we rather use a (multi-sorted) algebraic
tem with recursive types and arbitrary boolean combina- presentation of syntactic types, which is equivalent to the
tions (interpreted as their set-theoretic counterpart). one above but tailored for the technical developments that
In XDuce a programmer can easily write overloaded follow. The advantage of the algebraic presentation is that it
functions, but the type system is not powerful enough to hugely simplifies the statement of precise theorems and it is
type them: as a matter of fact XDuce functions can be de- close to implementation; its drawback is that it results quite
fined in terms of a pattern matching that is very close to type technical and tedious. So a reader mainly interested in lan-
case. It seems an undue restriction not to allow different guage features can just skip to Section 2.2 and use, instead,
matching branches to return different types, so to have over-the BNF presentation above (modulo the implicit semantic
loaded functions. Therefof@Duce extends XDuce also for ~ equivalences for boolean connectives and recursive types).
it allows the definition of (late bound) overloaded functions
(see [2]). Shallow type expressions. We define the set of types
Since inCDuce one can express overloaded functions, as a fixpoint of a functor that constructs boolean combina-
and patterns (Section 3) can discriminate on types, then wetions of types over a set. More precisely, we considex,
are in the presence of a type-driven operational semantics the set oshallowtype expressions ove¥, whose elements
In this paper, we show how to apply the semantic subtyping are, intuitively, boolean combination of atoms of the form
in such a setting: as it is not possible to consider a model ofz — y, X y, orb, with 2,y € X. Without loss of gen-
the language before the type system is defined, we introduceerality, we consider boolean combinations that are sorted—
a notion of modebf the type algebréSection 2), start with ~ they separate, say, arrows from products—and in disjunc-
a non-computationdlootstrapmodel, use it to define first ~ tive normal form—i.e., finite unions of finite intersections
the subtyping relation, then the typing one, and finally the of atoms and negation of atoms—: it turns out that these
(operational) semantics of the language. One of the mainchoices simplify the algorithms. For a sétof atoms, we
results of this paper (Theorem 4.1) is that the typing relation can represent disjunctive normal forms dras elements of
endows the set of (well-typed) values of the language with & (Zf(A) x P;(A)) (WhereZ;(A) is the finite power-
a structure of model equivalent to the bootstrap model. set of A); each term of the union is represented by the pair
Finally, while the negation (complement) connective formed by the set of positive atoms and the set of negative
raises many difficulties in denotational models (e.g., the toms. For example V (b A ¢ A —d) V —e is represented
complement of an ideal is not an ideal) we avoid them by PY {({a}, @), ({b, ¢}, {d}). (@, {e})}. We use the letten
resorting to a purely set-theoretic notion of model. to range over sorta.(c {basic, prod, fun}).

Definition 2.1 (Shallow type expressions) The functors
Z and .7, from sets to sets are defined by:

2. Types
TX = Huyf(yf(%X)Xcng(ﬂuX))
2.1. Type syntax TreicX = B
We want to define the syntax of a type system that in- TpoaX = X?
e?funX = X?

cludes recursive, product, arrow, intersection, union, and
negation types but excludes ill-formed (i.e., unguarded) re- An elementz, y) of J0a X (respectively,Zun X) is writ-
cursions such aga.a V a. This can be obtained by the ten asz x y (respectivelyr — ).



Definition 2.2 (Type algebra) Atype algebras a set T to-
gether with an implicit bijection T— JT. Elements of
T (respectively, of T = Z;(Ps(Z.T) x Z:(T7,T)),
and of A, = 7, T) are calledtypes(respectivelyu-types
and atomic u-typeg. A typet is thus a triple ofu-types
(tbasic, tprod, ttun) that we write alsd(ty, ) u:sort-

This definition means that every shallow type expression o(z) = 7(z) if 7(z) € T ando(z) =

be unique: in this way we leave the implementation of the
type algebra free to choose whether to make two types such
aspua.a — o andufS.3 — (3 equal or not.

Definition 2.5 (Recursivetype algebra) A type algebrél’
is recursive if for every finite seX’ and every function :
X — T4+ X, there exists a function: X — T such that
(To)s(x)if r(z) €

over types is again a type, and conversely, every type can be” X.

seen as a shallow type expression over types.

Regularity. We can decompose a typec T to the set
of types it is built from (theb and the types just below a

constructor). Fot to be representable in a computer, the

transitive closure of this decomposition must be finite.

Definition 2.3 (Base, regularity) Let T be a type algebra;
for a typet = (tu)w:sort theplinth 3(¢) € T U B collects
all the elements of’ and of B that appear int seen as a
shallow type expression over T:

) =U, Upner, Usepun 3a)

3J(b) ={b}forbeB

:(tl — f,Q) = :(tl X f,Q) = {ﬁl,ﬁg}
Afinite setZ” C T UB is abaseif for all ¢ () C
2. Atypet is said to beZ-regular if J(¢ X itis
regular if it is Z-regular for some bas&’". A type algebra
is regular if all its elements are regular.

e Z,
) €

Theorem 2.4 Let. 2" be abase. The set & -regular types
is finite.

The proof of this and all other theorems can be found in the

extended version availablelatt p: / / ww. cduce. or g.

The notion of base will be an important ingredient for
proving the termination of the algorithms we define. Indeed,

Convention 2.6 From now on, we will fix aegularandre-
cursivetype algebra T and work with it.

Finally let us introduce some notation that allows us to re-
cover the BNF presentation given at the beginning of the
section:

Notation 2.7 (Boolean connectives) We define the follow-
ing abbreviations for types:

def def

0= (Ou)u:sort 1= (1u)u:sort
def def
A2 = (tL A 12)usont ttvit? = (tL V) son
def
-t = (_'utu)u:sort
where for every sort, we have:
def def
0, = o 1, = {(9,9
L v = {(2,2))
thviz =t ue

1&,5 1:,3"_6* {(P*U P2 N'UN?)| (P!, Ni) et}
“utu £ N\ {{a},2)|a € N}U{(2.{a}) |a € P}

(P,N)€ty

The reader can easily check that the definitions above sim-
ply correspond to the intuition of types as multi-sorted
boolean combinations in disjunctive normal form in which
boolean operators are applied component-wise. So for ex-
ample the notation for negation is obtained by a simple ap-
plication of De Morgan’s laws.

the algorithms proceed by saturating some sets of types viaConvention 2.8 We identify an element € A, with

some operations; to prove the termination, it is enough to {({a},2)} € T, and an element,
prove that all the generated types belong to a given base(

(which depends on the arguments of the algorithm).

Recursive type algebras. LetT be atype algebra. Re-

cursive types are introduced as the solutions of systems of

the form{xy = m;...;z, = 7,} where ther; are ei-
ther types (i.e., elements df) or elements of7 X with
X = {x1,...,z,}. A solution is a substitutionr from

e T, witht =
ty )uwsot € T wWheret,, = t,, foruw’ = vandt,, = 0, for
u' # w. This gives natural inclusions AC T, C T.

With this convention, every-typet,, can be written:

Vo Aer A

(P,N)€t, a€P a€EN

ty =

(we omit theu in =, in such an equation when no confusion

variablesz; to typest; that makes the equations hold; a is possible) and a typecan be written as a (disjoint) union

substitution is formally a functiomr : X — T, and
Jo : X — T = JT is its extension to shallow ex-

pressions oveK . Note that we do not require a solution to

of u-types:

t=\ tu

w:sort

Types are products rather than coproducts as we want to consider het2-2. M odéels and subtyping relations

erogeneous combinations of types. For example, consider the type of inte-

To define the subtyping relation, we must start by giving

ger listspl.(intx?) Vv nil. This expression denotes a type that is solution of some meaning to basic types. In the syntactic approach this

the equation

z = ({({nil}, @)} , {({(int,2)}, @)}, &).

Note that the first two projections of the tuple solution are not empty.

is done by fixing a subtyping relation for these basic types.
In our semantic approach, this is obtained by choosing an
interpretation of atomic basic types as sets.



Definition 2.9 (Interpretation of B) An interpretation of Models. Consider the type algebfia For this algebra we

B is a setC of constantgogether with a functio[] : have a class of possible premodels that vary according to the
B — 2(C). interpretation of arrow types of the algebra. Each premodel
induces a subtyping relation. Now among all these premod-

Convention 2.10 From now on we will always refer to a . . ; )
. : . els we select those whose induced subtyping relation satis-
chosen fixed interpretatiofC, #[_]). Moreover, for each X ;
fies a given property and we call thenodels the property

constantc € C, we assume the existence of an atomic is that the subtyping relation behaves “as if” arrow types
basic typet. € B such that,(i) ¢ € ZA[t.] and, (ii) yping yp

o were interpreted extensionally, as sets of binary relations
b € B. (#[tc] S #[b]) or (#[t.] N #[b] = 2). (graphs of possibly non-deterministic and non-terminating
] ) ) functions). For a premode¥, we write 2 = 2 U {Q}
P_remodels: strgctures and |nterpretgt|ons. Contm_— wheref) is a distinguished element that does not belong to
uing the semantic approach to subtyping, we have to inter- ¢, (intuitively, it represents the type error).
pret all types as subsets of a given structure.

Definition 2.15 (Extensional arrows) Let T be a type al-
gebra and(2, []) a premodel of T. Thextensional inter-
pretationof an atomicfun-type (t — s) € A is defined
as?3: £’[[t—>sﬂ = {f C 9 x 9q |V(d1,d2) € f.dy €
[t] = d2 € [s] }. We naturally extend this definition to

Definition 2.11 (Structure) A structureis a set 2 parti-
tioned into Zoasc, Pprod, and Zyn, together with two bi-
jectionsdpasic : C — Zhasic aNd dprod : 2 — Zprog SUCh
that the orderdprod(di, d2) > di, Oprod(di,d2) > dg is

well-founded. .

everyfun-typetsn € Tsun:
Convention 2.12 In a structure, the bijection®,oq and &t _ &Ela Ela
Dvasic are kept implicit, so that we can writeZproq = 22 ltron] = Uip et (Naep Elal\Uaen €lal))
and Zpasic = C. Definition 2.16 (Model) A premodelZ is a modelif for

What we do next is to use a structure to define a set theoreticeveryfun-typetsn, one has{trun] =2 <= &tun] =92.
interpretation of our type algebra.

Definition 2.13 (Premodel) Let T be a type algebra. A
premodelof T is a structureZ together with an interpre-
tation function[ ] : T — £2(2) that satisfies the following
propertieg (forall b € B, t,t1,t € T,u : sort):

This restriction is meaningful for at least three reasons :

1. It makes the subject reduction property for the language
in Section 4 hold.

2. It makes the set of all well-typed values of the language
be a model.

1. [b] = A[b] < ic;

5 Etﬂ i ]][[:H I H@ias[[? 1€ Dores: 3. It matches the underlying intuition we have of function
3' [[tl = ? ] C éf N spaces as sets of possibly non-deterministic and non-
4 [[ti v tgﬁ :_[[tl]}u&, O terminating functions and of arrow types as constraints.
5. [ti Atz] = [t1] N [[tzﬂ; The following theorem gives a more explicit condition, that
6. %ﬁt]]]] - g\m; will be used in next section to derive a subtyping algorithm:
7. [1.] = 2.

Theorem 2.17 A premodel? is a model if and only if for
all finite subsetq¢, — s;};,c;r and {t;. — s;-}je] of Awun
one has:

As we see there is no real restriction on the interpretation of
the arrow types as this is done at the levehaidels The
main reason for the definition of a premodelTofs that it _ _ , ,
induces the following subtyping relation dn Nier(ti = ffz><§vvje,}],(t;rg 5j) <=
Definition 2.14 (Subtyping) Let T be a type algebra and Jjel {v]]/_g feftgl SViep t;) or (/\ieI\I, s < 5;.)
(2,[-]) a premodel of T. The subtyping relatighy in-
duced on T is defined as follows: The proof of this theorem relies on the observation that
Eft = s] = PCaxaq([t] x Caq[s])) (WhereCgF is
<g C . Q ol

t<os < [ c[s] E\ F, that is the complement df with respect taZ) and

The associated equivalence is written,. on the following lemma:

Itis straightforward from its definition that » is a preorder
relation. Note thatl 4 is determined by the equivalence
class of0, because¢ <4 s & t A s ~4 0. Hencefor-
ward we will omit the subscrip? of < when clear from / /

= 1 (X xY; X xY])=
the context. m( X Yi)\ U( i * i)

Lemma2.18 Let P and N be two finite sets andX;);cp,
(Y)icp, (X;)jeN, (Yj’)jeN be four set families. Then:

i€P JEN
2This definition implies[0] = @. To make the use afyroq explicit,
the second property should be refid x t2] = {prod(d1,d2) | d1 € 3The property in Definition 2.15 is one particular choice, but other
[t1] , d2 € [t2]}. Moreover, because of the equality,, A (21 — choices are possible. For instance, in [4] we proposed a definition with-

t2) = t1 — t2, the condition][t; — ¢2] C Zun is redundant and added  out (2, and obtained a slightly different definition of model.
just for clarity.



e if u = prod then for everyN’ C N:

U |(Nxy U xpxvy U v ks

N'CN \ ieP JEN' ieP  JEN\N’ /\t A /\—|t' €R or /\ s A /\—ls' eR;
(txs)eP (t'xs’)EN (txs)eP (t'xs’)EN\N/,
2. 2x)cl]2(X)«=3FjeN.[]XiCX;
icP JEN icP e if u = fun then there is som@’ — s’) € N such that
and the equivalence also holds fgf; instead of%. (' A Ny—s)ep ™t) € R and for everyP” C P
2.3. Universal model and subtyping algorithm YA /\ ~t| er or /\ sA-s | € R,

So the model condition is sensible; but is it not too re-
strictive? Does there exists at least one premodel satisfying
this condition, and can we exhibit an algorithm to compute Theorem 2.21 Lett, s be two types. Thert: < s if and
its induced subtyping relation? The answers are all positive; only if there is a simulatiom? such thatt A =s € R.
note that for cardinality reasons, there is no strucfaregith
Dhun = P (9 x Dg), but Lemma 2.18 suggests to restrict Let us assume that the inclusion between an intersection
to finite binary relations, that is takérn = 2 (2 x %q). and a union of atomic basic types is decidable. Given a

typet, deciding whether a typebelongs to some simulation
Theorem 2.19 (Universal model) Let.# be the premodel  can be done in a classical whystart from the seft} and
defined by interpreting functions as finite binary relations; try to saturate it according to Definition 2.20 until reaching
that is, its structure is the set of all finite terms defined by: a simulation; because of the disjunctions in the definition

d = ¢ ceC of a simulation, the algorithm may have to fork and check

| (di,ds) different branches. The termination proof is easy.2éte

| {(d1,d),...,(dn,d)} di € Fo=SU{Q} a base such thatis 2"-regular; then all the types that will
be added to the current set are algoregular, and there are
only a finite number a such types.

2.4. Destructors

(t—s)eP’ (t—s)eP\ P’

and the interpretation of arrow types is defined by:
[t = s]={{(d1,d1),. .., (dn,dp,)} | di € [t] = d} € [s]}
Then: 1. the premodel” is a model;

2. it is universal: for every mode¥, and for all To define the typing of patterns and expressions, we in-
tita €T <gty = t; < to) troduce type destructors, which are somewhat dual of type
3. there is an algorithm that decidestif <. ts. constructors<, —. Following our semantic approach, they

will be characterized semantically (up 405 equivalence).
The universality property means that is the model that ~ This means that the destructors depend only on the subtyp-
induces the best possible subtyping relation. Note that evening relation induced by the (pre)model.
if in & types are sets of functions with finite graphs this o
does notmean that a language of this framework can only Theorem 2.22 (Projection) Let & be a premodel,2” a
express functions with finite graphs (see Section 4). Fur- Pase and a 2 -regular type. If the inequality <o = x 1
thermore.# is not the only universal model: most of the Nas a solutionz, then it has a least solution, writter, (¢),
reasonable (and more complex) models we can think of areWhich is alsa?"-regular. Moreover:[m (¢)] = {d | 3dz €
universal and while there exist non-universal models, their Z- (d1,d2) € [t]}. And similarly form,.

construction is not trivial. Finally note that we are consid- —
. PR Theorem 2.23 (Application) Let 2 be a modelt andt’
ering modelf the type algebrain principle these are not ) : .
g ype aig prncip S two types. If the inequality <4 t' — =z has a solution

Is of the | .g. i i ica- . ; i
g:)c;}dgnse?er;eem;nguage (e.g. there is no notion of applica z, then it has a least solution, writtehe t’. Moreover:
[tet'] ={da|3f € &ttun]- Id1 € [t']. (d1,d2) € f}.

The algorithm and the proof of universality involve the

notion ofsimulation which captures the idea of a coinduc- gy yjicit formulas forr; ande are given in the extended ver-
tive set of rules (greatest fixpoint). The intended meaning is gjon of the article; however, the formal development only
that a type is in some simulation if and only if its interpréta- heqqs the semantic characterizations above and some prop-
tionin the universal mode¥” is the empty set. So the prob- g ies e can deduce immediately, such as the monotonicity
lem of finding a simulation containingA —s is equivalent of 1 ands, or the fact that A\ ¢; — s;) e s is defined if and

to checkingt <. s. The actual definition of a simulation onlyif s <o \/ ti.

is motivated by Lemma 2.18 and Theorem 2.17. Actually, everyprod-type can be decomposed as a finite

Definition 2.20 (Simulation) A simulationis a set of types ~ Union of atomigprod-types:

RCT s.t.forall(t,)vson € R, u:sort and(P, N) € t,: 4we prefer to give the mathematical arguments necessary to prove a
class of algorithms instead of giving a single fully explicit algorithm: this
e if w = basicthen: ﬂ %’[[bﬂ - U %’[[bﬂ; allows many small variations and heuristics, such as the choice of which
beP beN types to add at a given step of the algorithm, or caching mechanism.



Theorem 2.24 There exists an operater : T — 2;(T?)
such that, for every bas&™ and everyZ -regular typet:

1.tA 1pr0d ~ V(tl,tz)Gﬂ(t) tl X 1‘121
2.Y(t1,t2) em(t).Vi=l, 2.(¢; is Z-regular) and(¢; % 0).
3. Pattern matching
In this section we define patterns and their semantics.

Even though patterns are part of the language syntax, we

can define their semantics in an arbitrary premodel.

3.1. Syntax

Definition 3.1 (Pre-patterns) Given a type algebra T, and
a set of variabled/, a pre-patterrp on (V, T) is a possibly
infinite termp generated by the following grammar

p = capturex € V
|t type constraint; € T
|  piApy conjunction
|  m|p:  alternative
| (p1,p2) pair
| (z:=¢) constante € Cwith [t.] = {c}

Given a pre-patterpon (V, T) we useVar(p) to denote the
set of variables o¥ occurring inp (in capture or constant
patterns).

Definition 3.2 (Patterns) Givenatype algebra T, and a set
of variablesV, a pre-patternp on (V,T) belongs to the
set of (well-formed) patternB on (V,T) if and only if it
satisfies the following conditions:

1. the number of distinct subtermsyoi finite (regularity);

2. for every infinite branch gf there are an infinite number
of occurrences of pair nodes;

for every subternp; A p» of p we have Vap;) N
Var(p2) = &, and for every subtermy |p» of p we have
Var(py) = Var(ps).

3.

In short, patterns are pre-patterns thatare regular trees,
(i¢) come equipped with a well-founded order (defined by
p1 A\ p2 > p1,p2 andp1|p2 > p1,p2), and(m) in which
variables in conjunctions and alternatives must satisfy some
reasonable conditions. The second condition in particular

means that patterns have to deconstruct values sooner or

later, thus ensuring the termination of pattern matching.

3.2. Dynamic semantics

This semantics of pattern matching will be used to de-
fine in Section 4 the operational semantics of the language.
It is defined here with respect to a premodel of the type al-
gebra at issue. More precisely, we denotelffy the result
of matching an element € 2 with the patternp. This
yields either a failure, denoted I, or a substitution of the
variables o into 2. Formally it is defined as follows:

Definition 3.3 (Semantics of pattern matching) Given
d € 2 andp € P the matching ofl with p, denoted byl/p,

is the element o?V2?) U {Q} defined by induction on the
lexicographically ordered pai(d, p) as follows:

d/t _— if d € [1]
d/t — 0 if d € []
d/x = {z—d}

d/p1 A p2 = d/p®d/py

d/p1|p> = d/;m if d/p1 #Q
d/p1|p2 = d/p if d/p1 =Q
(di,da)/(p1,p2) = di/p1®@da/p2

d/(plap2) = Q if d g @prod
d/(xz:=c) = {zc}

wherey; ® 9 is 2 wheny; = Q or v = 2 and otherwise
is the element € gPem1)LPom(12) gy ch that:

Y(x) = m() if € Dom(y1)\Dom(2)
(@) = "e(z) if z € Dom(y2)\Dom(1)
Y(z) = (m(@),12(z)) ifz € Dom(y1) N Dom(yz)

This definition is rather intuitive. There are two possible
causes of failure for a pattern matching: a type constraint
which is not satisfied by the matched object, or a pair pat-
tern applied to an object which is not a pair. The alter-
native patterrp;|p2 has a first-match policy: the object is
matched againgt; if and only if matching withp, raises a
failure. When a variable appears on both sides of a pair
pattern, the two captured elements are paired together. The
pattern(z := c) usually appears in the right-hand side of
an alternative pattern to give a default value when the left-
hand side fails; for instance, the variahlan the pattern
(z,1)|(z := ¢) extracts the first component of a pair, or is
bound to the constantwhen the matched value is not a pair.

3.3. Examplesof patterns

To demonstrate the power of our pattern algebra, we
show by some examples how recursive and pair patterns
may be used to work with (heterogeneous) sequences. In
this section, sequences are codefaLisp; a sequence is
either[] (a constant witfft;;] = {[]}) or a pair(head tail).

1. When applying the recursive pattegy (z A
t,1)|(1,p1) to a sequence, the variahtecaptures the
first element of type in the sequence. The operational
behavior ofp is simple: assume that the sequence is a
pair (headtail); if headis of typet, thenx captures it;
otherwise, the matching continues wittl. Note that to
capture the last element of typan a sequence, it suffices
to reverse the order of the patterns in the alternative.

The patterrps = (x A ,p2)|(1,p2)|(x := []) captures
from a sequence all the elements of a given tyaad
returns inx the sequence of these elements. Let us de-
scribe the operational behavior. If the sequence is a pair
(headtail), there are two cases;hkadis of typet, then

x capturediead the matching continues withil return-

ing a sequence im, and finally the two values fot are
paired (that isheadis put in front of the returned se-
quence), as stated by the last casedDefinition 3.3);

2.



if headis not of typet, then the matching simply con-  of matching. We now use all these notions for the definition
tinues withtail. If instead the sequence is not a pair (the of the functional core of th€Duce language. A detailed
end has been reached) the empty sequence is returned. description of the language and an interactive prototype are
available att t p: / / ww. cduce. or g.

3. The patterrps = (z,(1,p3))|(z := []) captures from a
sequence all the elements whose rank is odd (first, third,4.1. Syntax
fifth, ...). The setsC, V andP of constants, variables and patterns

4. The pattermpy = (x A t1,(z A t2,1))|(1,p4) captures have already been introd_uced_. I@td_enote a set dfpera-
from a sequence the first two consecutive elemdnts  tors. The seff of expressions is defined by the syntax:

of type t; and d, of type t,, and returns the pair ...— . constante € C
[D)I(1,p}) would return instead a sequence of length 2 | 2 variablez € V
with these two elements, that(g;, (dz, []))- | pfmsiiita=en) (7) abstraction
5. The patternp; = (z A ,q)|(1,p5) with ¢ = (z A | ereq application
t,q)|(z := []) captures from a sequence the first and | (e1,e2) pair
longest consecutive subsequence of elements ofitype | matchewithpi=-e;| po=-eo pattern matching
3.4. Static semantics and pattern algorithms Before defining the operational semantics of the lan-

guage we need to define its type system. Indeed the com-
putations of our language are completely type-dependent.
This is so because the pattern matching semantics is defined

Theorem 3.4 There is an algorithm mapping every pattern for an int_erp_re;ation of types as sets of values_, and this in-
pto atypelp§ such thaf]pf] = {d € 2 | d/p # Q}. terpretation is induced by the type system. This may result
clearer if we observe that with this syntax for every type
Theorem 3.5 There is an algorithm mapping every pair one can define its characteristic functipnas follows:
(t,p), wherep is a pattern and a type such that < ]pf, to (1—bool)
a type environmerttt/p) € TV¥®) such that](t/p)(z)] = Hx
{(d/p)(z) | d € [t]}. It is then obvious that it is not possible to give the semantics
of this expression without having associated a type to each
In other terms]pf is a type formed by all and only those expression (or at least to each value).
elements that make succeed. It is a subset of this type, As the semantics depends on the type system, and the
then(t¢/p) denotes the type environment of the variables of rules of the type systems are motivated by the semantics, we
p, as it associates to each variablef p theexacttype of its firstintroduce these two objects formally and then comment
values, when the pattern is matched to an element of typethem and the constructs of the syntax above together.
t. As the previous section demonstrates, our pattern algebray o Type system
allows to express complex extractions, and we get exact typ-
ing even for them, as opposed to XDuce pattern matching
algorithm [6] where variables capturing subsequences that e an arbitrarybootstrapmodel Z; it induces a subtyping
are not in tail position do not get exact typing (the idea un- relation<, which in turns defines the type operatars
derlying the algorithm of each theorem is to derive a system ande, and the pattern matching operatofp);
of equations on types from the semantic condition, and use
a general algorithm to solve it, as described in Appendix A).
For example, consider the patternof Section 3.3. This
pattern succeeds if and only if it is applied to a sequence
containing at least one element of typdndeed, the algo-
rithm returns foflp; § a types ~ (¢x1)V(1x s). Consider
now the typeu of the sequences alternating elements of type The typing judgment’ - ¢ : t is defined by the set of rules
t; andty, i.e.u = (t1x (t2 x u)) V[, and the type environ-  in Figure 1. The environmentsare partial maps from vari-
ment returned by applying; to uA]p:§ (which definesthe  ables to types. We work modute-conversion and always

To give typing rules for pattern matching in the language,
we need to study the behavior of patterns on types.

(z).match z with t=true| ~t=-false

To define the type system, we have to fix:

o for each operatos € O, a typet, € T and a mono-
tonic functiono[] : {t € T | ¢t < ¢,} — T. Intuitively,
the typet, denotes all the values on which the operator
can operate, anglt] denotes all the possible results of
applying the operator to a value of type

type ofz, i.e. the only capture variable pf). If we write ¢ suppose that when two environments are concatenated, their
for t; A t, then the algorithm returns fdw A {p1§/p1)(z) domains are disjoint.
the typet, if t; < t, and the type] V t} otherwise. 4.3. Small-step operational semantics
4. The CD | Now that, thanks to the bootstrap model, we defined the
- 1he uce language well-typed terms of the language, we can select among them

In the previous sections we defined the type system, thethe set?” of values More precisely we distinguish among
subtyping relation, the set of patterns, and a semantic notionall closedandwell-typedexpressions the following ones:



(COHSD (Var) I'kFe:t S to (0 ) 'k ey . tl 'k €g . t2 ( air)
ket FkFz:T(x) T'Fo(e) : oft] P T'F (e1,e2) 1 t1 X o P
(for t= /\i:l..n ti — Si)
it Lt — s V) Dy (x:t), (f:t)Fe:s; . .
- ,]_ - J ) - - (abstr) 'k e : f,l d f,g 'k €9 : tl (appl)
[ pftimsiistn=sn) (1) e : tAN =1 (= 8)) Tk eres :ta
(for sy = sA1p1f, s2 =sA -] p1f)
Fte:s<pSV1p2§ T, (si/pi) ety Do <
: (match Ire:isst (subsur
I' - match e with p1=e1| pa=res : V{ilsméO} ti F'ke:t
Figure 1. Typing rules
v o= c| pftosieste =) (1) e | (v,02) system is semantic in the sense that the typing judgment

F e : ¢t only depends on the-equivalence class af Oper-
ator applications are precisely typed:] can be seen as an
abstract version af( ), describing its behavior when only
Theorem4.1 Let [t], = {v | F v : t}. The pair the type of the argument is known.

(7,[-]) is amodel and it induces the same subtyping re-  The matching expression follows a first match policy:
lation as the bootstrap model. the second pattern is used if and only if the first one failed to
match the value (thatis,/p; = €2). Eachp; binds the vari-
ablesVar(p;) in e;. To understand the typing rulenatch,
recall that(¢/p) is the typing environment that maps ev-
ery variablex € Var(p) to the type formed by all the val-
ues thatr can assume when a value of typés matched
against the patterp. For the pattern matching to be ex-
haustive, the type of the matched value must be a sub-
type of {p1 § v 1 p2f. Because of the first match policy,
the value has actually typeA ]p:§ whenp; succeed to
match it, and type A - ] p; § otherwise. If a pattern cannot
succeedq; ~ 0), the result of the corresponding branch is
discarded: this is useful when typing an overloaded abstrac-
tion (some branches may be useless when checking under a
given constraint in the interface, and their result types must
not be taken into account to prove the constraint at issue:
see the example farther on).

Less standard is the definition of functions. The expres-
sion p f (i—s1i-5ta=sn) (1) e denotes a possibly recursive
definition (asf may occur free ire) and it intuitively cor-
responds to the least fixpoint af . \x.e; the arrow types in
an abstraction are constraints on its behavior. Together with
dpattern matching, they alloyto be an overloaded function.

The rule (abstr) may seem overly complicated; it is a
refined version of:
Cll:=[110(Cl]) [ (Cl1e) | (eCT) [ Clle | eC] | AT (e 20 (F: A 8 E e 8
(match O ] with pyoser| pamses) V)T, (z: ), (f: Nt = si) Fe:s;
T l— uf(tl_’sli,‘w%tn_’sn)(z).e : Atl — S;

The type system gives a natural interpretation of types as
sets of values, and it turns out thétis indeed a model.

This result depends on the presence of multiple arrow types
in abstraction interfaces; for instance, without these over-
loaded functions, a relation such &5 — s1) A (t2 —
$2) =~ (t1Vta) — (s1As2) would hold in¥’, and we would
have to adapt the definition of model to get a corresponding
property.

Two important consequences of this theorem are(that
avalue is of type if and only if it is not of type—t, and(i7)
t < s really means that all the values of typare values
of type s. Since the type destructoss ; and the pattern
matching operators on typ@g§ and(¢/p) depend only on
the subtyping relation induced by the (pre)model, then one
can reinterpret their meaning in terms of sets of values.

The operational semantics of the language is given in
Figure 2, where is a special object denoting a type er-
ror, which is not an expression of the languaggy is the
substitution that results from applying patterio v, as in-
troduced in Definition 3.3 for an arbitrary premodel (note
that the definitiorv/p depends on the modéf, hence on
the type systemk[o] is the application of the substitution
o to the expression (the standard substitutigl /] is a
special case in which the pattern is a capture variable); an
finally C[ ] denotes an evaluation context, defined as:

(abstr)

For each operater, we fix a binary relation®C [t,]., x . . . .
which probably looks more familiar. In this form, it

E such that: if- v : £, < t, andv = e thenk- e : oft]. is the standard rule fon-abstraction, the body being
4.4. Commentarieson the language, itstype system type-checked once for each constraint given in the ab-
and its semantics straction. A closed and well-typed abstraction =
The language syntax has constants, variables and pairsy f (11=515-t2=32) (2).¢ is a value of the language, so for
which are used as customary and do not deserve any parany typet, one must have eithérv : ¢ ort v : —t; with the
ticular comments. Thésubsum rule implies that the type  (subsun rule, one can prove thathas typel — s if and



o(v) — e if oty >e
V102 —  elv/ f;va/7] if v = Mf(”')(x)-@
Reductions match v with py=e1| po=e2 — e [v/p1] if 'U/pl #Q
match v with py=e;| pa=e2 —  e2[v/p2] if  v/pr=Qv/ps #Q
0[61] — 0[62] if €1 — €2
o(v) - Q if Fou:t,
Errors v1v2 - O ?f U1 € hun
match v with py=-e1| po=es — if v/pr=Q,v/p2=Q
Cle] — Q if e—Q

Figure 2. Small-step operational semantics

only if At; — s; <t — s. But when this is not the case, easy to prove that well-typed programs cannot go wrong:
the (abstr’) rule does not prove that v : =(¢t — s). This ) .
is exactly the purpose of the conjunction of negative arrow | h€orem 4.3 (Subject reduction) If e : Z, then
typest’ in the rule(abstr). (1) e~ Qand
We next show an example to illustrate the need of dis- (2) e = ¢’ impliest- ¢’ : t.
carding useless branches when typing a pattern matching in ) ) )
the body of an overloaded function. Consider the typing of: Note that the second point (preservation of typing) duss

i . i o hold for the type system witlfabstr’) instead of(abstr)
(int—bool;bool—int)
wf (t).match z with int=>true| bool=3 while the first one (absence of type error) of course does.

When checking the first constraint of the interfage,—  Though not as important as the subject reduction property,

bool, the pattern matching is typed under the assumption the following result shows that the circle is really complete:
x:int; since the first branch of the match accepts any value

of typeint, then the second branch is useless (this corre- Theorem 4.4 Lett; andt; be two types such thaf e ¢, is
sponds tos; ~ 0 in rule (match). If we were obliged to ~ defined. Theni- v : ¢y ety < Juy, va. (For ) A(F vz
take its result typént into account, then we could not prove  t2) A (viva — v).
the constrainint — bool, but justint — (bool V int). 4.6. Tvpina algorith
The abstraction interface can be used to express fine- """ yping gor!t ms ) ) ]
grained constraints on the behavior; let us show this by  For the type-driven dynamic semantics to be effective,
an example. Leb andempty be two atomic basic types =~ ON€ must be able to deC|d_e thge-checkingroblem for
(for instance.empty = t;) andt, s two types such that thevaluesof the language; in other terms one must be able

t = sV empty ands = b x t. Values of type can be seen to decide if for a given type and valuev, - v : t holds.

as lists of elements of typle(with a terminator irempty), Note that as is a value, it is by definition a well-typed ex-
and values of type are non-empty lists. A concatenation Pression. Here is a naive algorithm. First determine the uni-
function can be written: verseu of v. The problem is then to check if there is some

(tXt=1) (1) match = with (P,N) € ty such thatva € P.v € [a] andV¥a € N. v &
wf (é)mﬁy%)i?l [a]. If v is a constant, the test{c € £[b]) are easy. If
| ((headt,ail) ¢)=(headf((tail,¢)) vis an abStraCtior}l_Lf(tl_’sl;“';tn_’sn)(x).e, the condition

’ ST (v € [to — so]) simply means\t; — s; < tog — so.
But we can use a stronger constraint in the interface —and ¢ |
force a better type (strictly smaller tham ¢ — ¢t)— such as (v, € [t1] andvs € [t2]), hence two recursive calls.

((£x ) A=(emptyxempty) — s ; (emptyxempty) — empty) For the static semantics to be effective, one must be able
and leave the rest unchanged: the function still type—checks.to decide theype-inferenceroblem for theexpressionsf
Thus besides to type the union of different expressions,

overloaded types can also be used to give a finer descrip-
tion of the behavior of a same expression.

is a pair(vy, v2), the condition(v € [t1 x t2]) means

(fOI’t = Ai:lHn t; — Si)

4.5. Properties NEZ it s (T (et () e <
Theorem 4.2 (Subsumption eimination) LetT IF e : ¢ it £t =8 (T k), (fH)IFe:w < s

denote the judgment defined by the rules in Figure 3 plus| T Ik pf(=siitn=s) (g e : t ANy =) — o))
the rules in Figure 1 without (abstr), (appl) and (subsum). If

I'F e : t then there exists a tygé < ¢ such thaf' IF ¢ : ¢/. Plrei:ty T'lFes:ts
I'IF €169 : tl [ t2

Using a substitution lemma and the semantic characteriza-
tion of the pattern matching type operatoyp), it is very Figure 3. Semi-algorithmic rules



the language; that is if for a given expressigrthere ex-

ists a typet such that- e : ¢t holds. Theorem 4.2 is a
step towards an algorithm, as it removes the only typing
rule not associated to a syntactic construction in the lan-
guage. Thud- is syntax-directed, but it does not satisfy
the subformula property sindabstr) does not impose the
choice of the negative arrow types. Therefore this rule may
require the algorithm to backtrack, possibly infinite many
times. As these negative arrow types are mainly a technical
trick to make the subject reduction theorem hold, one may
consider instead dibstr) the more restrictive ruléabstr’)
discussed before, and we get immediately a (not complete)
type-inference algorithm.
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A. Pattern algorithms

Definition A.1 LetV be afinite set of variables, writter,

a1, ag, B, .... Aright-hand side is either a typee T, a
disjunctiona V as, a conjunctiony; A as, a negatiorna,

a producta; X ag, or a variablea. A system o/ is a
mappingsS from variables to right-hand sides. The system
is also written(a = S(@))aev -

10

A semantic solution for this system is a mapping
V — Z(2) such that for every € V: s(a) = [t] when
S(a) = t, s(a) = s(a1) U s(az) whenS(a) = ag V ag,
s(a) = [a1] N [ee] whenS(«) a1 A ag, s(a)
2\s(a1) whenS(a) = naq, s(a) = s(a) X s(az) when
S(a) = ag X az ands(a) = s(ay) whenS(a) = ay. A
syntactic representation of a semantic solution is a mapping
o :V — T such that for every € V, [o(a)] = s(«).

For a given systen$, we writea ~ [ if S(a) is ei-
ther the variables or a negation,disjunction or conjunction
whereg3 appears.

Theorem A.2 (Guarded systems) Let S be a system. As-
sume that the relation» has no cycle. Thefi has a unique
semantic solutior, and there is an algorithm to compute a
syntactic representation of

Theorem A.3 Letp be a pattern; the semantic condition in
the definition of] p{ is equivalent to the following guarded
system of equations (the variables are {ip&f for the sub-
termsp’ of p):

[€3) =1 WilpeS = WSV IpsS§
(3 =t Wi Apf = I §ATpef
lz:==0f =1 Up,p2)§ = 1§ x 1pa§

By combining the two previous theorems, we get an algo-
rithm to comput€ pS.

Theorem A.4 (Positive systems) A system without nega-
tion and intersection has a smallest semantic solution
(2(2)V being ordered by pointwise inclusion), and there
is an algorithm to compute a syntactic representation.of

Theorem A.5 Letp be a pattern{ a type such that < 7p§
andz € Var(p). Let 2" be a base containing and all

the 1p'( for the subtermg’ of p. The semantic condition
in the definition of(¢/p)(x) corresponds to the smallest
solution of the following positive system (the variables are
the (¢'/p’)(x) for the subtermg’ of p and the 2 -regular
typest’):
(t'/z)(x)

tl

(t'/pilp2)(x) = ((EAlp1S)/ 1)@V ((EA=] p1if)/p2) @)
(t'/p1 Ap2)(x) = ('/pi)(x) if 2 € Var(p;)
t/(up)) (@) =\ (ta/p1) (@) X (t2/p2)(2)
(ta,t2)Em(t) if zeVar(p,)NVar(ps)
t'/(p1,p2))(x) = (m(t')/p1)(z) if z€Var(p:)\Var(ps)
(t'/(p1,p2))(z) = (m2(t')/p2)(z) if z€Var(pz)\Var(p:)
t'/(x =) (x) = t. ift/ 20
t'/(x:=0c))(z)= 0 ift/ ~0

(formally, we have to introduce a finite number of extra vari-
ables, because our definition of a system has only binary
disjunctions or products of variables on right-hand side)

By combining the two previous theorems, we get an algo-
rithm to computet/p).



