
FpML Validation
Joint proposal from UBS Warburg,
University College London, and
Systemwire.

���������
	��� ���
�
����� ��	��� �����������! ���"�#%$&��')(*����+�,���-�.
/����0���
1��
2����3���� (*	�" 45-�����-6��7678���5�
1� 8#%$:9<;=.

'>����?����8;=	����6#%$:��'@(*���5+�,��5-�.
AB�����
��"�A�,���#%$:9<;C.
9< ����
�5���
���6D&���E��FG�
1� 8#H'>���5����76FI�
����.

 Date: 25/06/02

 Page 2 of 62

Change History:
 �

����� ���	��
����� ����������� ����������������
������! "�#�!���
$&%&'�%�()'*%�+ %-,.$ /�,*0 ����1 23�!��
�4�"����56�7���	1��	��
��8�"�!
������!9"���#�	�:56�;�

����<:<=�	����
>�����:5.���	�"9�����? ,
@ %&'�%�()'*%�+ %-,�A�(BC,�D <:<:�����!��
$&%&'�%�E)'*%�+ %-,�A�F

�
,
�
���

$&A&'�%�E)'*%�+ %-,�A�A /�,*0 ����1 23�!���G1�����HI���	J
+�(&'�%�E)'*%�+ $�,�%

�
,
�
��� 23�!���G1���������"�	

 Date: 25/06/02

 Page 3 of 62

Table of Contents

1 INTRODUCTION AND BACKGROUND...5

2 VALIDATION REQUIREMENTS...5

2.1 FPML TOOLS WORKSHOP CONCLUSIONS ON VALIDATION REQUIREMENTS ...5
2.2 ABILITY TO EXPRESS AND HANDLE DIFFERENT CLASSES OF VALIDATION RULES ..6
2.3 COMPARISON TO EXTERNAL DATA SOURCES (E.G. FPML SCHEMES)..6
2.4 USABILITY ...6
2.5 CLASSIFICATION OF PRODUCT TYPES...6
2.6 COMPLIANCE WITH XML STANDARDS (XPATH AND XLINK)..7
2.7 EFFICIENT EXECUTION ..7

3 POSSIBLE APPROACHES TO VALIDATION...7

3.1 XLINKIT ...7
3.2 ATTRIBUTE GRAMMARS..7
3.3 OCL ..8
3.4 SPECIFICATION OF VALIDATION RULES WITH XSLT ...8
3.5 SCHEMATRON..8
3.6 SUMMARY ...8

4 XLINKIT VALIDATION RULE LANGUAGE ..9

4.1 COMMON MECHANISMS ..10
4.1.1 Referencing...10
4.1.2 Metadata...10

4.2 DOCUMENT SETS...11
4.2.1 Definition..11
4.2.2 Examples...12

4.3 RULE SETS...13
4.3.1 Definition..13
4.3.2 Examples...13

4.4 RULE FILES..14
4.4.1 Constraint Language..14

4.5 RULE FILE..23
4.5.1 Global sets..24
4.5.2 Consistency rules..24
4.5.3 Examples...24

4.6 OPERATORS...26
4.6.1 Operator Set..26
4.6.2 Operator Implementation..27
4.6.3 Example..28

4.7 MACROS..28
4.7.1 Macro Definition...29
4.7.2 Macro Inclusion and Processing ..30

5 FPML 1.0 VALIDATION RULES..31

5.1 HISTORY ..31
5.2 RULE DEVELOPMENT PROCESS...31
5.3 SAMPLE RULE SET...31

6 RULE IMPLEMENTATION IN XLINKIT ..33

6.1 OPERATORS...33
6.1.1 Operator Interfaces...33
6.1.2 Operator Definition ..34

6.2 RULES DEFINED IN XML ...37
6.3 RULES RENDERED IN 1ST ORDER LOGIC ...48
6.4 REFERENCE IMPLEMENTATION ..53

7 EVALUATION ...54

 Date: 25/06/02

 Page 4 of 62

7.1 COVERAGE OF REQUIREMENTS..54
7.2 ON THE BENEFITS OF FORMALIZATION..55
7.3 PERFORMANCE ..55

8 SUMMARY AND RECOMMENDATION..56

9.1 RULE LANGUAGE SYNTAX (XML SCHEMA) ..56
9.2 DOCUMENT SET DEFINITION SYNTAX (XML SCHEMA) ...58
9.3 RULE SET DEFINITION SYNTAX (XML SCHEMA)...59
9.4 OPERATOR DEFINITION SYNTAX (XML SCHEMA)...60
9.5 MACRO LANGUAGE SYNTAX (XML SCHEMA) ..61

 Date: 25/06/02

 Page 5 of 62

1 Introduction and Background
Annual ISDA Operations Surveys have found that delays and high costs in the processing of complex OTC Derivative
trades are to some extent due to the manual nature of trade validation and trade confirmation processing. Trade validation
ensures that trades that are exchanged between counterparties or between different systems of the same organization meet a
number of consistency constraints. During trade confirmation, details about a trade held by one organization are checked
against the details provided by the counterparty. The trade matching process is required to identify inconsistencies between
them.

With the trend towards XML based information representation in finance and the resultant need for systematic ways of
identifying and reconciling inconsistencies between XML documents, UBS Warburg is sponsoring a PhD studentship at
University College London. The aim of the studentship, which started in September 2001, is to investigate the management
of inconsistency in processing XML based financial trading data for OTC derivative trades. The associated business goal is
to support more effective straight-through-processing of financial trading data.

The aim of this proposal is to put forward a validation rule language for FpML, which can be used to unambiguously
describe the rules and also to execute them. It looks at the requirements for validation drawing on work carried out by the
PhD student and the FpML Tools workshop in August 2001. It then puts forward the grammar, syntax and operation of the
validation rule language based on Xpath before setting out a sample ruleset for FpML 1.0.

The Software Systems Engineering Group at University College London has a long-standing interest in all aspects of
inconsistency management. The group has developed algorithms and technologies that support consistency checks across
distributed data represented in XML. The IPR of these algorithms and technologies have been transferred to Systemwire, a
UCL spin-off company. Systemwire markets a product family called xlinkit, which supports the specification of
consistency constraints, their efficient execution and various forms of diagnoses of the results of consistency checks. More
details about the company and xlinkit can be found at http://www.systemwire.com.

The work carried out to date has looked at business efficiency issues and at extending the algorithms and consistency
checking architeecture of xlinkit to make it suitable for FpML Version 1.0. Following demonstrations of this work to
members of the FpML Standards Committee, UBS Warburg, University College London and Systemwire would like to put
forward a proposal for FpML Validation.

2 Validation Requirements
Validation is a critical requirement for any organization implemeting FpML. It was identified as a high priority area during
the FpML Tools workshop in August 2001. High-level requirements for validation were identified and refined at the
workshop (see http://www.fpml.org/tools/toolswork.asp). These requirements are set out below. The PhD student’s
research has also investigated financial institutions’ requirements for checking electronic trade representations. This has
resulted in an ordering of sources of inconsistency.

�����
 ���	��
�������������������������������� !�#"��!$��%���&�'�)(�*+�#$-,	*/.0$����2143!5'"6$#�7368936��.:�

We reached the following conclusions:

R2.1.1: Validation should focus on semantic or business validation. It is assumed that XML parsers are used for XML
syntax validation based on the FpML DTD/schema (for both well-formedness and syntactic validation).

R2.1.2: There was a preference for an XML based predicate or rule definition, as tools can be built to process such rules.

R2.1.3: This includes GUI tools to enable business analysts to formulate and update the rules. The provision of a simple
API to allow callout for programmed validation was discussed as an alternative.

R2.1.4: FpML could supply validation rules with each version of FpML for ‘community wide’ issues. It is hoped that this
proposal will help to facilitate this.

In conclusion it was noted by the workshop participants that validation is a critical and timely area for FpML to consider, as
all institutions and vendors working with FpML have the requirement.

 Date: 25/06/02

 Page 6 of 62

��� �

��� $#�#$-.��).:���	� �	�73!� ��* ��,�
 * ��,'�-3� $����736�736��. � ��* � ��3!����� (�* � $�,	*/.0$��%�21 "4��3!�

In refinement of R2.1.4, the following examples of classes or levels of validation rule have been identified:

R2.2.1: Community/Industry Rules: these would come from FpML and include product and market conventions. They
could include regulatory requirements for a particular product.

R2.2.2: Company Specific Rules: these would be rules specific to a company and implement policy requirements, such as
market or credit risk parameters or collateral requirements.

R2.2.3: Department Specific Rules: these would be rules taking into account how a particular Department processes a
document. It could include threshold levels at which a trade would require manual intervention.

R2.2.4: System Specific Rules: these would include rules that are to be enforced by particular trading systems in order to
be able to process particular trades.

These classes are not considered to be exhaustive. The requirement is for any number of classes to be handled.
Furthermore, we anticipate that the different FpML product working groups will determine a significant number of
validation rules (a total of 100-300).

�����
 �6��8 � * ��$�� ���). ���	� .:36����* ���'* . *����%"��7 3!��� 3 ���'� ���	��
��4 !��3 893!���

R2.3.1: The formalism for specifying validation rules shall not just support validation of single FpML trades, but also
comparisons between trades and other external data sources, such as static data, market data, or FpML Schemes.

R2.3.2: It can be assumed that either these external data sources are available in an XML markup language or can be
transformed into an XML language. However, the formalism shall support external data sources in non-FpML
languages.

R2.3.3: Often such market data is provided from outside a particular organization and this has implications on the
distributed checks. However, the notation to express consistency rules should support the specification of
consistency rules without assuming any details of where external data sources are located.

�����
 �%� * � $#� $�.��

The validation rule language shall support the formulation of rules at appropriate levels of abstraction.

R2.4.2: To facilitate the conciseness of rules, the formalism shall support the declarative specification of consistency rules.

R2.4.3: At the same time the domain of financial derivative instruments is quite special and the rule language should offer
extension mechanisms that can cope with the need for any domain-specific operators, macros and primitives.

R2.4.4: The language should be easily comprehensible and therefore use concepts that members of the FpML community
are likely to be familiar with.

R2.4.5: The validation rule approach should be capable of coping with the complexity of a large number of rules (100-
300) and in particular offer different structuring mechanisms that support the hierarchical decomposition of the
overall set of rules and support the parallel definition of rules by different working groups.

R2.4.6: The formalism should be amenable to automated translation between internal (machine-readable) representations
of validation rules and external representations that can be understood and serve as the specification of validation
rules across product working groups.

The validation language will not only be used to standardize and specify validation rules, but these rules also need to be
executed in order to actually perform the validation.

R2.4.7: The rule validation language should have a compiler or interpreter that can be used in order to execute validation
rules.

����
 � ��* � �!$!��$� * .0$����)�"� �	�7� ,'"� . .���� 3!�

FpML can represent a large number of different products without actually providing language constructs. It might be
necessary for purposes of processing and standardizing FpML contracts to classify them into different trades.

R2.5.1: The validation language should support such classification.

 Date: 25/06/02

 Page 7 of 62

�����
 �6��8 �	�#$-*+�� 3�� $�.0��� ��
 ��. * ��,	*+�7,	� ����� * . �)* ��,��
�$#�4� �

FpML demands for all its standards compliance with W3C standards.

R2.6.1: The validation approach adopted for FpML should therefore be compliant with current W3C standards.

����	
 �	��� $- !$ 36��. � �/3! !"�.0$��'�

It would be desirable if the language chosen for the validation rules could also directly be used to control the execution of
validations. In particular, we would like to avoid the need to manually translate the rules into an execution and instead
desire that this step be performed by an interpreter or compiler. This motivates the following requirement

R2.7.1: The validation rule language should be efficiently executable.

3 Possible Approaches to Validation
We have evaluated a number of possible approaches for specifying and executing validation rules. In this section, we will
briefly present an overview of those approaches. This will then result in the selection of xlinkit as the most promising
approach.

�����
 �+�#$ ��� $�.

xlinkit is a framework for expressing and checking the consistency of distributed, heterogeneous documents. It comprises a
language, based on a restricted form of first order logic, for expressing constraints between elements and attributes in XML
documents. The restriction enforces that sets have a finite cardinality, which is not a problem as XML documents only have
a finite set of elements and attributes. xlinkit also contains a document management mechanism and an engine that can
check the documents against the constraints.

xlinkit has been implemented as a lightweight mechanism on top of XML and creates hyperlinks to support diagnostics by
linking inconsistent elements. Because it was built on XML, xlinkit is flexible and can be deployed in a variety of
architectures. It has also been applied in a variety of different application areas, including the validation of Software
Engineering documents such as the design models and source code of Enterprise JavaBeans-based systems [1].

Sets used in quantifiers of xlinkit rules are defined using XPath. XPath [2] is one of the foundational languages in the set of
XML specifications. It permits the selection of elements from an XML document by specifying a tree path in the document.
For example, the path / FpML/ t r ade would select all t r ade elements contained in the FpML element, which is the root
element.

XLink [3] is the XML linking language and is intended as a standard way of including hyperlinks in XML documents.
XLink goes beyond the facilities provided by HTML by allowing any XML element to become a link; by specifying that
links may connect more than two elements, so called extended links; and by allowing links to be managed out-of-bound, as
collections of links termed linkbases. These features allow us to capture complex relationships between a multitude of
elements that are involved in an inconsistency without altering any of the inconsistent documents.

The linkbases generated by xlinkit form an ideal intermediate representation from which different forms of higher-level
diagnoses can be derived. Firstly, xlinkit has a report generator that takes report templates and uses the linkbase to obtain
details of the elements involved in an inconsistency to provide a report similar to an error report that a compiler generates.
Secondly, xlinkit has a servlet that can read a linkbase and allows users to select a link and it will then open the documents
referenced in the link, navigate to elements identified in the link and in that way assist users to understand the links. Xlinkit
also has a linkbase processor that folds links back into the documents so that both consistent and inconsistent data can be
captured as hyperlinks.

It depends on the application domain which of these higher-level diagnoses mechanisms is most appropriate. For the
domain discussed in this paper we found the report generation to have generated most interest among our partners in
various investment banks.

��� �

� . . ��$ � "�. 3�
 �7* 8 89* �7�

There is a large body of work on validation of constraints of context-free languages in Compiler construction. The
constraints that are considered are typically static semantic constraints, such as scoping and typing rules. These constraints
are specified using for example attribute grammars [4], which have been shown to be efficiently executable by compilers.
Attribute grammars are not very concise specifications of consistency as one constraint is typically spread over a large

 Date: 25/06/02

 Page 8 of 62

number of products. On the other hand, they have been shown to be very amenable to efficient execution [5, 6], which is an
important property when considering compiling large amounts of source code on slow processors. We have made a slightly
different trade-off decision with xlinkit and favour conciseness of the constraint definition over efficiency. This is
particularly appropriate given the small size of derivative trade documents, which are in the order of 17KBytes. Moreover it
would be difficult to integrate attribute grammars with XML parsers as the attribute grammar approaches assume that an
integrated compiler is generated while XML parsers are generic and work in a customized manner.

The work on attribute grammars was then taken on for the construction of syntax-directed editors and software engineering
environments, such as Gandalf [7], Synthesizer Generator [8], IPSEN [9], Centaur [10] and GOODSTEP [11].The focus of
these environments was to incrementally check constraints during editing. This could only be achieved by translating
attribute or graph grammars into efficiently executable code. Our focus is not on supporting the editing of trade
representations, but to support the batch validation that occurs when trades are exchanged between organisations or
different departments within an organisation. Provision of support for incremental checks is therefore not necessary and
instead we favour the flexibility that comes with interpretation of constraints in the xlinkit rule engine.

�����
 � �

We have also compared xlinkit rules with OMG's Object Constraint Language (OCL) [12]. OCL was defined to declare
constraints in UML diagrams or MOF meta models. OCL was not defined with an aim to be executable. In particular, it
allows for infinite sets (e.g. integer), which prevents it from being executed efficiently. The focus of xlinkit, however, was
to be as expressive as possible, while still being executable in polynomial time.

�����
 � � 3! !$!� $� */.0$����)���'('* �#$�,	* . $-���21 "4��3!� � $.0� � �
 �

The weakness of expressing constraints in the DTD and XML Schema languages has been recognized for some time now.
Various approaches have been reported that use XSLT [13] for validation. In [14], we report about the TIGRA enterprise
application integration architecture that uses XML as transport representation for financial trades. In that architecture we
have used XSLT stylesheets to express constraints. The expressive power of XSLT stylesheets is considerably lower than
that of xlinkit in that xlinkit supports the full power of first-order logic. Moreover, xlinkit carefully separates the concerns
of constraint specification, document and rule location, and provision of diagnostic feedback, which would be intertwined
in XSLT.

����
 �� ���3689* . �7�%�

Rick Jeliffe's Schematron [15] also uses XSLT to translate documents into reports about their consistency. However,
Schematron manages to conceal the use of XSLT and provides a higher level of abstraction for the definition. Although
Schematron works quite well for validating single documents it would not allow us to express constraints across different
documents, e.g. to check trades against reference data or workflow representations or to compare two trades in different
representations.

�����
 � "48 89*+� �

The following table summarizes the different approaches we investigated. It assesses how well each of the approaches
supports the requirements identified in Section 2. The elements of the table identify the extent to which the requirements
are addressed. A “++” denotes that the approach fully satisfies the requirement, a “o” denotes that the approach meets the
requirement to some extent and a “--”denotes that the requirement is not addressed at all.

 Date: 25/06/02

 Page 9 of 62

As can be seen from the table, the xlinkit approach is the most promising approach and therefore we have selected it for a
more detailed assessment. We therefore present xlinkit rules in more detail in Section 4 before we show how it was used to
specify validation rules for FpML 1.0

X
lin

ki
t

A
ttr

ib
ut

e
G

ra
m

m
ar

s

O
C

L

X
SL

T

Sc
he

m
at

ro
n

R2.1.1 Semantic Validation ��� � � � �

R2.1.2 XML-based Definition ��� � � ��� ���

R2.1.3 GUI tools to formulate and update rules � � � ��� �

R2.2 Multiple distributed rule sets ��� � � � �

R2.3.1 Comparison to external data sources ��� � � � �

R2.3.2 Check against non-FpML languages ��� � � � �

R2.3.3 Distributed data sources ��� � � � �

R2.4.1 Declarative rule language ��� ��� ��� � �

R2.4.2 Domain-specific operators ��� ��� � ��� ���

R2.4.3 Ease of comprehension ��� ��� ��� � �
R2.4.4 Rule structuring mechanisms ��� ��� � � �
R2.4.5 human + machine readable representation � ��� � � �
R2.5.1 Classification of FpML product types � � � � �
R2.6.1 W3C compliance � ��� � ��� �
R2.7.1 Efficient Execution � ��� ��� ��� ���

4 xlinkit Validation Rule Language
This section explains the language of version 5 of xlinkit. The purpose of this explanation is to give a definition of the
various data files, artifacts and languages provided by xlinkit. It is not intended as a user manual - it does not define how
xlinkit works, how to use xlinkit, how to interpret its output, or any kind of best practice. For more information on these
topics, please visit the xlinkit web site at http://www.xlinkit.com.

The xlinkit framework consists of many different artifacts and languages that combine to provide the unique benefits of
xlinkit: arbitrary distribution of content, abstraction from underlying data formats, specification of complex constraints,
integration of heterogeneous data and a flexible approach to consistency management. Figure 1 shows how the various
artifacts provided by xlinkit are interrelated:

Figure 1. Language family overview

 Date: 25/06/02

 Page 10 of 62

This document will discuss the artifacts shown in the Figure: Section 1 defines common mechanisms that appear in all
artifacts: the referencing mechanism used in the Figure and xlinkit's metadata system; Section 2 defines document sets and
Section 3 rule sets; Section 4 defines rule files and the xlinkit constraint language; Section 5 specifies xlinkit's operator
plugin mechanisms, operator sets and operator implementations, and Section 6 defines macro files.

� ���
 �6��8 89���2� 3! !��* ��$-�!89�

This section summarises the mechanisms that are common to all xlinkit input files: the referencing mechanism for loading
data files and the metadata for describing the input files.

���������
 ���
	��������������

Many files in the xlinkit family contain references: rule sets reference rule files and further rule sets, operator sets reference
operator implementations and so on. xlinkit therefore defines what such a reference should look like. In general, references
come in two forms:

• A local filename, for example r ul e. xml , C: \ Rul es\ r ul e. xml or . . / . . / r ul e. xml . A local filename can also
take the form of a f i l e: / / URL. In this case, xlinkit will simply remove the protocol section and treat it as a
local file. Thus, f i l e: / / r ul e. xml will be treated as r ul e. xml .

• An HTTP URL, for example ht t p: / / www. xl i nki t . com/ r ul e. xml .

The important thing to note is that xlinkit does not support relative URLs. It is therefore not possible to mix filenames and
URLs freely. For example, if a rule set includes a file r ul e. xml and the rule set is referenced locally, then the current
directory will be searched for the file. If it is not there, an error occurs. If the same rule set is referenced using an HTTP
URL, the local directory on the referencing host will still be searched for the file. Since this is likely to lead to errors, we
recommend that URLs or filenames be used uniformly and not mixed.

���������
 ���
���
���
���

The xlinkit metadata elements are standardised throughout the different file types and can be used to annotate document
sets, rule set, operator sets and individual consistency rules. It is their purpose to provide helpful annotation such as
authorship information and documentation for the various artifacts in the xlinkit framework. Figure 1.1 shows a graphical
representation of the header element, which contains the metadata.

Figure 1.1. Metadata Schema

aut hor contains the name of the author of an artifact. If there are multiple authors, one element should be used for each.

descr i pt i on can contain a textual description of the resource with which the header has been associated. In addition to
text the element can contain elements from the XHTML namespace (ht t p: / / www. w3. or g/ 1999/ xht ml), enabling the
production of documentation web pages from xlinkit artifacts using stylesheets (see Example 1.2).

pr oj ect can be an arbitrary text string that defines the context of the artifact. In the case of consistency rules, this string
may be used as an identifier in future versions (see Section 4.2.2), otherwise it can be used arbitrarily.

comment is intended as a means to provide additional information beyond the description, for example on the status of the
artifact.

The remaining extension point in the schema allows any element from the ht t p: / / www. xl i nki t . com/ Met adat a/ 5. 0
namespace to appear in the header. The content of these elements will not be validated and can be chosen arbitrarily

 Date: 25/06/02

 Page 11 of 62

(though it does have to be well-formed XML), for example to meet organisation-specific documentation requirements. See
Example 1.3 for an example.

�������������
 �
	�����������

Example 1.1 shows some metadata used to annotate a consistency rule.

Example 1.1. Simple Rule Annotation

<consi st encyr ul e i d=" r 1" >
 <header >
 <aut hor >Chr i st i an Nent wi ch</ aut hor >
 <descr i pt i on>An i nval i d r ul e: t he f or al l i s empt y! ! </ descr i pt i on>
 <pr oj ect >xl i nki t Language Ref er ence</ pr oj ect >
 <comment >Thi s i s br oken. Fi x i t . </ comment >
 </ header >
 <f or al l / >
</ consi st encyr ul e>

Example 1.2 demonstrates the use of additional XHTML elements in a document set description. Notice how the XHTML
namespace is bound to the prefix x: and the prefix is used on the XHTML elements. Failure to use the prefix would cause
a validation error.

Example 1.2. Using XHTML in Descriptions
<Document Set >
 <header >
 <descr i pt i on xml ns: x=" ht t p: / / www. w3. or g/ 1999/ xht ml " >
 Ther e i s a pr obl em wi t h t hi s <x: t t >Document Set </ x: t t >:
 The namespace decl ar at i on i s <x: b>mi ssi ng</ x: b>!
 </ descr i pt i on>
 </ header >
</ Document Set >

Finally, Example 1.3 demonstrates how to create customised metadata elements. In the example, we create our own
ver si on element, and a r evi ewer s element that lists the developers who have reviewed a particular consistency rule. All
the elements are in the metadata namespace, which is bound to the prefix met a: at the header element. In files where many
extended headers are used, the prefix could be bound at the root element to avoid having to rebind it.

Example 1.3. Customised Metadata

<consi st encyr ul e>
 <header xml ns: met a=" ht t p: / / www. xl i nki t . com/ Met adat a/ 5. 0" >
 <met a: ver si on>1. 0</ met a: ver si on>
 <met a: r evi ewer s>
 <met a: r evi ewer >Wol f gang Emmer i ch</ met a: r evi ewer >
 <met a: r evi ewer >Ant hony Fi nkel st ei n</ met a: r evi ewer >
 </ met a: r evi ewer s>
 </ header >
 . . .
</ consi st encyr ul e>

� � �
 �'� !"48936��. ��3!. �

���������
 ���
	 ����� � ��� �

Document sets are xlinkit's way of structuring document input. A document in this case means a collection of structured or
semi-structured data, but does not necessarily imply storage in a traditional document format. The purpose of a document
set is thus to abstract from underlying data storage formats, drawing if necessary on the support of fetcher plugins to
translate them into a DOM tree that can be used for checking.

The namespace for document sets is ht t p: / / www. xl i nki t . com/ Document Set / 5. 0. Figure 2.1 shows a graphical view
of the document set schema, leaving the metadata <header > collapsed.

 Date: 25/06/02

 Page 12 of 62

header : A document set can contain the usual metadata, as defined in the common mechanisms. No additional meanings
are defined for the metadata in the context of a document set and it can be used freely.

Document : The Document command imports a document into the document set for checking. It requires an attribute, hr ef
as a reference - as defined in common mechanisms - to the document. The second, optional, attribute f et cher is a string
identifying the Fetcher to be used to retrieve the document. By default, documents are loaded using the Fi l eFet cher ,
which is essentially an XML parser. If XML documents are to be loaded, therefore, no fetcher parameter has to be
specified.

If alternative fetcher parameters are passed, for example JDBCFet cher for loading a database table, two conditions must
be met: a fetcher class matching this string has to be registered with xlinkit, and the format of the Ref er ence has to be
valid for this fetcher (e.g. the JDBCFetcher expects an SQL query rather than a file name).

Set : This can be used to import further document sets into the set. The only attribute is hr ef , which must point to a valid
xlinkit document set. Using this mechanism, it is possible to build up hierarchies of document sets that will be flattened and
loaded during a check.

���������
 ����������� �
	

Example 2.1 shows a simple document set that includes XML files from two different URLS for a check.

Example 2.1. Simple document set
<Document Set xml ns=" ht t p: / / www. xl i nki t . com/ Document Set / 5. 0"
 xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance"
 xsi : schemaLocat i on=" ht t p: / / www. xl i nki t . com/ Document Set / 5. 0 Document Set . xsd" >

 <Document hr ef =" ht t p: / / www. xl i nki t . com/ Exampl e/ document A. xml " / >
 <Document hr ef =" ht t p: / / www. syst emwi r e. com/ Exampl e/ document B. xml " / >
</ Document Set >

Example 2.2 gives a slightly more complex example that specifies some metadata, includes an XML document, imports
another document set, and uses a proprietary plugin, called JavaFet cher to load a Java source file and make it available
for checking. This fetcher must of course be implemented and registered with xlinkit before it can be referred to in a
document set like this.

Example 2.2. Document set with custom fetcher

<Document Set xml ns=" ht t p: / / www. xl i nki t . com/ Document Set / 5. 0"
 xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance"
 xsi : schemaLocat i on=" ht t p: / / www. xl i nki t . com/ Document Set / 5. 0 Document Set . xsd" >

 <header >
 <descr i pt i on>A sl i ght l y mor e compl ex exampl e</ descr i pt i on>
 <aut hor >Chr i st i an Nent wi ch</ aut hor >
 <comment >Test ed and wor ki ng</ comment >
 </ header >
 <Document hr ef =" ht t p: / / www. xl i nki t . com/ Exampl e/ document A. xml " / >
 <Set hr ef =" ht t p: / / www. syst emwi r e. com/ Exampl e/ Mor eDocument s. xml " / >
 <Document hr ef =" Hel l oWor l d. j ava" f et cher =" JavaFet cher " / >
</ Document Set >

Figure 2.1. Document set schema

 Date: 25/06/02

 Page 13 of 62

� ���
 1 "4��3���3 . �

���������
 ���
	 ����� � ��� �

Rule sets are xlinkit's structured consistency rule selection mechanism. They allow the free distribution and reassembly of
rules, permit the selection of rules based on workflow, and assist in decoupling the rules from the documents they are
applied to.

The namespace for rule sets is ht t p: / / www. xl i nki t . com/ Rul eSet / 5. 0. Figure 3.1 gives a graphical overview of the
schema, leaving the metadata header collapsed.

Figure 3.1. Rule set schema

Rul eSet : In addition to serving as a container element, this has a second function: any namespace prefixes bound at this
element can be used in XPath queries to pick out particular rules. For more information, see the definition of Rul eFi l e
below and Example 3.2.

header : A rule set can contain the usual metadata, as defined in the common mechanisms. No additional meanings are
defined for the metadata in the context of a rule set and it can be used freely.

Rul eFi l e: In the current version of the language, consistency rules must be stored in the xlinkit XML format for
consistency rules. The required attribute hr ef is therefore a reference that denote a URL or filename.

The optional xpat h attribute can be used to fine-tune which rules are included from a rule file that contains multiple rules.
By default, that is in the absence of the parameter, all rules are included. A parameter such as
/ r ul e: consi st encyr ul eset / r ul e: consi st encyr ul e[1] , where r ul e has been bound to the rule file namespace at
the root element, can be used to pick out the first rule of the file.

Oper at or s includes an operator set into this rule set. If any of the rules in the rule set make use of operators, they have to
be included here. The required hr ef attribute must identify a valid operator set file.

���������
 ����������� �
	

Example 3.1 shows a typical rule set that includes a single rule file, picking all rules from the file for checking, and no
metadata. It references the file using its filename r ul e. xml , so the file has to be present in the same directory as the rule
set.

Example 3.1. Simple rule set
<Rul eSet xml ns=" ht t p: / / www. xl i nki t . com/ Rul eSet / 5. 0"
 xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance"
 xsi : schemaLocat i on=" ht t p: / / www. xl i nki t . com/ Rul eSet / 5. 0 Rul eSet . xsd" >

 <Rul eFi l e hr ef =" r ul e. xml " / >
</ Rul eSet >

Example 3.2 shows how to refine rule selection in a rule set using XPath expressions to pick out a subset of the rules from a
rule file. The expression / / r ul e: consi st encyr ul e[@i d=' r 3'] matches the consistency rule whose i d attribute is
equal to r3, anywhere in the rule file. Note how the XPath expression makes use of the r ul e namespace prefix that has

 Date: 25/06/02

 Page 14 of 62

previously been bound to the rule file namespace. This is very important - if the namespace prefix is not properly bound or
left out altogether, no rules will be matched and xlinkit will return an error.

Example 3.2. Rule selection

<Rul eSet xml ns=" ht t p: / / www. xl i nki t . com/ Rul eSet / 5. 0"
 xml ns: r ul e=" ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0"
 xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance"
 xsi : schemaLocat i on=" ht t p: / / www. xl i nki t . com/ Rul eSet / 5. 0 Rul eSet . xsd" >

 <Rul eFi l e hr ef =" r ul e. xml " xpat h=" / / r ul e: consi st encyr ul e[@i d=' r 3'] " / >
</ Rul eSet >

Finally, Example 3.3 shows a fully-flegded rule set with metadata and operator set inclusion. It retrieves the operator set
from a remote server, as well as including another additional rule set from a remote server.

Example 3.3. Operator and rule set inclusion

<Rul eSet xml ns=" ht t p: / / www. xl i nki t . com/ Rul eSet / 5. 0"
 xml ns: r ul e=" ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0"
 xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance"
 xsi : schemaLocat i on=" ht t p: / / www. xl i nki t . com/ Rul eSet / 5. 0 Rul eSet . xsd" >

 <header >
 <descr i pt i on>
 A r ul e set wi t h oper at or i ncl usi on
 </ descr i pt i on>
 <aut hor >Chr i st i an Nent wi ch</ aut hor >
 <comment >Test ed and wor ki ng</ comment >
 </ header >
 <Oper at or s hr ef =" ht t p: / / www. xl i nki t . com/ Foo/ oper at or s/ Oper at or s. xml " / >
 <Rul eFi l e hr ef =" r ul e. xml " / >
 <Set hr ef =" ht t p: / / www. xl i nki t . com/ Foo/ addi t i onal - r ul es. xml " / >
</ Rul eSet >

� ���
 1 "4��3 ��$ ��3!�

Rule files contain the constraints that the xlinkit checker applies to documents. This chapter therefore defines not only the
layout of the files, but the grammar of the xlinkit constraint language itself. The constraint language can be displayed in
many different formats, in addition to its standard XML encoding. As a consequence we define the language using an
abstract syntax, and provide the XML encoding of each construct after the behaviour definition.

From here on, the section is split into three parts: Sub-section 4.4.1 defines the xlinkit constraint language, Sub-section
4.4.2 defines the format of the rule files, including the elements that supplement the constraints, and Sub-section 4.4.3 gives
several illustrating examples of complete consistency rule files.

���������
 � � � 	 � � �������� �� �����
� �

The xlinkit constraint language is a fairly simple language that is based on first order predicate logic: it allows the use of
boolean connectives such as and and or , quantifiers such as f or al l and exi st s for iteration, and predicates such as
equal for comparison.

The purpose of this section is firstly to define the abstract syntax and XML encoding of the language, and secondly to
specify the behaviour of each construct in the language. The section does not discuss the xlinkit link generation semantics,
i.e. how to create hyperlinks as a result of the evaluation of formulae in the language - instead we refer you to
http://www.xlinkit.com for more information.

This section also does not define any bracketing for formulae, leaving the precedence relationship between logical
connectives ambiguous. The reason for this is that bracketing belongs in the concrete syntax - for example the XML syntax
is already disambiguated because it is a prefix notation, and does not require any bracketing. Should new concrete syntaxes
be defined, they have to introduce bracketing on a case by case basis.

Formula

[1] Formula : : = Forall | Exists |
And | Or | Implies | Iff | Not |
Equal | Notequal | Same | True | Operator

/* Quantifiers */
/* Logical connectives * /
/* Predicates */

 Date: 25/06/02

 Page 15 of 62

Everything in the xlinkit language is a For mul a - constructs that can contain subformulae, for example the logical
connectives, can thus contain any other formula in the language. The only restriction on an xlinkit formula is that it must
start with a For al l , as defined in Sub-section 4.4.2.

�������������
 ����� � � �

[2] Forall : : = 'forall' Variable 'in' XPath Formula?
Var i abl e: This must be a valid XPath variable identifier, as defined in the XPath standard. In addition, if the For al l is
contained in a parent formula, the identifier must not be declared in a quantifier of one of the parent formulae. Note: the
variable identifier does not include the variable reference character '$', thus $a is an illegal variable name whereas a is
legal.

XPat h: This must be a valid XPath expression. In addition, the execution of the XPath expression must result in a node set.
Expressions that return different types of results are illegal and will cause a run-time error. The following XPath
expressions are examples of legal expressions for For al l since they select node sets:

/ f oo/ bar selects all elements called <bar > that are contained under elements called <f oo> in any of the documents of the
document set.

/ f oo/ @bar selects all attribute nodes called bar that are attached to elements called <f oo> in any of the documents of the
document set.

And the following examples are illegal since they select other types of values:

54 is illegal because it selects a number.

subst r i ng(/ f oo/ bar / t ext () , 5) is illegal because it selects a string.

For al l 's behaviour is defined as follows: it executes the expression contained in XPat h on all documents of the document
set. The working set of the quantifier is then defined to be the union of all nodes returned from all documents in the
document set. The quantifier binds each node to the variable in turn, calling the subformula to evaluate itself given the new
variable binding. It returns t r ue if the subformula evaluation returns t r ue for all assignments of the variable, else it
returns false. Figure 4.1 specifies the behaviour in pseudocode.

The abstract syntax permits the omission of a subformula for the forall operator. If no subformula is present, the
subformula will be set to True, and the quantifier will return t r ue regardless of where the XPath expression is pointing.

Figure 4.1. Forall evaluation pseudo-code

f or al l (bi ndi ng)
begi n
 wor ki ngset =0
 f or al l doc i n Document Set do
 wor ki ngset =wor ki ngset +eval uat e(XPat h, doc)
 done
 r esul t =t r ue
 f or al l node i n wor ki ngset do
 bi ndi ng=bi ndi ng+(Var i abl e, node)
 r esul t =r esul t & & For mul a. eval uat e(bi ndi ng)
 bi ndi ng=bi ndi ng- (Var i abl e, node)
 done
 r et ur n r esul t
end

���	��
 ����� ��� ���� ��������
Figure 4.2 shows the XML representation for For al l . No attributes or elements beyond those already specified in the
abstract syntax are required.

Figure 4.2. Forall XML Representation

<f or al l var =" var i abl e" i n=" xpat h" >
 For mul a
</ f or al l >

�������������
 �
	�� ��� �

[3] Exists : : = 'exists' Variable 'in' XPath Formula?

 Date: 25/06/02

 Page 16 of 62

Var i abl e: This must be a valid XPath variable identifier, as defined in the XPath standard. In addition, the same
restrictions as for Forall apply.

XPat h: This must be a valid XPath expression. The execution of the XPath expression must result in a node set.
Expressions that return different types of results are illegal and will cause a run-time error. Please refer to Forall for
examples of legal and illegal XPath expressions.

Exi st s ' behaviour is defined as follows: it executes the expression contained in XPat h on all documents of the document
set. The working set of the quantifier is then defined to be the union of all nodes returned from all documents in the
document set. The quantifier binds each node to the variable in turn, calling the subformula to evaluate itself given the new
variable binding. It returns t r ue if the subformula evaluation returns t r ue for any assignment of the variable. If it is false
for all assignments, it returns f al se. Figure 4.3 specifies the behaviour in pseudocode.

Similarly to Forall, the abstract syntax of Exi st s permits the omission of a subformula. If the subformula is omitted,
xlinkit assumes it to be True. This is frequently very useful in practice, since it allows a test for the existence of an element
without applying any predicates, i.e. we can say "element A exists". Because the subformula is True, the only way an
existential quantifier with no subformula can fail is if the XPath expression does not match anything.

Figure 4.3. Exists evaluation pseudo-code

exi st s (bi ndi ng)
begi n
 wor ki ngset =0
 f or al l doc i n Document Set do
 wor ki ngset =wor ki ngset +eval uat e(XPat h, doc)
 done
 r esul t =f al se
 f or al l node i n wor ki ngset do
 bi ndi ng=bi ndi ng+(Var i abl e, node)
 r esul t =r esul t | | For mul a. eval uat e(bi ndi ng)
 bi ndi ng=bi ndi ng- (Var i abl e, node)
 done
 r et ur n r esul t
end

���	��
 ����� ��� ���� ��������
Figure 4.4 shows the XML representation for Exi st s . No attributes or elements beyond those already specified in the
abstract syntax are required.

Figure 4.4. Exists XML Representation

<exi st s var =" var i abl e" i n=" xpat h" >
 For mul a
</ exi st s>

�������������
 � ��

[4] And : : = Formula 'and' Formula

The behaviour of And matches its definition in classical logic: it returns true if and only if both subformulae evaluate to
true, otherwise it returns false. Table 4.1 specifies the behaviour exhaustively. In the table, For mul aA refers to the first
subformula and For mul aB to the second.

Table 4.1. And truth table

FormulaA FormulaB FormulaA 'and' FormulaB

true True true

true False false

false True false

false False false

 Date: 25/06/02

 Page 17 of 62

���	��
 ����� ��� ���� ��������
Figure 4.5 shows the XML representation for And. No attributes or elements beyond those already specified in the abstract
syntax are required. Note that the XML syntax for and is prefix, i.e. the connective frames its subformulae, whereas the
abstract syntax is infix, i.e. the connective is located between its parameters. In the XML syntax, note that still exactly two
subformulae must be present.

Figure 4.5. And XML Representation

<and>
 For mul a
 For mul a
</ and>

�������������
 � �

[5] Or : : = Formula 'or' Formula

The behaviour of Or also matches its definition in classical logic: it returns true if either subformula evaluates to true,
otherwise it returns false. Table 4.2 specifies the behaviour exhaustively. In the table, For mul aA refers to the first
subformula and For mul aB to the second.

Table 4.2. Or truth table

FormulaA FormulaB FormulaA 'or' FormulaB

true True true

true False true

false True true

false False false

���	��
 ����� ��� ���� ��������
Figure 4.6 shows the XML representation for Or . No attributes or elements beyond those already specified in the abstract
syntax are required. The same comments as for the And XML encoding apply.

Figure 4.6. Or XML Representation

<or >
 For mul a
 For mul a
</ or >

�������������
 � � � � � �

[6] Implies : : = Formula 'implies' Formula
We use the classical definition of I mpl i es , which is summarised in Table 4.3. In the table, For mul aA refers to the first
subformula and For mul aB to the second. The only way an implication can be f al se if the first subformula is t r ue and
the second one is f al se, for example "I am strong implies I can lift anything".

Note in particular that if For mul aA is false, the outcome of evaluating For mul aB is irrelevant - the result will be t r ue.
This is taking the classical view that anything may follow from a false premise. For example, the sentence "If five divides
eleven, I will be king" is considered true even if I will never be king.

 Date: 25/06/02

 Page 18 of 62

���	��
 ����� ��� ���� ��������
Figure 4.7 shows the XML representation for I mpl i es . No attributes or elements beyond those already specified in the
abstract syntax are required. The same comments as for the And XML encoding apply.

Figure 4.7. Implies XML Representation

<i mpl i es>
 For mul a
 For mul a
</ i mpl i es>

�������������
 �����

[7] Iff : : = Formula 'iff' Formula
I f f is a traditional shorthand for “ if and only if” . It is a convenient way of expression a two-way implication. For mul aA

i f f For mul aB is thus equivalent to (For mul aA i mpl i es For mul aB) and (For mul aB i mpl i es For mul aA) .

Table 4.4 gives the truth table for i f f . It returns true if the result of evaluating both subformulae is equal, otherwise it
returns false.

Table 4.4. Iff truth table

FormulaA FormulaB FormulaA 'iff' FormulaB

true True true

true False false

false True false

false False true

���	��
 ����� ��� ���� ��������
Figure 4.8 shows the XML representation for I f f . No attributes or elements beyond those already specified in the abstract
syntax are required. The same comments as for the And XML encoding apply.

Figure 4.8. Iff XML Representation

<i f f >
 For mul a
 For mul a
</ i f f >

�������������
 � ���

[8] Not : : = 'not' Formula

Not computes the logical negation of its subformula. Table 4.5 gives the truth table.

Table 4.3. Implies truth table

FormulaA FormulaB FormulaA 'implies' FormulaB

true True true

true False false

false True true

false False true

 Date: 25/06/02

 Page 19 of 62

���	��
 ����� ��� ���� ��������
Figure 4.9 shows the XML representation for Not . No attributes or elements beyond those already specified in the abstract
syntax are required.

Figure 4.9. Not XML Representation

<not >
 For mul a
</ not >

�������������
 ������� �

[9] Equal : : = XPath '=' XPath

Equal compares two sets of values for equality. The two sets are constructed by evaluating the two parameter XPath
expressions. The two XPath expressions must either return primitive values, like strings or numbers, or they must be
relative to a variable. Thus, the following expressions are legal, ' f oo' , 5, $x/ name/ t ext () , while the following is illegal
/ name/ t ext () (absolute expression).

� � � ��� � ��� �
Before defining the behaviour of Equal we will define how it evaluates its XPath expressions to produce value sets. All
entries a value set must be of the same type, determining the type of the set. A value set can thus be:

a set of strings

a set of booleans

a set of numbers (double)

In order to construct the set of values, the two XPath expressions are evaluated and their results converted:

Expressions that result in strings directly are converted into a set of size 1, containing the string. For example, the
expression ' f oo' becomes the set { ' f oo' } , the expression subst r i ng($x/ name/ t ext () , 2) may become
{ ' r i s t i an' } . The XPath 1.0 specification gives further details on which functions return strings.

Expressions that result in numbers directly are converted into a set of nubmers of size 1, containing the number. For
example, 20 becomes the set { 20} and count ($x/ b) may become { 2} .

Similarly, expressions that result in booleans directly are converted into a set of booleans of size 1, containing only the
boolean value. For example, t r ue becomes { t r ue} and $x/ val ue > 5 may become { f al se} .

What remains are expressions that produce node sets, i.e. expressions like $x/ name/ t ext () , which produces a list of text
nodes, $x/ @name, which produces a list of attribute nodes, and $x/ name, which produces a list of element nodes.

Any expression that produces a node set will be converted to a set of strings, using the following conversion rules: for
every node n in the set.

If n is a text node, attribute node, comment node or CDATA node, the value of the node is added to the result set.

If n is an element node, all text node children of n are added to the result set. Thus, an expressions like $x/ name will be
equivalent to $x/ name/ t ext () . This is equivalent to the behaviour of XSLT. CAUTION: While this behaviour is
guaranteed by the xlinkit checker, we discourage the use of this shorthand, and recommend the use of the full t ext ()

Table 4.5. Not truth table

Formula 'not' Formula

true False

false True

 Date: 25/06/02

 Page 20 of 62

syntax - omission of the explicit text syntax may prevent tools that statically analyse formulae, for example optimisers or
repair action generators, from working properly.

If n is any other type of node, for example a document node, a runtime error will occur.

We will now go through some examples of the value sets that would be generated from typical XPath expressions. Example
4.1 gives the sample data we will use for the expressions. We will further assume that the variable $x has been bound to the
<cat al ogue> root element.

Example 4.1. Sample document
<cat al ogue>
 <pr oduct >
 <name>Eval uat i on</ name>
 </ pr oduct >
 <pr oduct >
 <name>FpML Val i dat or </ name>
 </ pr oduct >
 <pr oduct >
 <name>UML Val i dat or </ name>
 </ pr oduct >
 <number >4</ number >
</ cat al ogue>

Evaluating count ($x/ pr oduct) will result in the set of integers { 3} . $x/ pr oduct / name/ t ext () will result in the set
of strings, { " Eval uat i on" , " FpML Val i dat or " , " UML Val i dat or " } , $x/ pr oduct [2] / name/ t ext () will result
in { " FpML Val i dat or " } and count ($x/ pr oduct) > 5 will result in the boolean set { f al se} .

� ����������
Since Equal and other predicates that rely on value sets have to compare two or more sets for equality, casting rules have
to be defined for those cases where the sets are of a different type. Table 4.6 shows what type both sets will be converted to
given their own types - i.e. in practice one set will remain unchanged and the other downcast.

Table 4.6. Value set casting rules

Set1 Set2 Base type

Number Boolean Boolean

Number Strings Strings

Boolean Strings Strings

The base type for all sets is thus a set of strings. The conversion rules for converting between set types are as follows:

Number to Boolean: The first entry in the set of numbers is compared to 0. If it is non-zero, a boolean set of size 1 with the
value { t r ue} is returned, else the set { f al se} i s r et ur ned. For example, the set { 5} becomes { t r ue} and the set
{ 0} becomes { f al se} .

Number to Strings: The first number in the set is directly converted into a string and placed into a new set, e.g. { 5}
becomes { " 5" } .

Boolean to Strings: The first boolean in the set is directly converted into the string " t r ue" or " f al se" , depending on its
value, and placed into a new set, e.g. { t r ue} becomes { " t r ue" } .

Using these casting rules it is now possible to compare sets of different types. Taking the data from Example 4.1, we can
for example compare count ($x/ pr oduct) , a number, to $x/ number / t ext () , a string, and the result will be f al se.

� ����������� ���
The behaviour of Equal is quite straightforward, it checks whether two value sets contain exactly the same values. Because
it is dealing with sets, however, the order in which the values appear is irrelevant. The pseudocode, assuming the value sets
have been constructed and downcast beforehand, is given below:

 Date: 25/06/02

 Page 21 of 62

Given this behaviour, the sets { " f oo" } and { " f oo" } are equal, the sets { " f oo" , " bar " } and { " f oo" } are not equal,
{ " f oo" , " bar " } and { " bar " , " f oo" } are equal and { 5} and { t r ue} are equal.

���	��
 ����� ��� ���� ��������
Figure 4.10 shows the XML representation for Equal . The two XPath expressions must be passed as attributes op1 and
op2.

Figure 4.10. Equal XML Representation

<equal op1=" xpat h" op2=" xpat h" / >

�������������
 � ��� � ����� �

[10] Notequal : : = XPath '!=' XPath
Not equal is really a convenience mechanism, since it can be equivalently represented using the existing Not and Equal
constructs. For details on the restrictions on the XPath expressions, their evaluation, and downcasting rules, please refer to
the description of Equal in Sub-section 4.4.1.8.

� ����������� ���
For completeness, the behaviour of Not equal is given below in pseudocode. It makes the same comparison as Equal ,
comparing two sets for equality regarless of order, and returns the opposite result.

not equal (set 1, set 2)
begi n
 i f (set 1. si ze ! = set 2. si ze)
 r et ur n t r ue;

 f or al l ent r i es e i n set 1
 i f (! set 2. cont ai ns(e))
 r et ur n t r ue
 set 2=set 2- e
 done

 r et ur n f al se
end

���	��
 ����� ��� ���� ��������
Figure 4.11 shows the XML representation for Not equal . The two XPath expressions must be passed as attributes op1 and
op2.

Figure 4.11. Notequal XML Representation

<not equal op1=" xpat h" op2=" xpat h" / >

���������������
 ���� �

[11] Same : : = VariableRef '==' VariableRef
Same takes as its parameters two references to variables that must have been bound in a parent formula. It then checks
whether the two variables point to exactly the same node - it does not compare them by value like Equal does. Take

equal (set 1, set 2)
begi n
 i f (set 1. si ze ! = set 2. si ze)
 r et ur n f al se;

 f or al l ent r i es e i n set 1
 i f (! set 2. cont ai ns(e))
 r et ur n f al se
 set 2=set 2- e
 done

 r et ur n t r ue
end

 Date: 25/06/02

 Page 22 of 62

Example 4.2 below: assume that $x points to the first <pr oduct > element, and $y to the second. Then $x == $y is
f al se while $x = $y is t r ue.

Example 4.2. "Same" example

<cat al ogue>
 <pr oduct >xl i nki t </ pr oduct >
 <pr oduct >xl i nki t </ pr oduct >
</ cat al ogue>

Same is most useful in uniqueness checks, for example if one wishes to say “ if A and B have the same value, then they
must be the same element” .

���	��
 ����� ��� ���� ��������
Figure 4.12 shows the XML representation for Same. The two variable references must be passed as attributes op1 and
op2.

Figure 4.12. Same XML Representation

<same op1=" $var " op2=" $var " / >

���������������
 � � � �

[12] True : : = 'True'
Tr ue is different from the other formulae in that it must not be used explicitly as a subformula. Instead, it is appended
automatically as a child to quantifiers that do not specify a subformula. Please refer to Sub-section 4.4.1.2 for details.

There is no XML encoding for Tr ue.

�������������
�
 � � ��� ��� ���

[13] Operator : : = 'Operator' String Param*
[14] Param : : = 'Param' String String /* Name and Value */
Oper at or : An operator behaves like any other predicate, it takes a number of parameters and returns t r ue or f al se. The
St r i ng has to be a valid name for the operator: The rule set in which this rule file is included must include an operator set
that provides a definition for this operator. Furthermore, the name of the operator must be prefixed with the name of the
operator set from which it is loaded. Thus, in order to use the operator i sPr i me in operator set mat h, mat h: i sPr i me has
to be used as the name.

Par am: The parameters passed as arguments must match those in the operator definition of the operator set both in name,
and in order. The value passed as a parameter is a string, but will be converted into the format expected by the operator, for
example by treating it as an XPath expression and evaluating it. Please refer to Section 5.1 for details on parameter
conversion.

Please refer to Chapter 5 for further details on defining operators.

���	��
 ����� ��� ���� ��������
Figure 4.13 shows the XML representation for Oper at or . The parameters are passed as subelements.

Figure 4.13. Operator XML Representation

<oper at or name=" pr ef i x: name" >
 <par am name=" par am1" val ue=" val " / >
 <par am name=" par am2" val ue=" val " / >
 . . .
</ oper at or >

 Date: 25/06/02

 Page 23 of 62

������������� �

�
� � � ��� ��� � � ���

� ��
 1 "4��3���$ ��3

A rule file, called a consistency rule set for historical reasons - but not to be confused with a rule set, consists of namespace
declarations, global set declarations, macro inclusion commands, and consistency rules expressed in the xlinkit constraint
language. The consistency rules themselves provide additional mechanisms on top of the constraint language, such as
metadata.

The namespace for rule sets is ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0. Figure 4.14 gives a graphical
overview of the schema, leaving the metadata header collapsed.

Figure 4.14. Rule file schema

The root element of a rule file is consi st encyr ul eset . It does not contain any attributes, but may contain namespace
definitions. Any prefix that is bound to a URI at the consi s t encyr ul eset element can be used inside XPath expressions
in constraints. You can find an illustration of this in Example 4.5.

macr o: i ncl ude - the rule file may contain macro inclusion elements. The schema allows any element from the
ht t p: / / www. xl i nki t . com/ Macr o/ 5. 0 namespace, which has been bound to the prefix macr o in this case, to occur
here, but at the moment only the i ncl ude element is processed. The element must provide an hr ef attribute, which is a
reference to the macro definition file to be applied to the rules. Please refer to Chapter 6 for more details. (Note: the current
version of xlinkit limits the macro inclusion mechanism to including only a single macro file, this restriction will probably
be removed in future versions).

xlinkit Constraint Language

[1] Formula : : = Forall | Exists |

And | Or | Implies | Iff | Not |
Equal | Notequal | Same | True | Operator

/* Quantifiers */
/* Logical connectives * /
/* Predicates */

[2] Forall : : = 'forall' Variable 'in' XPath Formula?
[3] Exists : : = 'exists' Variable 'in' XPath Formula?
[4] And : : = Formula 'and' Formula
[5] Or : : = Formula 'or' Formula
[6] Implies : : = Formula 'implies' Formula
[7] Iff : : = Formula 'iff' Formula
[8] Not : : = 'not' Formula
[9] Equal : : = XPath '=' XPath
[10] Notequal : : = XPath '!=' XPath
[11] Same : : = VariableRef '==' VariableRef
[12] True : : = 'True'
[13] Operator : : = 'Operator' String Param*
[14] Param : : = 'Param' String String /* Name and Value */

 Date: 25/06/02

 Page 24 of 62

���������
 � ����� ��� 	 �
� 	

A gl obal set is a node set that is created before all rules are evaluated and bound to a certain variable name. The variable
can then be used in any of the consistency rules. The element takes two parameters: i d, which defines the name of the
variable and xpat h, which gives the path to evaluate in order to obtain the value of the variable.

The XPath expression passed as a parameter must have the same characteristics as those for the quantifiers - i.e. it must
evaluate to a node set -, please refer to Section 4.1.1 for details. Note that the Var i abl e is a variable definition, not a
reference, so it must not include the $ character.

A global set is not only shared between all rules inside one particular rule file, but applies to all rules included in a rule set.
It is thus possible to refer to elements in documents using a symbolic name such as $cl asses instead of
/ / Foundat i on. Cor e. Cl ass . Because global sets are shared, whenever a global set is declared under the same i d in two
different files that have been included in the same rule set the xpat h attribute of the declaration must also match, otherwise
the rule set is invalid.

See Example 4.6 for an example of how to use a global set.

���������
 � � � 	�� 	 �������� � ��� �
	

As the schema in Figure 4.14 shows, a consistency rule consists of three parts: a header that defines the metadata, a
l i nkgener at i on element that controls the way xlinkit produces hyperlinks, and the formula itself, which must start with
a Forall.

Every consistency rule must provide an i d attribute for unique identification in the rule. According to the XML
specification, this identifier has to be unique inside the rule file. We recommend that identifiers are made unique within a
larger context, for example a set of rule files for a specific markup language.

The header contents can be used freely to associate any metadata with the rule. The pr oj ect element, however, is
reserved to take up a special role in future versions of xlinkit. It will be used together with the i d attribute to uniquely
identify rules and make it possible to identify rules that have been spread over several files using a (pr oj ect , i d) pair.
The element may become mandatory in future versions of xlinkit.

�������������

� � �� � �� ��� �������
The optional l i nkgener at i on element may contain a number of directives that control the diagnostic output produced by
xlinkit: consi st ent controls whether elements that are obey a constraint should be explicitly linked and i nconsi st ent
controls if elements that violate a constraint should be linked. Both elements are optional, and the default is that consistent
is of f and inconsistent is on. Both elements have a st at us attribute that can take the values on or of f .

el i mi nat esymmet r y can be used to instruct xlinkit to remove any pairs links whose locators point to the same elements
but are permutations of one another. For example, if a pair of links points to (A, B) and another to (B, A) , the second link
will be removed. This functionality is useful in some situations where pairs of elements are compared for equality and
inconsistencies cause the elements to be linked twice (because A is inconsistent with B, but B is also inconsistent with A).
This behaviour is rare, but does occur with some uniqueness checks. The element takes a st at us attribute whose values
can be on or of f - the default is of f . Turning this function on when it is not necessary will not cause a difference in the
result, but will introduce a runtime overhead of n* n where n is the number of links in a linkbase.

���������
 ����������� �
	

Example 4.3 shows a very simple constraint that specifies that “ for every element A there must be an attribute att” . This
rule can now be included in a rule set and checked against a document set that includes any number of files, some of which
may have root elements called A. The rule does not define any metadata or link generation commands. Consistent cases
where the attribute is present will therefore not be specially identified, and inconsistent cases will be linked. The XPath
expressions also do not use any namespace prefixes, so the element A will only be matched if it is contained in a file
without a default namespace.

 Date: 25/06/02

 Page 25 of 62

Example 4.4 shows a slightly more complex constraint, taken from xlinkit's Wilbur's Bike Shop example, that expresses a
relationship between two different data formats. It says that for every file with an Adver t root element, there has to be a
Pr oduct element somewhere else that matches its name.

When applying this rule, it is now possible to feed several files into xlinkit, and all those that have an Adver t root
elements will be checked. Similarly, multiple catalogues could possibly supplied and be checked against.

Note that we have turned on consistent link generation. This will cause elements that obey the constraint to be linked, in
this case all adverts will be linked to the correct entry in the catalogue.

Example 4.4. Checking Multiple Files
<consi st encyr ul eset xml ns=" ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0"
 xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance"
 xsi : schemaLocat i on=" ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0 consi st encyr ul eset . xsd" >

 <consi st encyr ul e i d=" r 1" >
 <header >
 <descr i pt i on>Ever y adver t must be i n t he cat al ogue</ descr i pt i on>
 <pr oj ect >Wi l bur s</ pr oj ect >
 </ header >
 <l i nkgener at i on>
 <consi st ent st at us=" on" / >
 </ l i nkgener at i on>
 <f or al l var =" x" i n=" / Adver t " >
 <exi st s var =" y" i n=" / Cat al ogue/ Pr oduct " >
 <equal op1=" $x/ name/ t ext () " op2=" $y/ name/ t ext () " / >
 </ exi st s>
 </ f or al l >
 </ consi st encyr ul e>
</ consi st encyr ul eset >

Example 4.5 shows the same constraint as the previous example, but assumes that the catalogue elements have been placed
in a file that uses ht t p: / / www. xl i nki t . com/ Exampl e/ Bi ke/ Cat al ogue as the default namespace. If we used the
previous constraint on such a catalogue, no elements would be matched and inconsistencies would be detected. Instead, we
bind the new namespace to the prefix cat : at the root element and make use of that prefix in the XPath expressions.

Example 4.5. Namespaces in XPaths
<consi st encyr ul eset xml ns=" ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0"
 xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance"
 xsi : schemaLocat i on=" ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0 consi st encyr ul eset . xsd"
 xml ns: cat =" ht t p: / / www. xl i nki t . com/ Exampl e/ Bi ke/ Cat al ogue" >

 <consi st encyr ul e i d=" r 1" >
 <f or al l var =" x" i n=" / Adver t " >
 <exi st s var =" y" i n=" / cat : Cat al ogue/ cat : Pr oduct " >
 <equal op1=" $x/ name/ t ext () " op2=" $y/ cat : name/ t ext () " / >
 </ exi st s>
 </ f or al l >
 </ consi st encyr ul e>
</ consi st encyr ul eset >

Example 4.6 demonstrates the use of a global set. The set is defined using the XPath expression from the previous example.
The rule itself has now become slightly easier to read - and could become significantly easier to read if more complex
expressions were involved. The set $pr oduct s is now been defined globally and can be used in any other rule included in
the same rule set as the one in the example.

Example 4.3. Simple Constraint
<consi st encyr ul eset xml ns=" ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0"
 xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance"
 xsi : schemaLocat i on=" ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0 consi st encyr ul eset . xsd" >

 <consi st encyr ul e i d=" r 1" >
 <f or al l var =" x" i n=" / A" >
 <exi st s var =" a" i n=" $x/ at t " / >
 </ f or al l >
 </ consi st encyr ul e>
</ consi st encyr ul eset >

 Date: 25/06/02

 Page 26 of 62

The final example, Example 4.7 demonstrates an operator invocation. Please refer to Section 5.3 to see the definition of the
operator used in this example.

Example 4.7. Operator Invocation

<consi st encyr ul eset xml ns=" ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0"
 xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance"
 xsi : schemaLocat i on=" ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0 consi st encyr ul eset . xsd" >

 <consi st encyr ul e i d=" r 1" >
 <f or al l var =" x" i n=" / Adver t " >
 <oper at or name=" t est : i sGr eat er " >
 <par am name=" st r i ngA" val ue=" $x/ name/ t ext () " / >
 <par am name=" st r i ngB" val ue=" $x/ shor t name/ t ext () " / >
 </ oper at or >
 </ f or al l >
 </ consi st encyr ul e>
</ consi st encyr ul eset >

� ���
 �� 36�7*/. ���7�

Operators in xlinkit are plug-in predicates. Just as the standard xlinkit predicates like Equal , they take a number of
parameters and return a truth value as a result. In order to create an operator for use in a formula, it has to be defined in an
operator set (Section 5.1), and implemented in an implementation language (Section 5.2).

���������
 � ������
� � ��� �
�

The purpose of an operator set is to define an interface to plug-in operators that are to be used in formulae. It includes
metadata, operator interface definitions, and a reference to where the implementation is stored. Operator sets, like the other
input mechanisms, can contain further operator sets, permitting the construction and reuse of collections of operators.

The namespace for rule sets is ht t p: / / www. xl i nki t . com/ Oper at or Set / 5. 0. Figure 5.1 gives a graphical overview of
the schema, leaving the metadata header collapsed.

Figure 5.1. Operator set schema

Oper at or Set : This serves as a container element for the operators. It has a required attributed called name. The name
defines the prefix that will be applied to all operators in this set in order to avoid name clashes between different sets. Thus
the operator i sPr i me in the set whose name is mat h will become mat h: i sPr i me.

Example 4.6. Global Sets
<consi st encyr ul eset xml ns=" ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0"
 xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance"
 xsi : schemaLocat i on=" ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0 consi st encyr ul eset . xsd" >

 <gl obal set i d=" pr oduct s" xpat h=" / Cat al ogue/ Pr oduct " / >

 <consi st encyr ul e i d=" r 1" >
 <f or al l var =" x" i n=" / Adver t " >
 <exi st s var =" y" i n=" $pr oduct s" >
 <equal op1=" $x/ name/ t ext () " op2=" $y/ name/ t ext () " / >
 </ exi st s>
 </ f or al l >
 </ consi st encyr ul e>
</ consi st encyr ul eset >

 Date: 25/06/02

 Page 27 of 62

The second required attribute is i mpl , which must contain a reference to an implementation file. The reference can be a
URL or file name. See Section 5.2 for more details on implementation files.

I mpl ement at i on must be a valid reference, URL or file, to an operator implementation file. See Section 5.2 for details of
implementation files.

header : Operator sets can contain the usual metadata, as defined in the common mechanisms. No additional meanings are
defined for the metadata in the context of an operator set and it can be used freely.

Oper at or s can be used to include a further operator set. There is only one attribute, hr ef , which is a reference to the set
to be included.

Oper at or Def i ni t i on: This element defines an interface for an operator that has been implemented in the referenced
implementation file. The required attribute name defines the name of the operator. This name must match the name of a
function in the implementation file, otherwise the operator set is invalid.

The optional descr i pt i on element is defined in exactly the same way as the descr i pt i on element in the metadata. It
can contain a mixture of text and XHTML elements, provided the elements are in the XHTML namespace. See Section 1.2
for details on how to use this element.

par am: An operator definition can take zero or more parameters. Each par am element has two required attributes, name
and t ype. The name of the parameter can be chosen freely and does not have to match the name of the parameter in the
implementation file (however when the operator is referred to in a rule, the name of the parameter in the rule does have to
match that in the operator set).

The t ype attribute has to be one of the following: i nt , st r i ng, nodeLi st or node. The type of the parameter affects
how any values passed in the operator invocation are treated and passed on to the operator implementation. See Section 5.2
for details.

���������
 � ������
� � ��� � � � ��� ������
� ��� �

An operator implementation file contains the actual implementation of operators referenced in the operator set. The
contents of the file are specific to which programming language is being used. In the current version of xlinkit, the only
supported language is ECMAScript.

Regardless of which language is used, the implementation file must provide one function for each operator referenced in
the operator set. The function will take several parameters that depend on the language, but must return the languages
native boolean type.

�������������
 � ��� �� ��� ��� ����� ���

Section 5.1 sets out the possible types for operator parameters: i nt , st r i ng, nodeLi st or node. These types define how
parameter values are treated before being passed to the operator invocation:

i nt : The parameter is treated as an integer and converted to the implementation specific integer type. If this conversion is
impossible, a run-time error occurs.

st r i ng: The parameter is converted to the implementation specific string type, and passed on to the implementation as it
is.

nodeLi st : The parameter is interpreted as an XPath expression. The expression is evaluated and must result in a node set.
This node set is then passed on to the implementation.

node: The parameter is interpreted as an XPath expression. The expression is evaluated and must result in a node set with
exactly one node in it. This node is then passed on to the implementation.

NOTE: If any XPath expressions are to be evaluated in an argument and passed to the operator, they must be passed as a
nodeLi st or node, not as st r i ng. For example, passing the expression / f oo/ t ext () as a string will result in the
operator being passed the literal string " / f oo/ t ext () " . If it is passed as a node, the operator will be passed the DOM text
node contained in / f oo and can use the get NodeVal ue method defined by the DOM to get its string value.

 Date: 25/06/02

 Page 28 of 62

�������������
 � � � � ����� � ��� � � � � ���� ��� � ��

An ECMAScript operator implementation file should simply contain a number of functions that hold the same name as the
operators defined in the operator set. Each function must take exactly the same number of parameters as defined in the
operator set, and must return t r ue or f al se from all possible execution flows. The implementation file may contain
additional functions to be used as helper functions, which may return any type.

Type mapping:

i nt parameters are converted into native ECMAScript i nt s.

st r i ng parameters are converted into native ECMAScript st r i ng objects. (Caution: these are not the same as Java
St r i ng objects. Please consult your manual or the ECMAScript specification if you need further information).

nodeLi st parameters are passed as Java Nodel i st classes. Nodel i st is a class defined in the Document Object Model
(DOM) and can be found in the or g. w3c. dom package of most XML parsers.

node parameters are passed as Java Node classes. Node is also a class defined in the DOM and can be found in the
or g. w3c. dom package of most XML parsers.

���������
 ����������� �

Example 5.1 shows an operator set that defines a new operator that can be used to check if its first parameter is a longer
string that its second. Because we want to apply the operator using XPath expressions, we have to pass the parameters as
nodes - they will point to t ex t nodes when we make use of the operator.

Because we assigned the name t est to the set, all operators in the set will have to be prefixed t est : when they are
invoked.

Example 5.1. OperatorSet
<Oper at or Set name=" t est " i mpl =" t est . es"
 xml ns=" ht t p: / / www. xl i nki t . com/ Oper at or Set / 5. 0"
 xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance"
 xsi : schemaLocat i on=" ht t p: / / www. xl i nki t . com/ Oper at or Set / 5. 0 Oper at or Set . xsd" >

 <Oper at or Def i ni t i on name=" i sGr eat er " >
 <par am name=" st r i ngA" t ype=" node" / >
 <par am name=" st r i ngB" t ype=" node" / >
 </ Oper at or Def i ni t i on>
</ Oper at or Set >

Example 5.2 shows the matching ECMAScript implementation for the operator. It uses the get NodeVal ue method of the
two parameters, which must be Node objects, to retrieve the text value, and converts them into a Java string. It then returns
the result of comparing the strings.

Example 5.2. Operator Implementation

f unct i on i sGr eat er (st r i ngA, st r i ngB) {
 sA=new j ava. l ang. St r i ng(st r i ngA. get NodeVal ue()) ;
 sB=new j ava. l ang. St r i ng(st r i ngB. get NodeVal ue()) ;

 r et ur n (sA. compar eTo(sB) > 0) ;
}

It would now be possible to invoke the operator in a rule file as in Example 5.3, assuming that $x has been bound by a
parent formula.

Example 5.3. Operator Invocation

<oper at or name=" t est : i sGr eat er " >
 <par am name=" st r i ngA" val ue=" $x/ f oo/ t ext () " / >
 <par am name=" st r i ngA" val ue=" $x/ bar / t ext () " / >
</ oper at or >

� ��	
 � */ !�7���

Macros are xlinkit's preprocessing mechanism for consistency rules. They allow the parameterization of frequently used
formulae, which increases reuse. They also make rules easier to read since they can be used to replace complex formulae
with a simple macro invocation.

 Date: 25/06/02

 Page 29 of 62

Example 6.1 is a rule that will serve as a motivating example throughout this chapter. It expresses the constraint that all
Pr oduct elements have to have a unique name within a Cat al ogue element. This kind of uniqueness check arises quite
frequently and it is tedious to define precisely every time - it is thus a good candidate for replacement with a macro.

Example 6.1. Sample Rule without Macro

<f or al l var =" c" i n=" / Cat al ogue" >
 <f or al l var =" x" i n=" $c/ Pr oduct " >
 <f or al l var =" y" i n=" $c/ Pr oduct " >
 <i mpl i es>
 <equal op1=" $x/ name/ t ext () " op2=" $y/ name/ t ext () " / >
 <same op1=" $x" op2=" $y" / >
 </ i mpl i es>
 </ f or al l >
 </ f or al l >
</ f or al l >

���������
 ���
��� � ���
	 ����� � ��� �

Macros have to be defined in a macro definition file before they can be used. Figure 6.1 shows a graphical representation of
the schema for macro definition files.

Figure 6.1. Macro Definition Schema

The def i ni t i ons root element may contain the usual metadata contained in header . No special meaning is defined for
the metadata and it can be used freely.

macr o: A definition file must contain at least one macr o element. The element has a required attributed name that defines
the name of the macro. The name has to be unique within the definition file. Individual macros may also contain the
optional header element for metadata declaration - again, no special meaning is defined and the metadata may be used
freely.

par am: A macro may take zero or more parameters that can be referred to in XPath expression inside the out put . Each
par am element has a mandatory name attribute that must be unique within the macro.

out put contains the formula the macro invocation element will be replaced with. The schema allows any element from the
consistency rule namespace to occur here, but in practice only formulae may be used otherwise a run-time error will occur.

Formulae in the output may make reference within their XPath attributes to the formally defined parameters of the macro
using the notation { $par amname} . A parameter referenced using { $par amname} will be replaced at macro invocation
using the value passed as the parameter par amname. See Section 6.2 for details.

�������������
 �
	���������

In this example, we take the fragment of the formula in Example 6.1 that expresses the actual uniqueness criterion, remove
the actual XPath expressions and insert parameter references instead. We use the parameter l i s t to refer to the set of
elements that we wish to compare, and i dent i f i er for the relative path that we will use to compare the elements for
equality.

Note that we bind the default name space to the rule namespace at the out put element, so that we can use the formula
elements without further prefixes. We reference the l i s t parameter using { $l i st } in the forall expression. When the
macro is invoked, this parameter reference will be replaced with the actual expression. To avoid any name clashes that
might arise when inserting the macro into a parent formula, we use macr ox and macr oy as our internal variable names, but
any variable name is allowed.

 Date: 25/06/02

 Page 30 of 62

Example 6.2. Macro Definition

<macr o: def i ni t i ons xml ns: macr o=" ht t p: / / www. xl i nki t . com/ Macr o/ 5. 0"
 xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance"
 xsi : schemaLocat i on=" ht t p: / / www. xl i nki t . com/ Macr o/ 5. 0 Macr o. xsd" >

 <macr o: macr o name=" uni que" >
 <macr o: par am name=" l i st " / >
 <macr o: par am name=" i dent i f i er " / >
 <macr o: out put xml ns=" ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0" >
 <f or al l var =" macr ox" i n=" { $l i st } " >
 <f or al l var =" macr oy" i n=" { $l i st } " >
 <i mpl i es>
 <equal op1=" $macr ox/ { $i dent i f i er } " op2=" $macr oy/ { $i dent i f i er } " / >
 <same op1=" $macr ox" op2=" $macr oy" / >
 </ i mpl i es>
 </ f or al l >
 </ f or al l >
 </ macr o: out put >
 </ macr o: macr o>
</ macr o: def i ni t i ons>

���������
 ���
��� � � ��� � ��	���� � ������
� � � �
	 	 �����

Macros may be included in a rule file using the i ncl ude element, which is also contained in the macro namespace. Section
4.2 specifies where the element may appear in a rule file.

Once a macro file has been included, macro invocations may appear as a subformula wherever any other formula may
appear. Macro invocation is achieved by inserting an element with the name of the macro and a prefix bound to the macro
namespaces as a subformula. For example, if we bind macr o to ht t p: / / www. xl i nki t . com/ Macr o/ 5. 0, we can then
include the macro uni que using the element macr o: uni que.

Parameters to macros are treated similarly: all parameters become attributes, with the same name, of the macro invocation
element. Thus, in our example we would have to specify the attributes l i s t and i dent i f i er . The values of these
attributes are then used to replace the parameter references in the macro. When the replacement is complete, the
instantiated macro with the actual attribute values replaces the macro invocation element in the rule file.

When all macro invocation elements have been replaced with macro instantiation, and the macro inclusion element has
been removed, macro processing is complete and the rule file is loaded as normal.

�������������
 �
	���������

Example 6.3 shows the rule file Example 6.1 rewritten using the macro definition from Example 6.2. The macr o: prefix is
bound to the correct namespace URL at the root element. We then use macr o: i ncl ude to include the macro file, and
replace the uniqueness formula with a macro invocation. The name of the macro invocation elements matches the name of
the macro in the definition file. The parameters l i s t and i dent i f i er are passed as attributes to the macro.

Example 6.3. Macro Invocation

<consi st encyr ul eset xml ns=" ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0"
 xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance"
 xsi : schemaLocat i on=" ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0 consi st encyr ul eset . xsd"
 xml ns: macr o=" ht t p: / / www. xl i nki t . com/ Macr o/ 5. 0" >

 <macr o: i ncl ude hr ef =" macr odef . xml " / >

 <consi st encyr ul e i d=" r 1" >
 <f or al l var =" c" i n=" / Cat al ogue" >
 <macr o: uni que l i st =" $c/ Pr oduct " i dent i f i er =" name/ t ext () " / >
 / f or al l >
 </ consi st encyr ul e>
</ consi st encyr ul eset >

For completeness, Example 6.4 shows the consistency rule file after macro processing: the macro inclusion has been
removed and the macro formula has been inserted, with the actual values replacing the formal parameters. The file is now
ready to be loaded and processed by xlinkit as any other rule file.

 Date: 25/06/02

 Page 31 of 62

5 FpML 1.0 Validation Rules

 ����

 $�� . ��� �

In Q1 2002 Steven Lord defined a number of FpML 1.0 Validation rules and circulated them within FpML. These authors
than formalized these rules using the xlinkit rule language. And during the process of formalization a number of
ambiguities were identified and resolved. Furthermore it was found that several rules could be subsumed into single rules
thus allowing for a more concise definition. Also during the process we found rules that were missing. The set of rules
given in 4.3 does not yet include these missing rules as it was considered more important to give a realistic example for
how validation rules could be specified rather than attempt to be complete.

 �� �
 1 "4��3 ,43���3 �-���	893 ��. �	�7� 3!� �

In order to formalize these rules we defined them in first order logic and defined them in the XML encoding of xlinkit’s
rule language. We then tested each of these rules using the example trade given in the FpML 1.0 standard.

The example was modified to force deliberate violations that were then to be identified by the xlinkit rule engine.

Steven Lord and Daniel Dui also evaluated the rules in a number of workshops and now agree that these are meaningful
and important rules for FpML

 ����
 ��* 8 �	��3 1 "4��3��43!.

ID Description
1 In swapStream: resetDates must exist if and only if a floatingRateCalculation exists in calculation

2 In swapStream: resetDates must not exist if and only if fixedRateSchedule exists in calculation.

3 In %FpML_BusinessDayAdjustments: neither businessCentersReference nor businessCenters must exist if and only if
the value of businessDayConvention is 'NONE'.

%FpML_BusinessDayAdjustments defines calculationPeriodDatesAdjustments, dateAdjustments,
paymentDatesAdjustments, and resetDatesAdjustments.

4 In calculationPeriodDates: firstPeriodStartDate and should not equal effectiveDate.

5 In calculationPeriodDates: terminationDate and lastRegularPeriodEndDate must not be the same.

Example 6.4. Processed Rule File

<consi st encyr ul eset xml ns=" ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0"
 xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance"
 xsi : schemaLocat i on=" ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0 consi st encyr ul eset . xsd"
 xml ns: macr o=" ht t p: / / www. xl i nki t . com/ Macr o/ 5. 0" >

 <consi st encyr ul e i d=" r 1" >
 <f or al l var =" c" i n=" / Cat al ogue" >
 <f or al l var =" macr ox" i n=" $c/ Pr oduct " >
 <f or al l var =" macr oy" i n=" $c/ Pr oduct " >
 <i mpl i es>
 <equal op1=" $macr ox/ name/ t ext () " op2=" $macr oy/ name/ t ext () " / >
 <same op1=" $macr ox" op2=" $macr oy" / >
 </ i mpl i es>
 </ f or al l >
 </ f or al l >
 </ f or al l >
 </ consi st encyr ul e>
</ consi st encyr ul eset >

 Date: 25/06/02

 Page 32 of 62

6 CalculationPeriodFrequency must divide the regular period precisely. This is the period between the following pairs of
dates depending on which are present in the document:

• effectiveDate and terminationDate, if neither firstPeriodStartDate nor firstRegularPeriodStartDate nor
lastRegularPeriodEndDate exist.

• firstPeriodStartDate and terminationDate, if firstPeriodStartDate exists and neither firstRegularPeriodStartDate
nor lastRegularPeriodEndDate exist.

• firstRegularPeriodStartDate and terminationDate, if firstPeriodStartDate does not exist,
firstRegularPeriodStartDate exists, and lastRegularPeriodEndDate does not exist.

• effectiveDate and lastRegularPeriodEndDate, if firstPeriodStartDate and firstRegularPeriodStartDate do not
exist and lastRegularPeriodEndDate exists.

• firstRegularPeriodStartDate and terminationDate, if firstPeriodStartDate and firstRegularPeriodStartDate exist
and lastRegularPeriodEndDate does not exist.

• firstPeriodStartDate and lastRegularPeriodEndDate, if firstPeriodStartDate exists, firstRegularPeriodStartDate
does not exist and lastRegularPeriodEndDate exists.

• firstRegularPeriodStartDate and lastRegularPeriodEndDate, if firstPeriodStartDate does not exist,
firstRegularPeriodStartDate exists and lastRegularPeriodEndDate exists.

• firstRegularPeriodStartDate and lastRegularPeriodEndDate, If all of firstPeriodStartDate,
firstRegularPeriodStartDate, and lastRegularPeriodEndDate exists.

7 In calculationPeriodFrequency: if rollConvention is not either 'NONE' or 'SFE' then the period must be 'M' or 'Y'.

8 In PaymentFrequency and calculationPeriodFrequency: PaymentFrequency must be an integer multiple (could be 1) of
the calculationPeriodFrequency.

9 In swapStream: if firstPaymentDate exists in paymentDates, it must match one of the unadjusted calculation period
dates.

10 In swapstream: if lastRegularPaymentDate exists in paymentDates, it must match one of the unadjusted calculation
period dates.

11 In %FpML_Offset: If the dayType element exists, the period must be 'D'.

%FpML_Offset defines paymentDaysOffset and rateCutOffDaysOffset.

12 In %FpML_Offset: If the dayType is 'Business', the periodMultiplier must be non zero.

%FpML_Offset defines paymentDaysOffset and rateCutOffDaysOffset.

13 In %FpML_RelativeDateOffset: If the dayType is 'Business', then the businessDayConvention should be 'NONE'.

%FpML_RelativeDateOffset defines fixingDateOffset and fixingDates.

14 In resetFrequency: weeklyRollConvention must exist if and only if the period is 'W'.

15 In ResetFrequency and calculationPeriodFrequency: calculationPeriodFrequency must be an integer multiple of the
resetFrequency

16 In notionalStepSchedule, fixedRateSchedule, capRateSchedule, floorRateSchedule, and spreadSchedule: if step exists,
stepDates in step must match one of the unadjusted calculation period dates.

17 In swapstream: calculationPeriodAmount/calculation/compoundingMethod must exist if and only if
paymentDates/paymentFrequency and calculationPeriodDates/calculationPeriodFrequency are different.

18 In swapStream: if initialStub exists in stubCalculationPeriodAmount, at least one of either firstPeriodStartDate or
firstRegularPeriodStartDate must exist in the calculationPeriodDates referenced by stubCalculationPeriodAmount.

19 In swapStream: if finalStub exists in stubCalculationPeriodAmount, lastRegularPeriodEndDate must exist in the
calculationPeriodDates referenced by stubCalculationPeriodAmount.

20 In swapStream: payerPartyReference and receiverPartyReference must not be the same.

21 In %FpML_Fee: payerPartyReference and receiverPartyReference must not be the same. %FpML_Fee defines
additionalPayment and otherPartyPayment .

 Date: 25/06/02

 Page 33 of 62

22 In %FpML_Fee: At least one of paymentDate or adjustedPaymentDate must exist. %FpML_Fee defines
additionalPayment and otherPartyPayment .

23 %FpML_Fee: paymentAmount/amount element have non zero value.

%FpML_Fee defines additionalPayment and otherPartyPayment.

24 In swapStream: if calculationPeriodAmount/calculation/compoundingMethod exists, resetDates must exist.

25 In calculationPeriodDates: effectiveDate must be before the terminationDate.

26 In %FpML_Schedule: If there are no step elements, initialValue must be non-zero.

%FpML_Schedule defines capRateSchedule, fixedRateSchedule, floorRateSchedule, and spreadSchedule.

27 In businessCentersReference there shall be a businessCenters element where the href attribute of the
businessCentersReference element matches the attribute id of the businessCenters element.

28 In businessCenters: value of businessCenter elements must be unique.

6 Rule Implementation in xlinkit
In this section, we provide the full formalization of the above rules using the xlinkit rule language. In Section 5.1 we show
the definition of operators that are used in the rules. The rules themselves are shown in Section 5.2 in XML in the same
way as the rule-writer would edit them. As the rule language has a concrete XML syntax, we are able to render the rule
using an XSLT stylesheet transformation into a more readable first order language, which we give in Section 5.3 in order to
show how rules could be included in FpML standard documentation. In Section 5.4 we provide a reference to the FpML
rule implementation that is available on the web for evaluation.

�����
 �� 3 �7* . ���7�

As described above xlinkit supports the definition of plugin operators. The rules shown in Section 5.1 use this concept to
define operators that are not easily expressed in first order logic. In this section, we show an example of how these
operators are defined in a way that xlinkit rules can invoke them and also how they can be implemented in JavaScript

���������
 � ������
� � ��� �������	��
� �
	

<?xml ver si on=" 1. 0" st andal one=" no" ?>
<Oper at or Set
 name=" f pml "
 i mpl =" oper at or s/ f pml Oper at or s. es"
 xml ns=" ht t p: / / www. xl i nki t . com/ Oper at or Set / 5. 0"
 xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance"
 xsi : schemaLocat i on=" ht t p: / / www. xl i nki t . com/ Oper at or Set / 5. 0 Oper at or Set . xsd" >

 <Oper at or Def i ni t i on name=" i n_unadj ust ed_per i od_dat es" >
 <descr i pt i on xml ns: x=" ht t p: / / www. w3. or g/ 1999/ xht ml " >
 Check i f <x: b>checkdat e</ x: b> i s on a per i odi c i nt er val
 bet ween <x: b>st ar t dat e</ x: b> and <x: b>enddat e</ x: b>:
 <x: b>per i od</ x: b> i s added t o t he st ar t dat e r epeat edl y, t aki ng
 i nt o account t he uni t (whi ch must be D, W, M, Y) . One of t hose dat es
 must be t he check dat e.
 </ descr i pt i on>
 <par am name=" st ar t dat e" t ype=" node" / >
 <par am name=" enddat e" t ype=" node" / >
 <par am name=" checkdat e" t ype=" node" / >
 <par am name=" per i od" t ype=" node" / >
 <par am name=" per i oduni t " t ype=" node" / >
 </ Oper at or Def i ni t i on>

 <Oper at or Def i ni t i on name=" unadj ust ed_per i od_dat es_di v i des" >
 <descr i pt i on xml ns: x=" ht t p: / / www. w3. or g/ 1999/ xht ml " >
 Check i f we can get f r om <x: b>st ar t dat e</ x: b> t o exact l y t he
 <x: b>enddat e</ x: b> by addi ng t he <x: b>per i od</ x: b> a number of

 Date: 25/06/02

 Page 34 of 62

 t i mes. I f t he enddat e i s exceeded by addi ng a per i od, t he oper at or
 r et ur ns f al se. The uni t must be D, W, M or Y.
 </ descr i pt i on>
 <par am name=" st ar t dat e" t ype=" node" / >
 <par am name=" enddat e" t ype=" node" / >
 <par am name=" per i od" t ype=" node" / >
 <par am name=" per i oduni t " t ype=" node" / >
 </ Oper at or Def i ni t i on>

 <Oper at or Def i ni t i on name=" gr eat er _t han" >
 <descr i pt i on xml ns: x=" ht t p: / / www. w3. or g/ 1999/ xht ml " >
 Check i f <x: b>dat ea</ x: b> i s gr eat er t han <x: b>dat eb</ x: b>. The
 dat es must be i n t he YYYY- MM- DD f or mat .
 </ descr i pt i on>
 <par am name=" dat ea" t ype=" nodeLi st " / >
 <par am name=" dat eb" t ype=" nodeLi st " / >
 </ Oper at or Def i ni t i on>

 <Oper at or Def i ni t i on name=" i s_per i od_mul t i pl e" >
 <descr i pt i on xml ns: x=" ht t p: / / www. w3. or g/ 1999/ xht ml " >
 Check i f <x: b>per i odA</ x: b> i s an i nt eger mul t i pl e of
 <x: b>per i odB</ x: b>, t aki ng i nt o account t he uni t s, whi ch must be
 Y, M, W, D. For exampl e, 6 year s i s an i nt eger mul t i pl e of 3 mont hs.
 <x: b>Not e: </ x: b> Thi s oper at or can onl y compar e pai r s of mont hs and
 year s, and weeks and days, r espect i vel y. Compar i ng mont hs t o weeks or
 days, et c. i s i l l egal .
 </ descr i pt i on>
 <par am name=" per i odA" t ype=" node" / >
 <par am name=" uni t A" t ype=" node" / >
 <par am name=" per i odB" t ype=" node" / >
 <par am name=" uni t B" t ype=" node" / >
 </ Oper at or Def i ni t i on>

</ Oper at or Set >

���������
 � ������
� � � � �
	 � � � � ��� �

f unct i on gr eat er _t han(dat e_a, dat e_b) {

 / / i f one does not exi st r et ur n f al se
 i f (dat e_a. get Lengt h ! = 1 | | dat e_b. get Lengt h ! = 1) {
 r et ur n f al se ;
 }

 / / Dat e f or mat i s YYYY- MM- DD
 s = new j ava. l ang. St r i ng(dat e_a. i t em(0) . get NodeVal ue()) ;
 t = new j ava. l ang. St r i ng(dat e_b. i t em(0) . get NodeVal ue()) ;

 r et ur n (s. compar eTo(t) > 0) ;
}

f unct i on cr eat eCal endar (dat e) {

 var di gi t s = new Ar r ay(0, 1, 2, 3, 5, 6, 8, 9) ;

 f or (i =0; i <8; i ++)
 i f (! j ava. l ang. Char act er . i sDi gi t (dat e. char At (di gi t s[i])))
 r et ur n nul l ;

 year =j ava. l ang. I nt eger . par seI nt (dat e. subst r i ng(0, 4)) ;
 mont h=j ava. l ang. I nt eger . par seI nt (dat e. subst r i ng(5, 7)) - 1;
 day=j ava. l ang. I nt eger . par seI nt (dat e. subst r i ng(8, 10)) ;

 cal =j ava. ut i l . Cal endar . get I nst ance() ;
 cal . set (year , mont h, day, 0, 0, 0) ;

 Date: 25/06/02

 Page 35 of 62

 r et ur n cal ;
}

f unct i on cal endar Equal (cal A, cal B) {
 r et ur n cal A. get (j ava. ut i l . Cal endar . YEAR) ==cal B. get (j ava. ut i l . Cal endar . YEAR) &&
cal A. get (j ava. ut i l . Cal endar . MONTH) ==cal B. get (j ava. ut i l . Cal endar . MONTH) &&
cal A. get (j ava. ut i l . Cal endar . DAY_OF_MONTH) ==cal B. get (j ava. ut i l . Cal endar . DAY_OF_MONTH) ;
}

f unct i on pr i nt cal (cal) {
 j ava. l ang. Syst em. out . pr i nt (cal . get (j ava. ut i l . Cal endar . YEAR) +" - ") ;
 j ava. l ang. Syst em. out . pr i nt ((cal . get (j ava. ut i l . Cal endar . MONTH) +1) +" - ") ;
 j ava. l ang. Syst em. out . pr i nt l n(cal . get (j ava. ut i l . Cal endar . DAY_OF_MONTH)) ;
}

f unct i on i n_unadj ust ed_per i od_dat es(st ar t dat e, enddat e, checkdat e,
 per i od, per i oduni t) {

 / / Cr eat e j ava. ut i l . Cal endar obj ect s f or each dat e

 st ar t cal =cr eat eCal endar (st ar t dat e. get NodeVal ue()) ;
 endcal =cr eat eCal endar (enddat e. get NodeVal ue()) ;
 checkcal =cr eat eCal endar (checkdat e. get NodeVal ue()) ;

 / / I f dat es cannot be cr eat ed bai l out

 i f (st ar t cal ==nul l | | endcal ==nul l | | checkcal ==nul l)
 r et ur n f al se;

 per i od=j ava. l ang. I nt eger . par seI nt (per i od. get NodeVal ue()) ;
 uni t st r i ng=new j ava. l ang. St r i ng(per i oduni t . get NodeVal ue()) ;

 uni t f i el d=j ava. ut i l . Cal endar . DAY_OF_YEAR;

 i f (uni t st r i ng. equal s(" W"))
 per i od=per i od* 7;
 el se
 i f (uni t st r i ng. equal s(" M"))
 uni t f i el d=j ava. ut i l . Cal endar . MONTH;
 el se
 i f (uni t st r i ng. equal s(" Y"))
 uni t f i el d=j ava. ut i l . Cal endar . YEAR;
 el se
 i f (! uni t st r i ng. equal s(" D"))
 r et ur n f al se;

 cur r ent =st ar t cal ;
 whi l e (cur r ent . bef or e(endcal)) {
 / / pr i nt cal (cur r ent) ;
 / / pr i nt cal (checkcal) ;

 / / j ava. l ang. Syst em. out . pr i nt l n(" - - ") ;

 i f (cal endar Equal (cur r ent , checkcal))
 r et ur n t r ue;

 cur r ent . add(uni t f i el d, per i od) ;
 }

 i f (checkcal . equal s(endcal))
 r et ur n t r ue;

 r et ur n f al se;
}

 Date: 25/06/02

 Page 36 of 62

f unct i on unadj ust ed_per i od_dat es_di v i des(st ar t dat e, enddat e, per i od, per i oduni t) {

 / / Cr eat e j ava. ut i l . Cal endar obj ect s f or each dat e

 st ar t cal =cr eat eCal endar (st ar t dat e. get NodeVal ue()) ;
 endcal =cr eat eCal endar (enddat e. get NodeVal ue()) ;

 / / I f dat es cannot be cr eat ed bai l out

 i f (st ar t cal ==nul l | | endcal ==nul l)
 r et ur n f al se;

 per i od=j ava. l ang. I nt eger . par seI nt (per i od. get NodeVal ue()) ;
 uni t st r i ng=new j ava. l ang. St r i ng(per i oduni t . get NodeVal ue()) ;

 uni t f i el d=j ava. ut i l . Cal endar . DAY_OF_YEAR;

 i f (uni t st r i ng. equal s(" W"))
 per i od=per i od* 7;
 el se
 i f (uni t st r i ng. equal s(" M"))
 uni t f i el d=j ava. ut i l . Cal endar . MONTH;
 el se
 i f (uni t st r i ng. equal s(" Y"))
 uni t f i el d=j ava. ut i l . Cal endar . YEAR;
 el se
 i f (! uni t st r i ng. equal s(" D"))
 r et ur n f al se;

 cur r ent =st ar t cal ;
 whi l e (cur r ent . bef or e(endcal)) {
 / / pr i nt cal (cur r ent) ;
 / / pr i nt cal (endcal) ;
 / / j ava. l ang. Syst em. out . pr i nt l n(" - - ") ;

 i f (cal endar Equal (cur r ent , endcal)) r et ur n t r ue;

 cur r ent . add(uni t f i el d, per i od) ;
 }

 i f (cal endar Equal (cur r ent , endcal))
 r et ur n t r ue;
 el se
 r et ur n f al se;
}

f unct i on i s_per i od_mul t i pl e(per i odA, uni t A, per i odB, uni t B) {

 per i odA=j ava. l ang. I nt eger . par seI nt (per i odA. get NodeVal ue()) ;
 uni t A=new j ava. l ang. St r i ng(uni t A. get NodeVal ue()) ;

 per i odB=j ava. l ang. I nt eger . par seI nt (per i odB. get NodeVal ue()) ;
 uni t B=new j ava. l ang. St r i ng(uni t B. get NodeVal ue()) ;

 i f (uni t A. equal s(" Y") | | uni t A. equal s(" M")) {
 i f (! (uni t B. equal s(" M") | | uni t B. equal s(" Y")))
 r et ur n f al se;

 i f (uni t A. equal s(" Y"))
 per i odA=per i odA* 12;
 i f (uni t B. equal s(" Y"))
 per i odB=per i odB* 12;

 r et ur n (per i odA % per i odB) ==0;

 Date: 25/06/02

 Page 37 of 62

 }
 el se
 i f (uni t A. equal s(" W") | | uni t A. equal s(" D")) {
 i f (! (uni t B. equal s(" D") | | uni t B. equal s(" W")))
 r et ur n f al se;

 i f (uni t A. equal s(" W"))
 per i odA=per i odA* 7;
 i f (uni t B. equal s(" W"))
 per i odB=per i odB* 7;

 r et ur n (per i odA % per i odB) ==0;
 }

 r et ur n f al se;
}

��� �
 1 "4��3!� ,	3�� $ ��3!, $ � � ��

<?xml ver si on=" 1. 0" encodi ng=" ut f - 8" ?>
<consi st encyr ul eset
xml ns=" ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0"
xml ns: macr o=" ht t p: / / www. xl i nki t . com/ Macr o/ 5. 0"
xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance"
xsi : schemaLocat i on=" ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0 consi st encyr ul e. xsd" >

 <consi st encyr ul e i d=" r 1" >
 <header >
 <descr i pt i on>Reset Dat es must be pr esent i n a swapSt r eam i f
 and onl y i f a f l oat i ngRat eCal cul at i on el ement i s pr esent i n
 t he cal cul at i on el ement . </ descr i pt i on>
 </ header >

 <l i nkgener at i on>
 <el i mi nat esymmet r y st at us=" on" / >
 </ l i nkgener at i on>

 <f or al l var =" x" i n=" / / swapSt r eam" >
 <i f f >
 <exi st s var =" y" i n=" $x/ r eset Dat es" / >
 <exi st s var =" z" i n=" $x/ cal cul at i onPer i odAmount / cal cul at i on/ f l oat i ngRat eCal cul at i on" / >
 </ i f f >
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 2" >
 <header >
 <descr i pt i on>I n swapSt r eam: el ement Reset Dat es must not exi st
 i f and onl y i f el ement f i xedRat eSchedul e exi st s i n t he
 cal cul at i on el ement . </ descr i pt i on>
 </ header >

 <l i nkgener at i on>
 <el i mi nat esymmet r y st at us=" on" / >
 </ l i nkgener at i on>

 <f or al l var =" x" i n=" / / swapSt r eam" >
 <i f f >
 <not >
 <exi st s var =" y" i n=" $x/ r eset Dat es" / >
 </ not >
 <exi st s var =" z" i n=" $x/ cal cul at i onPer i odAmount / cal cul at i on/ f i xedRat eSchedul e" / >
 </ i f f >
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 3" >
 <header >
 <descr i pt i on>I n %FpML_Busi nessDayAdj ust ment s: nei t her
 busi nessCent er sRef er ence nor busi nessCent er s must exi st i f
 and onl y i f t he val ue of busi nessDayConvent i on i s ' NONE' . %
 FpML_Busi nessDayAdj ust ment s def i nes
 cal cul at i onPer i odDat esAdj ust ment s, dat eAdj ust ment s,

 Date: 25/06/02

 Page 38 of 62

 payment Dat esAdj ust ment s, and
 r eset Dat esAdj ust ment s. </ descr i pt i on>
 </ header >

 <l i nkgener at i on>
 <el i mi nat esymmet r y st at us=" on" / >
 </ l i nkgener at i on>

 <f or al l var =" x" i n=" / / cal cul at i onPer i odDat esAdj ust ment s| / / dat eAdj ust ment s|
 / / payment Dat esAdj ust ment s| / / r eset Dat esAdj ust ment s" >
 <i f f >
 <equal op1=" $x/ busi nessDayConvent i on/ t ext () " op2=" ' NONE' " / >
 <and>
 <not >
 <exi st s var =" y" i n=" $x/ busi nessCent er sRef er ence" / >
 </ not >
 <not >
 <exi st s var =" y" i n=" $x/ busi nessCent er s" / >
 </ not >
 </ and>
 </ i f f >
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 4" >
 <header >
 <descr i pt i on>I n cal cul at i onPer i odDat es: f i r st Per i odSt ar t Dat e
 and ef f ect i veDat e must not be t he same. </ descr i pt i on>
 </ header >

 <l i nkgener at i on>
 <el i mi nat esymmet r y st at us=" on" / >
 </ l i nkgener at i on>

 <f or al l var =" x" i n=" / / cal cul at i onPer i odDat es" >
 <f or al l var =" y" i n=" $x/ ef f ect i veDat e/ unadj ust edDat e" >
 <not >
 <exi st s var =" z"
 i n=" $x/ f i r st Per i odSt ar t Dat e/ unadj ust edDat e" >
 <equal op1=" $y/ t ext () " op2=" $z/ t ext () " / >
 </ exi st s>
 </ not >
 </ f or al l >
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 5" >
 <header >
 <descr i pt i on>I n cal cul at i onPer i odDat es: t er mi nat i onDat e and
 l ast Regul ar Per i odEndDat e must not be t he same. </ descr i pt i on>
 </ header >

 <l i nkgener at i on>
 <el i mi nat esymmet r y st at us=" on" / >
 </ l i nkgener at i on>

 <f or al l var =" x" i n=" / / cal cul at i onPer i odDat es" >
 <f or al l var =" y" i n=" $x/ t er mi nat i onDat e" >
 <not >
 <exi st s var =" z" i n=" $x/ l ast Regul ar Per i odEndDat e" >
 <equal op1=" $y/ unadj ust edDat e/ t ext () "
 op2=" $z/ t ext () " / >
 </ exi st s>
 </ not >
 </ f or al l >
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 6" >
 <header >
 <aut hor >Chr i st i an</ aut hor >

 <descr i pt i on>

 Date: 25/06/02

 Page 39 of 62

 Cal cul at i onPer i odFr equency must di v i de t he r egul ar per i od pr eci sel y.
 </ descr i pt i on>
 </ header >

 <f or al l var =" x" i n=" / / cal cul at i onPer i odDat es" >
 <f or al l var =" s"
 i n=" $x/ ef f ect i veDat e[count (. . / f i r st Regul ar Per i odSt ar t Dat e) =0 and
 count (. . / f i r st Per i odSt ar t Dat e) =0] |
 $x/ f i r st Per i odSt ar t Dat e[count (. . / f i r st Regul ar Per i odSt ar t Dat e) =0] |
 $x/ f i r st Regul ar Per i odSt ar t Dat e" >

 <f or al l var =" e" i n=" $x/ t er mi nat i onDat e[count (. . / l ast Regul ar Per i odEndDat e) =0] |
 $x/ l ast Regul ar Per i odEndDat e" >

 <oper at or name=" f pml : unadj ust ed_per i od_dat es_di vi des" >
 <par am name=" st ar t dat e"
 val ue=" $s/ unadj ust edDat e/ t ext () | $s[count (unadj ust edDat e) =0] / t ext () " / >

 <par am name=" enddat e"
 val ue=" $e/ unadj ust edDat e/ t ext () | $e[count (unadj ust edDat e) =0] / t ext () " / >

 <par am name=" per i od"
 val ue=" $x/ cal cul at i onPer i odFr equency/ per i odMul t i pl i er / t ext () " / >

 <par am name=" per i oduni t "
 val ue=" $x/ cal cul at i onPer i odFr equency/ per i od/ t ext () " / >
 </ oper at or >
 </ f or al l >
 </ f or al l >
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 7" >
 <header >
 <descr i pt i on>I n cal cul at i onPer i odFr equency: i f r ol l Convent i on
 i s not ei t her ' NONE' or ' SFE' t hen t he per i od must be ' M' or
 ' Y' . </ descr i pt i on>
 </ header >

 <l i nkgener at i on>
 <el i mi nat esymmet r y st at us=" on" / >
 </ l i nkgener at i on>

 <f or al l var =" x" i n=" / / cal cul at i onPer i odFr equency" >
 <i mpl i es>
 <or >
 <not equal op1=" $x/ r ol l Convent i on/ t ext () " op2=" ' NONE' " / >

 <not equal op1=" $x/ r ol l Convent i on/ t ext () " op2=" ' SFE' " / >
 </ or >

 <or >
 <equal op1=" $x/ per i od/ t ext () " op2=" ' M' " / >

 <equal op1=" $x/ per i od/ t ext () " op2=" ' Y' " / >
 </ or >
 </ i mpl i es>
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 8" >
 <header >
 <aut hor >Dani el </ aut hor >

 <descr i pt i on>I n swapSt r eam: payment Fr equency i n payment Dat es
 must be an i nt eger mul t i pl e of cal cul at i onPer i odFr equency i n
 cal cul at i onPer i odFr equency. </ descr i pt i on>
 </ header >

 <f or al l var =" x" i n=" / / swapSt r eam" >
 <f or al l var =" y" i n=" $x/ payment Dat es/ payment Fr equency" >
 <f or al l var =" z"
 i n=" $x/ cal cul at i onPer i odDat es/ cal cul at i onPer i odFr equency" >

 Date: 25/06/02

 Page 40 of 62

 <oper at or name=" f pml : i s_per i od_mul t i pl e" >
 <par am name=" per i odA" val ue=" $y/ per i odMul t i pl i er / t ext () " / >

 <par am name=" uni t A" val ue=" $y/ per i od/ t ext () " / >

 <par am name=" per i odB" val ue=" $z/ per i odMul t i pl i er / t ext () " / >

 <par am name=" uni t B" val ue=" $z/ per i od/ t ext () " / >
 </ oper at or >
 </ f or al l >
 </ f or al l >
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 9" >
 <header >
 <aut hor >Chr i st i an</ aut hor >

 <descr i pt i on>
 </ descr i pt i on>
 </ header >

 <f or al l var =" x" i n=" / / swapSt r eam" >
 <f or al l var =" y" i n=" $x/ payment Dat es" >
 <i mpl i es>
 <exi st s var =" l " i n=" $y/ f i r st Payment Dat e" / >

<! - - Ei t her t he dat e mat ches f i r st Per i odSt ar t Dat e or i t i s
 one of t he unadj ust ed per i od dat es - - >
 <or >
 <equal
 op1=" $x/ cal cul at i onPer i odDat es/ f i r st Per i odSt ar t Dat e/ unadj ust edDat e/ t ext () "
 op2=" $y/ f i r st Payment Dat e/ t ext () " / >

 <f or al l var =" s" i n=" $x/ cal cul at i onPer i odDat es/ ef f ect i veDat e
 [count (. . / f i r st Regul ar Per i odSt ar t Dat e) =0 and
 count (. . / f i r st Per i odSt ar t Dat e) =0] |
 $x/ cal cul at i onPer i odDat es/ f i r st Per i odSt ar t Dat e
 [count (. . / f i r st Regul ar Per i odSt ar t Dat e) =0] |
 $x/ cal cul at i onPer i odDat es/ f i r st Regul ar Per i odSt ar t Dat e" >

 <f or al l var =" e" i n=" $x/ cal cul at i onPer i odDat es/ t er mi nat i onDat e
 [count (. . / l ast Regul ar Per i odEndDat e) =0] |
 $x/ cal cul at i onPer i odDat es/ l ast Regul ar Per i odEndDat e" >

 <oper at or name=" f pml : i n_unadj ust ed_per i od_dat es" >
 <par am name=" st ar t dat e"
 val ue=" $s/ unadj ust edDat e/ t ext () | $s[count (unadj ust edDat e) =0] / t ext () " / >

 <par am name=" enddat e"
 val ue=" $e/ unadj ust edDat e/ t ext () | $e[count (unadj ust edDat e) =0] / t ext () " / >

 <par am name=" checkdat e"
 val ue=" $y/ f i r st Payment Dat e/ t ext () " / >

 <par am name=" per i od"
 val ue=" $x/ cal cul at i onPer i odDat es/ cal cul at i onPer i odFr equency/ per i odMul t i pl i er / t ext () " / >

 <par am name=" per i oduni t "
 val ue=" $x/ cal cul at i onPer i odDat es/ cal cul at i onPer i odFr equency/ per i od/ t ext () " / >
 </ oper at or >
 </ f or al l >
 </ f or al l >
 </ or >
 </ i mpl i es>
 </ f or al l >
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 10" >
 <header >
 <aut hor >Chr i st i an</ aut hor >

 Date: 25/06/02

 Page 41 of 62

 <descr i pt i on>
 I n swapst r eam: i f l ast Regul ar Payment Dat e exi st s i n payment Dat es, i t must
 mat ch one of t he unadj ust ed cal cul at i on per i od dat es.
 </ descr i pt i on>
 </ header >

 <f or al l var =" x" i n=" / / swapSt r eam" >
 <f or al l var =" y" i n=" $x/ payment Dat es" >
 <i mpl i es>
 <exi st s var =" l " i n=" $y/ l ast Regul ar Payment Dat e" / >

<! - - Ei t her t he dat e mat ches f i r st Per i odSt ar t Dat e or i t i s
 one of t he unadj ust ed per i od dat es - - >
 <or >
 <equal
 op1=" $x/ cal cul at i onPer i odDat es/ f i r st Per i odSt ar t Dat e/ unadj ust edDat e/ t ext () "
 op2=" $y/ l ast Regul ar Payment Dat e/ t ext () " / >

 <f or al l var =" s" i n=" $x/ cal cul at i onPer i odDat es/ ef f ect i veDat e[
 count (. . / f i r st Regul ar Per i odSt ar t Dat e) =0 and
 count (. . / f i r st Per i odSt ar t Dat e) =0] |
 $x/ cal cul at i onPer i odDat es/ f i r st Per i odSt ar t Dat e[
 count (. . / f i r st Regul ar Per i odSt ar t Dat e) =0] |
 $x/ cal cul at i onPer i odDat es/ f i r st Regul ar Per i odSt ar t Dat e" >

 <f or al l var =" e" i n=" $x/ cal cul at i onPer i odDat es/ t er mi nat i onDat e[
 count (. . / l ast Regul ar Per i odEndDat e) =0] |
 $x/ cal cul at i onPer i odDat es/ l ast Regul ar Per i odEndDat e" >

 <oper at or name=" f pml : i n_unadj ust ed_per i od_dat es" >
 <par am name=" st ar t dat e"
 val ue=" $s/ unadj ust edDat e/ t ext () | $s[count (unadj ust edDat e) =0] / t ext () " / >

 <par am name=" enddat e"
 val ue=" $e/ unadj ust edDat e/ t ext () | $e[count (unadj ust edDat e) =0] / t ext () " / >

 <par am name=" checkdat e"
 val ue=" $y/ l ast Regul ar Payment Dat e/ t ext () " / >

 <par am name=" per i od"
 val ue=" $x/ cal cul at i onPer i odDat es/ cal cul at i onPer i odFr equency/ per i odMul t i pl i er / t ext () " / >

 <par am name=" per i oduni t "
 val ue=" $x/ cal cul at i onPer i odDat es/ cal cul at i onPer i odFr equency/ per i od/ t ext () " / >
 </ oper at or >
 </ f or al l >
 </ f or al l >
 </ or >
 </ i mpl i es>
 </ f or al l >
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 11" >
 <header >
 <descr i pt i on>I n %FpML_Of f set : I f t he dayType el ement exi st s,
 t he per i od must be ' D' . %FpML_Of f set def i nes
 payment DaysOf f set and r at eCut Of f DaysOf f set . </ descr i pt i on>
 </ header >

 <l i nkgener at i on>
 <el i mi nat esymmet r y st at us=" on" / >
 </ l i nkgener at i on>

 <f or al l var =" x"
 i n=" / / payment DaysOf f set | / / r at eCut Of f DaysOf f set " >
 <i mpl i es>
 <exi st s var =" y" i n=" $x/ dayType" / >

 <equal op1=" $x/ per i od/ t ext () " op2=" ' D' " / >
 </ i mpl i es>
 </ f or al l >
 </ consi st encyr ul e>

 Date: 25/06/02

 Page 42 of 62

 <consi st encyr ul e i d=" r 12" >
 <header >
 <descr i pt i on>I n %FpML_Of f set : I f t he dayType i s ' Busi ness' ,
 t he per i odMul t i pl i er must be non zer o</ descr i pt i on>
 </ header >

 <l i nkgener at i on>
 <el i mi nat esymmet r y st at us=" on" / >
 </ l i nkgener at i on>

 <f or al l var =" x"
 i n=" / / payment DaysOf f set | / / r at eCut Of f DaysOf f set " >
 <i mpl i es>
 <equal op1=" $x/ dayType/ t ext () " op2=" ' Busi ness' " / >

 <not equal op1=" $x/ per i odMul t i pl i er / t ext () " op2=" ' 0' " / >
 </ i mpl i es>
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 13" >
 <header >
 <descr i pt i on>I n %FpML_Rel at i veDat eOf f set : I f t he dayType i s
 ' Busi ness' , t hen t he busi nessDayConvent i on shoul d be ' NONE' .
 %FpML_Rel at i veDat eOf f set def i nes f i x i ngDat eOf f set and
 f i x i ngDat es. </ descr i pt i on>
 </ header >

 <l i nkgener at i on>
 <el i mi nat esymmet r y st at us=" on" / >
 </ l i nkgener at i on>

 <f or al l var =" x" i n=" / / f i x i ngDat eOf f set | / / f i x i ngDat es" >
 <i mpl i es>
 <equal op1=" $x/ dayType/ t ext () " op2=" ' Busi ness' " / >

 <equal op1=" $x/ busi nessDayConvent i on/ t ext () "
 op2=" ' NONE' " / >
 </ i mpl i es>
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 14" >
 <header >
 <descr i pt i on>I n r eset Fr equency: weekl yRol l Convent i on must
 exi st i f and onl y i f t he per i od i s ' W' . </ descr i pt i on>
 </ header >

 <l i nkgener at i on>
 <el i mi nat esymmet r y st at us=" on" / >
 </ l i nkgener at i on>

 <f or al l var =" x" i n=" / / r eset Fr equency" >
 <i f f >
 <exi st s var =" y" i n=" $x/ weekl yRol l Convent i on" / >

 <equal op1=" $x/ per i od/ t ext () " op2=" ' W' " / >
 </ i f f >
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 15" >
 <header >
 <aut hor >Dani el </ aut hor >

 <descr i pt i on>I n swapSt r eam: cal cul at i onPer i odFr equency i n
 cal cul at i onPer i odDat es i s i nt eger mul t i pl e of r eset Fr equency
 i n r eset Dat es. </ descr i pt i on>

 Date: 25/06/02

 Page 43 of 62

 </ header >

 <f or al l var =" x" i n=" / / swapSt r eam" >
 <f or al l var =" y" i n=" $x/ r eset Dat es/ r eset Fr equency" >
 <f or al l var =" z"
 i n=" $x/ cal cul at i onPer i odDat es/ cal cul at i onPer i odFr equency" >
 <oper at or name=" f pml : i s_per i od_mul t i pl e" >
 <par am name=" per i odA"
 val ue=" $z/ per i odMul t i pl i er / t ext () " / >

 <par am name=" uni t A" val ue=" $z/ per i od/ t ext () " / >

 <par am name=" per i odB"
 val ue=" $y/ per i odMul t i pl i er / t ext () " / >

 <par am name=" uni t B" val ue=" $y/ per i od/ t ext () " / >
 </ oper at or >
 </ f or al l >
 </ f or al l >
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 16" >
 <header >
 <aut hor >Chr i st i an</ aut hor >

 <descr i pt i on>
 I n not i onal St epSchedul e, f i xedRat eSchedul e, capRat eSchedul e, f l oor Rat eSchedul e,
 and spr eadSchedul e: i f st ep exi st s, st epDat es i n st ep must mat ch one of t he
 unadj ust ed cal cul at i on per i od dat es.
 </ descr i pt i on>
 </ header >

 <f or al l var =" x" i n=" / / swapSt r eam" >
 <f or al l var =" y"
 i n=" $x/ / not i onal St epSchedul e | $x/ / f i xedRat eSchedul e |
 $x/ / capRat eSchedul e | $x/ / f l oor Rat eSchedul e |
 $x/ / knownAmount Schedul e | $x/ spr eadSchedul e" >

 <f or al l var =" z" i n=" $y/ st ep/ st epDat e" >
 <! - - Ei t her t he st ep dat e mat ches f i r st Per i odSt ar t Dat e or i t i s
 one of t he unadj ust ed per i od dat es - - >
 <or >
 <equal
 op1=" $x/ cal cul at i onPer i odDat es/ f i r st Per i odSt ar t Dat e/ unadj ust edDat e/ t ext () "
 op2=" $z/ t ext () " / >

 <f or al l var =" s" i n=" $x/ cal cul at i onPer i odDat es/ ef f ect i veDat e
 [count (. . / f i r st Regul ar Per i odSt ar t Dat e) =0 and
 count (. . / f i r st Per i odSt ar t Dat e) =0] |
 $x/ cal cul at i onPer i odDat es/ f i r st Per i odSt ar t Dat e
 [count (. . / f i r st Regul ar Per i odSt ar t Dat e) =0] |
 $x/ cal cul at i onPer i odDat es/ f i r st Regul ar Per i odSt ar t Dat e" >

 <f or al l var =" e" i n=" $x/ cal cul at i onPer i odDat es/ t er mi nat i onDat e
 [count (. . / l ast Regul ar Per i odEndDat e) =0] |
 $x/ cal cul at i onPer i odDat es/ l ast Regul ar Per i odEndDat e" >

 <oper at or name=" f pml : i n_unadj ust ed_per i od_dat es" >
 <par am name=" st ar t dat e"
 val ue=" $s/ unadj ust edDat e/ t ext () | $s[count (unadj ust edDat e) =0] / t ext () " / >
 <par am name=" enddat e"
 val ue=" $e/ unadj ust edDat e/ t ext () | $e[count (unadj ust edDat e) =0] / t ext () " / >

 <par am name=" checkdat e" val ue=" $z/ t ext () " / >

 <par am name=" per i od"
 val ue=" $x/ cal cul at i onPer i odDat es/ cal cul at i onPer i odFr equency/ per i odMul t i pl i er / t ext () " / >

 <par am name=" per i oduni t "
 val ue=" $x/ cal cul at i onPer i odDat es/ cal cul at i onPer i odFr equency/ per i od/ t ext () " / >
 </ oper at or >
 </ f or al l >
 </ f or al l >

 Date: 25/06/02

 Page 44 of 62

 </ or >
 </ f or al l >
 </ f or al l >
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 17" >
 <header >
 <aut hor >Dani el </ aut hor >

 <descr i pt i on>I n swapst r eam:
 cal cul at i onPer i odAmount / cal cul at i on/ compoundi ngMet hod must
 exi st i f and onl y i f payment Dat es/ payment Fr equency and
 cal cul at i onPer i odDat es/ cal cul at i onPer i odFr equency ar e
 di f f er ent . </ descr i pt i on>
 </ header >

 <f or al l var =" x" i n=" / / swapSt r eam" >
 <i f f >
 <exi st s var =" y"
 i n=" $x/ cal cul at i onPer i odAmount / cal cul at i on/ compoundi ngMet hod" / >

 <not >
 <and>
 <equal
 op1=" $x/ payment Dat es/ payment Fr equency/ per i odMul t i pl i er / t ext () "
 op2=" $x/ cal cul at i onPer i odDat es/ cal cul at i onPer i odFr equency/ per i odMul t i pl i er / t ext () " / >

 <equal
 op1=" $x/ payment Dat es/ payment Fr equency/ per i od/ t ext () "
 op2=" $x/ cal cul at i onPer i odDat es/ cal cul at i onPer i odFr equency/ per i od/ t ext () " / >
 </ and>
 </ not >
 </ i f f >
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 18" >
 <header >
 <descr i pt i on>I n swapSt r eam: i f i ni t i al St ub exi st s i n
 st ubCal cul at i onPer i odAmount , at l east one of ei t her
 f i r st Per i odSt ar t Dat e or f i r st Regul ar Per i odSt ar t Dat e must
 exi st i n t he cal cul at i onPer i odDat es r ef er enced by
 st ubCal cul at i onPer i odAmount . </ descr i pt i on>
 </ header >

 <l i nkgener at i on>
 <el i mi nat esymmet r y st at us=" on" / >
 </ l i nkgener at i on>

 <f or al l var =" x" i n=" / / swapSt r eam" >
 <i mpl i es>
 <exi st s var =" y"
 i n=" $x/ st ubCal cul at i onPer i odAmount / i ni t i al St ub" / >

 <and>
 <or >
 <exi st s var =" z"
 i n=" $x/ cal cul at i onPer i odDat es/ f i r st Per i odSt ar t Dat e" / >

 <exi st s var =" z"
 i n=" $x/ cal cul at i onPer i odDat es/ f i r st Regul ar Per i odSt ar t Dat e" / >
 </ or >

 <equal op1=" $x/ cal cul at i onPer i odDat es/ @i d"
 op2=" subst r i ng($x/ st ubCal cul at i onPer i odAmount / cal cul at i onPer i odDat esRef er ence/ @hr ef , 2) " / >
 </ and>
 </ i mpl i es>
 </ f or al l >
 </ consi st encyr ul e>

 Date: 25/06/02

 Page 45 of 62

 <consi st encyr ul e i d=" r 19" >
 <header >
 <descr i pt i on>I n swapSt r eam: i f f i nal St ub exi st s i n
 st ubCal cul at i onPer i odAmount , l ast Regul ar Per i odEndDat e must
 exi st i n t he cal cul at i onPer i odDat es r ef er enced by
 st ubCal cul at i onPer i odAmount . </ descr i pt i on>
 </ header >

 <l i nkgener at i on>
 <el i mi nat esymmet r y st at us=" on" / >
 </ l i nkgener at i on>

 <f or al l var =" x" i n=" / / swapSt r eam" >
 <i mpl i es>
 <exi st s var =" y"
 i n=" $x/ st ubCal cul at i onPer i odAmount / f i nal St ub" / >

 <exi st s var =" z"
 i n=" $x/ cal cul at i onPer i odDat es/ l ast Regul ar Per i odEndDat e" >
 <equal op1=" $x/ cal cul at i onPer i odDat es/ @i d"
 op2=" subst r i ng($x/ st ubCal cul at i onPer i odAmount / cal cul at i onPer i odDat esRef er ence/ @hr ef , 2) " / >
 </ exi st s>
 </ i mpl i es>
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 20" >
 <header >
 <descr i pt i on>I n swapSt r eam: Payer Par t yRef er ence and
 r ecei ver Par t yRef er ence must not be t he same. </ descr i pt i on>
 </ header >

 <l i nkgener at i on>
 <el i mi nat esymmet r y st at us=" on" / >
 </ l i nkgener at i on>

 <f or al l var =" x" i n=" / / swapSt r eam" >
 <f or al l var =" y" i n=" $x/ payer Par t yRef er ence" >
 <not >
 <exi st s var =" z" i n=" $x/ r ecei ver Par t yRef er ence" >
 <equal op1=" $y/ @hr ef " op2=" $z/ @hr ef " / >
 </ exi st s>
 </ not >
 </ f or al l >
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 21" >
 <header >
 <descr i pt i on> I n %FpML_Fee: payer Par t yRef er ence and
 r ecei ver Par t yRef er ence must not be t he same.
 %FpML_Fee def i nes addi t i onal Payment and ot her Par t yPayment .
 </ descr i pt i on>
 </ header >

 <l i nkgener at i on>
 <el i mi nat esymmet r y st at us=" on" / >
 </ l i nkgener at i on>

 <f or al l var =" x" i n=" / / addi t i onal Payment | / / ot her Par t yPayment " >
 <f or al l var =" y" i n=" $x/ payer Par t yRef er ence" >
 <not >
 <exi st s var =" z" i n=" $x/ r ecei ver Par t yRef er ence" >
 <equal op1=" $y/ @hr ef " op2=" $z/ @hr ef " / >
 </ exi st s>
 </ not >
 </ f or al l >
 </ f or al l >
 </ consi st encyr ul e>

 Date: 25/06/02

 Page 46 of 62

 <consi st encyr ul e i d=" r 22" >
 <header >
 <descr i pt i on>I n %FpML_Fee: At l east one of payment Dat e or
 adj ust edPayment Dat e must exi st . %FpML_Fee def i nes
 addi t i onal Payment and ot her Par t yPayment . </ descr i pt i on>
 </ header >

 <l i nkgener at i on>
 <el i mi nat esymmet r y st at us=" on" / >
 </ l i nkgener at i on>

 <f or al l var =" x" i n=" / / addi t i onal Payment | / / ot her Par t yPayment " >
 <or >
 <exi st s var =" y" i n=" $x/ payment Dat e" / >

 <exi st s var =" y" i n=" $x/ adj ust edPayment Dat e" / >
 </ or >
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 23" >
 <header >
 <descr i pt i on>%FpML_Fee: payment Amount / amount el ement have non
 zer o val ue. %FpML_Fee def i nes addi t i onal Payment and
 ot her Par t yPayment . </ descr i pt i on>
 </ header >

 <l i nkgener at i on>
 <el i mi nat esymmet r y st at us=" on" / >
 </ l i nkgener at i on>

 <f or al l var =" x" i n=" / / addi t i onal Payment | / / ot her Par t yPayment " >
 <f or al l var =" y" i n=" $x/ payment Amount / amount " >
 <not equal op1=" $y/ t ext () " op2=" ' 0. 00' " / >
 </ f or al l >
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 24" >
 <header >
 <descr i pt i on>I n swapSt r eam: i f
 cal cul at i onPer i odAmount / cal cul at i on/ compoundi ngMet hod exi st s,
 r eset Dat es must exi st . </ descr i pt i on>
 </ header >

 <l i nkgener at i on>
 <el i mi nat esymmet r y st at us=" on" / >
 </ l i nkgener at i on>

 <f or al l var =" x" i n=" / / swapSt r eam" >
 <i mpl i es>
 <exi st s var =" y" i n=" $x/ cal cul at i onPer i odAmount / cal cul at i on/ compoundi ngMet hod" / >

 <exi st s var =" y" i n=" $x/ r eset Dat es" / >
 </ i mpl i es>
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 25" >
 <header >
 <descr i pt i on>I n cal cul at i onPer i odDat es: ef f ect i veDat e must be
 bef or e t he t er mi nat i onDat e. </ descr i pt i on>
 </ header >

 <l i nkgener at i on>
 <el i mi nat esymmet r y st at us=" on" / >
 </ l i nkgener at i on>

 Date: 25/06/02

 Page 47 of 62

 <f or al l var =" x" i n=" / / cal cul at i onPer i odDat es" >
 <f or al l var =" y" i n=" $x/ t er mi nat i onDat e" >
 <f or al l var =" z" i n=" $x/ ef f ect i veDat e" >
 <oper at or name=" f pml : gr eat er _t han" >
 <par am name=" dat ea"
 val ue=" $x/ t er mi nat i onDat e/ unadj ust edDat e/ t ext () " / >

 <par am name=" dat eb"
 val ue=" $x/ ef f ect i veDat e/ unadj ust edDat e/ t ext () " / >
 </ oper at or >
 </ f or al l >
 </ f or al l >
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 26" >
 <header >
 <descr i pt i on>I n %FpML_Schedul e: I f t her e ar e no st ep
 el ement s, i ni t i al Val ue must be non- zer o. %FpML_Schedul e
 def i nes capRat eSchedul e, f i xedRat eSchedul e,
 f l oor Rat eSchedul e, and spr eadSchedul e. </ descr i pt i on>
 </ header >

 <l i nkgener at i on>
 <el i mi nat esymmet r y st at us=" on" / >
 </ l i nkgener at i on>

 <f or al l var =" x"
 i n=" / / capRat eSchedul e| / / f i xedRat eSchedul e| / / f l oor Rat eSchedul e| / / spr eadSchedul e" >

 <i mpl i es>
 <not >
 <exi st s var =" y" i n=" $x/ st ep" / >
 </ not >

 <f or al l var =" y" i n=" $x/ i ni t i al Val ue" >
 <not equal op1=" $y/ t ext () " op2=" ' 0. 00' " / >
 </ f or al l >
 </ i mpl i es>
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 27" >
 <header >
 <descr i pt i on>I n busi nessCent er sRef er ence: val ue of at t r i but e
 hr ef must be equal t o t he val ue at t r i but e i d of at l east one
 busi nessCent er s. </ descr i pt i on>
 </ header >

 <l i nkgener at i on>
 <el i mi nat esymmet r y st at us=" on" / >
 </ l i nkgener at i on>

 <f or al l var =" x" i n=" / / busi nessCent er sRef er ence" >
 <exi st s var =" y" i n=" / / busi nessCent er s" >
 <equal op1=" subst r i ng($x/ @hr ef , 2) " op2=" $y/ @i d" / >
 </ exi st s>
 </ f or al l >
 </ consi st encyr ul e>

 <consi st encyr ul e i d=" r 28" >
 <header >
 <descr i pt i on>I n busi nessCent er s: val ue of busi nessCent er
 el ement s must be uni que. </ descr i pt i on>
 </ header >

 <l i nkgener at i on>
 <el i mi nat esymmet r y st at us=" on" / >
 </ l i nkgener at i on>

 Date: 25/06/02

 Page 48 of 62

 <f or al l var =" a" i n=" / / busi nessCent er s" >
 <f or al l var =" x" i n=" $a/ busi nessCent er " >
 <f or al l var =" y" i n=" $a/ busi nessCent er " >
 <i mpl i es>
 <not >
 <same op1=" $x" op2=" $y" / >
 </ not >

 <not equal op1=" $x/ t ext () " op2=" $y/ t ext () " / >
 </ i mpl i es>
 </ f or al l >
 </ f or al l >
 </ f or al l >
 </ consi st encyr ul e>
</ consi st encyr ul eset >

�����
 1 "4��3!� �736��,	3 �73!, $#� � � . ���7,	36� �-� � $�

Consistency Rule r1
Description ResetDates must be present in a swapStream if and only if a floatingRateCalculation element is present in the calculation element.
Link Generation Consistent on

Inconsistent on
Rule forall x in //swapStream (

exists y in $x/resetDates () <-> exists z in $x/calculationPeriodAmount/calculation/floatingRateCalculation ()
)

Consistency Rule r2
Description In swapStream: element ResetDates must not exist if and only if element fixedRateSchedule exists in the calculation element.
Link Generation Consistent on

Inconsistent on
Rule forall x in //swapStream (

not exists y in $x/resetDates () <-> exists z in $x/calculationPeriodAmount/calculation/fixedRateSchedule ()
)

Consistency Rule r3
Description In %FpML_BusinessDayAdjustments: neither businessCentersReference nor businessCenters must exist if and only if the value of

businessDayConvention is 'NONE'. % FpML_BusinessDayAdjustments defines calculationPeriodDatesAdjustments,
dateAdjustments, paymentDatesAdjustments, and resetDatesAdjustments.

Link Generation Consistent on
Inconsistent on

Rule forall x in //calculationPeriodDatesAdjustments|//dateAdjustments|//paymentDatesAdjustments|//resetDatesAdjustments (
$x/businessDayConvention/text()='NONE' <-> not exists y in $x/businessCentersReference () and not exists y in
$x/businessCenters ()

)

Consistency Rule r4
Description In calculationPeriodDates: firstPeriodStartDate and effectiveDate must not be the same.
Link Generation Consistent on

Inconsistent on
Rule forall x in //calculationPeriodDates (

forall y in $x/effectiveDate/unadjustedDate (
not exists z in $x/firstPeriodStartDate/unadjustedDate (

$y/text()=$z/text()
)

)
)

Consistency Rule r5
Description In calculationPeriodDates: terminationDate and lastRegularPeriodEndDate must not be the same.
Link Generation Consistent on

Inconsistent on
Rule forall x in //calculationPeriodDates (

forall y in $x/terminationDate (
not exists z in $x/lastRegularPeriodEndDate (

$y/unadjustedDate/text()=$z/text()
)

)
)

Consistency Rule r6
Description CalculationPeriodFrequency must divide the regular period precisely
Link Generation Consistent on

 Date: 25/06/02

 Page 49 of 62

Inconsistent on
Rule forall x in //calculationPeriodDates (

forall s in $x/effectiveDate[count(../firstRegularPeriodStartDate)=0 and count(../firstPeriodStartDate)=0] |
$x/firstPeriodStartDate[count(../firstRegularPeriodStartDate)=0] | $x/firstRegularPeriodStartDate (

forall e in $x/terminationDate[count(../lastRegularPeriodEndDate)=0] | $x/lastRegularPeriodEndDate (
fpml:unadjusted_period_dates_divides($s/unadjustedDate/text() |
$s[count(unadjustedDate)=0]/text(),$e/unadjustedDate/text() |
$e[count(unadjustedDate)=0]/text(),$x/calculationPeriodFrequency/periodMultiplier/text(),$x/calculationPeriodFrequenc
y/period/text())

)
)

)

Consistency Rule r7
Description In calculationPeriodFrequency: if rollConvention is not either 'NONE' or 'SFE' then the period must be 'M' or 'Y'.
Link Generation Consistent on

Inconsistent on
Rule forall x in //calculationPeriodFrequency (

$x/rollConvention/text()!='NONE' or $x/rollConvention/text()!='SFE' implies $x/period/text()='M' or $x/period/text()='Y'
)

Consistency Rule r8
Description In swapStream: paymentFrequency in paymentDates must be an integer multiple of calculationPeriodFrequency in

calculationPeriodFrequency.
Link Generation Consistent on

Inconsistent on
Rule forall x in //swapStream (

forall y in $x/paymentDates/paymentFrequency (
forall z in $x/calculationPeriodDates/calculationPeriodFrequency (

fpml:is_period_multiple($y/periodMultiplier/text(),$y/period/text(),$z/periodMultiplier/text(),$z/period/text())
)

)
)

Consistency Rule r9
Description
Link Generation Consistent on

Inconsistent on
Rule forall x in //swapStream (

forall y in $x/paymentDates (
exists l in $y/firstPaymentDate ()
 implies $x/calculationPeriodDates/firstPeriodStartDate/unadjustedDate/text()=$y/firstPaymentDate/text() or
 forall s in $x/calculationPeriodDates/effectiveDate[count(../firstRegularPeriodStartDate)=0 and
count(../firstPeriodStartDate)=0] |
$x/calculationPeriodDates/firstPeriodStartDate[count(../firstRegularPeriodStartDate)=0] |
 $x/calculationPeriodDates/firstRegularPeriodStartDate (

forall e in $x/calculationPeriodDates/terminationDate[count(../lastRegularPeriodEndDate)=0] |
 $x/calculationPeriodDates/lastRegularPeriodEndDate (

fpml:in_unadjusted_period_dates($s/unadjustedDate/text() |
$s[count(unadjustedDate)=0]/text(),$e/unadjustedDate/text() |
 $e[count(unadjustedDate)=0]/text()
,$y/firstPaymentDate/text(),$x/calculationPeriodDates/calculationPeriodFrequency/periodMultiplier/text()
,$x/calculationPeriodDates/calculationPeriodFrequency/period/text())

)
)

)
)

Consistency Rule r10
Description In swapstream: if lastRegularPaymentDate exists in paymentDates, it must match one of the unadjusted calculation period dates.
Link Generation Consistent on

Inconsistent on

 Date: 25/06/02

 Page 50 of 62

Rule forall x in //swapStream (
forall y in $x/paymentDates (

exists l in $y/lastRegularPaymentDate () implies
$x/calculationPeriodDates/firstPeriodStartDate/unadjustedDate/text()=$y/lastRegularPaymentDate/text() or forall s in
$x/calculationPeriodDates/effectiveDate[count(../firstRegularPeriodStartDate)=0 and
count(../firstPeriodStartDate)=0] |
$x/calculationPeriodDates/firstPeriodStartDate[count(../firstRegularPeriodStartDate)=0] |
$x/calculationPeriodDates/firstRegularPeriodStartDate (

forall e in $x/calculationPeriodDates/terminationDate[count(../lastRegularPeriodEndDate)=0] |
$x/calculationPeriodDates/lastRegularPeriodEndDate (

fpml:in_unadjusted_period_dates($s/unadjustedDate/text() |
$s[count(unadjustedDate)=0]/text(),$e/unadjustedDate/text() |
$e[count(unadjustedDate)=0]/text(),$y/lastRegularPaymentDate/text(),$x/calculationPeriodDates/calculationPeriodF
requency/periodMultiplier/text(),$x/calculationPeriodDates/calculationPeriodFrequency/period/text())

)
)

)
)

Consistency Rule r11
Description In %FpML_Offset: If the dayType element exists, the period must be 'D'. %FpML_Offset defines paymentDaysOffset and

rateCutOffDaysOffset.
Link Generation Consistent on

Inconsistent on
Rule forall x in //paymentDaysOffset|//rateCutOffDaysOffset (

exists y in $x/dayType () implies $x/period/text()='D'
)

Consistency Rule r12
Description In %FpML_Offset: If the dayType is 'Business', the periodMultiplier must be non zero
Link Generation Consistent on

Inconsistent on
Rule forall x in //paymentDaysOffset|//rateCutOffDaysOffset (

$x/dayType/text()='Business' implies $x/periodMultiplier/text()!='0'
)

Consistency Rule r13
Description In %FpML_RelativeDateOffset: If the dayType is 'Business', then the businessDayConvention should be 'NONE'.

%FpML_RelativeDateOffset defines fixingDateOffset and fixingDates.
Link Generation Consistent on

Inconsistent on
Rule forall x in //fixingDateOffset|//fixingDates (

$x/dayType/text()='Business' implies $x/businessDayConvention/text()='NONE'
)

Consistency Rule r14
Description In resetFrequency: weeklyRollConvention must exist if and only if the period is 'W'.
Link Generation Consistent on

Inconsistent on
Rule forall x in //resetFrequency (

exists y in $x/weeklyRollConvention () <-> $x/period/text()='W'
)

Consistency Rule r15
Description In swapStream: calculationPeriodFrequency in calculationPeriodDates is integer multiple of resetFrequency in resetDates.
Link Generation Consistent on

Inconsistent on
Rule forall x in //swapStream (

forall y in $x/resetDates/resetFrequency (
forall z in $x/calculationPeriodDates/calculationPeriodFrequency (

fpml:is_period_multiple($z/periodMultiplier/text(),$z/period/text(),$y/periodMultiplier/text(),$y/period/text())
)

)
)

Consistency Rule r16
Description In notionalStepSchedule, fixedRateSchedule, capRateSchedule, floorRateSchedule, and spreadSchedule: if step exists, stepDates in

step must match one of the unadjusted calculation period dates.
Link Generation Consistent on

Inconsistent on

 Date: 25/06/02

 Page 51 of 62

Rule forall x in //swapStream (
forall y in $x//notionalStepSchedule | $x//fixedRateSchedule | $x//capRateSchedule | $x//floorRateSchedule |
$x//knownAmountSchedule | $x/spreadSchedule (

forall z in $y/step/stepDate (
$x/calculationPeriodDates/firstPeriodStartDate/unadjustedDate/text()=$z/text()
or forall s in $x/calculationPeriodDates/effectiveDate[count(../firstRegularPeriodStartDate)=0
and count(../firstPeriodStartDate)=0] |
$x/calculationPeriodDates/firstPeriodStartDate[count(../firstRegularPeriodStartDate)=0] |
$x/calculationPeriodDates/firstRegularPeriodStartDate (

forall e in $x/calculationPeriodDates/terminationDate[count(../lastRegularPeriodEndDate)=0] |
$x/calculationPeriodDates/lastRegularPeriodEndDate (

fpml:in_unadjusted_period_dates($s/unadjustedDate/text() |
$s[count(unadjustedDate)=0]/text(),$e/unadjustedDate/text() | $e[count(unadjustedDate)=0]/text(),$z/text(),
$x/calculationPeriodDates/calculationPeriodFrequency/periodMultiplier/text(),
$x/calculationPeriodDates/calculationPeriodFrequency/period/text())

)
)

)
)

)

Consistency Rule r17
Description In swapstream: calculationPeriodAmount/calculation/compoundingMethod must exist if and only if

paymentDates/paymentFrequency and calculationPeriodDates/calculationPeriodFrequency are different.
Link Generation Consistent on

Inconsistent on
Rule forall x in //swapStream (

exists y in $x/calculationPeriodAmount/calculation/compoundingMethod () <-> not
$x/paymentDates/paymentFrequency/periodMultiplier/text()=$x/calculationPeriodDates/calculationPeriodFrequency/periodMult
iplier/text() and
$x/paymentDates/paymentFrequency/period/text()=$x/calculationPeriodDates/calculationPeriodFrequency/period/text()

)

Consistency Rule r18
Description In swapStream: if initialStub exists in stubCalculationPeriodAmount, at least one of either firstPeriodStartDate or

firstRegularPeriodStartDate must exist in the calculationPeriodDates referenced by stubCalculationPeriodAmount.
Link Generation Consistent on

Inconsistent on
Rule forall x in //swapStream (

exists y in $x/stubCalculationPeriodAmount/initialStub () implies exists z in
$x/calculationPeriodDates/firstPeriodStartDate () or exists z in $x/calculationPeriodDates/firstRegularPeriodStartDate ()
and $x/calculationPeriodDates/@id=substring($x/stubCalculationPeriodAmount/calculationPeriodDatesReference/@href, 2)

)

Consistency Rule r19
Description In swapStream: if finalStub exists in stubCalculationPeriodAmount, lastRegularPeriodEndDate must exist in the

calculationPeriodDates referenced by stubCalculationPeriodAmount.
Link Generation Consistent on

Inconsistent on
Rule forall x in //swapStream (

exists y in $x/stubCalculationPeriodAmount/finalStub () implies exists z in
$x/calculationPeriodDates/lastRegularPeriodEndDate (

$x/calculationPeriodDates/@id=substring($x/stubCalculationPeriodAmount/calculationPeriodDatesReference/@href, 2)
)

)

Consistency Rule r20
Description In swapStream: PayerPartyReference and receiverPartyReference must not be the same.
Link Generation Consistent on

Inconsistent on
Rule forall x in //swapStream (

forall y in $x/payerPartyReference (
not exists z in $x/receiverPartyReference (

$y/@href=$z/@href
)

)
)

Consistency Rule r21
Description In %FpML_Fee: payerPartyReference and receiverPartyReference must not be the same. %FpML_Fee defines additionalPayment

and otherPartyPayment .
Link Generation Consistent on

Inconsistent on

 Date: 25/06/02

 Page 52 of 62

Rule forall x in //additionalPayment|//otherPartyPayment (
forall y in $x/payerPartyReference (

not exists z in $x/receiverPartyReference (
$y/@href=$z/@href

)
)

)

Consistency Rule r22
Description In %FpML_Fee: At least one of paymentDate or adjustedPaymentDate must exist. %FpML_Fee defines additionalPayment and

otherPartyPayment .
Link Generation Consistent on

Inconsistent on
Rule forall x in //additionalPayment|//otherPartyPayment (

exists y in $x/paymentDate () or exists y in $x/adjustedPaymentDate ()
)

Consistency Rule r23
Description %FpML_Fee: paymentAmount/amount element have non zero value. %FpML_Fee defines additionalPayment and

otherPartyPayment.
Link Generation Consistent on

Inconsistent on
Rule forall x in //additionalPayment|//otherPartyPayment (

forall y in $x/paymentAmount/amount (
$y/text()!='0.00'

)
)

Consistency Rule r24
Description In swapStream: if calculationPeriodAmount/calculation/compoundingMethod exists, resetDates must exist.
Link Generation Consistent on

Inconsistent on
Rule forall x in //swapStream (

exists y in $x/calculationPeriodAmount/calculation/compoundingMethod () implies exists y in $x/resetDates ()
)

Consistency Rule r25
Description In calculationPeriodDates: effectiveDate must be before the terminationDate.
Link Generation Consistent on

Inconsistent on
Rule forall x in //calculationPeriodDates (

forall y in $x/terminationDate (
forall z in $x/effectiveDate (

fpml:greater_than($x/terminationDate/unadjustedDate/text(),$x/effectiveDate/unadjustedDate/text())
)

)
)

Consistency Rule r26
Description In %FpML_Schedule: If there are no step elements, initialValue must be non-zero. %FpML_Schedule defines capRateSchedule,

fixedRateSchedule, floorRateSchedule, and spreadSchedule.
Link Generation Consistent on

Inconsistent on
Rule forall x in //capRateSchedule|//fixedRateSchedule|//floorRateSchedule|//spreadSchedule (

not exists y in $x/step () implies forall y in $x/initialValue (
$y/text()!='0.00'

)
)

Consistency Rule r27
Description In businessCentersReference there shall be a businessCenters element where the href attribute of the businessCentersReference

element matches the attribute id of the businessCenters element.
Link Generation Consistent on

Inconsistent on
Rule forall x in //businessCentersReference (

exists y in //businessCenters (
substring($x/@href,2)=$y/@id

)
)

Consistency Rule r28
Description In businessCenters: value of businessCenter elements must be unique.

 Date: 25/06/02

 Page 53 of 62

Link Generation Consistent on
Inconsistent on

Rule forall a in //businessCenters (
forall x in $a/businessCenter (

forall y in $a/businessCenter (
not $x===$y implies $x/text()!=$y/text()

)
)

)

�����
 1�3���36�73 �� 3 � 8 �	��3+8936��. */.0$����

A reference implementation of the above rules is available at http://www.xlinkit.com/fpmlvalidator.html.

The xlinkit FpML Validator validates FpML 1.0 compliant documents against additional integrity constraints. Any FpML
document can be submitted to the Validator by entering the document’s URL into the form.

The validator will then execute the 28 rules identified in the previous section that check the validity of dates, proper
referencing between business centers and more. These hyperlinks will connect elements in the FpML document that are in
violation of a constraint, for example two business center elements. These hyperlinks are not intended for human
consumption but as an intermediate representation based on which higher-level diagnostic tools can be built very easily.

Because it is based on XLink, xlinkit's hyperlinks can have more than two endpoints. Since there is no browser that can
currently display such links, we render the links into HTML and show where each endpoint (or locator) is pointing. Each
locator will point into the file and use XPath to highlight which element it is pointing to.

 Date: 25/06/02

 Page 54 of 62

7 Evaluation
In this chapter we will reflect on the experience that we made when using xlinkit to express the validation rules for FpML
1.0. We will first review the expressiveness of the xlinkit rules and then report the performance measurements.

	����
 �6� ��36�7* � 3 �"� 1�3!5'"�$#�7368 36��. �

The table below shows the extent to which we have demonstrated in this proposal how well xlinkit addresses the
requirements defined in Section 2.

R2.1.1 Semantic Validation Xlinkit expresses static semantic validation rules that

are beyond the syntactic rules that can be expressed
in DTD or XML Schema.

R2.1.2 XML-based Definition The various xlinkit languages have a concrete syntax
defined in XML Schea and shown in Appendix 9.

R2.1.3 GUI tools to formulate and update rules Systemwire has alpha release GUI tools for editing
xlinkit rules, but these have not been discussed in this
report.

R2.2 Multiple distributed rule sets Rules are grouped into rule files and rule files are
aggregated in rule sets. URLs are used to reference
rules on remote web servers.

R2.3.1 Comparison to external data sources When expressing rules, xlinkit does not assume any
location information. Multiple documents can be
checked by including them into a document set. This
feature is not yet used in the FpML 1.0 validation
rules.

R2.3.2 Check against non-FpML languages xlinkit assumes that each document references its
schema definition. There is no restriction on the
number of different schema used.

R2.3.3 Distributed data sources Document sets can reference distributed data using
URLs. Fetchers can be used in order to load
documents from sources other than Web servers (e.g.
a JDBC Fetcher to load it from a database)

R2.4.1 Declarative rule language xlinkit uses first order logic rules, a declarative rule
language. As a result the rules are very concise.

R2.4.2 Domain-specific operators Operators can be defined in ECMAscript, a
standardized version of Javascript or in Java classes.
These operators can then be invoked in rule files.

R2.4.3 Ease of comprehension The rules are reasonably simple to understand for
anyone who understands first-order predicate logic

R2.4.4 Rule structuring mechanisms There are no restrictions on the number of rule files
and rule sets.

R2.4.5 human + machine readable representation As rules are defined in XML, they can be translated
using an XSLT stylesheet into a more readable form.

R2.5.1 Classification of FpML product types To date, we have not yet demonstrated how to use
xlinkit to achieve classification of FpML product
types.

R2.6.1 W3C compliance xlinkit uses only Schemas, XPath and XLink.
R2.7.1 Efficient Execution 28 Validation rules were executed on a relatively

small PC within less than a second

 Date: 25/06/02

 Page 55 of 62

	�� �
 ��). ��3�� 3 ��3�� $�. ���"� � ����89* �#$���* . $ ���

The rule descriptions that we obtained from people in Warburg were given in English, attempting to be as precise as
possible. We have then formalized these constraints using the xlinkit rule language. During this process, we have identified
many ambiguities and we had to discuss the meaning of some rules with our business contact. Once formalized, we were
able to reformulate the original constraint in English, albeit in a more precise way. We give an example now. We were first
given the following description of a constraint.

“BusinessCentersReference must reference a businessCenter element within the document.”

We translated that into the following xlinkit rule:

<f or al l var =" x" i n=" / / busi nessCent er sRef er ence" >
 <exi st s var =" y" i n=" / / busi nessCent er s" >
 <equal op1=" subst r i ng($x/ @hr ef , 2) " op2=" $y/ @i d" / >
 </ exi st s>
</ f or al l >

Once we had gone through the formalization, we were able to capture the meaning of the constraint more precisely as:

In busi nessCent er sRef er ence there shall be a busi nessCent er s element where the hr ef attribute of the
busi nessCent er sRef er ence element matches the attribute i d of the busi nessCent er s element.

This new description formulation identifies explicitly the attributes to compare, which was unclear in the original
formulation. The xlinkit rule also shows exactly what it is meant with ``matches''. If the i d value is
“ pr i mar yBusi nessCent er ” , then the hr ef values referencing it must have value `` \ #pr i mar yBusi nessCent er ' '
(with a leading hash symbol). Hence, using an XPath expression, we impose that the substring starting on the second
character of the hr ef string must be equal to the entire i d string.

Another by-product of the formalization process was that the detailed analysis of all the constraints has led us to identify
gaps that demanded new constraints that were not evident from the beginning, or to condense several constraints into one.
Therefore the whole exercise has led to a more complete and precise formulation of the validation constraints.

	����
 � 36� ���%��8 * �� 3

After having formalized the initial set of 35 constraints a total of 28 constraints remained (because some were subsumed)
and others were proven to be obsolete. We then checked a 17KByte FpML 1.0 trade document that did not have any
constraint violations using the xlinkit rule engine. The rule engine executed on a dual-processor Pentium III with a clock
speed of 1.7 GHz and 1GByte of RAM. The rule angine runs as a single task so it does not use the second processor.

The figure below shows the performance measurements that we. The total for checking all 28 rules is just under 990msec.
We also note that at some rules require a significantly longer time than others to evaluate. This happens when the
evaluation of an XPath expression requires the traversal of the entire DOM tree. For example expression
``//businessCentersReference'' appears in rule 27.

0

50

100

150

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Rule

T
im

e
(m

se
c)

Expressions of this kind are necessary when the element we are trying to find can appear anywhere in the document, unless
we can explicitly identify the position of the element in the document tree. In rule 1 we changed the expression from

 Date: 25/06/02

 Page 56 of 62

``//swapStream'' to ``/FpML/trade/product/swap/swapStream'' and the execution time reduced by five folds (the figure in
the graph). The only drawback is that long XPath expressions make rules less readable.

Caching is also important. If a rule uses an XPath expression that was evaluated already for another rule, it will execute
much faster. This happens, for example, in rule 2, which uses an expression that the XPath processor had previously
evaluated for rule 1.

In general XPath evaluation is the dominant performance factor. We expected the rules that use plug-in operators (for
example 8, 9, 10, and 15) to be slower, but their execution time is in line with the other rules.

We are using Apache's Xalan as an XPath processor. Preliminary tests with a beta version of Jaxen indicate that a faster
XPath processor can give significant performance improvements. Rule optimisation is also something on which we will be
focussing.

8 Summary and Recommendation
In this proposal, we have demonstrated how semantic validations can be achieved using xlinkit. We have argued why
xlinkit is superior to other approaches, such as attribute grammars, XSLT or OCL. We have provided evidence that xlinkit
is expressive enough to concisely formalize all constraints for FpML 1.0 that we defined. We have customized the xlinkit
rule engine to directly check one FpML trade document and have made that FpML validator available as a reference
implementation on the systemwire web site. We have done some extensive performance analysis and shown that the 28
FpML 1.0 validation rules can be executed in less than a second. We have also shown that there is considerable benefit in
formalizing the static semantics of FpML trades.

These observations lead us to conclude that xlinkit should be adopted as the standard FpML validation language and for
FpML Product Working groups to use xlinkit to precisely define the constraints they wish to impose on rules. We would
expect that such adoption of xlinkit would have a very positive effect on the efficiency with which financial trade ocuments
can be handled both across FpML organizations, but also within different departments of the same organization.

� ���
 1 "4��3 ��* � � "�* � 3 � �6��.:* � ��� ��
��4 !��3689* �

<?xml ver si on=" 1. 0" encodi ng=" UTF- 8" ?>
<xs: schema t ar get Namespace=" ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0"
 xml ns=" ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0"
 xml ns: xs=" ht t p: / / www. w3. or g/ 2001/ XMLSchema"
 el ement For mDef aul t =" qual i f i ed" at t r i but eFor mDef aul t =" unqual i f i ed" >
 <xs: el ement name=" consi st encyr ul eset " >
 <xs: compl exType>
 <xs: sequence>
 <xs: any namespace=" ht t p: / / www. xl i nki t . com/ Macr o/ 5. 0"
 pr ocessCont ent s=" ski p" mi nOccur s=" 0" / >
 <xs: el ement name=" gl obal set " mi nOccur s=" 0" maxOccur s=" unbounded" >
 <xs: compl exType>
 <xs: at t r i but e name=" i d" t ype=" xs: st r i ng" use=" r equi r ed" / >
 <xs: at t r i but e name=" xpat h" t ype=" xs: st r i ng" use=" r equi r ed" / >
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" consi st encyr ul e" maxOccur s=" unbounded" >
 <xs: compl exType>
 <xs: sequence>
 <xs: el ement r ef =" header " mi nOccur s=" 0" / >
 <xs: el ement name=" l i nkgener at i on" mi nOccur s=" 0" >
 <xs: compl exType>
 <xs: choi ce maxOccur s=" 3" >
 <xs: el ement name=" consi st ent " mi nOccur s=" 0" >
 <xs: compl exType>
 <xs: at t r i but e name=" st at us" use=" opt i onal " def aul t =" on" >
 <xs: si mpl eType>
 <xs: r est r i ct i on base=" xs: NMTOKEN" >
 <xs: enumer at i on val ue=" on" / >
 <xs: enumer at i on val ue=" of f " / >
 </ xs: r est r i ct i on>
 </ xs: si mpl eType>

 Date: 25/06/02

 Page 57 of 62

 </ xs: at t r i but e>
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" i nconsi st ent " mi nOccur s=" 0" >
 <xs: compl exType>
 <xs: at t r i but e name=" st at us" use=" opt i onal " def aul t =" on" >
 <xs: si mpl eType>
 <xs: r est r i ct i on base=" xs: NMTOKEN" >
 <xs: enumer at i on val ue=" on" / >
 <xs: enumer at i on val ue=" of f " / >
 </ xs: r est r i ct i on>
 </ xs: si mpl eType>
 </ xs: at t r i but e>
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" el i mi nat esymmet r y" mi nOccur s=" 0" >
 <xs: compl exType>
 <xs: at t r i but e name=" st at us" use=" opt i onal " def aul t =" of f " >
 <xs: si mpl eType>
 <xs: r est r i ct i on base=" xs: NMTOKEN" >
 <xs: enumer at i on val ue=" on" / >
 <xs: enumer at i on val ue=" of f " / >
 </ xs: r est r i ct i on>
 </ xs: si mpl eType>
 </ xs: at t r i but e>
 </ xs: compl exType>
 </ xs: el ement >
 </ xs: choi ce>
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement r ef =" f or al l " / >
 </ xs: sequence>
 <xs: at t r i but e name=" i d" t ype=" xs: I D" use=" r equi r ed" / >
 </ xs: compl exType>
 </ xs: el ement >
 </ xs: sequence>
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" header " >
 <xs: compl exType>
 <xs: sequence>
 <xs: choi ce maxOccur s=" unbounded" >
 <xs: el ement name=" aut hor " t ype=" xs: st r i ng" / >
 <xs: el ement name=" descr i pt i on" >
 <xs: compl exType mi xed=" t r ue" >
 <xs: sequence>
 <xs: any namespace=" ht t p: / / www. w3. or g/ 1999/ xht ml "
 pr ocessCont ent s=" ski p" mi nOccur s=" 0" maxOccur s=" unbounded" / >
 </ xs: sequence>
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" pr oj ect " t ype=" xs: st r i ng" / >
 <xs: el ement name=" comment " t ype=" xs: st r i ng" / >
 <xs: any namespace=" ht t p: / / www. xl i nki t . com/ Met adat a/ 5. 0"
 pr ocessCont ent s=" ski p" / >
 </ xs: choi ce>
 </ xs: sequence>
 </ xs: compl exType>
 </ xs: el ement >
 <xs: compl exType name=" quant i f i er Type" >
 <xs: gr oup r ef =" f or mul aGr oup" mi nOccur s=" 0" / >
 <xs: at t r i but e name=" var " t ype=" xs: st r i ng" use=" r equi r ed" / >
 <xs: at t r i but e name=" i n" t ype=" xs: st r i ng" use=" r equi r ed" / >
 <xs: at t r i but e name=" mode" use=" opt i onal " def aul t =" exhaust i ve" >
 <xs: si mpl eType>
 <xs: r est r i ct i on base=" xs: NMTOKEN" >
 <xs: enumer at i on val ue=" exhaust i ve" / >
 <xs: enumer at i on val ue=" i nst ance" / >
 </ xs: r est r i ct i on>
 </ xs: si mpl eType>
 </ xs: at t r i but e>
 </ xs: compl exType>
 <xs: compl exType name=" bi nOper at or Type" >
 <xs: gr oup r ef =" f or mul aGr oup" mi nOccur s=" 2" maxOccur s=" 2" / >
 </ xs: compl exType>
 <xs: compl exType name=" bi nPr edi cat eType" >

 Date: 25/06/02

 Page 58 of 62

 <xs: at t r i but e name=" op1" t ype=" xs: st r i ng" use=" r equi r ed" / >
 <xs: at t r i but e name=" op2" t ype=" xs: st r i ng" use=" r equi r ed" / >
 </ xs: compl exType>
 <xs: el ement name=" f or al l " t ype=" quant i f i er Type" / >
 <xs: el ement name=" and" t ype=" bi nOper at or Type" / >
 <xs: el ement name=" or " t ype=" bi nOper at or Type" / >
 <xs: el ement name=" i mpl i es" t ype=" bi nOper at or Type" / >
 <xs: el ement name=" i f f " t ype=" bi nOper at or Type" / >
 <xs: el ement name=" not " >
 <xs: compl exType>
 <xs: gr oup r ef =" f or mul aGr oup" / >
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" exi st s" t ype=" quant i f i er Type" / >
 <xs: el ement name=" equal " t ype=" bi nPr edi cat eType" / >
 <xs: el ement name=" not equal " t ype=" bi nPr edi cat eType" / >
 <xs: el ement name=" same" t ype=" bi nPr edi cat eType" / >
 <xs: el ement name=" subset " >
 <xs: compl exType>
 <xs: compl exCont ent >
 <xs: ext ensi on base=" bi nPr edi cat eType" >
 <xs: at t r i but e name=" si ze" t ype=" xs: i nt " use=" opt i onal " def aul t =" 0" / >
 </ xs: ext ensi on>
 </ xs: compl exCont ent >
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" i nt er sect " >
 <xs: compl exType>
 <xs: compl exCont ent >
 <xs: ext ensi on base=" bi nPr edi cat eType" >
 <xs: at t r i but e name=" si ze" t ype=" xs: i nt " use=" opt i onal " def aul t =" 0" / >
 </ xs: ext ensi on>
 </ xs: compl exCont ent >
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" oper at or " >
 <xs: compl exType>
 <xs: sequence>
 <xs: el ement name=" par am" mi nOccur s=" 0" maxOccur s=" unbounded" >
 <xs: compl exType>
 <xs: at t r i but e name=" name" t ype=" xs: st r i ng" use=" r equi r ed" / >
 <xs: at t r i but e name=" val ue" t ype=" xs: st r i ng" use=" r equi r ed" / >
 </ xs: compl exType>
 </ xs: el ement >
 </ xs: sequence>
 <xs: at t r i but e name=" name" t ype=" xs: st r i ng" use=" r equi r ed" / >
 </ xs: compl exType>
 </ xs: el ement >
 <xs: gr oup name=" f or mul aGr oup" >
 <xs: choi ce>
 <xs: el ement r ef =" f or al l " / >
 <xs: el ement r ef =" exi st s" / >
 <xs: el ement r ef =" equal " / >
 <xs: el ement r ef =" not equal " / >
 <xs: el ement r ef =" same" / >
 <xs: el ement r ef =" i nt er sect " / >
 <xs: el ement r ef =" subset " / >
 <xs: el ement r ef =" and" / >
 <xs: el ement r ef =" or " / >
 <xs: el ement r ef =" i mpl i es" / >
 <xs: el ement r ef =" i f f " / >
 <xs: el ement r ef =" not " / >
 <xs: el ement r ef =" oper at or " / >
 <xs: any namespace=" ht t p: / / www. xl i nki t . com/ Macr o/ 5. 0"
 pr ocessCont ent s=" ski p" / >
 </ xs: choi ce>
 </ xs: gr oup>
</ xs: schema>

� � �
 �'� !"48936��. ��3!. ��3 � $#�4$�.0$����)� ����. * � � � ��
 �� ���3689* �

<?xml ver si on=" 1. 0" encodi ng=" UTF- 8" ?>
<xs: schema t ar get Namespace=" ht t p: / / www. xl i nki t . com/ Document Set / 5. 0"
 xml ns: xs=" ht t p: / / www. w3. or g/ 2001/ XMLSchema"
 xml ns=" ht t p: / / www. xl i nki t . com/ Document Set / 5. 0"

 Date: 25/06/02

 Page 59 of 62

 el ement For mDef aul t =" qual i f i ed" at t r i but eFor mDef aul t =" unqual i f i ed" >
 <xs: el ement name=" Document Set " >
 <xs: compl exType>
 <xs: sequence>
 <xs: el ement r ef =" header " mi nOccur s=" 0" / >
 <xs: sequence>
 <xs: choi ce maxOccur s=" unbounded" >
 <xs: el ement name=" Document " >
 <xs: compl exType>
 <xs: at t r i but e name=" hr ef " t ype=" xs: st r i ng" use=" r equi r ed" / >
 <xs: at t r i but e name=" f et cher " t ype=" xs: st r i ng" use=" opt i onal "
 def aul t =" Fi l eFet cher " / >
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" Set " >
 <xs: compl exType>
 <xs: at t r i but e name=" hr ef " t ype=" xs: st r i ng" use=" r equi r ed" / >
 </ xs: compl exType>
 </ xs: el ement >
 </ xs: choi ce>
 </ xs: sequence>
 </ xs: sequence>
 <xs: at t r i but e name=" name" t ype=" xs: st r i ng" use=" opt i onal " / >
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" header " >
 <xs: compl exType>
 <xs: sequence>
 <xs: choi ce maxOccur s=" unbounded" >
 <xs: el ement name=" aut hor " t ype=" xs: st r i ng" / >
 <xs: el ement name=" descr i pt i on" >
 <xs: compl exType mi xed=" t r ue" >
 <xs: sequence>
 <xs: any namespace=" ht t p: / / www. w3. or g/ 1999/ xht ml "
 pr ocessCont ent s=" ski p" mi nOccur s=" 0" maxOccur s=" unbounded" / >
 </ xs: sequence>
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" pr oj ect " t ype=" xs: st r i ng" / >
 <xs: el ement name=" comment " t ype=" xs: st r i ng" / >
 <xs: any namespace=" ht t p: / / www. xl i nki t . com/ Met adat a/ 5. 0"
 pr ocessCont ent s=" ski p" / >
 </ xs: choi ce>
 </ xs: sequence>
 </ xs: compl exType>
 </ xs: el ement >
</ xs: schema>

� ���
 1 "4��3���3 . ��3�� $ �4$�.0$����)� ����. * � ��� ��
��4 ��3 89* �

<?xml ver si on=" 1. 0" encodi ng=" UTF- 8" ?>
<xs: schema t ar get Namespace=" ht t p: / / www. xl i nki t . com/ Rul eSet / 5. 0"
 xml ns=" ht t p: / / www. xl i nki t . com/ Rul eSet / 5. 0"
 xml ns: xs=" ht t p: / / www. w3. or g/ 2001/ XMLSchema"
 el ement For mDef aul t =" qual i f i ed" at t r i but eFor mDef aul t =" unqual i f i ed" >
 <xs: el ement name=" Rul eSet " >
 <xs: compl exType>
 <xs: sequence>
 <xs: el ement r ef =" header " mi nOccur s=" 0" / >
 <xs: sequence>
 <xs: choi ce maxOccur s=" unbounded" >
 <xs: el ement name=" Rul eFi l e" >
 <xs: compl exType>
 <xs: at t r i but e name=" hr ef " t ype=" xs: st r i ng" use=" r equi r ed" / >
 <xs: at t r i but e name=" xpat h" t ype=" xs: st r i ng" use=" opt i onal "
 def aul t =" / * [l ocal - name() =' consi st encyr ul eset '] / * [l ocal - name()
 =' consi st encyr ul e'] " / >
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" Set " >
 <xs: compl exType>
 <xs: at t r i but e name=" hr ef " t ype=" xs: st r i ng" use=" r equi r ed" / >
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" Oper at or s" >

 Date: 25/06/02

 Page 60 of 62

 <xs: compl exType>
 <xs: at t r i but e name=" hr ef " t ype=" xs: st r i ng" use=" r equi r ed" / >
 </ xs: compl exType>
 </ xs: el ement >
 </ xs: choi ce>
 </ xs: sequence>
 </ xs: sequence>
 <xs: at t r i but e name=" name" t ype=" xs: st r i ng" use=" opt i onal " / >
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" header " >
 <xs: compl exType>
 <xs: sequence>
 <xs: choi ce maxOccur s=" unbounded" >
 <xs: el ement name=" aut hor " t ype=" xs: st r i ng" / >
 <xs: el ement name=" descr i pt i on" >
 <xs: compl exType mi xed=" t r ue" >
 <xs: sequence>
 <xs: any namespace=" ht t p: / / www. w3. or g/ 1999/ xht ml "
 pr ocessCont ent s=" ski p" mi nOccur s=" 0" maxOccur s=" unbounded" / >
 </ xs: sequence>
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" pr oj ect " t ype=" xs: st r i ng" / >
 <xs: el ement name=" comment " t ype=" xs: st r i ng" / >
 <xs: any namespace=" ht t p: / / www. xl i nki t . com/ Met adat a/ 5. 0"
 pr ocessCont ent s=" ski p" / >
 </ xs: choi ce>
 </ xs: sequence>
 </ xs: compl exType>
 </ xs: el ement >
</ xs: schema>

� ���
 �� 3 �7* . ��� ��3 � $#�4$�.0$���� � ����. * � ��� ��
 �� ��3689* �

<?xml ver si on=" 1. 0" encodi ng=" UTF- 8" ?>
<xs: schema t ar get Namespace=" ht t p: / / www. xl i nki t . com/ Oper at or Set / 5. 0"
xml ns: xs=" ht t p: / / www. w3. or g/ 2001/ XMLSchema" xml ns=" ht t p: / / www. xl i nki t . com/ Oper at or Set / 5. 0"
el ement For mDef aul t =" qual i f i ed" at t r i but eFor mDef aul t =" unqual i f i ed" >
 <xs: el ement name=" Oper at or Set " >
 <xs: compl exType>
 <xs: sequence>
 <xs: el ement r ef =" header " mi nOccur s=" 0" / >
 <xs: choi ce maxOccur s=" unbounded" >
 <xs: el ement name=" Oper at or s" >
 <xs: compl exType>
 <xs: at t r i but e name=" hr ef " t ype=" xs: st r i ng" use=" r equi r ed" / >
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" Oper at or Def i ni t i on" >
 <xs: compl exType>
 <xs: sequence>
 <xs: el ement name=" descr i pt i on" mi nOccur s=" 0" maxOccur s=" 1" >
 <xs: compl exType mi xed=" t r ue" >
 <xs: sequence>
 <xs: any namespace=" ht t p: / / www. w3. or g/ 1999/ xht ml "
 pr ocessCont ent s=" ski p" mi nOccur s=" 0" maxOccur s=" unbounded" / >
 </ xs: sequence>
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" par am" mi nOccur s=" 0" maxOccur s=" unbounded" >
 <xs: compl exType>
 <xs: at t r i but e name=" name" t ype=" xs: st r i ng" use=" r equi r ed" / >
 <xs: at t r i but e name=" t ype" t ype=" Par amet er Type" use=" r equi r ed" / >
 </ xs: compl exType>
 </ xs: el ement >
 </ xs: sequence>
 <xs: at t r i but e name=" name" t ype=" xs: st r i ng" use=" r equi r ed" / >
 </ xs: compl exType>
 <xs: uni que name=" Par amUni que" >
 <xs: sel ect or xpat h=" . / par am" / >
 <xs: f i el d xpat h=" @name" / >
 </ xs: uni que>
 </ xs: el ement >
 </ xs: choi ce>

 Date: 25/06/02

 Page 61 of 62

 </ xs: sequence>
 <xs: at t r i but e name=" name" t ype=" xs: st r i ng" use=" r equi r ed" / >
 <xs: at t r i but e name=" i mpl " t ype=" xs: st r i ng" use=" r equi r ed" / >
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" header " >
 <xs: compl exType>
 <xs: sequence>
 <xs: choi ce maxOccur s=" unbounded" >
 <xs: el ement name=" aut hor " t ype=" xs: st r i ng" / >
 <xs: el ement name=" descr i pt i on" >
 <xs: compl exType mi xed=" t r ue" >
 <xs: sequence>
 <xs: any namespace=" ht t p: / / www. w3. or g/ 1999/ xht ml "
 pr ocessCont ent s=" ski p" mi nOccur s=" 0" maxOccur s=" unbounded" / >
 </ xs: sequence>
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" pr oj ect " t ype=" xs: st r i ng" / >
 <xs: el ement name=" comment " t ype=" xs: st r i ng" / >
 <xs: any namespace=" ht t p: / / www. xl i nki t . com/ Met adat a/ 5. 0" pr ocessCont ent s=" ski p" / >
 </ xs: choi ce>
 </ xs: sequence>
 </ xs: compl exType>
 </ xs: el ement >
 <xs: si mpl eType name=" Par amet er Type" >
 <xs: r est r i ct i on base=" xs: st r i ng" >
 <xs: enumer at i on val ue=" i nt " / >
 <xs: enumer at i on val ue=" st r i ng" / >
 <xs: enumer at i on val ue=" nodeLi st " / >
 <xs: enumer at i on val ue=" node" / >
 <xs: enumer at i on val ue=" var " / >
 </ xs: r est r i ct i on>
 </ xs: si mpl eType>
</ xs: schema>

� ��
 � */ !�7�
 * � � "�* � 3 � ����.:* � ��� ��
��4 !��3 8 * �

<?xml ver si on=" 1. 0" encodi ng=" UTF- 8" ?>
<xs: schema t ar get Namespace=" ht t p: / / www. xl i nki t . com/ Macr o/ 5. 0"

 xml ns=" ht t p: / / www. xl i nki t . com/ Macr o/ 5. 0"
 xml ns: xs=" ht t p: / / www. w3. or g/ 2001/ XMLSchema"
 el ement For mDef aul t =" qual i f i ed" at t r i but eFor mDef aul t =" unqual i f i ed" >
 <xs: el ement name=" def i ni t i ons" >
 <xs: compl exType>
 <xs: sequence>
 <xs: el ement r ef =" header " mi nOccur s=" 0" / >
 <xs: el ement r ef =" macr o" maxOccur s=" unbounded" / >
 </ xs: sequence>
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" macr o" >
 <xs: compl exType>
 <xs: sequence>
 <xs: el ement r ef =" header " mi nOccur s=" 0" / >
 <xs: el ement r ef =" par am" mi nOccur s=" 0" maxOccur s=" unbounded" / >
 <xs: el ement r ef =" out put " / >
 </ xs: sequence>
 <xs: at t r i but e name=" name" t ype=" xs: st r i ng" use=" r equi r ed" / >
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" out put " >
 <xs: compl exType>
 <xs: sequence>
 <xs: any namespace=" ht t p: / / www. xl i nki t . com/ Consi st encyRul eSet / 5. 0"
 pr ocessCont ent s=" ski p" / >
 </ xs: sequence>
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" par am" >
 <xs: compl exType>
 <xs: at t r i but e name=" name" t ype=" xs: st r i ng" use=" r equi r ed" / >
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" header " >

 Date: 25/06/02

 Page 62 of 62

 <xs: compl exType>
 <xs: sequence>
 <xs: choi ce maxOccur s=" unbounded" >
 <xs: el ement name=" aut hor " t ype=" xs: st r i ng" / >
 <xs: el ement name=" descr i pt i on" >
 <xs: compl exType mi xed=" t r ue" >
 <xs: sequence>
 <xs: any namespace=" ht t p: / / www. w3. or g/ 1999/ xht ml "
 pr ocessCont ent s=" ski p" mi nOccur s=" 0" maxOccur s=" unbounded" / >
 </ xs: sequence>
 </ xs: compl exType>
 </ xs: el ement >
 <xs: el ement name=" pr oj ect " t ype=" xs: st r i ng" / >
 <xs: el ement name=" comment " t ype=" xs: st r i ng" / >
 <xs: any namespace=" ht t p: / / www. xl i nki t . com/ Met adat a/ 5. 0"
 pr ocessCont ent s=" ski p" / >
 </ xs: choi ce>
 </ xs: sequence>
 </ xs: compl exType>
 </ xs: el ement >
</ xs: schema>

1�3���3 �� 3!�
[1] C. Nentwich, W. Emmerich, A. Finkelstein. Flexible Consistenc Checking. Research Note, University College

London, Dept. of Computer Science, 2001. Submitted for Pubblication.

[2] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0 W3C Recommendation, 16 November 1999,
http://www.w3.org/TR/xpath.

[3] S. DeRose and E. Maler and D. Orchard. XML Linking Language (XLink) Version 1.0. W3C Recommendation
http://www.w3.org/TR/xlink/, World Wide Web Consortium, June 2001.

[4] D. E. Knuth. Semantics of Context-Free Languages. Mathematical Systems Theory, 2(2):127-145, 1968.

[5] U. Kastens. Ordered Attributed Grammars. Acta Informatica, 13(3):229-256, 1980.

[6] U. Kastens and W. M. Waite. Modularity and reusability in attribute grammars. Acta Informatica, 31:601-127, 1991.

[7] A. N. Habermann and D. Notkin. Gandalf: Software Development Environments. IEEE Transactions on Software
Engineering, 12(12): 1117-1127, 1986.

[8] T. W. Reps and T. Teitelbaum. The Synthesizer Generator. ACM SIGSOFT Software Engineering Notes, 9(3): 42-48,
1984.

[9] M. Nagl, editor. Building Tightly Integrated Software Development Environments: The IPSEN Approach, volume
1170 of Lecture Notes in Computer Science. Springer Verlag, 1996.

[10] P. Borras, D. Clement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pascual. CENTAUR: The System. ACM
SIGSOFT Software Engineering Notes, 13(5):14-24, 1988, ACM Press.

[11] An Object-Oriented Language for Specification of Syntax Directed Tools. Proc. of the 8th Int. Workshop on Software
Specification and Design, 26-35, 1996. IEEE Computer Society Press.

[12] J. B. Warmer and A. G. Kleppe. The Object Constraint Language: Precise Modeling with UML. Addison Wesley,
1999.

[13] J. Clark, XSL Transformations (XSLT). Technical Report http://www.w3.org/TR/xslt, World Wide Web Consortium,
November, 1999.

[14] W. Emmerich and E. Ellmer and H. Fieglein, TIGRA -- An Architectural Style for Enterprise Application Integration.
In Proc. of the 23rd Int. Conf. on Software Engineering, pages 567-576. IEEE Computer Society Press, 2001.

[15] R. Jelliffe. The Schematron Assertion Language 1.5. Technical Report, GeoTempo Inc., October 2000.

[16] FpML Version 1.0 Recommendation, May 14, 2001, http://www.fpml.org/spec/2001/rec-fpml-1-0-2001-05-14/

[17] XML Schema Part 0: Primer W3C Recommendation, 2 May 2001, http://www.w3.org/TR/xmlschema-0/

