
Fedora 
An Architecture for Complex Objects and their Relationships 

 
Carl Lagoze, Sandy Payette, Edwin Shin, Chris Wilper 

Computing and Information Science, Cornell University  

{lagoze, payette, eddie, cwilper}@cs.cornell.edu 

Abstract. The Fedora architecture is an extensible framework for the storage, 
management, and dissemination of complex objects and the relationships 
among them.  Fedora accommodates the aggregation of local and distributed 
content into digital objects and the association of services with objects.  This al-
lows an object to have several accessible representations, some of them dy-
namically produced.  The architecture includes a generic RDF-based relation-
ship model that represents relationships among objects and their components.  
Queries against these relationships are supported by an RDF triple store. The 
architecture is implemented as a web service, with all aspects of the complex 
object architecture and related management functions exposed through REST 
and SOAP interfaces.  The implementation is available as open-source soft-
ware, providing the foundation for a variety of end-user applications for digital 
libraries, archives, institutional repositories, and learning object systems. 

1 Introduction 

As demonstrated by this special issue of Journal of Digital Libraries, there is 
widespread interest in the representation, management, dissemination, and preserva-
tion of complex digital content.  At a minimum, technologies for representing digital 
content should be able to match the richness, and complexity of well-established 
physical formats.  They should allow the representation of a variety of structural 
organizations, such as chapters and verses.  They should accommodate the flexible 
combination of different genre of materials such as text and images in multiple lay-
outs.  They should allow the aggregation of content from multiple sources and the 
association of metadata with the elements of the aggregation.   In addition, freed of 
the constraints of physical media, they should do more.  Exploiting their networked 
context, they should allow aggregation of content regardless of its physical location.  
By leveraging local and remote computing power they should permit programmatic 
and user-directed manipulation of document content.   

The Fedora Project [4] is an ongoing research and implementation effort to provide 
the framework for creation and management of existing and evolving forms of digital 



content.  The roots of the project lie in DARPA-funded research in the early 1990’s 
that defined the notion of a digital object [27] and implemented Dienst [28], a net-
worked digital library architecture with protocol-based dissemination of digital ob-
jects in multiple formats.  Follow-on research extended these initial concepts with the 
notion of active digital objects [21] and distributed active relationships  [20].  These 
concepts were refined and prototyped in a CORBA-based Fedora (Flexible Extensible 
Digital Object Repository Architecture) [33] as part of research with CNRI [32] and 
in the context of the NSF-funded Prism Project [15].  This prototype provided the 
context for a variety of research initiatives most notably in the areas of fine-grained 
policy enforcement [34] and preservation [35].   

The transition of Fedora from a research prototype to production repository soft-
ware began when the University of Virginia Library, seeking a solution for managing 
increasingly complex digital content, experimented with the Fedora architecture [41].  
This experimentation took place in  the context of innovations in humanities research 
[47]. The experimentation proved successful, providing the basis for subsequent 
funding from the Andrew W. Mellon Foundation to Cornell and Virginia [36] to fully 
develop Fedora and make it available to libraries, museums, archives, and content 
managers, which all face increasing variety in the digital content that they manage 
[42].  Mellon-funded development continues through 2007.  

Version 2 of Fedora is now available as open source digital object repository soft-
ware that provides a rich context for information organization, representation, and 
management.  At its core is an object model with a number of features.  The Fedora 
digital object model allows the aggregation of local and distributed data in multiple 
formats.   Web-accessible services may then be associated with the aggregated data.  
As a result an object is accessible in multiple representations, some of them direct 
transcriptions of aggregated data, and some of them produced dynamically by the 
associated web services.  Other notable features of Fedora include support for ver-
sioning of objects and their components, support for multiple metadata descriptions 
of objects and their components, and fine granularity access control over digital ob-
jects and their parts.  The richness of the document model and extensibility of the 
Fedora architecture has led to its deployment in a variety of domains including insti-
tutional repositories for scholarly publishing [43], library systems [51], and learning 
systems [46].   

Arguably one of the most important features of Fedora is that it is implemented as 
a set of web services and its full functionality, including its rich document model, is 
exposed through well-defined web service APIs.  These APIs provides full program-
matic management of digital objects as well and search and access to multiple repre-
sentations of objects.   As such, Fedora is particularly well-suited to co-exist in a 
broader web service framework and act as the foundation layer for a variety of appli-
cation front-ends and user interfaces.  This distinguishes Fedora from other complex 
object systems that are either vertical applications for storing and manipulating com-
plex objects through a fixed user and management interface (e.g., DSpace [40], arXiv 
[1], ePrints [2]), or that define a wrapper format for representing complex objects 
(METS [10], MPEG-21 DIDL[26], IEEE LOM [8]).   Fedora is compatible with the 
latter category of systems due to its ability to both ingest content in these formats and 



export contained digital objects in any of these XML representations.  This allows 
Fedora to comfortably co-exist in the archival framework defined by OAIS [13].  
Another architecture which handles complex objects, associates them with services, 
and uses RDF to express relationships among those objects is Los Alamos National 
Laboratory’s aDORe architecture [48] in which objects are encoded using  DIDL 
[17], and object dissemination services are available via OAI-PMH [29], and Ope-
nURL [31]. 

The latest release of Fedora augments the digital object model by providing the in-
frastructure for expressing relationships among objects and their components.  Exam-
ples of relationships between digital objects include well-known management rela-
tionships such as the organization of items in a collection, structural relationships 
such as the part-whole links between individual chapters and a book, and semantic 
relationships useful in digital library organization such as those expressed within the 
Functional Requirements for Bibliographic Records (FRBR) [6].  Fedora expresses 
relationships by defining a base relationship ontology using RDFS [18] and provides 
a slot in the digital object abstraction for RDF expression of relationships based on 
this ontology.  Assertions from other ontologies may also be included along with the 
base Fedora relationships.  All relationships are reflected in a native RDF triple-store 
using Kowari [45].  The query interface to this triple-store is exposed as a web ser-
vice, providing a rich information foundation for external services. 

This paper describes the Fedora architecture for representing complex digital ob-
jects and the relationships among them.  It is organized as follows.  In Section 2 we 
describe the Fedora digital object model and the APIs that allows access and man-
agement of it. In Section 3 we describe the components of the Fedora server architec-
ture, which provide the context for the object model. Following that, in Section 4 we 
describe the Fedora relationship model that provides a common framework for de-
scribing, storing, and querying relationships among objects and their components. 
Section 5 concludes the paper with future plans for Fedora. 

2 Fedora model for complex objects 

The Fedora object model supports the expression of many kinds of complex ob-
jects, including documents, images, electronic books, multi-media learning objects, 
datasets, computer programs, and other compound information entities.  Fedora sup-
ports aggregation of any combination of media types into complex objects, and al-
lows the association of services with objects that produce dynamic or computed con-
tent.  The Fedora model also allows the assertion of relationships among objects so 
that a set of related Fedora objects can represent the items in a managed collection, 
the components of a structural object like the chapters of a book, or a semantic (e.g., 
topic-oriented) set of resources.   

Fedora defines a powerful object model for expressing this variety of complex 
content and their relationships.  This object model can be understood from two per-
spectives.   



1. The representational perspective defines a simplified abstraction for un-
derstanding Fedora objects, where each object is modeled as a uniquely 
identified resource projecting one or more views, or representations.  
From this perspective the internal structure of a digital object is opaque; 
however, relationships among objects are observable. 

2. The functional perspective reveals the object components that underlie the 
representational perspective and provides the basis for understanding how 
the Fedora object model relates to the management services exposed in 
the Fedora repository architecture.   

2.1 Representational View 

The representational perspective of the Fedora object model asserts that each digi-
tal object can disseminate one or more representations of itself, and that each object 
can be related to one or more other objects.   A familiar example of digital object with 
multiple representations is a document or image where the content is available in 
multiple formats.   All digital objects, and their individual representations, are identi-
fied with Uniform Resource Identifiers (URIs). These URIs are specified using the 
“info” scheme and conform to the syntax described at [9].  This perspective hides 
complexity and exposes only the access points to content stored in a Fedora reposi-
tory.   

info:fedora/
demo:11

hasRep

hasMember

hasMember

hasRep

hasRep
hasRep

info:fedora/demo:11/DC

info:fedora/demo:11/THUMB

info:fedora/demo:11/HIGH

info:fedora/demo:11/bdef:2/ZPAN

hasRep

info:fedora/demo:10/bdef:1/MEMBERS

info:fedora/
demo:12

info:fedora/
demo:10

hasRep

info:fedora/demo:12/DC

info:fedora/demo:12/THUMB

hasRep

 

Figure 1: Representational View of Fedora Objects 

Figure 1 depicts the representational view of three inter-related Fedora objects.   
The diagram shows a directed graph, where the larger nodes are digital objects,  and 



the smaller nodes are representations of the digital objects1.  These nodes are linked 
by two types of arcs – relationship arcs connect digital objects, and representation 
arcs connect digital objects to their respective representations.  This graph can be 
expressed as RDF, stored in a triple store, and queried.  This is discussed later Section 
4.  

  Each digital object in the diagram has at least one representation, related to its origi-
nating digital object by a “hasRep” arc. For example, the node labeled 
info:fedora/demo:11 is an image digital object with four representations, identified by  
their respective URIs: 

- Dublin Core record, identified as info:fedora/demo:11/DC 

- High-resolution image, identified as info:fedora/demo:11/HIGH 

- Thumbnail image, identified as info:fedora/demo:11/THUMB 

- Image with zoom/pan utility, as info:fedora/demo:11/bdef:2/ZPAN 

We have yet to define the underlying source of these representations.  In fact, in 
this view of the architecture such details are hidden from the client application con-
cerned with access to these representations. 

Figure 1 also demonstrates an example of inter-object relationships.  In this exam-
ple, the node labeled info:fedora/demo:10 is a “collection” with two “items”, the 
nodes labeled info:fedora/demo:11 and info:fedora/demo:12.  These collection-item 
relationships are expressed by the “hasMember“ arc that emanates from the collection 
object.  The inverse “isMemberOf” relationships are not shown in the diagram for 
simplification.  

This simple representational view forms the basis of Fedora’s REST-based access 
service (i.e., API-A-LITE), whereby digital object URIs and representation URIs can 
be easily converted to service request URLs upon Fedora repositories.   

While the representational perspective of the Fedora object model provides a sim-
ple, access-oriented overlay for digital resources and collections, the functional per-
spective, described next, provides a view of the core underlying data model for Fe-
dora.  In the following sections,  we take one of the digital object nodes depicted in 
Figure 1, and drill down to unveil the specific components of a Fedora digital object 
that enable access to representations.  We start with the digital object as a container 
with a persistent unique identifier (i.e., PID).  From there, we unveil the components 
incrementally, first focusing on components that enable simple content aggregation, 

                                                           
1 This graph-based overlay model can form the basis for interoperability among heterogeneous 

object models and repositories.  This concept is currently being explored as part of a new 
NSF-funded research project, Pathways, which is a collaboration between the authors of this 
paper and colleagues at Cornell, LANL, and others [12] Pathways: Lifecycles for Informa-
tion Integration in Distributed Scholarly Communication, , [50] Van de Sompel, H., Pay-
ette, S., Erickson, J., Lagoze, C. and Warner, S. Rethinking Scholarly Communication: 
Building the System that Scholars Deserve. D-Lib Magazine (September). 



then on components that enable dynamic and computed content, and finally on com-
ponents related to digital object integrity.  We note again that these underlying details 
are invisible to clients concerned only with information access. 

2.2 Functional View I - Datastreams 

In its simplest form a Fedora object is an aggregation of content items, where each 
content item maps to a representation.  The Fedora object model defines a component 
known as a Datastream to represent a content item.  A datastream component either 
encapsulates bytestream content internally or references it externally.  In either case 
that content may be in any media type.  Figure 2 shows a digital object as an aggrega-
tion of datastreams and the one-to-one correspondence of those datastreams to the 
representations of the digital object that are exposed to accessing clients.  In this sim-
ple case, each representation of a Fedora object is a simple transcription of the con-
tent that lies behind a datastream component. 

     

PID = demo:11
TYPE = FedoraObject
STATE = Active
CREATED = 2004-12-10

hasRep

hasRep

hasRep

info:fedora/demo:11/DC

info:fedora/demo:11/THUMB

info:fedora/demo:11/HIGH

THUMB
image/gif

DC
text/xml

HIGH
image/jpeg

Datastreams

 
 

Figure 2:  Fedora Object with PID, Properties, and Datastreams 

As seen in the above diagram, a digital object has a unique identifier (PID) and a 
set of key descriptive properties. Each datastream contains information necessary to 
manage a content item in a Fedora repository.  These are stored as properties of the 
datastream as shown in Figure 3. 



ID                                    = HIGH
MIME                             = image/jpeg
FORMAT_URI             = TBD
STATE                           = Active
CREATED                     = 2004-12-10
CONTROL_GROUP  = Managed
CONTENT_LOCAT   = {internal}
VERSIONABLE          = TRUE
ALTERNATE IDS       = none

 
Figure 3:  Properties of a Datastream Component 

Three datastream properties deserve special attention.  The Format URI refines the 
media type definition and anticipates the emergence of a global digital format registry 
such as the GDFR [7].  Control group defines whether the datastream represents ei-
ther local or remote content.   Datastreams with a control group of “Managed” are 
internal content bytestreams that are under the direct custodianship of the Fedora 
repository.   Datastreams, whose control group is “External” or “Redirected” (the 
difference between these is outside the scope of this paper) represent content that is 
stored outside the repository.   These datastreams have a content location property 
that is a URL pointing to a service point outside the repository that is responsible for 
providing the content.   The ability to create digital objects that aggregate locally 
managed content with external content is a powerful feature of Fedora, and is useful 
in a variety of contexts.  A good example of a hybrid local/remote object is an educa-
tional object where local content is the instructor’s syllabus, lecture notes, and exams, 
and remote content are primary resources included by-reference from other sites.    



2.3 Functional View II - Disseminators 

In addition to the representations described in the previous section, which are direct 
transcriptions of datastreams, the Fedora object model enables the definition of vir-
tual representations of a digital object.  A virtual representation is a view of an object 
that is produced by a service operation (i.e., a method invocation) that can take as 
input one or more of the datastreams of the respective digital object.  As such, it is a 
means to deliver dynamic or computed content from a Fedora object.  

hasRep

hasRep

hasRep

info:fedora/demo:11/DC

info:fedora/demo:11/THUMB

info:fedora/demo:11/HIGH
hasRep

info:fedora/demo:11/BDEF:2/ZPAN

PID = demo:11
TYPE = FedoraObject
STATE = Active
CREATED = 2004-12-10

HIGH
image/jpeg

DC
text/xml

THUMB
image/gif

Datastreams

BDEF:2

Disseminator

 

Figure 4:  Fedora Object with Disseminator Added 

This is illustrated in Figure 4, where a virtual representation labeled 
info:fedora/demo:11/BDEF:2/ZPAN is highlighted. From the access perspective this 
representation is an image wrapped in a java application that provides image zoom 
and pan functions.   Note that this representation is not a direct transcription of any 
Datastream in the object.  Instead, it is the result of a service operation defined in the 
Disseminator component labeled “BDEF:2” inside the object that uses the datastream 
labeled “HIGH” as input.  

To enable such behavior, a Disseminator must contain three pieces of information: 
(1) a reference to a description of service operation(s) in an abstract syntax, (2) a 
reference to a WSDL service description [14] that defines bindings to concrete web 
service to run operation(s), and (3) the identifiers of any Datastreams in the object 
that should be used as input to the service operation(s).    

Fedora stores the service operation description and the WSDL service description 
within special digital objects, respectively known as BDefs (behavior definitions) and 
BMechs (behavior mechanisms).  Figure 5 depicts a Fedora BDef object and BMech 
object along with object-to-object relationships that exist due to the presence of the 
Disseminator component in the main object (demo:11). 



PID = demo:11
TYPE = FedoraObject
STATE = Active
CREATED = 2004-12-10

hasBDef

hasBMech

implements

PID = BDEF:2

Abstract
Service O ps

WSDL

PID =BMECH:3

HIGH
image/jpeg

DC
text/xml

THUMB
image/gif

Datastreams

BDEF:2

Disseminator

 
Figure 5:  Disseminators establish relationships to service definition objects 

Disseminators are effectively metadata that the Fedora repository uses at run time 
to construct and dispatch service requests and produce one or more virtual representa-
tions of the digital object.  From a client perspective this is transparent since virtual 
representations look just like other representations of the object.  

Disseminators are a powerful feature in the Fedora object model.  They can be 
used to create common representational access points for digital objects that have 
different underlying structure or format.  For example, an institutional repository 
might contain scholarly documents in a variety of root formats (e.g., Word, HTML, 
TeX), where the root format is stored as a datastream in a Fedora digital object.  For 
interoperability purposes, a virtual representation can be defined on each object that 
converts the datastream containing the root format to a common format (e.g., PDF).  
Similarly, a repository manager can decide for archival purposes to convert all docu-
ments in a repository to a canonical preservation format without disrupting the man-
ner in which clients access documents for browsing, viewing, etc.  Finally, dissemina-
tors can add utility operations to digital objects.  For example, a Disseminator can be 
defined for a digital object that provides parameterized query access to the relation-
ships defined for that object.  Such a query might return the “members of a collec-
tion” or, in the case of an educational digital library such as the NSDL [52], the set of 
resources that are appropriate for K-12 mathematics education.   The implementation 
of these queries is described in Section 4. 

2.4 Functional View III – Object Integrity Components 

The Fedora object model defines several metadata entities that pertain to managing 
the integrity of digital objects.  These entities are the object’s relationship metadata, 
access control policy, and audit trail.   To keep the Fedora model simple and consis-
tent, integrity entities are modeled as datastream components with reserved identifi-



ers.  As such, the integrity entities are stored like other datastreams, however the 
Fedora Repository system recognizes them as special and asserts constraints over 
how they are created and modified.  Figure 6 depicts these integrity-oriented entities 
as special datastreams in a digital object, identified as Relations, Policy, and Audit 
Trail.   

 

hasRep

hasRep

hasRep

info:fedora/demo:11/DC

info:fedora/demo:11/THUMB

info:fedora/demo:11/HIGH
HIGH

image/jpeg

DC
text/xml

THUMB
image/gif

hasRep

BDEF:2
info:fedora/demo:11/BDEF:2/ZPAN

HIGH
image/jpegHIG H

image/jpeg

RELATIONS
(RDF/XML)

POLICY
(XACML)

AUDIT
TRAIL

 
Figure 6:  Integrity Datastreams - Relationships, Policy, and Audit Trail 

A Relations datastream is used to assert object-to-object relationships such as col-
lection/member, part/whole, equivalence, “aboutness,” and more.  The previously 
discussed “hasMember” relationship is an example of the type of assertion that can be 
managed via the Relations datastream, described in Section 4.  

A Policy datastream is used to express authorization policies for digital objects, 
both to protect the integrity of an object and to enable fine-grained access controls on 
an object’s content.   In Fedora objects, a policy is expressed using the eXtensible 
Access Control Markup Language (XACML) [3], which is a flexible XML-based 
language used to assert statements about who can do what with an object, and when 
they can do it.  Object policies are enforced by the authorization module (i.e., AuthZ) 
implemented within the Fedora Repository Service. 

The Audit Trail is a system-controlled datastream that keeps a record of all 
changes to an object during its lifetime.  The Fedora Repository Service automatically 
creates an audit record for every operation upon an object, detailing who, what, when, 
where, and why an object was changed.   This information is important to support 
preservation and archiving of digital objects.   

Another feature for managing the lifecycle of objects is versioning.   Versioning is 
important for applications where change tracking is essential, as well as for preserva-
tion and archiving systems that must be able to recover historical views of digital 
objects.  The Fedora object model supports component-level versioning, meaning that 
datastreams and disseminators can be changed without losing their former instantia-



tions.  Fedora automatically creates a new version of these components whenever 
they are modified.     

This is depicted in Figure 6, which shows a digital object with multiple versions of 
a datastream (see component labeled “HIGH”).  Also, the versioned datastream is 
input to the disseminator labeled “BDEF:2.”  Requests for representations of this 
digital object can be date-time stamped and the Fedora Repository Service will ensure 
that the appropriate component version is returned.  This feature applies for represen-
tations that are direct transcriptions of datastream content, as well as for virtual repre-
sentation where datastream content is mediated via a Disseminator.   

2.5 XML Serialization of Fedora Objects 

The Fedora object model has been discussed from both the representational and 
functional perspectives.   These provide an understanding of the abstractions that 
form the basis of a Fedora digital object.  From an implementation perspective, Fe-
dora digital objects can be serialized and stored as XML.  The Fedora object model is 
directly expressed using XML Schema language in a format known as Fedora Object 
XML (FOXML)2.    FOXML defines a <digitalObject> root element that contains as 
set of <objectProperties>, one or more <datastream> components, and one or more 
<disseminator> components.   Appendix A contains the XML serialization of the 
digital object info:fedora/demo:11 that corresponds to the example discussed above.  

Although FOXML is the preferred XML serialization format for storing objects in 
a Fedora repository, Fedora supports ingest and export of digital objects in other 
XML formats.  Currently, the system supports a Fedora profile of the Metadata En-
coding and Transmission Format (METS) [11] and it will soon support the OAI-PMH 
harvesting [49] of  objects encoded in MPEG21 Digital Object Description Language 
(DIDL) [26].    

3 A service-based architecture for complex objects 

The digital object model described in the previous section exists within the context 
of a broader server architecture. The remainder of this section describes that architec-
ture.  Further details are documented at the Fedora open-source project web site [4]. 

3.1 The Fedora Service Framework 

Fedora digital objects are managed within the Fedora Service Framework which 
consists of a set of loosely coupled services that interact and collaborate with each 
other.  At the core of the framework is the Fedora Repository Service, as depicted in 
Figure 7.  Other services exist around the core to provide additional functionality that 
is not considered a fundamental function of a repository.  Any number of services can 

                                                           
2 The FOXML schema is available at http://www.fedora.info/definitions/1/0/foxml1-0.xsd.  



be developed to collaborate with the core Fedora Repository Service.  In the diagram, 
there are three collaborating services around the core:  the Fedora OAI provider, a 
Fedora Search service, and a Fedora Preservation Monitoring Service.   The frame-
work approach anticipates that new services will be added over time.  

Outside of the boundaries of the Fedora framework are external services that can 
either call upon Fedora services, or that Fedora can leverage in some way.  The dis-
tinction between services within the Fedora Service Framework, and those outside, is 
that those within the framework are in a trusted relationship with the Fedora Reposi-
tory Service, and are designed to specifically interact with Fedora repositories.  Ser-
vices outside the framework are typically general-purpose services, or organization-
specific services that call upon Fedora as an underlying repository for digital content.   

 

Fedora Repository
Service

Fedora
Search
Service

Fedora
OAI  Provider

Service

Fedora
Preservation

Monitoring
Service

Fedora Service Framework

Future
Service

External Service

External Service

 

Figure 7:   Core Fedora Repository Service with Collaborating Services 

Prior to version 2.0 of Fedora, all Fedora-related functionality was built into the 
core Fedora Repository Service.  As of version 2.0, the Fedora Service Framework 
was defined to move the Fedora architecture in a direction where new services can 
easily be developed and plugged into the Framework. This is consistent with general 
trends developing in web services technology and enterprise application architectures 
in which formerly tightly-integrated systems are broken apart into atomic, modular 
services that can be flexibility aggregated into different multi-service compositions.  

At the time of writing, Fedora is migrating to the new service framework ap-
proach.  Version 2.1 of Fedora will include a new OAI Provider and a new Search 
service as part of the Fedora open-source distribution.  These functions were previ-
ously built into the core repository.  The Fedora Preservation Monitoring Service will 
be developed as part of the new Phase II Fedora project.  Other services are being 
developed by members of the Fedora user community and will be contributed back to 
the open source project.  



 

3.2 The Fedora Repository Service 

At the core of the Fedora Service Framework is the Fedora Repository Service 
which exposes interfaces for managing and accessing digital objects in a repository.  
In Figure 8, the repository service is deconstructed so that its internal modules and 
public service interfaces are visible.   

Manage AuthN AuthZ

Access Validation ResourceIndex

Storage Default
Disseminator Registry

Fedora Repository Service

Service
Exposure Manage Access Registry

Search
Resource

Index

REST

Client
App

Batch
Program

Other
Service

Web
Browser

REST SOAPSOAP REST SOAPREST

 

Figure 8:  Fedora Repository Internal Modules and Service Interfaces 

 

At the top of Figure 8, there are alternative client scenarios for accessing the Fe-
dora repository through its four web service interfaces.  Each service interface is 
defined using the Web Service Description Language (WSDL) [14], with both SOAP 
and REST bindings.  The internal implementation of the Fedora Repository Service 
consists of a set of internal java modules that can be configured, and optionally re-
placed with alternative implementations.   The internal modules are not directly ex-
posed to accessing clients; instead clients interact with the repository only through the 
defined web service interfaces.  

The Manage(ment) service interface (API-M) contains read/write operations nec-
essary to managed a repository of digital objects.  API-M operations exist for ingest-
ing and exporting digital objects in an XML format, either Fedora’s FOXML, or 
alternatively METS or MPEG21/DIDL.  Also, objects can be created and modified 



using component-level operations that reflect the functional view of the Fedora object 
model described earlier.  The major management operations are: 

- set/get/removeObjectProperty 

- set/get/removePolicy 

- add/modify/purgeDatastream 

- add/modify/purgeDisseminator 

- ingest/export/purgeObject  

The Access service interface (API-A) contains read-only operations for accessing 
digital objects.  The two main purpose of the Access interface is to (1) introspect on a 
digital object (i.e., to discover what datastreams and disseminator methods are avail-
able) and (2) request disseminations on an object (i.e., access particular representa-
tions of the object’s content).  The major Access operations are: 

- getObjectProfile 

- getObjectHistory 

- listDatastreams 

- listMethods 

- getDatastreamDissemination 
- getDissemination 

In addition to the SOAP-based Access bindings, all Access operations can be in-
voked with a simple URL syntax via a light-weight, REST-based interface (API-A-
LITE).  This interface can be used to access digital objects from the representational 
perspective described earlier.   The graph node URIs for Fedora objects and their 
representations can be easily converted to Fedora API-A-LITE request URLs by 
replacing the “info:fedora” URI scheme with the base URL for the repository as fol-
lows: 

 
    info:fedora/demo:11              http://myfedora.edu:8080/fedora/get/demo:11 

    info:fedora/demo:11/HIGH    http://repo.edu:8080/fedora/get/demo:11/HIGH 

 

The final two access points to the Fedora Repository Service are the Registry 
Search and Resource Index interfaces.  These provide discovery capabilities to locate 
digital objects.  The Registry Search interface exposes service operations to perform a 
simple search of the digital object registry based on object properties.  The Resource 
Index interface is the service entry point to an RDF-based index of the entire reposi-
tory.  The Resource Index is an expanded version of the representational view of 
digital objects described earlier.  As such it contains all representations and relation-
ships of objects, plus object properties and Dublin Core metadata elements.    The 
Resource Index and its uses are discussed in detail in the next section. 



4 Relationships in Fedora 

As described in Section 2.1, the Fedora object model can be abstractly viewed as a 
directed graph, consisting of internal arcs that relate digital objects nodes to their 
representation nodes and external arcs between digital objects.  In this section we 
focus on that relationship graph and describe a Fedora service, the Resource Index, 
which allows storage and query of the graph.  This architecture builds on the RDF 
(Resource Description Framework) [30] primitives developed within the semantic 
web community.  The Fedora system supplies a base relationship ontology (defining a 
core of internal and external relationships) that, in the fashion of any RDF properties, 
can co-exist with domain-specific relationship ontologies from other namespaces.   
Each digital object’s external relationships to other digital objects are expressed in 
RDF/XML [16] within a reserved datastream in the respective object.  A relationship 
graph over the digital objects in the repository can then be derived by merging the 
internal relationships implied by the Fedora object model with the external relation-
ships explicitly stated in their relationship datastreams. The triples representing this 
graph are then stored in the Kowari [45] triple-store providing the capability for 
searches over the graph. 

4.1 Representing object-to-object relationships 

A number of efforts have developed standards for representing the structure com-
plex object.  For example, the Making of America [22] project formalized structural 
metadata and defined a set of templates that correspond to well-known physical arti-
facts such as a book composed of chapters and diaries consisting of entries.     

The expression of structural relationships within a single digital object is useful for 
a variety of applications.  However, there are other types of non-structural relation-
ships such as:  

• The organization of individual resources into larger collection units, for 
the purpose of management, OAI-PMH harvesting [29], user browsing, 
and other uses. 

• The relationships among bibliographic entities such as those described in 
the Functional Requirements for Bibliographic Relationships [6]. 

• Semantic relationships among resources such as their relevance to state 
educational standards or curricula in an educational digital library like the 
National Science Digital Library [52]. 

• Modeling more complex forms of network overlays over the resources in 
a content repository such as citation links [23, 25], link structure, friend 
of a friend [5], etc. 

All of these relationships, including structural relationships, should be expressible 
both within individual digital objects and among multiple digital objects.  For exam-
ple breaking the components of a structural entity, such as the chapters of a book, into 
separate digital objects provides the flexibility for reuse of those individual compo-



nents into other structural units.    This is even more important for the other forms of 
relationships.  For example, a single resource may be part of multiple collections or 
may be relevant for multiple state standards. 

The expression of arbitrary, inter-object relationships in Fedora is enabled by a re-
served datastream known as the Relations datastream. This datastream allows for a 
restricted subset of RDF/XML where the subject of each statement must be the digital 
object within which the datastream is defined and the object of each statement must 
be another Fedora digital object.  

 
<rdf:RDF  
   xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
   xmlns:nsdl=”http://nsdl.org/std#” 
   xmlns:rel="http://example.org/rel#" 
   xmlns:frbr="http://example.org/frbr#"> 
     <rdf:Description rdf:about="info:fedora/demo:11"> 
       <rel:isMemberOf  rdf:resource="info:fedora/demo:10"/> 
       <std:fulfillsStandard rdf:resource="info:fedora/demo:Standard5"/> 
       <frbr:isManifestionOf rdf:resource= 
             "info:fedora/demo:Expression2"/> 
    </rdf:Description> 
</rdf:RDF> 

Table 1 - Example Relations datastream 

Since predicates from any vocabulary can be used in Relations, the repository 
manager has considerable flexibility in the kinds of relationships that can be asserted. 
Table 1 shows an example Relations datastream in a Fedora digital object identified 
by the URI, info:fedora/demo:11. The RDF/XML refers to three different relation-
ship vocabularies (hypothetical for the purpose of this example) and asserts the fol-
lowing relationships: 

• demo:11 is a member of the collection represented by the object demo:10, 
• demo:11 fulfills the state educational standard represented by  the object 

demo:Standard5,  
• demo:11 is a manifestation of the expression represented by the object 

demo:Expression2. 

4.2 Representing object representations and properties in the Resource Index 

As described earlier, a Fedora digital object consists of a number of core compo-
nents such as datastreams and disseminators, which bind to BDefs and BMechs.  In 
addition each Fedora digital object has system metadata or properties.  The architec-
ture provides a system-defined ontology to represent the relationships among these 
core components.  For example, the relationships of an object to its representations is 
expressed using the <fedora-model:disseminates> predicate as shown in the triple in 
Table 2.   

 



<info:fedora/demo:11>  
  <fedora-model:disseminates>  
     <info:fedora/demo:11/HIGH> 

Table 2 - Object-represenation relationship 

In addition to these relationships, the system-defined ontology also represents ob-
ject data properties whose range contains date and boolean datatypes, as shown in the 
triple in Table 3. 

 
<info:fedora/demo:11/HIGH>  
   <fedora-view:lastModifiedDate>  
      "2004-12-12T00:22:00"^^xsd:dateTime 

Table 3 - Data type properties 

Unlike the relationships expressed in the Relations datastream, these relationships 
are not explicitly asserted within the digital object. Instead they are derived from the 
object structure itself and mapped into the Resource Index, alongside the relation-
ships represented in the Relations datastreams.  This is described in the next section. 

4.3 Storing and querying the relationship graph 

All these relationships – the relationships explicitly stated in the Relations data-
stream, the relationships implied by the object structure, and the data relationships 
contained in the object properties – are stored in the resource index.  This index is 
automatically updated by the system whenever an object structure is modified or its 
Relations datastream is changed. 

The Resource Index handles queries over these relationships.  The combination of 
all relationships into a single graph, and the automated management of that combined 
graph, enables a powerful and flexible service model. External services may issue 
queries combining relationships from different name spaces, since they are all RDF 
properties.  For example, Table 4 shows a query listing all the representations of all 
objects that are members of a particular collection.  

  
select $dissemination 
from <#ri> 
where ($object <fedora-view:disseminates> $dissemination) 
    and $object <rel:isMemberOf> <demo:10> 
 

Table 4 - Sample RDF query using iTQL 

An early design goal of the Resource Index was to allow the use of different tri-
plestores and thus allow the Fedora repository administrator to choose the most ap-
propriate underlying store. To that end, the Resource Index employs a triplestore API 
similar in spirit to JDBC, to provide a consistent update and query interface to a vari-



ety of triplestores.  Extensive testing of both query performance time and query lan-
guage features ultimately led to the selection of Kowari as the default triplestore.    

The query interface to the relationship graph currently supports three RDF query 
languages, RDQL [39], iTQL [44], and SPO [38]3. Both RDQL and iTQL share a 
superficially similar syntax to SQL, with RDQL enjoying broader implementation 
support, but iTQL providing a richer feature set  [24]. 

The RDF query results naturally take the form of rows of key-value pairs, again 
similar to the result sets returned by a SQL query. However, it is often useful to work 
with a sub-graph or a constructed graph based on the original. To this end, the query 
API may also return triples instead of tuples. 

4.4 Using the relationship graph 

The Resource Index is exposed as one of the interfaces of the core Fedora Reposi-
tory Service that was discussed earlier.  This facilitates the development of other 
services in the Fedora Service Framework.  The Resource Index interface is exposed 
in a REST architectural style to provide a stateless query interface that accepts que-
ries by value or by reference.  The service has been implemented with an eye toward 
eventual conformance to the W3C Data Access Working Group's SPARQL protocol 
for RDF[19], as it matures.   

One example of a new service exploiting the Resource Index is a new OAI Pro-
vider Service that exposes metadata about resources in a repository.  The interaction 
of this service with the Resource Index is as follows.  An external OAI harvester 
requests Dublin Core records of members for a particular set of resources from the 
repository.  The OAI Provider service processes this by issuing the query to the Re-
source Index listed in Table 5. This query effectively requests “all OAI Dublin Core 
records of resources that are members of the collection identified as ‘demo:10’”. This 
would return the tuples shown in Table 6 that can provide the basis of an OAI re-
sponse.  Note that the OAI representations were not shown earlier in Figure 1. 

 
select $member $collection $dissemination 
from <#ri>  
where $member <rel:isMemberOf> <info:fedora/demo:10> 
    and $member <rel:isMemberOf> $collection 
    and $member <rel:isMemberOf> $dissemination 
    and $member <fedora-view:disseminates> $dissemination 
    and $dissemination <fedora-view:disseminationType> 
<info:fedora/*/bdef:OAI/getDC> 
 

Table 5 - A query to build an OAI response 

                                                           
3 Future releases will also support SPARQL [37] Prud'Hommeaux, E. and Seaborne, A. 

SPARQL Query Language for RDF, W3C, 2004.. 



 
member collection dissemination 

info:fedora/ 
demo:11 

info:fedora/ 
demo:10 

info:fedora/ 
demo:11/ 

bdef:OAI/getDC 

info:fedora/ 
demo:12 

info:fedora/ 
demo:10 

info:fedora/ 
demo:12/ 

bdef:OAI/getDC 

Table 6 - The query response as tuples 

We envision a variety of other applications that exploit the features of the Re-
source Index.  One developing application exists in the NSDL [52], where Fedora is 
being used to represent the relationships among learning objects, standards, review-
ers, and metadata from various sources.  The Resource Index will provide the founda-
tion for higher level NSDL services that expose this rich information to users and 
clients. 

5 Conclusion and Future Work 

As mentioned previously, the Fedora project is now in its second phase of funding 
from the Andrew W. Mellon Foundation.  This phase extends through 2007.  This 
work addresses a number of areas including adding new services, tools, and utilities; 
optimizing for scale and performance; adding new integrity and preservation features; 
and enabling the creation of peer-to-peer networks of repositories (“Fedorations”). 
This work will be motivated by the specific requirements of institutional repositories, 
extremely large digital collections and archives, and distributed educational applica-
tions. The phase 2 development plan is prioritized to first focus on functionality that 
will make it easier for institutions to get a jump start in using Fedora – specifically by 
easily loading heterogeneous digital collections into Fedora repositories. Later work 
we will add functionality that helps Fedora users move towards building large-scale, 
highly dependable repositories. This will provide the basis for a shared, seamless 
information space in which virtual collections and networked objects can be fully 
realized. 

In addition to this core development work by Cornell and the University of Vir-
ginia teams, a number of other parties have joined in a Fedora Development Consor-
tium4.  The purpose of this group is to provide a framework for collective knowledge 
sharing and collaboration for developers working within the Fedora Service Frame-
work, described earlier.  At the time of writing this paper, the Consortium has met for 

                                                           
4 Details on members of the consortium are at the Fedora Open Source Project web site – 

http://www.fedora.info.  



the first time, with follow-on meetings planned.  We anticipate that the Consortium 
will augment the core Fedora system with additional value-added open-source soft-
ware, and eventually produce a number of vertical “Fedora-inside” applications. 

Fedora has been designed from the beginning for extensibility. A key aspect of its 
basic design is the existence of a well-defined object model and the exposure of the 
model through programmatic interfaces.  A powerful feature of this model is the 
notion of an object having multiple representations, including virtual representations 
that involve the interaction of data and services.  Another important feature of the 
model is the extensible relationship architecture that allows content managers to 
model within Fedora complex networks of information.  Finally, the Fedora Service 
Framework, which is the implementation context for this object model, is the founda-
tion for the deployment of extended services and user/client applications that apply 
Fedora in a variety of domains.  

Increasingly rich digital content is placing greater demands on the institutions re-
sponsible for the creation, storage, management, and preservation of that content.  
Fedora is well-positioned to meet those demands and its open architecture provides 
the basis for meeting new requirements as they develop in the future. 

Acknowledgments 

The Fedora Open Source Project is currently funded by the Andrew W. Mellon Foun-
dation.  The authors express gratitude to Mellon for their long-term support of this 
project.  Prior support came from the National Science Foundation and DARPA.  The 
authors acknowledge the significant contributions of the Fedora project team at the 
University of Virginia led by co-PI Thornton Staples.  The team members include 
Ross Wayland and Ronda Grizzle from the University Library and Tim Sigmon and 
Bill Niebel from Information Technology and Communication.  The Fedora project 
has also benefited from the collaboration and contributions of members of the Fedora 
Development Consortium.  The authors also express gratitude to Michael Nelson and 
Herbert Van de Sompel for their on-going collaboration and their encouragement in 
writing this paper. 

 References 

[1] arXiv.org e-Print archive, http://arXiv.org 

[2] eprints.org, http://www.eprints.org 

[3] eXtensible Access Control Markup Language (XACML), http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml 

[4] The Fedora™ Project: An Open-Source Digital Repository Management System, 
http://www.fedora.info 



[5] The Friend of a Friend (FOAF) Project, http://www.foaf-project.org/ 

[6] Functional Requirements for Bibliographic Records, International Federation of 
Library Associations and Institutions, 1998. 

[7] Global Digital Format Registry (GDFR), http://hul.harvard.edu/gdfr/ 

[8] IEEE P1484.12 Learning Object Metadata Working Group, http://ltsc.ieee.org/wg12/ 

[9] "info" URI Scheme, http://info-
uri.info/registry/OAIHandler?verb=ListRecords&metadataPrefix=oai_dc 

[10] Metadata Encoding and Transmission Standard (METS), 
http://www.loc.gov/standards/mets/ 

[11] METS, Metadata Encoding and Transmission Standard, 
http://www.loc.gov/standards/mets/> 

[12] Pathways: Lifecycles for Information Integration in Distributed Scholarly Communi-
cation,  

[13] Reference Model for an Open Archival Information System (OAIS), Consultative 
Committee for Space Data Systems, 1999. 

[14] Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl 

[15] Cornell Project Prism, http://www.prism.cornell.edu/main.htm 

[16] Beckett, D. and McBride, B., RDF/XML Syntax Specification (Revised), 
http://www.w3.org/TR/rdf-syntax-grammar/ 

[17] Bekaert, J., Hochstenbach, P. and Van de Sompel, H. Using MPEG-21 DIDL to 
Represent Complex Digital Objects in the Los Alamos National Laboratory Digital 
Library. D-Lib Magazine, 9 (11). 

[18] Brickley, D. and Guha, R.V. RDF Vocabulary Description Language 1.0: RDF 
Schema. McBride, B. ed., W3C, 2004. 

[19] Clark, K.G., SPARQL Protocol for RDF, http://monkeyfist.com/kendall/sparql-
protocol/ 

[20] Daniel Jr., R. and Lagoze, C., Distributed Active Relationships in the Warwick 
Framework. in IEEE Metadata Conference, (Bethesda, 1997). 

[21] Daniel Jr., R. and Lagoze, C. Extending the Warwick Framework: From Metadata 
Containers to Active Digital Objects. D-Lib Magazine. 

[22] Digital Library Federation (DLF). The Making of America II Testbed Project White 
Paper, Digital Library Federation, 1998. 

[23] Garfield, E. Citation indexing: Its theory and application in science, technology, and 
humanities. John Wiley, New York, NY, 1979. 

[24] Haase, P., Broekstra, Egerhart, A. and Volz, R., A comparison of RDF query lan-
guages. in Third International Semantic Web Conference, (Hiroshima, Japan, 2004). 

[25] Hitchcock, S., Bergmark, D., Brody, T., Gutteridge, C., Carr, L., Hall, W. and 
Lagoze, C. Open Citation Linking. D-Lib Magazine, 8 (10). 



[26] Iverson, V., Song, Y.-W., Van de Walle, R., Rowe, M., Doim Chang, Santos, E. and 
Schwartz, T. MPEG-21 Digital Item Declaration, International Organization for 
Standardization, 2000. 

[27] Kahn, R. and Wilensky, R. A Framework for Distributed Digital Object Services, 
Corporation for National Research Initiatives, Reston, 1995. 

[28] Lagoze, C. and Davis, J.R. Dienst - An Architecture for Distributed Document Li-
braries. Communications of the ACM, 38 (4). 47. 

[29] Lagoze, C., Van de Sompel, H., Nelson, M. and Warner, S., The Open Archives 
Initiative Protocol for Metadata Harvesting - Version 2.0, 
http://www.openarchives.org/OAI_protocol/openarchivesprotocol.html 

[30] Manola, F. and Miller, E. RDF Primer, W3C, 2003. 

[31] National information Standards Organization (U.S.), The OpenURL Framework for 
Context-Sensitive Services, http://www.niso.org/committees/committee_ax.html 

[32] Payette, S., Blanchi, C., Lagoze, C. and Overly, E. Interoperability for Digital Ob-
jects and Repositories: The Cornell/CNRI Experiments. D-Lib Magazine, May. 

[33] Payette, S. and Lagoze, C., Flexible and Extensible Digital Object and Repository 
Architecture (FEDORA). in Second European Conference on Research and Ad-
vanced Technology for Digital Libraries, (Heraklion, Crete, 1998). 

[34] Payette, S. and Lagoze, C., Policy-Enforcing, Policy-Carrying Digital Objects. in 
Fourth European Conference on Research and Advanced Technology for Digital Li-
braries, (Lisbon, Portugal, 2000). 

[35] Payette, S. and Lagoze, C. Value-Added Surrogates for Distributed Content: Estab-
lishing a Virtual Control Zone. D-Lib Magazine, 6 (6). 

[36] Payette, S. and Staples, T., The Mellon Fedora Project: Digital Library Architecture 
Meets XML and Web Services. in European Conference on Research and Advanced 
Technology for Digital Libraries, (Rome, 2002). 

[37] Prud'Hommeaux, E. and Seaborne, A. SPARQL Query Language for RDF, W3C, 
2004. 

[38] Seaborne, A., Joseki: Query Languages,  

[39] Seaborne, A., RDQL - A Query Language for RDF, 
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/ 

[40] Smith, M., Bass, M., McClellan, G., Tansley, R., Barton, M., Branschofsky, M., 
Stuve, D. and Walker, J.H. DSpace: An Open Source Dynamic Digital Repository. 
D-Lib Magazine, 9 (1). 

[41] Staples, T. and Wayland, R. Virginia Dons FEDORA: A Prototype for a Digital 
Object Repository. D-Lib Magazine, July. 

[42] Staples, T., Wayland, R. and Payette, S. The Fedora Project. D-Lib Magazine, 9 (4). 

[43] Treloar, A., Building an Institutional Research Repository from the Ground Up: The 
ARROW Experience. in AusWeb04, (Gold Coast, Australia, 2003). 

[44] Tucana Technologies, iTQL Commands, http://kowari.org/271.htm 

[45] Tucana Technologies, Kowari metastore, http://www.kowari.org/ 



[46] Tufts University, VUE: Visual Understanding Environment, http://vue.tccs.tufts.edu/ 

[47] Unsworth, J., Suporting Digital Scholarship: a project funded by the Andrew W. 
Mellon Foundation, http://www.iath.virginia.edu/sds/proposal.html 

[48] Van de Sompel, H., Bekaert, J., Liu, X., Balakireva, L. and Schwander, T., aDORe: a 
modular, standard-based Digital Object Repository, 
http://www.arxiv.org/abs/cs.DL/0502028 

[49] Van de Sompel, H., Nelson, M., Lagoze, C. and Warner, S. Resource Harvesting 
within the OAI-PMH Framework. D-Lib Magazine, 10 (12). 

[50] Van de Sompel, H., Payette, S., Erickson, J., Lagoze, C. and Warner, S. Rethinking 
Scholarly Communication: Building the System that Scholars Deserve. D-Lib Maga-
zine (September). 

[51] VTLS, VITAL, http://www.vtls.com/Products/vital.shtml 

[52] Zia, L.L. The NSF National Science, Technology, Engineering, and Mathematics 
Education Digital Library (NSDL) Program. D-Lib Magazine, 8 (11). 



Appendix A 
Example Digital Object Encoded in FOXML 

 
<?xml version="1.0" encoding="UTF-8"?> 
<foxml:digitalObject PID="demo:11"  
    xmlns:foxml="info:fedora/fedora-system:def/foxml#"    
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
    xsi:schemaLocation="info:fedora/fedora-system:def/foxml#  
    http://www.fedora.info/definitions/1/0/foxml1-0.xsd"> 
<!-- ********************************************************************** --> 
<!-- OBJECT PROPERTIES --> 
<!-- ********************************************************************** --> 
<foxml:objectProperties> 
   <foxml:property NAME="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"   
                            VALUE="FedoraObject"/> 
   <foxml:property NAME="info:fedora/fedora-system:def/model#state"  
                            VALUE="A"/> 
   <foxml:property NAME="info:fedora/fedora-system:def/model#label"  
                            VALUE="Image Object – UVA Pavilion"/> 
   <foxml:property NAME="info:fedora/fedora-system:def/model#createdDate"  
                            VALUE="2004-12-10T00:21:57Z"/> 
   <foxml:property NAME="info:fedora/fedora-system:def/view#lastModifiedDate"  
                            VALUE="2004-12-23T00:20:00Z"/> 
   <foxml:property NAME="info:fedora/fedora-system:def/model#contentModel"  
                            VALUE="UVA_STD_IMG"/> 
</foxml:objectProperties> 
<!-- ********************************************************************** --> 
<!-- DATASTREAMS --> 
<!-- ********************************************************************** --> 
<foxml:datastream ID="THUMB" CONTROL_GROUP="E" MIMETYPE="image/jpg"  
                           STATE="A" VERSIONABLE="true"> 
 <foxml:datastreamVersion ID="THUMB.0" LABEL="Preview Pavilion III"  
                                          CREATED="2004-12-10T00:21:57Z"> 
  <foxml:contentLocation TYPE="URL" 
                    REF="http://icarus.lib.virginia.edu/images/iva/archerd05small.jpg" /> 
  </foxml:datastreamVersion> 
</foxml:datastream> 
<foxml:datastream ID="HIGH" CONTROL_GROUP="M" MIMETYPE="image/jpeg"  
                           STATE="A" VERSIONABLE="true"> 
 <foxml:datastreamVersion ID="HIGH.0" LABEL="Drawing Pavilion III" 
                                          CREATED="2004-12-10T00:21:57Z"> 
  <foxml:contentLocation TYPE="INTERNAL_ID" 
                                           REF="demo:11:HIGH:HIGH.0"/> 
 </foxml:datastreamVersion> 
 <foxml:datastreamVersion ID="HIGH.1" LABEL="Drawing Pavilion III" 
                                          CREATED="2004-12-12T00:22:00Z"> 
  <foxml:contentLocation TYPE="INTERNAL_ID" 
                                           REF="demo:11:HIGH:HIGH.1"/> </foxml:datastreamVersion> 
 <foxml:datastreamVersion ID="HIGH.2" LABEL="Drawing Pavilion III" 
                                          CREATED="2004-12-23T00:20:00Z"> 
  <foxml:contentLocation TYPE="INTERNAL_ID" 



                                           REF="demo:11:HIGH:HIGH.2"/> </foxml:datastreamVersion> 
</foxml:datastream> 
<!-- ********************************************************************** --> 
<!-- INTEGRITY DATASTREAMS --> 
<!-- ********************************************************************** --> 
<foxml:datastream ID="DC" CONTROL_GROUP="X"  MIMETYPE="text/xml"   
                           STATE="A" VERSIONABLE="true"> 
 <foxml:datastreamVersion ID="DC.0" LABEL="Dublin Core Record"                                            
                                           CREATED="2004-12-10T00:21:57Z"> 
  <foxml:xmlContent> 
  <oai_dc:dc xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/"  
            xmlns:dc="http://purl.org/dc/elements/1.1/"> 
    <dc:title>Image of UVA Pavilion - Drawing</dc:title> 
    <dc:subject>Architectural drawings</dc:subject> 
    <dc:publisher>University of Virginia</dc:publisher> 
    <dc:identifier>demo:11</dc:identifier> 
  </oai_dc:dc> 
  </foxml:xmlContent> 
 </foxml:datastreamVersion> 
</foxml:datastream> 
<foxml:datastream ID="RELS-EXT" CONTROL_GROUP="X" MIMETYPE="text/xml"    
                           STATE="A" VERSIONABLE="true"> 
  <foxml:datastreamVersion ID="RELS-EXT.0" LABEL="Relationships" 
                                               CREATED="2004-12-10T00:21:57Z"> 
   <foxml:xmlContent> 
    <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"   
                      xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"  
                      xmlns:fedora="info:fedora/fedora-system:def/relations-external#"  
                      xmlns:myns="http://www.nsdl.org/ontologies/relationships#"  
                      xmlns:dc="http://purl.org/dc/elements/1.1/"  
                      xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/"> 
     <rdf:Description rdf:about="info:fedora/demo:11"> 
      <fedora:isMemberOf rdf:resource="info:fedora/demo:10"/> 
     </rdf:Description> 
    </rdf:RDF> 
   </foxml:xmlContent> 
  </foxml:datastreamVersion> 
 </foxml:datastream> 
<foxml:datastream ID="AUDIT" CONTROL_GROUP="M" MIMETYPE="text/xml"  
                           STATE="A" VERSIONABLE="false"> 
  <foxml:datastreamVersion ID="AUDIT.0" LABEL="Object Audit Trail"  
                                               CREATED="2004-12-12T00:22:00Z">    
 <foxml:xmlContent> 
    <audit:auditTrail xmlns:audit="info:fedora/def:audit/"> 
     <audit:record ID="AUDREC1"> 
      <audit:process type="Fedora API-M"/> 
      <audit:action>modifyDatastreamByRef</audit:action> 
      <audit:componentID>HIGH</audit:componentID> 
      <audit:responsibility>fedoraAdmin</audit:responsibility> 
      <audit:date>2004-12-12T00:22:00Z </audit:date> 
      <audit:justification></audit:justification> 
     </audit:record> 
     <audit:record ID="AUDREC2"> 
      <audit:process type="Fedora API-M"/> 



      <audit:action>modifyDatastreamByRef</audit:action> 
      <audit:componentID>HIGH</audit:componentID> 
      <audit:responsibility>fedoraAdmin</audit:responsibility> 
      <audit:date>2004-12-23T00:20:00Z</audit:date> 
      <audit:justification></audit:justification> 
     </audit:record> 
    </audit:auditTrail> 
   </foxml:xmlContent> 
  </foxml:datastreamVersion> 
 </foxml:datastream> 
<!-- ********************************************************************** --> 
<!-- DISSEMINATOR(S) --> 
<!-- ********************************************************************** --> 
<foxml:disseminator ID="DISS1" BDEF_CONTRACT_PID="BDEF:2" STATE="A"  
                             VERSIONABLE="true"> 
  <foxml:disseminatorVersion ID="DISS1.0"  
                              BMECH_SERVICE_PID="BMECH:3"  
                              LABEL="UVA Simple Image Behaviors"  
                              CREATED="2004-12-10T00:21:57Z">> 
   <foxml:serviceInputMap> 
    <foxml:datastreamBinding KEY="HIGHRES_IMG"  
                              DATASTREAM_ID="HIGH" LABEL="Input Image"/> 
   </foxml:serviceInputMap> 
  </foxml:disseminatorVersion> 
</foxml:disseminator> 
</foxml:digitalObject> 
 
 

 

 

 

 

 

 

 

 

 

 

 


