
Service-Oriented
Architecture

Concepts, Technology, and Design

Thomas Erl

PRENTICE HALL PROFESSIONAL TECHNICAL REFERENCE

UPPER SADDLE RIVER, NJ • BOSTON • INDIANAPOLIS • SAN FRANCISCO

NEW YORK • TORONTO • MONTREAL • LONDON • MUNICH • PARIS • MADRID

CAPETOWN • SYDNEY • TOKYO • SINGAPORE • MEXICO CITY

Erl_FM.qxd 6/30/05 10:53 AM Page vXXXXXXXXXXXXXXXXXXX

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book, and
the publisher was aware of a trademark claim, the designations have been printed with
initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connec-
tion with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom cov-
ers and content particular to your business, training goals, marketing focus, and brand-
ing interests. For more information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.phptr.com

Library of Congress Number: 2005925019

Copyright © 2005 Pearson Education, Inc. Portions of this work are copyright SOA
Systems Inc., and reprinted with permission from SOA Systems Inc. © 2005. Front cover
and all photographs by Thomas Erl. Permission to use photographs granted by SOA
Systems Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the copyright holder
prior to any prohibited reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458

ISBN 0-13-185858-0
Text printed in the United States on recycled paper at R.R. Donnelley in
Crawfordsville, Indiana.
First printing, July 2005

Erl_FM.qxd 6/30/05 10:53 AM Page viXXXXXXXXXXXXXXXXXXX

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Chapter 16

Service-Oriented Design
(Part IV: Business Process
Design)

16.1 WS-BPEL language basics

16.2 WS-Coordination overview

16.3 Service-oriented business process design
(a step-by-step process)

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

T
he orchestration service layer provides a powerful means by which contempo-

rary service-oriented solutions can realize some key benefits. The most

significant contribution this sub-layer brings to SOA is an abstraction of logic

and responsibility that alleviates underlying services from a number of design

constraints.

For example, by abstracting business process logic:

• Application and business services can be freely designed to be process-agnostic and

reusable.

• The process service assumes a greater degree of statefulness, thus further freeing

other services from having to manage state.

• The business process logic is centralized in one location, as opposed to being dis-

tributed across and embedded within multiple services.

In this chapter we tackle the design of an orchestration layer by using the WS-BPEL lan-

guage to create a business process definition.

How case studies are used: Our focus in this chapter is the TLS environment. We

provide case study examples throughout the step-by-step process description

during which TLS builds a WS-BPEL process definition for the Timesheet Sub-

mission Process. This is the same process for which service candidates were mod-

eled in Chapter 12 and for which the Employee Service interface was designed in

Chapter 15.

16.1 WS-BPEL language basics

Before we can design an orchestration layer, we need to acquire a good understanding

of how the operational characteristics of the process can be formally expressed. This

book uses the WS-BPEL language to demonstrate how process logic can be described as

part of a concrete definition (Figure 16.1) that can be implemented and executed via a

compliant orchestration engine.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

WS-BPEL language basics 567

Although you likely will be using a process modeling tool and will therefore not be

required to author your process definition from scratch, a knowledge of WS-BPEL ele-

ments still is useful and often required. WS-BPEL modeling tools frequently make ref-

erence to these elements and constructs, and you may be required to dig into the source

code they produce to make further refinements.

Figure 16.1

A common WS-BPEL process definition

structure.

NOTE

If you are already comfortable with the WS-BPEL language, feel free to skip

ahead to the Service-oriented business process design (a step-by-step

process) section.

16.1.1 A brief history of BPEL4WS and WS-BPEL

Before we get into the details of the WS-BPEL language, let’s briefly discuss how this

specification came to be. The Business Process Execution Language for Web Services

(BPEL4WS) was first conceived in July, 2002, with the release of the BPEL4WS 1.0

specification, a joint effort by IBM, Microsoft, and BEA. This document proposed an

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

orchestration language inspired by previous variations, such as IBM’s Web Services

Flow Language (WSFL) and Microsoft’s XLANG specification.

Joined by other contributors from SAP and Siebel Systems, version 1.1 of the BPEL4WS

specification was released less than a year later, in May of 2003. This version received

more attention and vendor support, leading to a number of commercially available

BPEL4WS-compliant orchestration engines. Just prior to this release, the BPEL4WS

specification was submitted to an OASIS technical committee so that the specification

could be developed into an official, open standard.

The technical committee is in the process of finalizing the release of the next version of

BPEL4WS. It has been announced that the language itself has been renamed to the Web

Services Business Process Execution Language, or WS-BPEL (and assigned the 2.0 ver-

sion number). The changes planned for WS-BPEL have been made publicly available on

the OASIS Web site at www.oasis-open.org.

Notes have been added to the element descriptions in this section where appropriate to

indicate changes in syntax between BPEL4WS and WS-BPEL. For simplicity’s sake, we

refer to the Business Process Execution Language as WS-BPEL in this book.

16.1.2 Prerequisites

It’s time now to learn about the WS-BPEL language. If you haven’t already done so, it is

recommended that you read Chapter 6 prior to proceeding with this section. Concepts

relating to orchestration, coordination, atomic transactions, and business activities are

covered in Chapter 6, and are therefore not repeated here. This chapter also assumes you

have read through the WSDL tutorial provided in Chapter 13.

16.1.3 The process element

Let’s begin with the root element of a WS-BPEL process definition. It is assigned a name

value using the name attribute and is used to establish the process definition-related

namespaces.

<process name="TimesheetSubmissionProcess"

targetNamespace="http://www.xmltc.com/tls/process/"

xmlns=

"http://schemas.xmlsoap.org/ws/2003/03/

business-process/"

xmlns:bpl="http://www.xmltc.com/tls/process/"

xmlns:emp="http://www.xmltc.com/tls/employee/"

xmlns:inv="http://www.xmltc.com/tls/invoice/"

568 Chapter 16: Service-Oriented Design (Part IV: Business Process Design)

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

WS-BPEL language basics 569

xmlns:tst="http://www.xmltc.com/tls/timesheet/"

xmlns:not="http://www.xmltc.com/tls/notification/">

<partnerLinks>

...

</partnerLinks>

<variables>

...

</variables>

<sequence>

...

</sequence>

...

</process>

Example 16.1 A skeleton process definition.

The process construct contains a series of common child elements explained in the fol-

lowing sections.

16.1.4 The partnerLinks and partnerLink elements

ApartnerLink element establishes the port type of the service (partner) that will be par-

ticipating during the execution of the business process. Partner services can act as a

client to the process, responsible for invoking the process service. Alternatively, partner

services can be invoked by the process service itself.

The contents of a partnerLink element represent the communication exchange between

two partners—the process service being one partner and another service being the other.

Depending on the nature of the communication, the role of the process service will vary.

For instance, a process service that is invoked by an external service may act in the role

of “TimesheetSubmissionProcess.” However, when this same process service invokes a

different service to have an invoice verified, it acts within a different role, perhaps

“InvoiceClient.” The partnerLink element therefore contains the myRole and partner-

Role attributes that establish the service provider role of the process service and the

partner service respectively.

Put simply, the myRole attribute is used when the process service is invoked by a part-

ner client service, because in this situation the process service acts as the service

provider. The partnerRole attribute identifies the partner service that the process serv-

ice will be invoking (making the partner service the service provider).

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Note that both myRole and partnerRole attributes can be used by the same partner-

Link element when it is expected that the process service will act as both service

requestor and service provider with the same partner service. For example, during asyn-

chronous communication between the process and partner services, the myRole setting

indicates the process service’s role during the callback of the partner service.

<partnerLinks>

<partnerLink name="client"

partnerLinkType="tns:TimesheetSubmissionType"

myRole="TimesheetSubmissionServiceProvider"/>

<partnerLink name="Invoice"

partnerLinkType="inv:InvoiceType"

partnerRole="InvoiceServiceProvider"/>

<partnerLink name="Timesheet"

partnerLinkType="tst:TimesheetType"

partnerRole="TimesheetServiceProvider"/>

<partnerLink name="Employee"

partnerLinkType="emp:EmployeeType"

partnerRole="EmployeeServiceProvider"/>

<partnerLink name="Notification"

partnerLinkType="not:NotificationType"

partnerRole="NotificationServiceProvider"/>

</partnerLinks>

Example 16.2 The partnerLinks construct containing one partnerLink element in which

the process service is invoked by an external client partner and four partner-

Link elements that identify partner services invoked by the process service.

You’ll notice that in Example 16.2, each of the partnerLink elements also contains a

partnerLinkType attribute. This refers to the partnerLinkType construct, as explained

next.

16.1.5 The partnerLinkType element

For each partner service involved in a process, partnerLinkType elements identify the

WSDL portType elements referenced by the partnerLink elements within the process

definition. Therefore, these constructs typically are embedded directly within the WSDL

documents of every partner service (including the process service).

The partnerLinkType construct contains one role element for each role the service can

play, as defined by the partnerLink myRole and partnerRole attributes. As a result, a

partnerLinkType will have either one or two child role elements.

570 Chapter 16: Service-Oriented Design (Part IV: Business Process Design)

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

WS-BPEL language basics 571

<definitions name="Employee"

targetNamespace="http://www.xmltc.com/tls/employee/wsdl/"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:plnk=

"http://schemas.xmlsoap.org/ws/2003/05/partner-link/"

...

>

...

<plnk:partnerLinkType name="EmployeeServiceType" xmlns=

"http://schemas.xmlsoap.org/ws/2003/05/partner-link/">

<plnk:role name="EmployeeServiceProvider">

<portType name="emp:EmployeeInterface"/>

</plnk:role>

</plnk:partnerLinkType>

...

</definitions>

Example 16.3 A WSDL definitions construct containing a partnerLinkType construct.

Note that multiple partnerLink elements can reference the same partnerLinkType.

This is useful for when a process service has the same relationship with multiple part-

ner services. All of the partner services can therefore use the same process service port-

Type elements.

NOTE

In version 2.0 of the WS-BPEL specification, it is being proposed that the port-

Type element be changed so that it exists as an attribute of the role element.

16.1.6 The variables element

WS-BPEL process services commonly use the variables construct to store state infor-

mation related to the immediate workflow logic. Entire messages and data sets format-

ted as XSD schema types can be placed into a variable and retrieved later during the

course of the process. The type of data that can be assigned to a variable element needs

to be predefined using one of the following three attributes: messageType, element, or

type.

The messageType attribute allows for the variable to contain an entire WSDL-defined

message, whereas the element attribute simply refers to an XSD element construct.

The type attribute can be used to just represent an XSD simpleType, such as string or

integer.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

<variables>

<variable name="ClientSubmission"

messageType="bpl:receiveSubmitMessage"/>

<variable name="EmployeeHoursRequest"

messageType="emp:getWeeklyHoursRequestMessage"/>

<variable name="EmployeeHoursResponse"

messageType="emp:getWeeklyHoursResponseMessage"/>

<variable name="EmployeeHistoryRequest"

messageType="emp:updateHistoryRequestMessage"/>

<variable name="EmployeeHistoryResponse"

messageType="emp:updateHistoryResponseMessage"/>

...

</variables>

Example 16.4 The variables construct hosting only some of the child variable elements

used later by the Timesheet Submission Process.

Typically, a variable with the messageType attribute is defined for each input and out-

put message processed by the process definition. The value of this attribute is the mes-

sage name from the partner process definition.

16.1.7 The getVariableProperty and getVariableData functions

WS-BPEL provides built-in functions that allow information stored in or associated with

variables to be processed during the execution of a business process.

getVariableProperty(variable name, property name)

This function allows global property values to be retrieved from variables. It simply

accepts the variable and property names as input and returns the requested value.

getVariableData(variable name, part name, location path)

Because variables commonly are used to manage state information, this function is

required to provide other parts of the process logic access to this data. The getVari-

ableData function has a mandatory variable name parameter and two optional argu-

ments that can be used to specify a part of the variable data.

In our examples we use the getVariableData function a number of times to retrieve

message data from variables.

572 Chapter 16: Service-Oriented Design (Part IV: Business Process Design)

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

WS-BPEL language basics 573

getVariableData ('InvoiceHoursResponse',

'ResponseParameter')

getVariableData ('input','payload',

'/tns:TimesheetType/Hours/...')

Example 16.5 Two getVariableData functions being used to retrieve specific pieces of

data from different variables.

16.1.8 The sequence element

The sequence construct allows you to organize a series of activities so that they are exe-

cuted in a predefined, sequential order. WS-BPEL provides numerous activities that can

be used to express the workflow logic within the process definition. The remaining ele-

ment descriptions in this section explain the fundamental set of activities used as part of

our upcoming case study examples.

<sequence>

<receive>

...

</receive>

<assign>

...

</assign>

<invoke>

...

</invoke>

<reply>

...

</reply>

</sequence>

Example 16.6 A skeleton sequence construct containing only some of the many activity

elements provided by WS-BPEL.

Note that sequence elements can be nested, allowing you to define sequences within

sequences.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

16.1.9 The invoke element

This element identifies the operation of a partner service that the process definition

intends to invoke during the course of its execution. The invoke element is equipped

with five common attributes, which further specify the details of the invocation

(Table 16.1).

Table 16.1 invoke element attributes

574 Chapter 16: Service-Oriented Design (Part IV: Business Process Design)

Attribute Description

partnerLink This element names the partner service via its correspon-
ding partnerLink.

portType The element used to identify the portType element of the
partner service.

operation The partner service operation to which the process service
will need to send its request.

inputVariable The input message that will be used to communicate with
the partner service operation. Note that it is referred to as a
variable because it is referencing a WS-BPEL variable ele-
ment with a messageType attribute.

outputVariable This element is used when communication is based on the
request-response MEP. The return value is stored in a sepa-
rate variable element.

<invoke name="ValidateWeeklyHours"

partnerLink="Employee"

portType="emp:EmployeeInterface"

operation="GetWeeklyHoursLimit"

inputVariable="EmployeeHoursRequest"

outputVariable="EmployeeHoursResponse"/>

Example 16.7 The invoke element identifying the target partner service details.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

WS-BPEL language basics 575

16.1.10 The receive element

The receive element allows us to establish the information a process service expects

upon receiving a request from an external client partner service. In this case, the process

service is viewed as a service provider waiting to be invoked.

The receive element contains a set of attributes, each of which is assigned a value relat-

ing to the expected incoming communication (Table 16.2).

Table 16.2 receive element attributes

Attribute Description

partnerLink The client partner service identified in the corresponding
partnerLink construct.

portType The process service portType that will be waiting to receive
the request message from the partner service.

operation The process service operation that will be receiving the
request.

variable The process definition variable construct in which the
incoming request message will be stored.

createInstance When this attribute is set to “yes,” the receipt of this partic-
ular request may be responsible for creating a new instance
of the process.

Note that this element also can be used to receive callback messages during an asyn-

chronous message exchange.

<receive name="receiveInput"

partnerLink="client"

portType="tns:TimesheetSubmissionInterface"

operation="Submit"

variable="ClientSubmission"

createInstance="yes"/>

Example 16.8 The receive element used in the Timesheet Submission Process definition to

indicate the client partner service responsible for launching the process with the

submission of a timesheet document.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

16.1.11 The reply element

Where there’s a receive element, there’s a reply element when a synchronous

exchange is being mapped out. The reply element is responsible for establishing the

details of returning a response message to the requesting client partner service. Because

this element is associated with the same partnerLink element as its corresponding

receive element, it repeats a number of the same attributes (Table 16.3).

Table 16.3 reply element attributes

576 Chapter 16: Service-Oriented Design (Part IV: Business Process Design)

Attribute Description

partnerLink The same partnerLink element established in the receive
element.

portType The same portType element displayed in the receive
element.

operation The same operation element from the receive element.

variable The process service variable element that holds the mes-
sage that is returned to the partner service.

messageExchange It is being proposed that this optional attribute be added
by the WS-BPEL 2.0 specification. It allows for the reply
element to be explicitly associated with a message activity
capable of receiving a message (such as the receive
element).

<reply partnerLink="client"

portType="tns:TimesheetSubmissionInterface"

operation="Submit"

variable="TimesheetSubmissionResponse"/>

Example 16.9 A potential companion reply element to the previously displayed receive

element.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

WS-BPEL language basics 577

16.1.12 The switch, case, and otherwise elements

These three structured activity elements allow us to add conditional logic to our process

definition, similar to the familiar select case/case else constructs used in traditional

programming languages. The switch element establishes the scope of the conditional

logic, wherein multiple case constructs can be nested to check for various conditions

using a condition attribute. When a condition attribute resolves to “true,” the activi-

ties defined within the corresponding case construct are executed.

The otherwise element can be added as a catch all at the end of the switch construct.

Should all preceding case conditions fail, the activities within the otherwise construct

are executed.

<switch>

<case condition=

"getVariableData('EmployeeResponseMessage',

'ResponseParameter')=0">

...

</case>

<otherwise>

...

</otherwise>

</switch>

Example 16.10 A skeleton case element wherein the condition attribute uses the get-

VariableData function to compare the content of the EmployeeRe-

sponseMessage variable to a zero value.

NOTE

It has been proposed that the switch, case, and otherwise elements be

replaced with if, elseif, and else elements in WS-BPEL 2.0.

16.1.13 The assign, copy, from, and to elements

This set of elements simply gives us the ability to copy values between process variables,

which allows us to pass around data throughout a process as information is received

and modified during the process execution.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

<assign>

<copy>

<from variable="TimesheetSubmissionFailedMessage"/>

<to variable="EmployeeNotificationMessage"/>

</copy>

<copy>

<from variable="TimesheetSubmissionFailedMessage"/>

<to variable="ManagerNotificationMessage"/>

</copy>

</assign>

Example 16.11 Within this assign construct, the contents of the TimesheetSubmission-

FailedMessage variable are copied to two different message variables.

Note that the copy construct can process a variety of data transfer functions (for exam-

ple, only a part of a message can be extracted and copied into a variable). from and to

elements also can contain optional part and query attributes that allow for specific

parts or values of the variable to be referenced.

16.1.14 faultHandlers, catch, and catchAll elements

This construct can contain multiple catch elements, each of which provides activities

that perform exception handling for a specific type of error condition. Faults can be gen-

erated by the receipt of a WSDL-defined fault message, or they can be explicitly trig-

gered through the use of the throw element. The faultHandlers construct can consist

of (or end with) a catchAll element to house default error handling activities.

<faultHandlers>

<catch faultName="SomethingBadHappened"

faultVariable="TimesheetFault">

...

</catch>

<catchAll>

...

</catchAll>

</faultHandlers>

Example 16.12 The faultHandlers construct hosting catch and catchAll child

constructs.

578 Chapter 16: Service-Oriented Design (Part IV: Business Process Design)

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

WS-BPEL language basics 579

16.1.15 Other WS-BPEL elements

The following table provides brief descriptions of other relevant parts of the WS-BPEL

language.

Table 16.4 Quick reference table providing short descriptions for additional WS-BPEL

elements (listed in alphabetical order).

Element Description

compensationHandler A WS-BPEL process definition can define a compensa-
tion process that kicks in a series of activities when
certain conditions occur to justify a compensation.
These activities are kept in the compensationHandler
construct. (For more information about compensa-
tions, see the Business activities section in Chapter 6.)

correlationSets WS-BPEL uses this element to implement correlation,
primarily to associate messages with process
instances. A message can belong to multiple correla-
tionSets. Further, message properties can be defined
within WSDL documents.

empty This simple element allows you to state that no activ-
ity should occur for a particular condition.

eventHandlers The eventHandlers element enables a process to
respond to events during the execution of process
logic. This construct can contain onMessage and
onAlarm child elements that trigger process activity
upon the arrival of specific types of messages (after a
predefined period of time, or at a specific date and
time, respectively).

exit See the terminate element description that follows.

flow A flow construct allows you to define a series of activ-
ities that can occur concurrently and are required to
complete after all have finished executing. Dependen-
cies between activities within a flow construct are
defined using the child link element.

pick Similar to the eventHandlers element, this construct
also can contain child onMessage and onAlarm ele-
ments but is used more to respond to external events
for which process execution is suspended.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Table 16.4 Quick reference table providing short descriptions for additional WS-BPEL

elements (listed in alphabetical order) (Continued).

580 Chapter 16: Service-Oriented Design (Part IV: Business Process Design)

Element Description

scope Portions of logic within a process definition can be
sub-divided into scopes using this construct. This
allows you to define variables, faultHandlers,
correlationSets, compensationHandler, and
eventHandlers elements local to the scope.

terminate This element effectively destroys the process instance.
The WS-BPEL 2.0 specification proposes that this ele-
ment be renamed exit.

throw WS-BPEL supports numerous fault conditions. Using
the throw element allows you to explicitly trigger a
fault state in response to a specific condition.

wait The wait element can be set to introduce an inten-
tional delay within the process. Its value can be a set
time or a predefined date.

while This useful element allows you to define a loop. As
with the case element, it contains a condition attrib-
ute that, as long as it continues resolving to “true,”
will continue to execute the activities within the while
construct.

SUMMARY OF KEY POINTS

• A WS-BPEL process definition is represented at runtime by the process service.

• Services that participate in WS-BPEL defined processes are considered partner

services and are established as part of the process definition.

• Numerous activity elements are provided by WS-BPEL to implement various types

of process logic.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

WS-Coordination overview 581

16.2 WS-Coordination overview

NOTE

Only element descriptions are provided in this section. Concepts relating to these

elements are covered in Chapter 6. If you are not interested in learning about

WS-Coordination syntax at this point, then feel free to skip ahead to the

Service-oriented business process design process description. This section

is not a prerequisite to continue with the remainder of the book.

Provided in this section is a brief look at WS-Coordination, which can be used to realize

some of the underlying mechanics for WS-BPEL orchestrations. Specifically, we describe

some of the elements from the WS-Coordination specification and look at how they are

used to implement the supplementary specifications that provide coordination proto-

cols (WS-BusinessActivity and WS-AtomicTransaction).

Note that a syntactical knowledge of these languages is generally not necessary to cre-

ate WS-BPEL process definitions. We discuss these languages at this stage only to pro-

vide an insight as to how WS-Coordination can be positioned within a WS-BPEL

orchestration model, and to get a glimpse at some of the syntax behind the specifications

we first introduced only on a conceptual level in Chapter 6.

When we explained WS-Coordination earlier, we described the overall coordination

mechanism that consists of the activation service, the registration service, a coordinator,

and participants that implement specific protocols. It is likely that these underlying con-

text management services will be automatically governed by the orchestration engine

platform for which you are creating a WS-BPEL process definition.

In terms of the WS-Coordination language and its two protocol documents, what may

be of interest to you is the actual CoordinationContext header that is inserted into

SOAP messages. You may encounter this header if you are monitoring messages or if

you need to perform custom development associated with the coordination context.

Also while this section briefly discusses the WS-Coordination specification within the

context of the orchestration service layer, it is important to note that this specification is

a standalone SOA extension in its own right. Its use is in no way dependent on WS-BPEL

or an orchestration service layer.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

16.2.1 The CoordinationContext element

This parent construct contains a series of child elements that each house a specific part

of the context information being relayed by the header.

<Envelope

xmlns="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:wsc=

"http://schemas.xmlsoap.org/ws/2002/08/wscoor"

xmlns:wsu=

"http://schemas.xmlsoap.org/ws/2002/07/utility">

<Header>

<wsc:CoordinationContext>

<wsu:Identifier>

...

</wsu:Identifier>

<wsu:Expires>

...

</wsu:Expires>

<wsc:CoordinationType>

...

</wsc:CoordinationType>

<wsc:RegistrationService>

...

</wsc:RegistrationService>

</wsc:CoordinationContext>

</Header>

<Body>

...

</Body>

</Envelope>

Example 16.13 A skeleton CoordinationContext construct.

The activation service returns this CoordinationContext header upon the creation of a

new activity. As described later, it is within the CoordinationType child construct that

the activity protocol (WS-BusinessActivity, WS-AtomicTransaction) is carried. Vendor-

specific implementations of WS-Coordination can insert additional elements within

the CoordinationContext construct that represent values related to the execution

environment.

582 Chapter 16: Service-Oriented Design (Part IV: Business Process Design)

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

WS-Coordination overview 583

16.2.2 The Identifier and Expires elements

These two elements originate from a utility schema used to provide reusable elements.

WS-Coordination uses the Identifier element to associate a unique ID value with the

current activity. The Expires element sets an expiry date that establishes the extent of

the activity’s possible lifespan.

<Envelope

...

xmlns:wsu=

"http://schemas.xmlsoap.org/ws/2002/07/utility">

...

<wsu:Identifier>

http://www.xmltc.com/ids/process/33342

</wsu:Identifier>

<wsu:Expires>

2008-07-30T24:00:00.000

</wsu:Expires>

...

</Envelope>

Example 16.14 Identifier and Expires elements containing values relating to

the header.

16.2.3 The CoordinationType element

This element is described shortly in the WS-BusinessActivity and WS-AtomicTransaction

coordination types section.

16.2.4 The RegistrationService element

The RegistrationService construct simply hosts the endpoint address of the registra-

tion service. It uses the Address element also provided by the utility schema.

<wsc:RegistrationService>

<wsu:Address>

http://www.xmltc.com/bpel/reg

</wsu:Address>

</wsc:RegistrationService>

Example 16.15 The RegistrationService element containing a URL pointing to the loca-

tion of the registration service.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

16.2.5 Designating the WS-BusinessActivity coordination type

The specific protocol(s) that establishes the rules and constraints of the activity are iden-

tified within the CoordinationType element. The URI values that are placed here are

predefined within the WS-BusinessActivity and WS-AtomicTransaction specifications.

This first example shows the CoordinationType element containing the WS-Business-

Activity coordination type identifier. This would indicate that the activity for which the

header is carrying context information is a potentially long-running activity.

<wsc:CoordinationType>

http://schemas.xmlsoap.org/ws/2004/01/wsba

</wsc:CoordinationType>

Example 16.16 The CoordinationType element representing the WS-BusinessActivity

protocol.

16.2.6 Designating the WS-AtomicTransaction coordination type

In the next example, the CoordinationType element is assigned the WS-AtomicTrans-

action coordination type identifier, which communicates the fact that the header’s con-

text information is part of a short running transaction.

<wsc:CoordinationType>

http://schemas.xmlsoap.org/ws/2003/09/wsat

</wsc:CoordinationType>

Example 16.17 The CoordinationType element representing the WS-AtomicTransaction

protocol.

SUMMARY OF KEY POINTS

• WS-Coordination provides a sophisticated context management system that may be

leveraged by WS-BPEL.

• WS-BusinessActivity and WS-AtomicTransaction define specific protocols for use

with WS-Coordination.

584 Chapter 16: Service-Oriented Design (Part IV: Business Process Design)

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Service-oriented business process design (a step-by-step process) 585

16.3 Service-oriented business process design (a step-by-step process)

Designing the process of a service-oriented solution really just comes down to properly

interpreting the business process requirements you have collected and then implement-

ing them accurately. The trick, though, is to also account for all possible variations of

process activity. This means understanding not just what can go wrong, but how the

process will respond to unexpected or abnormal conditions.

Historically, business processes were designed by analysts using modeling tools that

produced diagrams handed over to architects and developers for implementation. The

workflow diagram and its accompanying documentation were the sole means of com-

municating how this logic should be realized within an automated solution. While dili-

gent analysis and documentation, coupled with open minded and business-aware

technical expertise, can lead to a successful collaboration of business and technical team

members, this approach does leave significant room for error.

This gap is being addressed by operational business modeling languages, such as WS-

BPEL. Modeling tools exist, allowing technical analysts and architects to graphically cre-

ate business process diagrams that represent their workflow logic requirements, all the

while auto-generating WS-BPEL syntax in the background.

These tools typically require that the user possess significant knowledge of the WS-

BPEL language. However, more sophisticated tools, geared directly at business analysts,

already are emerging, removing the prerequisite of having to understand WS-BPEL to

create WS-BPEL process definitions.

The result is a diagram on the front-end that expresses the analysts’ vision of the process

and a computer executable process definition on the back-end that can be handed over

to architects and developers for immediate (and not-open-to-interpretation) implemen-

tation (Figure 16.2).

When operational, the WS-BPEL process is appropriately represented and expressed

through a process service within the service interface layer. This process service effec-

tively establishes the orchestration service sub-layer, responsible for governing and

composing business and application layers.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

16.3.1 Process description

The following step-by-step design process (Figure 16.3) provides some high-level guid-

ance for how to approach the creation of a WS-BPEL process definition. The steps are

similar to those used by the Task-centric business service design process described in Chap-

ter 15, except for one important detail.

When we designed a task-centric service, we simply produced a service interface capa-

ble of handling anticipated message exchanges. The details of the workflow logic were

deferred to the design and development of the underlying application logic. When

designing a WS-BPEL process, this workflow logic is abstracted into a separate process

definition. Therefore, the design of workflow details is addressed at this stage, along

with the definition of the process service interface.

586 Chapter 16: Service-Oriented Design (Part IV: Business Process Design)

Figure 16.2

A concrete definition of a process service designed using a process modeling tool.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Service-oriented business process design (a step-by-step process) 587

The examples used to demonstrate each step are intentionally simple so that the basic

WS-BPEL element descriptions we just covered in the previous section can be easily

understood. When designing more complex workflow logic, a more detailed and elabo-

rate design process is required.

Business process design is the last step in our overall service-oriented design process.

This means that, for the most part, the application and business services required to

carry out the process logic will have already been modeled and designed as we begin.

Figure 16.3

A high-level process for designing business processes.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

588 Chapter 16: Service-Oriented Design (Part IV: Business Process Design)

CASE STUDY

The original workflow logic for the TLS Timesheet Submission Process (Figure

16.4) that was created during the modeling exercise in Chapter 12 is revisited as

TLS analysts and architects embark on designing a corresponding WS-BPEL

process definition.

Figure 16.4

The original TLS Timesheet Submission Process.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Service-oriented business process design (a step-by-step process) 589

As part of completing the previous service design processes, TLS now has the

inventory of service designs displayed in Figure 16.5. In our previous case study

examples, we only stepped through the creation of the Employee Service. The

other service designs are provided here to help demonstrate the WS-BPEL

partner links we define later on.

Figure 16.5

Service designs created so far.

TLS also digs out the original composition diagram (Figure 16.6) that shows how

these four services form a hierarchical composition, spearheaded by the

Timesheet Submission Process Service TLS plans to build.

Finally, TLS architects revive the original service candidate created for the

Timesheet Submission Process Service (Figure 16.7).

With all of this information in hand, TLS proceeds with the business process

design.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

590 Chapter 16: Service-Oriented Design (Part IV: Business Process Design)

Figure 16.6

The original service composition defined during the service modeling stage.

Figure 16.7

The Timesheet Submission Process Service

candidate.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Service-oriented business process design (a step-by-step process) 591

Step 1: Map out interaction scenarios

By using the following information gathered so far, we can define the message exchange

requirements of our process service:

• Available workflow logic produced during the service modeling process in

Chapter 12.

• The process service candidate created in Chapter 12.

• The existing service designs created in Chapter 15.

This information now is used to form the basis of an analysis during which all possible

interaction scenarios between process and partner services are mapped out. The result

is a series of processing requirements that will form the basis of the process service

design we proceed to in Step 2.

CASE STUDY

TLS maps out a series of different service interaction scenarios using activity dia-

grams. Following are examples of two scenarios.

Figure 16.8 illustrates the interaction between services required to successfully

complete the Timesheet Submission Process with a valid timesheet submission.

Note that in this scenario, the Notification Service is not used.

Figure 16.9 demonstrates a scenario in which the timesheet document is rejected

by the Timesheet Service. This occurs because the timesheet failed to receive

proper authorization.

The result of mapping out interaction scenarios establishes that the process serv-

ice has one potential client partner service and four potential partner services

from which it may need to invoke up to five operations (Figure 16.10).

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

592 Chapter 16: Service-Oriented Design (Part IV: Business Process Design)

Figure 16.8

A successful completion of the Timesheet Submission

Process.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Service-oriented business process design (a step-by-step process) 593

Figure 16.9

A failure condition caused by an authorization rejection.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Step 2: Design the process service interface

Now that we understand the message exchange requirements, we can proceed to define

a service definition for the process service. When working with process modeling tools,

the process service WSDL definition will typically be auto-generated for you. However,

you also should be able to edit the source markup code or even import your own WSDL

definition.

Either way, it is best to review the WSDL definition being used and revise it as necessary.

Here are some suggestions:

• Document the input and output values required for the processing of each opera-

tion, and populate the types section with XSD schema types required to process the

operations. Move the XSD schema information to a separate file, if required.

• Build the WSDL definition by creating the portType (or interface) area, inserting

the identified operation constructs. Then add the necessary message constructs

containing the part elements that reference the appropriate schema types. Add

naming conventions that are in alignment with those used by your other WSDL

definitions.

• Add meta information via the documentation element.

• Apply additional design standards within the confines of the modeling tool.

There is less opportunity to incorporate the other steps from the service design processes

described in Chapter 15. For example, applying the service-orientation principle of

statelessness is difficult, given that process services maintain state so that other services

don’t have to.

594 Chapter 16: Service-Oriented Design (Part IV: Business Process Design)

Figure 16.10

The incoming and outgoing request messages expected to be processed by

the Timesheet Submission Process Service.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Service-oriented business process design (a step-by-step process) 595

CASE STUDY

It looks like the Timesheet Submission Process Service interface will be pretty

straightforward. It only requires one operation used by a client to initiate the

process instance (Figure 16.11).

Figure 16.11

Timesheet Submission Process

Service design.

Following is the corresponding WSDL definition:

<definitions name="TimesheetSubmission"

targetNamespace="http://www.xmltc.com/tls/process/wsdl/"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:ts="http://www.xmltc.com/tls/timesheet/schema/"

xmlns:tsd=

"http://www.xmltc.com/tls/timesheetservice/schema/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://www.xmltc.com/tls/timesheet/wsdl/"

xmlns:plnk=

"http://schemas.xmlsoap.org/ws/2003/05/partner-link/">

<types>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace=

"http://www.xmltc.com/tls/

timesheetsubmissionservice/schema/">

<xsd:import namespace=

"http://www.xmltc.com/tls/timesheet/schema/"

schemaLocation="Timesheet.xsd"/>

<xsd:element name="Submit">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="ContextID"

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Step 3: Formalize partner service conversations

We now begin our WS-BPEL process definition by establishing details about the services

with which our process service will be interacting.

The following steps are suggested:

1. Define the partner services that will be participating in the process and assign each

the role it will be playing within a given message exchange.

2. Add parterLinkType constructs to the end of the WSDL definitions of each part-

ner service.

596 Chapter 16: Service-Oriented Design (Part IV: Business Process Design)

type="xsd:integer"/>

<xsd:element name="TimesheetDocument"

type="ts:TimesheetType"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

</types>

<message name="receiveSubmitMessage">

<part name="Payload" element="tsd:TimesheetType"/>

</message>

<portType name="TimesheetSubmissionInterface">

<documentation>

Initiates the Timesheet Submission Process.

</documentation>

<operation name="Submit">

<input message="tns:receiveSubmitMessage"/>

</operation>

</portType>

<plnk:partnerLinkType name="TimesheetSubmissionType">

<plnk:role name="TimesheetSubmissionService">

<plnk:portType

name="tns:TimesheetSubmissionInterface"/>

</plnk:role>

</plnk:partnerLinkType>

</definitions>

Example 16.18 The abstract service definition for the Timesheet Submission

Process Service.

Note the bolded plnk:parnterLinkType construct at the end of this WSDL defi-

nition. This is added to every partner service.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Service-oriented business process design (a step-by-step process) 597

3. Create partnerLink elements for each partner service within the process

definition.

4. Define variable elements to represent incoming and outgoing messages

exchanged with partner services.

This information essentially documents the possible conversation flows that can occur

within the course of the process execution. Depending on the process modeling tool

used, completing these steps may simply require interaction with the user-interface pro-

vided by the modeling tool.

CASE STUDY

Now that the Timesheet Submission Process Service has an interface, TLS can

begin to work on the corresponding process definition. It begins by looking at the

information it gathered in Step 1. As you may recall, TLS determined the process

service as having one potential client partner service and four potential partner

services from which it may need to invoke up to five operations.

Roles are assigned to each of these services, labeled according to how they relate

to the process service. These roles are then formally defined by appending exist-

ing service WSDL definitions with a partnerLinkType construct.

Example 16.19 shows how the Employee Service definition (as designed in Chap-

ter 15) is amended to incorporate the WS-BPEL partnerLinkType construct and

its corresponding namespace.

<definitions

name="Employee"

targetNamespace="http://www.xmltc.com/tls/employee/wsdl/"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:act=

"http://www.xmltc.com/tls/employee/schema/accounting/"

xmlns:hr="http://www.xmltc.com/tls/employee/schema/hr/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://www.xmltc.com/tls/employee/wsdl/"

xmlns:plnk=

"http://schemas.xmlsoap.org/ws/2003/05/partner-link/">

...

<plnk:partnerLinkType name="EmployeeType">

<plnk:role name="EmployeeService">

<plnk:portType name="tns:EmployeeInterface"/>

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

598 Chapter 16: Service-Oriented Design (Part IV: Business Process Design)

</plnk:role>

</plnk:partnerLinkType>

</definitions>

Example 16.19 The revised Employee service definitions construct.

This is formalized within the process definition through the creation of partner-

Link elements that reside within the partnerLinks construct. TLS analysts and

architects work with a process modeling tool to drag and drop partnerLink

objects, resulting in the following code being generated.

<partnerLinks>

<partnerLink name="client"

partnerLinkType="bpl:TimesheetSubmissionProcessType"

myRole="TimesheetSubmissionProcessServiceProvider"/>

<partnerLink name="Invoice"

partnerLinkType="inv:InvoiceType"

partnerRole="InvoiceServiceProvider"/>

<partnerLink name="Timesheet"

partnerLinkType="tst:TimesheetType"

partnerRole="TimesheetServiceProvider"/>

<partnerLink name="Employee"

partnerLinkType="emp:EmployeeType"

partnerRole="EmployeeServiceProvider"/>

<partnerLink name="Notification"

partnerLinkType="not:NotificationType"

partnerRole="NotificationServiceProvider"/>

</partnerLinks>

Example 16.20 The partnerLinks construct containing partnerLink elements for

each of the process partner services.

Next the input and output messages of each partner service are assigned to indi-

vidual variable elements, as part of the variables construct. A variable ele-

ment also is added to represent the Timesheet Submission Process Service Submit

operation that is called by the HR client application to kick off the process.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Service-oriented business process design (a step-by-step process) 599

Step 4: Define process logic

Finally, everything is in place for us to complete the process definition. This step is a

process in itself, as it requires that all existing workflow intelligence be transposed and

implemented via a WS-BPEL process definition.

<variables>

<variable name="ClientSubmission"

messageType="bpl:receiveSubmitMessage"/>

<variable name="EmployeeHoursRequest"

messageType="emp:getWeeklyHoursRequestMessage"/>

<variable name="EmployeeHoursResponse"

messageType="emp:getWeeklyHoursResponseMessage"/>

<variable name="EmployeeHistoryRequest"

messageType="emp:updateHistoryRequestMessage"/>

<variable name="EmployeeHistoryResponse"

messageType="emp:updateHistoryResponseMessage"/>

<variable name="InvoiceHoursRequest"

messageType="inv:getBilledHoursRequestMessage"/>

<variable name="InvoiceHoursResponse"

messageType="inv:getBilledHoursResponseMessage"/>

<variable name="TimesheetAuthorizationRequest"

messageType="tst:getAuthorizedHoursRequestMessage"/>

<variable name="TimesheetAuthorizationResponse"

messageType="tst:getAuthorizedHoursResponseMessage"/>

<variable name="NotificationRequest"

messageType="not:sendMessage"/>

</variables>

Example 16.21 The variables construct containing individual variable elements

representing input and output messages from all partner services and

for the process service itself.

If you check back to the Employee Service definition TLS designed in Chapter 15,

you’ll notice that the name values of the message elements correspond to the val-

ues assigned to the messageType attributes in the previously displayed variable

elements.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

600 Chapter 16: Service-Oriented Design (Part IV: Business Process Design)

CASE STUDY

The TLS team now creates a process definition that expresses the original work-

flow logic and processing requirements, while accounting for the two service

interaction scenarios identified earlier. The remainder of this example explores

the details of this process definition.

A visual representation of the process logic about to be defined in WS-BPEL syn-

tax is displayed in Figure 16.12. (Note that this diagram illustrates the process

flow that corresponds to the success condition expressed by the first of the two

activity diagrams created during Step 1.)

NOTE

The complete process definition is several pages long and therefore is not dis-

played here. Instead, we highlight relevant parts of the process, such as activities

and fault handling. The entire process definition is available for download at

www.serviceoriented.ws.

Established first is a receive element that offers the Submit operation of the

Timesheet Submission Process Service to an external HR client as the means by

which the process is instantiated.

<receive xmlns=

"http://schemas.xmlsoap.org/ws/2003/03/business-process/"

name="receiveInput"

partnerLink="client"

portType="tns:TimesheetSubmissionInterface"

operation="Submit"

variable="ClientSubmission"

createInstance="yes"/>

Example 16.22 The receive element providing an entry point by which the process

can be initiated.

By tracing the receive element’s operation value back to the original Timesheet

Submission Service WSDL, you can find out that the expected format of the input

data will be a complete timesheet document, defined in a separate XSD schema

document. When a document is received, it is stored in the ClientSubmission

process variable.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Service-oriented business process design (a step-by-step process) 601

Figure 16.12

A descriptive, diagrammatic view of the process definition logic.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

602 Chapter 16: Service-Oriented Design (Part IV: Business Process Design)

As per the interaction logic defined in the initial activity diagram (Step 1), the

first activity the process is required to perform is to interact with the Invoice

Service to compare the hours submitted on the timesheet with the hours actually

billed out to the client. The Invoice Service will not perform the comparison for

the process; instead, it will simply provide the amount of hours for a given

invoice identified by an invoice number.

Before invoking the Invoice Service, the assign construct first needs to be used

to extract values from the original timesheet document, which now is stored in

the ClientSubmission variable. Specifically, the customer ID and date values

(encapsulated in the BillingInfo element) are required as input for the Invoice

Service’s GetBilledHours operation.

<assign name="GetInvoiceID">

<copy>

<from variable="ClientSubmission" part="payload"

query="/TimesheetType/BillingInfo"/>

<to variable="InvoiceHoursRequest"

part="RequestParameter"/>

</copy>

</assign>

Example 16.23 The assign and copy constructs hosting a from element that retrieves

customer billing information from the message stored in the ClientSub-

mission variable and a to element that is used to assign these values to

the InvoiceHoursRequest variable.

Now that the InvoiceHoursRequest variable contains the required input values

for the Invoice Service’s GetBilledHours operation, the invoke element is added.

<invoke name="ValidateInvoiceHours"

partnerLink="Invoice"

operation="GetBilledHours"

inputVariable="InvoiceHoursRequest"

outputVariable="InvoiceHoursResponse"

portType="inv:InvoiceInterface"/>

Example 16.24 The invoke element containing a series of attributes that provide all of

the information necessary for the orchestration engine to locate and

instantiate the Invoice Service.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Service-oriented business process design (a step-by-step process) 603

Upon invoking the Invoice Service, a response message is received from the Get-

BilledHours operation. As defined in the invoke element’s outputVariable

attribute, this message is stored in the InvoiceHoursResponse variable.

If the value in this variable matches the value in the timesheet document, then

the hours have been validated. To determine this, the switch construct is used. A

child case construct is added, which contains a condition attribute in which the

conditional logic is defined.

<switch name="BilledHoursMatch">

<case condition=

"getVariableData('InvoiceHoursResponse',

'ResponseParameter') !=

getVariableData('input','payload',

'/tns:TimesheetType/Hours/...')">

<throw name="ValidationFailed"

faultName="ValidateInvoiceHoursFailed"/>

</case>

</switch>

Example 16.25 The switch construct hosting a case element that uses the getVari-

ableData function within its condition attribute to compare hours

billed against hours recorded.

If the condition (billed hours is not equal to invoiced hours) is not met, then the

hours recorded on the submitted timesheet document are considered valid, and

the process moves to the next step.

If the condition is met, a fault is thrown using the throw element. This circum-

stance sends the overall business activity to the faultHandlers construct, which

resides outside of the main process flow. This is the scenario portrayed in the sec-

ond of the two activity diagrams assembled by TLS in Step 1 and is explained

later in this example.

What TLS has just defined is a pattern consisting of the following steps:

1. Use the assign, copy, from, and to elements to retrieve data from the

ClientSubmission variable and assign it to a variable containing an outbound

message.

2. Use the invoke element to interact with a partner service by sending it the

outbound message and receiving its response message.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

604 Chapter 16: Service-Oriented Design (Part IV: Business Process Design)

3. Use the switch and case elements to retrieve and validate a value from the

response message.

4. Use the throw element to trigger a fault, if validation fails.

A good part of the remaining process logic repeats this pattern, as illustrated in

the original process overview displayed back in Figure 16.12. For brevity, this

part of the process is summarized here:

• Use the assign construct to copy the TimesheetID value from the ClientSub-

mission variable to the TimesheetAuthorizationRequest variable that is used

via the invoke element as the input message for the GetAuthorizedHours

operation of the Timesheet service. The authorization result is extracted from

the response message within the switch construct, and if positive, the process

proceeds to the next step. If authorization fails, a fault is raised using the

throw element.

• Using the assign element, the EmployeeID value is retrieved from the

ClientSubmission variable and placed in the EmployeeHoursRequest variable.

This variable becomes the request message used by the invoke element to

communicate with the Employee Service’s GetWeeklyHoursLimit operation.

The response message from that operation is submitted to the condition

attribute of the case element within the switch construct. The result is a

determination as to whether the employee exceeded the allowed maximum

hours per week. If the value was exceeded, the process jumps to the fault-

Handlers construct.

That pretty much sums up the primary processing logic of the TLS Timesheet

Submission Process. Although the initial requirements do not call for it, the

process flow could end with a reply element that responds to the initial client

that instantiated the process.

Now it’s time to turn our attention to the second scenario (portraying a failure

condition) mapped out in the other activity diagram from Step 1. To accommo-

date this situation, TLS architects choose to implement a faultHandlers con-

struct, as shown here:

<faultHandlers>

<catchAll>

<sequence>

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Service-oriented business process design (a step-by-step process) 605

...

</sequence>

</catchAll>

</faultHandlers>

Example 16.26 The faultHandlers construct used in this process.

Although individual catch elements could be used to trap specific faults, TLS

simply employs a catchAll construct, as all three thrown faults require the same

exception handling logic.

The tasks performed by the fault handler routine are:

1. Update employee profile history.

2. Send notification to manager.

3. Send notification to employee.

To implement these three tasks, the same familiar assign and invoke elements

are used. Figure 16.13 shows an overview of the fault handling process logic.

Note that the following, abbreviated markup code samples reside within the

sequence child construct of the parent faultHandlers construct established in

the previous example.

First up is the markup code for the “Update employee profile history” task.

<assign name="SetEmployeeMessage">

<copy>

<from variable="ClientSubmission" .../>

<to variable="EmployeeHistoryRequest" .../>

</copy>

<copy>

<from expression="..."/>

<to variable="EmployeeHistoryRequest" .../>

</copy>

</assign>

<invoke name="UpdateHistory"

partnerLink="Employee"

portType="emp:EmployeeInterface"

operation="UpdateHistory"

inputVariable="EmployeeHistoryRequest"

outputVariable="EmployeeHistoryResponse"/>

Example 16.27 Two copy elements used to populate the EmployeeHistoryRequest

message.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Figure 16.13

A visual representation of the process logic within the fault-

Handlers construct.

606 Chapter 16: Service-Oriented Design (Part IV: Business Process Design)

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Service-oriented business process design (a step-by-step process) 607

To perform the first task of updating the employee history, the fault handler rou-

tine uses an assign construct with two copy constructs. The first retrieves the

EmployeeID value from the ClientSubmission variable, while the latter adds a

static employee profile history comment.

The invoke element then launches the Employee Service (used previously for its

GetWeeklyHoursLimit operation) and submits the EmployeeHistoryRequest

message to its UpdateHistory operation to log the profile history comment.

The next block of markup code takes care of both the remaining “Send notifica-

tion” tasks.

<assign name="GetManagerID">

<copy>

<from expression="getVariableData(...)"/>

<to variable="NotificationRequest" .../>

</copy>

</assign>

<invoke name="SendNotification"

partnerLink="Notification"

portType="not:NotificationInterface"

operation="SendMessage"

inputVariable="NotificationRequest"/>

<assign name="GetEmployeeID">

<copy>

<from expression="getVariableData(...)"/>

<to variable="NotificationRequest" .../>

</copy>

</assign>

<invoke name="SendNotification"

partnerLink="Notification"

portType="not:NotificationInterface"

operation="SendMessage"

inputVariable="NotificationRequest"/>

<terminate name="EndTimesheetSubmissionProcess"/>

Example 16.28 The last activities in the process.

The faultHandlers construct contains two more assign + invoke element

pairs. Both use the Notification Service’s SendMessage operation, but in different

ways. The first assign construct extracts the ManagerID value from the

ClientSubmission variable, which is then passed to the Notification Service. It is

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Step 5: Align interaction scenarios and refine process (optional)

This final, optional step encourages you to perform two specific tasks: revisit the origi-

nal interaction scenarios created in Step 1 and review the WS-BPEL process definition to

look for optimization opportunities.

Let’s start with the first task. Bringing the interaction scenarios in alignment with the

process logic expressed in the WS-BPEL process definition provides a number of bene-

fits, including:

• The service interaction maps (as activity diagrams or in whatever format you cre-

ated them) are an important part of the solution documentation and will be useful

for future maintenance and knowledge transfer requirements.

• The service interaction maps make for great test cases and can spare testers from

having to perform speculative analysis.

• The implementation of the original workflow logic as a series of WS-BPEL activities

may have introduced new or augmented process logic. Once compared to the exist-

ing interaction scenarios, the need for additional service interactions may arise,

leading to the discovery of new fault or exception conditions that then can be

addressed back in the WS-BPEL process definition.

Secondly, spending some extra time to review your WS-BPEL process definition is well

worth the effort. WS-BPEL is a multi-feature language that provides different

approaches for accomplishing and structuring the same overall activities. By refining

your process definition, you may be able to:

• Consolidate or restructure activities to achieve performance improvements.

• Streamline the markup code to make maintenance easier.

• Discover features that were previously not considered.

608 Chapter 16: Service-Oriented Design (Part IV: Business Process Design)

the sole parameter that the service subsequently uses to look up the correspon-

ding e-mail address for the notification message.

Next, the second assign construct retrieves the EmployeeID value from the same

ClientSubmission variable, which the Notification Service ends up using to send

a message to the employee.

The very last element in the construct, terminate, halts all further processing.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Service-oriented business process design (a step-by-step process) 609

CASE STUDY

TLS analysts and architects revise their original activity diagrams so that they

accurately reflect the manner in which process logic was modeled using WS-

BPEL. However, in reviewing the interaction scenarios and their current process

model, they recognize a key refinement that could significantly optimize the

process definition they just created.

Here’s a recap of the three primary tasks performed by this process:

1. Validate recorded timesheet hours with hours billed on invoice.

2. Confirm authorization of timesheet.

3. Ensure that hours submitted are equal to or less than the weekly hours limit.

As shown in Figure 16.14, the process has been designed so that these three tasks

execute sequentially (one begins only after the former ends). Although this

approach is useful when dependencies between tasks exist, it is determined that

there are no such dependencies between these three tasks.

Figure 16.14 Sequential, synchronous execution of process activities.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

610 Chapter 16: Service-Oriented Design (Part IV: Business Process Design)

Therefore, they all can be executed at the same time, the only condition being

that the process cannot continue beyond these tasks until all have completed.

This establishes a parallel processing model.

By utilizing the WS-BPEL flow construct, TLS can model the three activities to

execute concurrently (Figure 16.15), resulting in significant performance gains. It

is further determined that the same form of optimization can be applied to the

process logic within the fault handling routine, as neither of those activities have

inter-dependencies either.

Figure 16.15 Concurrent execution of process activities using the flow

construct.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Service-oriented business process design (a step-by-step process) 611

SUMMARY OF KEY POINTS

• Designing a process service requires the design of the service interface and the

design of the process definition.

• Process definition is typically accomplished using a graphical modeling tool, but

familiarity with WS-BPEL language basics is often still required.

• There are numerous ways in which WS-BPEL process definitions can be stream-

lined and optimized.

Finally, while reviewing the structure of the fault handling routine, a further

refinement is suggested. Because the last two activities invoke the same Notifica-

tion Service, they can be collapsed into a while construct that loops twice

through the invoke element.

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

Thomas Erl is an independent consultant with XMLTC Consulting in Vancouver,

Canada. H is previous b ook , Service-Oriented Architecture: A Field Guide to Integrating

X M L and W eb Services , b ecame the top-selling b ook of 2 0 0 4 in b oth W eb S ervices and

S O A categories. This guide addresses numerous integration issues and provides strate-

gies and b est practices for transitioning toward S O A .

Thomas is a memb er of O A S I S and is active in related research efforts, such as the XML

& W eb S ervices Integration F ramework (XW I F) . H e is a speak er and instructor for pri-

vate and pub lic events and conferences, and has pub lished numerous papers, including

articles for the W eb Services Journal, W L D J , and Ap p lication D evelop m ent T rends .

F or more information, visit http://www.thomaserl.com/technology/.

A b out the A uthor

Erl_AboutAuth.qxd 6/21/05 1:42 PM Page 721

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

SOA Systems Inc. is a consulting firm actively involved in the research and development

of service-oriented architecture, service-orientation, X M L , and W eb services standards

and technology. T hrough its research and enterprise solution projects SOA Systems has

developed a recogniz ed methodology for integrating and realiz ing service-oriented con-

cepts, technology, and architecture.

F or more information, visit www.soasystems.com.

One of the consulting services provided b y SOA Systems is comprehensive SOA transi-

tion planning and the ob jective assessment of vendor technology products.

F or more information, visit www.soaplanning.com.

T he content in this b ook is the b asis for a series of SOA seminars and w ork shops devel-

oped and offered b y SOA Systems.

F or more information, visit www.soatraining.com.

Ab out SOA Systems

Erl_AboutSOA.qxd 6/21/05 1:43 PM Page 723

Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit: www.soabooks.com

