

Emergency Data Interoperability Demonstration
October 27, 2004

Summary Observations

COMCARE EDXL STANDARDS ISSUES

 1

Introduction

The DM Initiative (DM), the Emergency Interoperability Consortium (EIC), and
ComCARE are promoting the Emergency Data Exchange Language (EDXL) header
as a proposed Extensible Markup Language standard for the emergency
management and response community.

On October 27th, an interoperability demonstration was put together by several
groups in the EIC to showcase the potential for sharing alerts and information across
a geographic region, regardless of a user's technology and applications.

Both during and after this effort, several implementation challenges were identified as
developers attempted to translate the working group EDXL standard into integrated
applications. Overall, while the data exchanged using EDXL (the “what”) added
value to the effort there were many areas left to interpretation on the ways that each
application supporting EDXL could pass data back and forth (the “how”). The varying
interpretations increased the development time required to connect applications
together and reduced any investments in code reuse. This document provides
additional details regarding the issues encountered while trying to prepare for the
demonstration.

Issues Identified

During the course of preparing and creating interfaces for the Oct 27th EDXL demo,
the following issues were identified. These issues increased the development effort
involved in linking EPAD Connect to other applications. From our discussions with
other vendors, it is clear the same problems affected everyone other than Battelle.

Issue #1: No Standard Interfaces Defined

The latest EDXL standards document includes information regarding the data to pass
between two applications, but it does not address the data flow process and
functions used to exchange EDXL data. Each group participating in the demo was
required to develop their own unique interfaces for exchanging EDXL data. Writing to
these unique interfaces added to the development and debugging time.

There are two basic standard languages in this IP computer world: Java, and .Net.
And standardized ways of communicating between them have been developed.
EPAD Connect is written in .Net. In the case of DMIS, DMIS provided EPAD
Connect with a URL and example code (in Java only) demonstrating how to send and
receive EDXL messages into / from the DMIS demo environment. The interfaces
(functions) provided by DMIS included parameters specific to the DMIS architecture
(such as COG ID). When EPAD Connect tried to create an interface to the DMIS
web service in Microsoft .NET, the DMIS Web service could not be accessed using
standard coding practices. Sending authentication information (login/password) was
not possible from a .NET client to the DMIS web service and the implementation for

COMCARE EDXL STANDARDS ISSUES

 2

passing EDXL header information did not match what was documented in the latest
draft standard.

In the end, EPAD Connect was required to enhance the Java sample code provided
by DMIS and force our .NET applications to execute the customized Java sample
code.

We saw this again with the Maryland GIS application EMMA. While EPAD Connect
was not successful in integrating with the EMMA application prior to the
demonstration, the preliminary review of the EMMA interfaces identified some non-
standard integration challenges. In particular, the EMMA interface was not based on
SOAP and a standard SOAP interface (ex: a WSDL file) was not provided by EMMA.
Had EMMA based their EDXL interface on SOAP and provided a WSDL file, EPAD
Connect could have used Microsoft .NET to automatically generate the code
necessary to interface to EMMA. Without standard SOAP interfaces, EPAD Connect
was forced to write custom code for each application.

It would save a great deal of programming time if we were to define a standard way
of Java and .Net communicating using EDXL.

Issue #2: No EDXL Schema Defined

The EDXL message format currently lacks a XML schema which each application
could use to validate a message before it is sent. Almost every application looking to
support EDXL during the demonstration had issues because they were not providing
required fields and/or they included incorrect field values. Standardizing the
development of EDXL messages against a common schema would reduce
integration and debugging time.

During efforts to interface the EPAD Connect application to other vendors involved in
the demonstration, it became evident that each group defined their own
implementation of the fields and values in the EDXL header. Fields which were listed
as required in the draft standard specification were not being provided by every
vendor and each vendor participating in the demonstration had issues providing valid
EDXL data values. This led to multiple conference calls and meetings prior to the
demonstration and required some real-time data transformation during the
demonstration. It is recommended that a standard EDXL schema is developed and
that its use is required by all participating applications.

Issue #3: Using the SOAP Header added complexity

Making EDXL data part of the SOAP header added additional complexity and
development time. Most of the newer development environments available today
(Microsoft Visual Studio, Together Studio) include “wizard” like capabilities to add a
web service to your application. These “wizard” capabilities typically do not include
reading / writing to the SOAP header.

Additionally, when the exact interfaces between each vendor were defined for the
demonstration, a serious limitation was uncovered due to the fact that you could only
place one set of EDXL data into the SOAP header. In practice, it was uncovered that

COMCARE EDXL STANDARDS ISSUES

 3

there was a need to send multiple alert messages in a single SOAP message. Not
having the ability to place EDXL data values for each message into the SOAP header
forced vendors such as DMIS to “get creative” and work around the draft standards.
DMIS provided a mechanism for sending multiple EDXL data values in a single
SOAP message. These workarounds were reasonable for the demo, but these
variations from the standard forced additional work to customize interfacing
applications.

