

eBTWG – Scope & Requirements for
UML2XML Design Rules
UN/CEFACT/CSG/eBTWG
UML2XML Design Rules

Revision #1

17 Oct 2001

Table of Contents
Status of this Document
Introduction

Summary of Contents of Document
Audience
Related Documents

Objectives
Goals/Requirements/Problem Description
Caveats and Assumptions

Overview
What the XXXX Specification Does
How the XXXX Specification Works
Where the XXXX Specification May Be Implemented

XXXX
References
Disclaimer
Contact Information
Project Team Membership
Copyright Statement

Status of this Document
This document specifies an eBTWG WORK IN PROGRESS for the UN/CEFACT
eBusiness community.

Distribution of this document is unlimited.

The document formatting is based on the eBTWG Standard format.

This version: http://www.ebtwg.org/...

Previous version: http://wwwebtwg.org/...

Introduction

Summary of Contents of Document

This specification specifies the scope and requirements for the “UML2XML” project.

Audience

The initial target audience is the UML2XML project team, the eBTWG Steering
Committee and other eBTWG project teams that have an interface with the UML2XML
project scope.

Related Documents

As mentioned above, other documents provide detailed definitions of some of the
components of XXXX and of their inter-relationship. They include [ebXML | eBTWG]
Specifications on the following topics:

...

Objectives
Goals/Problem Description

UML-models

BPI Model
Store

(XMI, RDF) CC Store
(XMI)

Business Collaboration
Business Process

UMM create

Business Information

store extract

BIE

CC

Context

Discovery
Analysis

Harmonization

Legacy-docs

Business Information

store

BP Spec
Store
(XMI)

BPSS Assembly Doc
references

generate

Manual
definition

define

references

store

CPP 1

CPP 2

CPA

Query Store to find
BPSS and Assembly Docs

BPSS

Assembly Doc

Context

Extract

Defines

Realization

Payload
definition

Message

yields

is used to create

11
22

33

44

55

77

66

Figure 1 - UML2XML in the e-Business Architecture

Figure 1 visualizes the relationship between the major concepts of the UN/CEFACT
EBTWG e-Business architecture that are relevant to the UML2XML project scope. The
text below explains this picture, identifies the elements that are part of the UML2XML
project scope and identifies their relation with other eBTWG projects.

1) Storage of standards development models.

Under normal conditions all standards development will be done according to the
UMM-methodology, leading to a set of UML-models that describe the business
collaborations, the business processes and the business information. These models
will be stored in the “BPI Model Store” in a format that allows the exchange of these
models. This requirement is currently being defined in the BPIMES-project (Business
Process and Information Model Exchange Scheme). The UML2XML project will
support the BPIMES-project by investigating the suitability of XMI and RDF as the
format to store and retrieve these models (see ❶ on Figure 1).

2) Storage of Core Components (and related elements)

Core Components (CCs) are discovered based on so-called “Business Information
Entities” (BIEs). These BIEs are either extracted from business information models
that are based on the UMM-approach or from legacy documents that describe existing
standards. In both cases a discovery, analysis and harmonization process will lead to
the definition of Core Components and Contexts. BIEs, CCs and context are all stored
in the “CC Store” in line with the technical specifications defined by the Core
Components project. The UML2XML project will support the Core Components
project by investigating the suitability of XMI as the format to store and retreive these
elements (see ❷ on Figure 1).

3) Storage of formal specifications for e-Business solutions

e-Business solutions are formally described in a Business Process Specification
Scheme (BPSS). This BPSS contains the process steps that will be executed in an e-
Business solution and references the documents that need to be exchanged during
these process steps. The documents to be exchanged are formally described in
“Assembly Documents” that refer to the used CCs and BIEs. The definition of a
BPSS and its Assembly Documents will normally be the result of the UMM-
approach, continuing from the Business Process and Information Models.
Nevertheless, the possibility to define both BPSS and Assembly Documents in a
manual way must be considered as well. Both BPSS and Assembly Documents are
stored in a “BP Specification Store”. The UML2XML project will support the BPSS
project at two levels:

a) By investigating the suitability of XMI as the format to store and retrieve the
BPSS and the Assembly Documents (see ❸ on Figure 1).

b) By defining a set of design rules to generate the BPSS and Assembly Documents
from the Business Process and Information Model (see ❹ on Figure 1).

4) Message realization

At some point two companies represented by their CPP (i.e. their list of supported
business processes and contexts) will engage in a CPA (i.e. a contract to execute a
business process in a given context). The CPA will be used to extract the required
BPSS and corresponding Assembly Documents from the “BP Specification Store”.
The CPA will also define the full context that will govern the business process. The
combination of a particular Assembly Document and the CPA-context will make it
possible to define the required Payload Definition, by extracting the relevant BIEs
from the CC-store. The resulting Payload Definition will then be realized in the
required syntax (i.e. syntax-binding) in order to be used in Messages between the
CPA-partners. The UML2XML project will support this message realization at
following levels:

a) By defining rules and guidelines on the syntax-neutral definition of Assembly
Documents and their relation to CCs and BIEs (e.g. by the use of a modeling
notation such as UML) (see ❺ on Figure 1).

b) By defining the set of meta-information that is required to realize a Payload
Definition in XML. This meta-information will be stored in the CC Store (see ❻
on Figure 1).

c) By defining a set of design rules to convert syntax-neutral BIEs into an XML-
realization (see ❼ on Figure 1).

Requirements

Based on the above goals and problem description following initial requirements can be
defined:

R01 Formal definition of Stores

It will be possible to describe the organization and structure of each of the
identified stores (“BPI Model Store”, “BP Specification Store” and “CC Store”)
according to a formal storage scheme description.

[Note] The current thinking is to investigate the suitability of XMI2 for this formal
storage scheme description.

R02 Validation capabilities

It will be possible to validate the conformance of all information that is stored in
each of the identified stores (“BPI Model Store”, “BP Specification Store” and
“CC Store”) with the formal storage scheme description.

R03 Retrieval capabilities

It will be possible to search and retrieve all information in each of the identified
stores (“BPI Model Store”, “BP Specification Store” and “CC Store”) based on
multiple search criteria..

[Note] The list of required search criteria will have to be detailed per Store.

R04 Implementation independence

The formal scheme description will not a priori preclude or enforce any specific
implementation of the identified storage scheme.

[Note] This requirement aims at openness versus multiple XML-implementations
like DTD, W3C-Schema or Relax NG.

R05 Support of UML patterns

The storage scheme will fully support a pre-defined subset of UML-artifacts. This
pre-defined set of UML-artifacts will cover all UML-requirements related to the
UMM-compliant e-Business standards development.

[Note] This subset will have to be detailed in function of the supported projects
(e.g. UMM, BPIMES, BPSS, CC). In case these projects are not explicit about the
way to use UML, this information will either have to be added to these
specifications or will have to be included in the UML2XML technical
specification.

[Note] This may also include the need to support UML-stereotypes.

R06 UMM support

Any reusable artifacts like CCs, BIEs and Assembly Documents will be stored in
such a way that they can be easily accessed and reused during UMM-compliant
standards development.

[Note] This means that it must be possible to easily include these reusable
artifacts in UML-diagrams.

R07 Core Component compliance

The realization of BIEs in XML will comply with the technical specification for
Core Components.

[Note] It will be necessary to identify the CC-requirements that are relevant for
the above (e.g. possibility to support context, UID, all data types that are defined
for CCs, etc.)

[Note] Need to verify whether the current CC-specification supports the use of
URIs as data types (e.g. to refer to another document rather than to integrate its
content)

R08 Processing instructions

It will be possible to indicate that some processing is required at a specific place
in a realized XML-document (e.g. encryption, data authentication and
enrichment).

[Note] This “generation” requirement will require a matching “storage”
requirement, indicating the need to store processing instructions in the relevant
stores.

R09 Naming conventions

Naming conventions defining rules and guidelines for the naming of XML-
elements and XML-attributes will be defined. This will include rules regarding
the character set to use for XML-names.

R10 Predictability

The set of XML design rules will ensure a maximum predictability of the
resulting payload definition of the XML-instance.

[Note] This implies the need to restrict flexibility, meaning that it would for
instance be necessary to define the set of parameters to use for XMI2 (in case
XMI2 would be retained as a final solution).

R11 Automation

It will be possible to automate the set of XML design rules.

R12 XML-specific information

It will be possible to store any XML-specific information that is required to
realize a Payload Definition in XML.

[Note] The exact list of required XML-specific information will have to be
specified. This list will be as limited as possible in order to comply with
requirement R08 on predictability, but there might for instance be a requirement
to store an XML-name for a BIE.

R13 Business Rules

It will be possible to define how and when business rules will be captured in
UML, in XML instances and possibly in specific XML-implementations (e.g.
W3C Schema or Relax NG).

[Note] This might take into account the fact that rules may reside in another
document than the actual data being transferred and therefore the need for
referencing and/or linking.

R14 Trace-ability

It will be possible to refer any element and attribute in an XML-instance back to
its syntax-neutral definition in the “CC Store”.

It will be possible to refer any XML-document back to its syntax-neutral
definition in the “BP Specification Store” and/or in the “BPI Model Store”.

[Note] This doesn’t necessarily mean that each instance must contain full
references: information might also be documented in a “documentation scheme”.

R15 Performance

The XML design rules will take into account any requirements related to a
performant processing of a resulting XML-instance.

[Note] More specific / explicit requirements have to be defined. Some initial
thoughts have indicated the document size, the possibility to send partial
documents (e.g. containing only what has changed, etc.).

R16 Character set

The resulting XML-instance will be capable to transport information using UTF-
8.

[Note] The reasons for this requirement are that (1) UTF-8 can represent almost
any known character, (2) UTF-8 is interoperable with many other encoding
schemes through (automated) conversion algorithms and (3) UTF-8 is the
shortest method to represent the characters that are commonly used in many
environments (ASCII and EBCDIC).

[Ed. Note] The above list of requirements has partially been based on the initial
requirements document that was made during the meeting in San Francisco. More work
is still required to complete the inclusion of these requirements (see below the list that
hasn’t been processed yet) and to add requirements that are relevant to the full scope of
the project.

1. Generic versus specific tags
How do you model documents; how do you decide to reuse a generic component (e.g. a
person) or rather a specific component (e.g. a driver). Has also to do with the use of
optionality and the use of inheritance (choice). Need to verify whether the complete
requirement can be captured in UML. Possible option is the use of inheritance and
packages.
Needs to be supported by majority of products (parsers, …)

2. Style sheet support
Do we need design rules for style sheets as well (to get a standardized look). Style sheets
can also be useful for business rules. We might need information in UML to influence the
resulting style sheet (e.g. important for small & medium enterprises (SMEs) where they
want to display the document).

3. Look & Feel (e.g. Depth first?, Ordering of declarations & definitions)
What features are required in UML to be able to control the look & feel? Importance of
human-readability and human-editable. This is related to how automatable it will be.
Have a look at options Near & Far.

4. Maintenance
Rules for maintenance between major releases (e.g. only allowed to add optional
elements).

5. Backward/Upward compatibility
Need to offer at least a minimum (= needs to be defined) of compatibility. May need
different approaches for major releases. This may impact the need to edit the results.

6. Versioning
What will the versioning scheme be (minor release vs major release vs maintenance).
Need to capture version of the spec according to which the XML is generated + version
of the tool + version of the (modeling) elements that have been used.

7. Header & envelopes
There needs to be a way to generate the full document (header + payload). Need to look
at how to model the header.

8. No transformation
We don't want to have transformation of documents between sender & receiver.

9. One message per schema?
Will we only support one document per schema or also schema containing multiple
documents? Also look at the need to split large documents over multiple instances.

Caveats and Assumptions

This specification is developed to...

Overview
What the XXXX Specification Does

XXXX provides yyyy to ...

How the XXXX Specification Works

XXXX uses yyyy to ...

Where the XXXX Specification May Be Implemented

There are several ways in which xxxx may be implemented ...

XXXX
This section defines ...[used to outline more or all details of this specific specification].

References
This section defines ...[used to outline more or all details of this specific specification].

Disclaimer
The views and specification expressed in this document are those of the authors and are
not necessarily those of their employers. The authors and their employers specifically
disclaim responsibility for any problems arising from correct or incorrect implementation
or use of this design.

Contact Information
ebTWG Chair - Klaus-Dieter Naujok, knaujok@home.com

Project Team Membership
Project Team Leader – Frank Vandamme, frank.vandamme@swift.com

Project Editor – Barbara Price, bprice@us.ibm.com

Editing Team - name, email address

Project Team - name, email address

Copyright Statement
Copyright © UN/CEFACT 2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its implementation
may be prepared, copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to
UN/CEFACT except as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by
UN/CEFACT or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and
UN/CEFACT DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

	eBTWG – Scope & Requirements for UML2XML Design Rules
	Status of this Document
	Introduction
	Summary of Contents of Document
	Audience
	Related Documents

	Objectives
	Goals/Problem Description
	Requirements
	Generic versus specific tags
	Style sheet support
	Look & Feel (e.g. Depth first?, Ordering of declarations & definitions)
	Maintenance
	Backward/Upward compatibility
	Versioning
	Header & envelopes
	No transformation
	One message per schema?

	Caveats and Assumptions

	Overview
	What the XXXX Specification Does
	How the XXXX Specification Works
	Where the XXXX Specification May Be Implemented

	XXXX
	References
	Disclaimer
	Contact Information
	Project Team Membership
	Copyright Statement

