A Framework for Management of Concurrent
XML Markup *

Alex Dekhtyar *, Ionut E. Iacob

Department of Computer Science, University of Kentucky, Lexington, KY 40506,
USA

Abstract

The problem of concurrent markup hierarchies in XML encodings of documents has
attracted attention of a number of humanities researchers in recent years. The key
problem with using concurrent hierarchies to encode documents is that markup in
one hierarchy is not necessarily well-formed with respect to the markup in another
hierarchy. Previously proposed solutions to this problem rely on the XML expertise
of the editors and their ability to maintain correct DTDs for complex markup lan-
guages. In this paper, we approach the problem of maintenance of concurrent XML
markup from the Computer Science perspective. We propose a framework that al-
lows the editors to concentrate on the semantic aspects of the encoding, while leaving
the burden of maintaining XML documents to the software. The paper describes the
formal notion of the concurrent markup languages and the algorithms for automatic
maintenance of XML documents with concurrent markup.

Key words: XML, Concurrent Markup

1 Introduction

The problem of concurrent markup hierarchies has been known to the text
encoding community and the humanities scholars since the days of SGML [1].
Recently, with the switch of Text Encoding Initiative (TEI) Guidelines [2] from
SGML to XML, there has been a re-emergence of interest to this problem in
the context of XML encodings as evidenced by [2-5]. This problem typically

* A preliminary and partial version of this paper appears in Proceedings of XSDM,
Chicago, 2003.
* Corresponding author. Tel: +1-859-257-3062; Fax: +1-859-323-3740

Email address: dekhtyar@cs.uky.edu (Alex Dekhtyar).

Preprint submitted to Elsevier Science 11 April 2004

manifests itself when a researcher must encode in XML a wide variety of
features for a large document (e.g., a book or a manuscript). Some of the
features may form so called concurrent hierarchies. A hierarchy is formed by a
subset of the elements of the markup language used to encode the document.
The elements within a hierarchy have a clear nested structure. When more
than one such hierarchy is present in the markup language, the hierarchies are
called concurrent.

A typical example of concurrent hierarchies is the XML markup used to encode
the physical location of text in a printed edition: book, page, physical line, vs.
the markup used to encode linguistic information about the text: sentence,
phrase, word, letter. The key problem with using concurrent hierarchies to
encode documents is that markup in one hierarchy is not necessarily well-
formed with respect to the markup in another hierarchy.

The study of concurrent XML hierarchies for encoding documents is related
to the problem of manipulation and integration of XML documents. How-
ever, most of the research on XML data integration addresses the problem
of integrating heterogeneous, mostly data-centric XML provided by various
applications ([6-9]). The problem of management of concurrent XML hierar-
chies differs from XML data integration. In particular, in contrast to typical
XML data integration tasks, concurrent XML ranges over exactly the same
content, the XML encoding is, for the most part, document-centric, and, most
important, markup from different hierarchies may be in conflict.

Management of concurrent markup has been approached in a few different
ways. SGML resolved this problem using CONCUR, element [2], although its
implementation was not widespread among SGML processors. For XML, the
Text Encoding Initiative (TEI) Guidelines [2] suggest a number of solutions
based on the use of milestone elements (empty XML elements) or fragmenta-
tion of the XML encoding. Durusau and O’Donnell [3,5] propose some radi-
cally different approaches. In [3], an approach dubbed Bottom-Up Vertical Hi-
erarchies (BUVH), they construct an explicit DTD for each hierarchy present
in the markup and then determine the ”least common denominator” in the
markup — the units of content inside which no overlap occurs. Such ”least
common denominator” can an be individual character or, in their example, a
single word. They associate attributes indicating the XPath expression leading
to the content of each word element for each hierarchy.

In [5], Durusau and O’Donnell propose a different solution, named Just-in-
Time Trees (JITTs). A Just-in-Time Tree of a concurrent XML hierarchy is a
document that contains all the markup elements from all hierarchies. JITTs
need not be well-formed, in fact, if overlapping markup exists in the XML
encoding, its corresponding Just-in-Time Tree will be non-well-formed. While
JITTs cannot be directly processed by regular XML parsers, Durusau and

O’Donnell propose a ”lazy evaluation” approach: create well-formed XML on
the fly from a JITT, given a user query. In addition to Durusau and O’Donnell,
other scholars have proposed the use of non-XML markup languages, such as
TexMECS that allow concurrent hierarchies [10].

There have been some recent attempts made to deal with the problem of
concurrent markup from a computer science perspective [11,4]. In particular,
in [11] Sperberg-McQueen and Huitfield proposed GODDAG, an analog of a
DOM tree for the concurrent hierarchies. This work goes a long way to estab-
lishing the semantics of concurrent hierarchies, but does not address directly
the issues of management of concurrent markup.

This paper attempts to bridge the gap between the apparent necessity for
concurrent markup and the lack of software support for it by proposing a
framework for the creation, maintenance and querying the concurrent XML
markup. We base our work on the following considerations.

(a) We want all markup used in the framework to be well-formed XML. This
will give us the ability to transport XML documents from one computer to
another, and rely on standard XML parsers for processing.

(b) We want markup generation and maintenance to become the responsibility
of the software. That is, the user will supply information about the document
markup on element-by-element basis, but the concurrent XML management
software will provide a level of abstraction that would hide specific details of
XML storage and XML generation from the user. At the same time, the user
will be provided with the facilities to obtain a wide array of XML documents
based on the introduced markup.

(c) We want to simplify the process of creation of concurrent XML markup for
the end user. To that extent, we will assume that each concurrent hierarchy
is represented in the framework by a single DTD (or XSchema). It will be the
user’s responsibility to create and maintain the DTD/XSchema collection.

(d) The “lazy evaluation” approach to XML processing suggested by Durusau
and O’Donnell makes introduction of markup into the XML document and
XML generation two independent operations. To facilitate this, the informa-
tion about the XML markup introduced by the user can be stored in some
intermediate storage. When the user requests creation of an XML document,
that storage is processed and the appropriate XML is generated.

(e) Separating XML generation from the editorial process allows us to use
different 7drivers” for generation of XML. In this paper, we concentrate on
using a variant of fragmentation with virtual join suggested by the TEI Guide-
lines [2] to represent full XML markup in a single XML document. However,
other solutions can be incorporated in a similar manner.

The ultimate goal of the proposed framework is to free the human editor from
the effort of dealing with the validity and well-formedness issues of document
encoding and to allow him or her to concentrate on the meaning of the en-
coding. In the proposed approach, the editor describes a collection of simple
DTDs, one for each hierarchy, without having to worry about the need to
build and maintain a ”master” DTD. Existence of such “concurrent” DTDs
introduces the need for specialized software to support the editorial process
drive it by the semantics of the markup. This software must allow the editor
to indicate the positions in the text where the markup is to be inserted, select
the desired markup, and take record the results.

In this paper we introduce the foundation for such software support. In Section
2 we present a motivating example based on the ARCHway [12] project, in
which the authors are currently involved. Section 3 formally defines the notion
of a collection of concurrent markup languages. In Section 4 we present three
key algorithms for the manipulation of concurrent XML markup. The MERGE
algorithm builds a single master XML document from several XML encodings
of the same text in concurrent markup. The FILTER algorithm outputs an
XML encoding of the text for an individual markup hierarchy, given the master
XML document. The UPDATE algorithm incrementally updates the master
XML document given an atomic change in the markup. Finally, in Section 5
we study the performance of our implementation of the MERGE algorithm.

This paper addresses the problem of formalizing the notion of concurrent XML
and the algorithms associated with converting XML documents. A parallel
issue of storage and querying of concurrent XML is the subject of ongoing
research and is being addressed in separate work. In Section 6 we briefly
describe our approach.

2 Conflicting Markup

In recent years researchers in the humanities have used SGML, and later,
XML extensively to create readable and searchable electronic editions of a wide
variety of literary works [13—-17,5]. The work described in this paper originated
as an attempt to deal with the problem of concurrent markup in one such
endeavor, The ARCHway Project, a collaborative effort between Humanities
scholars and Computer Scientists at the University of Kentucky. This project
is designed to produce electronic editions of Old English manuscripts. In this
section, we illustrate how concurrent markup occurs in ARCHway.

Building electronic editions of manuscripts. Image-based electronic edi-
tions of Old English manuscripts [15,14,13,12] combine the text from a manuscript
(both the transcript and the emerging edition), encoded in XML using an ex-

pressive array of features (XML elements), and a collection of images of the
surviving folios of the manuscript. Some of the manuscripts did not survive
in their original form: folios are missing, and existing folios are at times badly
damaged by fire, wear and tear and previous restoration attempts. Occasion-
ally, severely damaged folios or pieces of folios are misbound. The physical
location of text on the surviving folios, linguistic information, condition of the
manuscript, visibility of individual characters, paleographic information, and
editorial emendations are just some of the features that need to be encoded
to produce a comprehensive description of the manuscript. Specific XML ele-
ments are associated with each feature of the manuscript.

In this paper, we use the word editor to refer to the person who prepares the
XML encoding of a document, such as an electronic edition. The text content
of the document is generally stable: few changes in the text (content of the
XML) are introduced. The editor proceeds as follows: (s)he analyzes the folio
images, notes a specific feature to be included in the XML encoding, finds
the affected text in the manuscript transcript and introduces the markup.
To differentiate human editors and the software they use to construct such
encodings, we call the latter a tagger tool?® .

Concurrent hierarchies and conflicts. Most of the features have explicit
scopes: the textual content (of the manuscript) that the feature relates to. Un-
fortunately, the scopes of different features often overlap, resulting in markup
conflict causing non-well-formed encoding. More specifically, we use the term
markup conflict (or conflict for short) to denote a situation when (at least) two
different markup elements with overlapping scopes are required by the logic
of the encoding. Consider, for example, a fragment of folio 38 verso of British
Library Cotton Otho A vi [18] (King Alfred’s Boethius manuscript) shown in
Figure 1. The text of the three lines depicted on this fragment is shown in the
box marked (0) in Figure Figure 1. The remaining boxes in Figure 1 show the
following markup for this fragment: (i) information about physical breakdown
of the text into lines (<1line> element); (ii) information about the structure
of the text (<w> element encodes words), (iii) information about the damage
and text obscured by the damage (<dmg> and <rstxt> tags)?.

Some of the encodings of this fragment are in conflict. The solid boxes over
parts of the image indicate the scope of the <dmg> elements and the dotted
boxes indicate the scope of the <rstxt> elements. In addition, we indicate the

1 Most of the XML editing software available at this point are data-centric editors
that construct the skeleton of the XML document first and fill in the content after-
wards. This is in contrast to the tagger tools described here that first load text files
and then allow editors to introduce markup by highlighting parts of the text and
selecting the XML elements to tag them with.

2 The encodings are simplified. We have removed some attribute values from the
markup to highlight the structure of each encoding.

<line no="22”>hu bu me hzfst

hu pu me hefst afrefredne zegber afrefredne zg< /line>

ge mid pinre smealican sprace, <line no="28”>ber ge mid

ge mid pinre wynsum nesse pines binre smealican sprz</line>
<line no="24">ce, ge mid binre

wynsumnesse bines </line>

(0) &y

<w>hu</w> <w>bu</w> <w>me</w> hu <res><restxt>pu m< /restxt>< /res>e hafst
<w>heafst< /w> <w>afrefredne</w> afrefredne zegpb<dmg>er</dmg> ge <dmg>mid
<w>zgber< /w> <w>ge< /w> <w>mid</w> < /dmg> binre smealican spr<dmg>=</dmg>ce,
<w>binre</w> <w>smealican< /w> <dmg>g</dmg>e mid
<w>spraece< /w>, <w>ge</w> <w>mid</w> <dmg>p</dmg>in<dmg>r</dmg>e wynsum
<w>bpinre</w> <w>wynsum nesse</w> nesse pin<dmg>e</dmg><res><restxt>s

(i) <w>bines</w> (i) < /restxt>< /res>

Fig. 1. A fragment of King Alfred’s Boethius manuscript [18] and different XML
encodings.

positions of some of the <w> tags. Damage and restoration markup overlaps
words in some places: the damaged text includes the end of one word and
the beginning of the next word. In addition to that, some words start on one
physical line and continue on another.

Resolving markup conflicts. The TEI Guidelines [2] suggest a number of
possible ways to resolve conflicts. These methods revolve around the use of
empty milestone tags and the fragmentation of markup. We illustrate the pro-
posed suggestions in Figure 2 on the example of the markup conflict between
the <w> and <line> elements at the end of line 22. The first suggested way
(Figure 2.(a)) uses milestone (empty) elements. In this case the editor deter-
mines the pairs of tags that may be in conflict, and for each such pair declares
at least one tag as empty in the DTD/XSchema. Figure 2.(b), shows the frag-
mentation technique: one of the conflicting elements is split into two parts by
the other one (in Figure 2 we choose to split <w> element). A special “glue”
attribute is used to indicate that “aeg” and “per” are parts of the same word.

Key drawback. It is not enough to simply alleviate the markup conflict
problem in the final XML document: a more general problem of maintenance
of markup in situations where conflicts are a frequent occurrence must be ad-
dressed. Up to this point, such maintenance resided in the hands of human
editors who were responsible for specific encoding decisions to prevent markup

conflicts. This tended to generate a variety of gimmick solutions in the markup
language, such as introduction of tags whose sole purpose was to overcome a
specific type of conflict, but which, in the process made the DTD/XSchema
of the markup language complex and hard to maintain. As an example, con-
sider the fragment of the DTD used in the encoding of the manuscripts at
the University of Kentucky prior to adoption of concurrent markup shown
in Figure 3. We note a few of the peculiarities of this design. First, the tag
<vline> for marking up lines of verse is defined as a milestone element. This is
because verse lines often cross boundaries of physical lines on the manuscript
folios encoded with the <line> tag. Second, we notice three versions of a tag
for encoding words: <w>, <w1> and <w2>. Words in the manuscripts can cross
physical line borders and folio borders. Tag <w> was used to encode words
that are not in conflict with the physical encoding of the manuscript (<1ine>
and <folio> tags). Tags <w1> and <w2> were used when the word crossed
one of the boundaries above: <w1> encoded the first part of the word while
<w2> encoded the second. In addition, the DTD itself was quite unintuitive:
the XML elements could be nested almost arbitrarily inside each other.

This generated problems of two sorts. First, large and complicated DTD of
the markup was very hard to maintain and train on. Very often DTDs used
by scholars to encode documents are not static: elements are added to them
from time to time, and the roles of certain other elements are revised, causing
changes in the DTD. Introducing such changes in a correct way into the DTD
whose fragment is shown in Figure 3 (the full DTD consisted of close to 100
markup elements) has been a strenuous task: the researcher had to decide for
each DTD production whether or not to include the new tag into its right-hand
side, and whether such inclusion entailed any more structural changes. As a
reuslt, the entire process was extremely error-prone. Second, search queries on
the encoding created using milestone elements and split tags such as <w1> and
<w2> had to be programmed in a specialized fashion that had to ensure that,
for example, when looking for the ”content” of <vline> elements, one has to
search from milestone to milestone (a traversal of part of the DOM tree of the
resulting XML encoding), or, when looking for words, one has to incorporate
search for <w1>-<w2> pair.

A better way. Our approach, described in the remainder of this paper allows
editors to resolve concurrent markup in a more elegant way. First, the editors
will be tasked with preparation and maintenance of a larger number of DTDs.
Each DTD, however, will be much smaller than the DTD discussed above, and
will be much more readable. It will also be devoid of gimmicks used to resolve
specific conflicts. Second, it allows us to entrust software with the problems
of markup storage, maintenance and XML generation. In the next section,
we formalize the concept of concurrent markup hierarchies and study some of
their properties.

<line no="22"/> <w>hu</w> <w>bu</w> <w>me</w> <w>hafst</w>
<w>afrefredne< /w>

<w>z;g<line no="23"/>ber</w> <w>ge</w> <w>mid</w>

(a) Milestone elements.

<line no="22"> <w link="1">zg </w></line>
<line no="23"><w link =”1”>ber</w> </line>
(b) Fragmentation with virtual join (variant with “glue” attribute).

Fig. 2. Resolving markup conflicts.

3 Concurrent XML Hierarchies

In this section we formally define the notion of the collection of concurrent
markup hierarchies. Given a DTD D, we let elements(D) denote the set of all
XML elements defined in D. Similarly, if d is an XML document, elements(d),
denotes the set of all XML element tags contained in document d. Given a
DTD D, we say that an element y € elements(D) is an ancestor in D of
another element z € elements(D) if there is a well-formed XML document
instance d valid w.r.t. D, such that it contains a node y that is an ancestor
node of z in the DOM tree of d (note, that y being an ancestor of z is D does
not preclude z from being an ancestor of y).

Definition 1 A concurrent markup hierarchy CM H is a tuple

CMH =< S,r,{D1, D, ..., Dy} > where:

e S is a string representing the document content;

e 7 is an XML element called the root of the hierarchy;

o D;, i =1,k are DTDs such that:

(i) r is defined in each D;; 1 <i <k, andV1<i,j<k,i#}j

elements(D;) Nelements(D;) = {r};

(1)) V1 < i < k, Vt € elements(D;) r is an ancestor of t in D;.

In other words, a concurrent markup hierarchy (CMH) is composed of tex-

tual content and a set of DTDs sharing the same root element and no other
elements.

Figure 4 shows an example of a concurrent markup hierarchy. Here, the con-
tent is taken from lines 22-24 of [18], and the DTD fragments (showing only
the elements used in further examples) are part of the concurrent markup hi-
erarchy built for the ARCHway project from the original DTD (see Figure 3).

<!ELEMENT line (#PCDATA|al|abblaccent|add|alt|comment|cvd|dell
div|dmg|ednote|edsplemd|enh|exp|fdd|gapl
gloss|hl|indent|lang|lend|let|oecno|omiss]|
overers|paleog|palimbot |palimtop|pcvd|pline|
rejoin|res|rest|resx|scribe|suptxt|trpunc]|
trspluncn|vlet|vline|vphr|vphrl|vphr2|vurdl|
vwrdl | vurd2 |w|wl |w2) *>
<!ELEMENT vline EMPTY>
<!ELEMENT w (#PCDATA|a|abblaccent|add|alt|comment|cvd|dell
div|dmg|ednote|emd|enh|exp|fdd|gap|gloss|
lang|let|oecno|omiss|overers|paleog|palimbot |
palimtop|pcvd|pline|rejoin|res|rest|resx|
suptxt |trspluncn|vlet|vline|vwrd)*>
<!ELEMENT w1 (#PCDATA|a|abb|accent|add|alt|comment|cvd|del]
div|dmg|ednote|emd|enh|exp|fdd|gapl|gloss]|
lang|let|oecno|omiss|overers|paleog|palimbot |
palimtop|pcvd|pline|rejoin|res|rest|resx]|
suptxt |trspluncn|vlet|vline|vwrdl)*>

Fig. 3. A DTD excerpt

S = “hu pu me hefst afrefredne segber
ge mid pinre smealican spraece,
ge mid pinre wynsumnesse bpines”

Dy := { <IELEMENT coll (fol)*>

<!ELEMENT fol (line)*>

<!ELEMENT line (:PCDATA)>}

Dy := { <IELEMENT coll (vline)*>

<!ELEMENT vline (#PCDATA |hl|w)*>

<!ELEMENT w (#PCDATA)>}

D3 := { <'ELEMENT coll (dmg)*>

<!ELEMENT dmg (#PCDATA |cvd|fdd|gap|uncn|offset)*>}

Fig. 4. A Concurrent Markup Hierarchy (excerpt) < S, coll, D1, D2, D3 >

Distributed XML documents consist of XML encodings of the content of a
CHM in the DTDs from it.

Definition 2 Let CMH =< S,r,{D1, Ds, ..., Dy} > be a concurrent markup
hierarchy. A distributed XML document dd over CM H is a collection of XML
documents: dd =< dy, ds, ...,d, > where (V1 < i < k) d; is valid w.r.t. D; and

content(dy) = content(ds) = ... = content(dy,) = S 3.

3 content(doc) denotes the text content of the XML document doc.

d; := “<coll> <line>hu bu me hafst afrefredne seg</line>
<line>per ge mid binre smealican sprae</line>
<line>ce, ge mid binre wynsumnesse bines < /line>< /coll>"

dy := “<coll> <w>hu</w> <w>pu</w> <w>me< /w>
<w>hafst</w> <w>afrefredne</w> <w>agber</w> <w>ge</w>
<w>mid</w> <w>binre</w> <w>smealican< /w> <w>spreaece</w>,
<w>ge</w> <w>mid</w> <w>binre</w><w>wynsum nesse</w>
<w>bines< /w>< /coll>"

d3 := “<coll> hu <res>bu m< /res>e hafst afrefredne
eghb<dmg>er</dmg> ge <dmg>mid </dmg> binre smealican spr
<dmg>=</dmg>ce, ge mid binre wynsum nesse bines</coll>"

Fig. 5. A distributed XML document dd =< dy,ds,ds > over CM H in Figure 4

The notion of a distributed XML document allows us to separate conflicting
markup into separate documents. However, dd is not an XML document itself,
rather it is a virtual union of the markup contained in d;,...,d;. An example
of a distributed XML document over the CMH in Figure 4 is given in Figure 5.

Our goal now is to define XML documents that incorporate in their markup
exactly the information contained in a distributed XML document. We want
to represent, distributed XML documents as single XML documents, with no
markup conflicts, and so that the component XML documents can be easily
recovered. For an XML document d we let nodes(d) represent the set of nodes
in DOM representation of d (not to be confused with elements(d) defined
earlier). We denote by < or > the total order relation over the set nodes(d) [19]:
for € nodes(d), y € nodes(d), we have x < y, if the node z is before node y
in d; we have z > y if the node y is before node y in d. For a node t € nodes(d),
we let element(t) denote the corresponding element of ¢ in elements(d). We
also let STpositiong(t) denote the value i such that the starting tag of ¢ in d is
located between the ith and the (i+1)th character in content(d) (if the markup
is at the end of the content, then we set STpositiong(t) = |content(d)| and if
it is at the beginning of the document, then STpositiong(t) = 0). Similarly, we
let ETposition,(t) denote the position of the end tag of markup ¢ in d relative
to content(d). For a node t € nodes(d) we denote by content(t) the substring
of content(d) from STpositiony(t) + 1 to ETpositiong(t). If STpositiong(t) =
ETpositiong(t), we say that the markup ¢ has no text content, content(t) = €
(here, € denotes the empty string). We call such markup elements empty.

Now, we define the notion of a path, a useful instrument in describing markup
and text content nesting.

Definition 3 1. Let d be an XML document and let content(d) = S. Let

10

S =cica ... cyr. The path to ith character in d denoted path(d,) or path(d, c;)
is the sequence of XML elements forming the path from the root of the DOM
tree of d to the content element that contains c;.

The path to a node t € nodes(d), denoted path(d,t) is the sequence of XML
elements forming the path from the root of the DOM tree of d to the node t.

2. Let D be a DTD and let elements(D) N elements(d) # 0, and let the root
of d be a root element in D. Then, the path to ith character in d w.r.t. D,
denoted path(d,i, D) or path(d,c;, D) is the subsequence of all elements of
path(d, i) that belong to D.

The path to node t € nodes(d) w.r.t. D, denoted path(d,t, D), is the subse-
quence of all elements in D of path(d,t).

Following XPath notation, we will write path(d, i) and path(d, i, D) in a form
al/a2/.../as. We notice that path(d, i, D) defines the projection of the path
to ith character in d onto a specific DTD. For example, if path(d, i) = col/ fol/
pline/line/w/dmg and D contains only elements <col>, <pline> and <w>,
then path(d, i, D) = col /pline/w. We can now use paths to tags and characters

to define “correct” single-document representations of the distributed XML
documents.

Definition 4 Let d* be an XML document and let D be a DTD, such that
elements(d*) N elements(D) # 0 and the root of d* is a root element in D.
Then, the set of filters of d* onto D, denoted Filters(d*, D), is the set of XML

documents d such that

(1) content(d) = content(d*) and elements(d) = elements(d*)Nelements(D);

(2) (VO < i < |content(d)|) path(d*,i, D) = path(d,1i);

(8) (Vt € nodes(d*) : element(t) € elements(D) A content(t) = ¢) 3t' €
nodes(d) : element(t) = element(t') Acontent(t') = e ASTpositiong(t) =
STpositiong(t') A path(d*,t, D) = path(d,t');

(4) (Vt € nodes(d)3t1,ts € nodes(d*) : element(t) = element(t;) = element(ts)
A STpositiong(t) = STpositiong (t1)NET positiony(t) = ETpositiongs (ts)

(here, possibly t; = t5);

11

di: “<r><a>lt’s<c/><a><d/> rain<a> in Spain.</r>”;

do: “<r><a>lt’s<c/><a><d/> rain in Spain. </r>";

d3: “<r><a>lt's<c/><a><d/> rain <a> in <X>Spa</X>in.</r>”;
da: “<r>l<a>t’s<c/><a><d/> rain<a> in Spain.</r>";

ds: “<r><a>lt's<a><c/><d/> rain<a> in Spain.</r>";

dg: “<r><a>It's<c/><a><d/> rain in<a> Spain.</r>";

dr: “<r><a>lt’s<d/><c/><a> rain <a> in Spain.</r>".

Fig. 6. Filters of XML documents?

(5) (Vti,ta € nodes(d) : t1 < ta A content(t1) = content(ty) = €)3t], th €
nodes(d*) : t] < th A element(t;) = element(t)) N element(tz) = element(t)
A content(ty) = content(ty) = € N STpositiong(t1) = STpositiongs(t)
A ETpositiong(ty) = ETpositiong (t).

In a nutshell, a filter of d* on D is any XML document encoding the same
content with only the elements from D ((1)), that preserves the paths to each
content character and each node w.r.t. D ((2), (3)). In addition, for every
XML element in the filter, some element of the same type starts and some
element of the same type ends in d* at its starting and ending positions in the
filter ((4)). Finally, the order in which empty elements occur in d* is preserved
in its filter ((5)). The propositions below show some properties of filters. A
filter does not create new markup and does not change the start tag and end
tag positions for markup present in the filter. However, a filter might ”join”
consecutive markup of the same type. Before stating the propositions, we show
some examples of filters.

Example 5 Let

d* = “<r><a>lt's<c/><a><d/> rain <a> in

<X>Spa</X> in.</r>".

Let D be a DTD with elements(D) = {r,a,b,c,d}. Consider the XML docu-
ments shown in Figure 6. Then:

dy,dy € Filters(d*, D). In dy the last two occurrenes of <a> in d* have been
merged.

ds ¢ Filters(d*, D) because X ¢ elements(D) (contradicts Definition 4 (1));
dy ¢ Filters(d*, D) because path(d*,0, D) # path(dy,0), i.e., the first charac-
ter of the content is not in the scope of <a> (contradicts Definition 4 (2));
ds ¢ Filters(d*, D) because path(d*,c, D) # path(ds,c) (element c is inside
element a in ds, but is outside a in d*) and b ¢ nodes(ds) (contradicts Defini-
tion 4 (3));

dg ¢ Filters(d*, D) because the positioning of the end of the second a and the
beginning of the third a elements in dg and in d* are different. (contradicts
Definition 4 (4));

12

dy ¢ Filters(d*, D) because b < d in d*, but b > d in d7 (contradicts Definition

4 (5)).

The two propositions below state that filters of XML documents preserve all
empty elements and do not introduce any extra markup.

Proposition 6 (Filters preserve empty elements).

Let d € Filters(d*, D). Then

[{t|t € nodes(d*) A element(t) € D A content(t) = €}| = |{t|t € nodes(d) A
content(t) = e}|.

PROOF. Let t € nodes(d*), content(t) = € and element(t) € D. By Defini-
tion 4 (3), there is a node t' € d, element(t') = element(t) and content(t') = e.
Conversely, let p € nodes(d), content(p) = e. From Definition 4 (5) it follows
that there is a p' € nodes(d*) so that content(p') = € and element(p’) =
element(p). This proves the proposition. O

Proposition 7 (Filters do not introduce extra markup)

Let d € Filters(d*, D). Then
[{t|t € nodes(d") A element(t) € D}| > |{t|t € nodes(d)}|.

PROOF. We prove by contradiction. Suppose that |{t|t € nodes(d*)Aelement(t) €
D} < |{t|t € nodes(d)}|. Then from Proposition 6 it follows that |{t|t €
nodes(d*)Nelement(t) € DAcontent(t) # e}| < |{t|t € nodes(d)Acontent(t) #
e}|. This contradicts Definition 4 (2) since there is at least one character in
content(d) for which the path is not conserved. Hence the assumption that
|{t|t € nodes(d*) A element(t) € D}| < |{t|t € nodes(d)}| is false. O

If we are to combine the encodings of all d;s of a distributed document dd in a
single document d* we must make sure that we can “extract” every individual
document, d; from d*. The main challenge in constructing such a representation
is eliminating the markup conflicts (so that the resulting document is a well-
formed XML document). We formally define a conflict between two XML
elements in different documents of a distributed XML document as follows.

Definition 8 Let dd =< dy,ds,...dy > be a distributed XML document over
the collection of markup hierarchies CMH =< S,r,{D1,...,Dy} >. Let
z € nodes(d;), content(z) # €, y € nodes(d;), content(y) # €, for some
1 # j. ¢ has a conflict with y if one of the following happens:

13

(1) STpositiong, (x) < STpositiong, (y) < ETpositiong,(x) < ETpositiong,(y).
(2) STpositiong; (y) < STpositiong,(z) < ETpositiony,;(y) < ETpositiong,(z).
Besides conflicts as defined above, there might be situations where two markup
elements (from different documents) start or end at the same position. Even
though this is not a conflict in the sense of Definition 8, a fragmentation might
occur if the order of markup is not handled carefully. These are potential

conflicts and they are handled easily by appropriate sorting of markup from
different documents.

Definition 9 Let dd =< dy,ds,...d; > be a distributed XML document over
the collection of markup hierarchies CMH =< S,r,{D1,...,Dy} >. Let z, y
be markup tags in d;, d; respectively (i # j). x has a potential conflict with y
if one of the following holds:

(1) STpositiony,(z) = STpositiong, (y)

(2) ETpositiony, .
(3) STpositiony,

7

(z) = STpositiong, (y)
(z) = ETpositiong. (y)
()

¥

(4) ETpositiong, (x) = STpositiong, (y).

We now introduce a notion of a merger of a distributed XML document.
Intuitively, it is a well-formed XML document that “preserves” the encodings
contained in all individual components of a distributed document.

Definition 10 Let dd =< di,d>, . ..dy > be a distributed XML document over
the collection of markup hierarchies CMH =< S,r,{D1,...,Dy} >. A set of
mergers of dd denoted Mergers(dd) is defined as

Mergers(dd) = {d*|elements(d*) C \J}_, elements(D;)and (V1 < i < k)d; €
Filters(d*, D;)}

As mentioned above, we want any merger d* of dd to incorporate the markup
from all documents dy, ..., d in a way that (theoretically) allows the restora-
tion of each individual document from d*. In practice, we demand that each
individual component d; of dd is a filter of d* on D;. A merger contains all
the markup in the distributed document and, by virtue of the properties of
filters, can resolve markup conflicts by using fragementation. The following
two propositions mirror Propositions 6 and 7: they show that a merger pre-
serves all the empty elements and does not remove any markup found in the
distributed XML document.

14

Proposition 11 (Mergers preserve emply elements)

Let dd =< dy,ds,...dy, > be a distributed XML document and let d* €
Mergers(dd). Then

[{t|t € nodes(d*)Acontent(t) = e}| = S | |{t|t € nodes(d;) Acontent(t) = €}|.

PROOF. We have d; € Filters(d*, D;), 1 <i < k. Then by Proposition 6 it
follows that: |{t|t € nodes(d*) A content(t) = € A element(t) € D;}| = |{t|t €
nodes(d;) N content(t) = €}|. Then, |{t|t € nodes(d*) A content(t) = €}| =

¥ |{tlt € nodes(d*) A content(t) = € A element(t) € D;}| = Xk, |{t|t €
nodes(d;) A content(t) = e}|. O

Proposition 12 (Mergers do not remove markup)

Let dd =< dy,dsy,...dp > be a distributed XML document over the collec-
tion of markup hierarchies CMH =< S,r,{Dy,...,Dy} > and let d* €
Mergers(dd). Then |nodes(d*)| > X, |nodes(d;)| — (k — 1).

PROOF. Since d; € Filters(d*,D;), 1 < i < k, by Proposition 7 it fol-
lows that: [{t|t € nodes(d*) A element(t) € D;}| > |{t|t € nodes(d;)}|. With
the observation that all documents d;, 1 < ¢ < k share the same root, we
have: |nodes(d*)| = XF_, [{t|t € nodes(d*) A element(t) € D;}| — (k — 1) >
>¥ | |nodes(d;)| — (k —1). O

4 Algorithms

Section 3 specifies the properties that the “right” representations of distributed
XML documents (i.e., single XML documents containing concurrent markup)
must have. In this section we provide the algorithms for building such XML
documents. In particular, we address the following three problems:

e MERGE: given a distributed XML document dd, construct a merger d* of
dd. We will refer to the document constructed by our MERGE algorithm as
the master XML document for dd.

e FILTER: given a master XML document for some distributed document dd
and one of the concurrent hierarchies D;, construct the document d;.

e UPDATE: given a distributed XML document dd, its master XML document
d* and a simple update of the component d; of dd, that changes it to d,
construct (incrementally) the master XML document d' for the distributed
document dd' =< dy,...,d}, ... dy >.

15

editor editor editor editor

! ! ! l

dy doy | - | dg d;

FILTER (UPDATE)

M aster Document

Fig. 7. The framework solution.

Figure 7 illustrates the tasks addressed in this section and the relationship be-
tween them and the encoding work of editors. In the proposed framework, the
editors are responsible for defining the set {D;,..., Dy} of the concurrent hi-
erarchies and for specifying the markup for each component of the distributed
document dd. The MERGE algorithm then automatically constructs a single
master XML document d*, which represents the information encoded in all
components of dd. The master XML document can then be used for archival
or transfer purposes. When an editor wants to obtain an XML encoding of
the content in a specific hierarchy, the FILTER algorithm is used to extract
the encoding from the master XML document. Finally, we note that MERGE
is a global algorithm that builds the master XML document from scratch. If a
master XML document has already been constructed, the UPDATE algorithm
can be used while the editorial process continues to update incrementally the
master XML document given a simple (atomic) change in one of the compo-
nents of the distributed XML document. Each algorithm is discussed in more
detail below.

4.1 MERGE Algorithm

The MERGE algorithm takes as input tokenized versions of the component
documents dy, ..., d; of the distributed document dd and produces as output
a single XML document that incorporates all the markup of dy,...,d;. The
algorithm resolves the overlap conflicts using the fragmentation with a ”glue”
attribute approach described in Section 2. A special attribute 1ink is added
to all markup elements that are being split, and the value of this attribute is
kept the same for all markup fragments.

The algorithm uses the Simple API for XML (SAX)[20] for generating tokens.
SAX callbacks return three different types of token strings: (i) start tag token
string (ST), (ii) content token string (CT), (iii) end tag token string (ET). If
token is the token returned by the SAX parser, then we use type (token) to
denote its type (ST, CT, ET) as described above and tag(token) to denote

16

Algorithm MERGE(dy, .. ., d)
//PASS I
tokenListSet = empty

for cpos = 1 to sizeof(content(d;))
buffer content characters in contBuf fer
//Determine the correct nesting of all tags that end at cpos
move all end tag tokens in tokenListSet[cpos] to EndT okenList
build list of tokens from djy, ..., d; at position i
collect tokenListSet[i] from dy, ..., dy

//Find correct order of tokens, resolve overlapping conflicts
pos = cpos-1
while not empty(EndT okenList)
for (each unmarked start tag in tokenListSet[pos|)
if (start tag is in EndTokenList)

push(end tag, tokenListSet[cpos])

delete(end tag, EndTokenList)

mark(start tag)

else .
add "glue attribute” to start tag entry

push(matching end tag, tokenListSet[cpos])
append (start tag, tokenListSet[cpos])
mark(start tag)

pos = pos -1

// PASS II

marker = 0

for (each position entry pos in tokenListSet)
output content in contBuf fer from marker to pos
marker = pos
output tokens at position pos in tokenListSet

Fig. 8. The MERGE algorithm
the tag returned by SAX (for ST and ET tokens).

The MERGE algorithm works in two passes. On the first pass, the input docu-
ments are parsed in parallel and an ordered list is built of ST and ET tokens
for the creation of the master XML document. The second pass of the algo-
rithm scans the token list data structure built during the first pass and outputs
the text of the master XML document.

The main data structure in the MERGE algorithm is tokenListSet, which is
designed to store all necessary markup information for the master XML doc-
ument. Generally speaking, tokenListSet is an array of token lists. Each array
position corresponds to a position in the content string of the input XML doc-
uments. In reality, only the positions at which at least one input document has
ST or ET tokens have to be instantiated. For each position i, tokenListSet][i]
denotes the ordered list of markup entries at this position. At the end of the
first pass of the MERGE algorithm, for each %, tokenListSet[i] will contain the
markup elements to be inserted in front of ith character of the content string

17

d* =¢‘<coll> <line 1link="1"> <w>hu</w> <res><w>pu</w>
<w link="2">m</w></res><w link="2">e</w>
<w>hafst</w> <w>afrefredne</w>
</1line>
<w 1link="3"> <line link="1">=</line></w>
<line> <w link="3">b<dmg>er</dmg></w>
<w>ge</w> <w><dmg>mid</dmg></w> <w>binre</w>
<w>smealican</w> <w link="4">spr<dmg>z </dmg></w>
</1line>
<line><w link="4">ce</w>, <w>ge</w> <w>mid</w>
<w>pinre</w> <w>wynsumnesse</w> <w>pines</w>
</line></coll>’?’

Fig. 9. The output of MERGE(dd) for the distributed XML document dd in Figure 5

in the master XML document ezactly in the order they are to be inserted. The
second pass of the MERGE algorithm is a straightforward traversal of token-
ListSet, which, for each, position outputs all the tokens and then the content
characters.

Figure 8 contains the pseudocode for the MERGE algorithm. The algorithm
iterates through the positions in the content string of the input documents.
For each position ¢, the algorithm first collects all ET and ST tokens found at
this position. It then determines the correct order in which the tokens must be
inserted in the master XML document, and resolves any overlaps by inserting
appropriate end tag and start tag tokens at position ¢ and adding the link
attribute to the start tag tokens. In the algorithm, push(Token,List) and
append(Token,List) add Token at the beginning and at the end of List
respectively.

Figure 9 shows the output of MERGE(dd) for the distributed XML document
dd in Figure 5. As seen from it, MERGE introduces four fragmentations in the
output XML.

Theorem 13 Let dd =< dy,...,d; > be a distributed XML document. Let d*
be the output of MERGE(dy, ..., dy). Then d* is a merger of dd.

PROOF. The MERGE algorithm decides the markup order at a given posi-
tion in the document if more tags from at least two input documents occur at
the same position (to avoid potential conflicts) and introduces markup frag-
mentation (to resolve conflicts and hence to preserve XML document well-
formedness).

The proof if based on four key observations about how MERGE works: (i)
the output document is constructed using only element (ST, ET) and content
(CT) tokens parsed out from the input documents, (ii) the element tokens ST
and ET are output exactly at the same positions in the output document con-

18

tent as in the original documents (stable sort w.r.t. tokens relative positions in
each document), (iii) additional ET and ST tokens needed for fragmentation
are inserted (in this order) at the same position in the document content, and
(iv) the content tokens (CT) are output in the same order as in the original
input documents. From (i) it follows that:

elements(d*) = UF_, elements(d;) C UL, elements(D;) (1)

(Note that fragmentation doesn’t introduce new elements, but more elements
from elements(d;), 1 < i <k).

From (iv) it follows directly that MERGE doesn’t change the content of the
output document (given that the input documents have the same content):
content(d*) = content(d;) = ... = content(dy)

From (ii) and (iii) it follows that MERGE preserves the path to each character
in the document content w.r.t. the elements of each input document (fragmen-
tation splits the content into multiple manifestations of the same tag) and the
path to each markup node without text content. Also no other markup besides
tags in elements(d;), 1 < i < k are introduced. Consequently:

d; € Filters(d*, D;), (V1 <i<k)

Then from (1), it follows that d* is a merger for dd. O

A simple observation of the fact that MERGE produces fragmentation based
on the end tag markup at a given position over all input documents gives the
following result:

Proposition 14 The number of fragments in the output of MERGE algorithm

does not depend on the order of the input documents.

The MERGE algorithm produces a merger of the input distributed XML docu-
ment. The following theorem shows that MERGE’s time complexity is linear in

both text content and number of nodes over all documents in the distributed
XML document.

Theorem 15 Let dd =< dy,...,d; > be a distributed XML document. The
time complezity of MERGE(dd) algorithm is O((XF_, |nodes(d;)|)|content(d;)|).

PROOF. The MERGE algorithm gets the input XML documents as an array
of tokens (markup tokens or text content tokens). At each position in the text
content (there are |content(d;)| + 1 such positions), markup that start/end
at that position might conflict other markup. MERGE introduces fragmenta-
tion whenever necessarily to avoid conflicts: there are at most (XF_, |nodes(d;)|
fragments to be created per each conflict position. This makes the total number
of fragments to be possibly introduced at most (X%_, [nodes(d;)|)|content(d,)|.
Since scanning the input documents takes O(Xr_; |nodes(d;) |+k|content(d;)|),
then, overall, the time complexity is O((XF_, |nodes(d;)|)|content(d;)|). O

19

Algorithm FILTER(d, D)
glueTagSet = empty
start parsing document d
while (more tokens)

token = nextToken()
if (token is CT)
output token

continue
else if (token is ST)

if (tag(token) € glueTagSet OR tag(token) ¢ D)

continue
if (tag(token) has glue attributes)
remove glue attributes
put token in glueT'agSet
output token
else if (token is ET)
if (tag(token) & D)
continue
if (tag(token) € glueTagSet AND not last token for tag(token))

continue
output token

Fig. 10. The FILTER algorithm
4.2 FILTER Algorithm

The FILTER algorithm takes as input an XML document d* produced by the
MERGE algorithm and a DTD D, filters out all markup elements in d* that
are not in D and merges the fragmented markup.

In one pass the algorithm analysis the ordered sequence of tokens provided by
a SAX parser and performs the following operations:

- removes all ST and ET tokens of markup elements not in D;

- from a sequence ST, [CT|, ET, [CT], ..., ST, [CT], ET of tokens for a frag-
mented element in D, removes the ”glue” attributes and outputs the first ST
token, all possible intermediate CT tokens and the last ET token in the se-
quence;

- all other tokens are output without change in the same order they are re-
ceived from the SAX parser.

The pseudo-code for FILTER appears in Figure 10. The following theorem
states that FILTER correctly reverses the work of the MERGE algorithm.

Theorem 16 Let dd =< dy,...,d; > be a distributed XML document, and
d* be the output of MERGE(dd). Then (V1 < i < k), FILTER(d*, D;) = d;.

PROOF. Let d; = FILTER(d*, D;). Then content(d,) = content(d;) and

20

Algorithm UPDATE(from, to, T AG)
find FROM, TO, LCA, AFROM, ATO
//start inserting nodes
for (each NODE in the path from FROM to AFROM)
insert a node TAG with glue attributes
as a parent for all siblings of NODE, at the right of NODE

insert a node TAG with glue attributes
as a parent of all nodes between AFROM and ATO
for (each NODE in the path from ATO to TO)

insert a node TAG with glue attributes
as a parent for all siblings of NODE, at the left of NODE

Fig. 11. The UPDATE algorithm

Vt € nodes(d}), element(t) € D;.

We show that d; contains all markup in d; at the same position as in d;. Let
t € nodes(d;) (hence element(t) € D;). Then, as a result of MERGE(dd),
there is a sequence of nodes ti,ts,...t, € d*,1 < n < |content(d*)| so
that element(t) = element(t1) = ... = element(t,) and STpositiong, (t) =
STpositiongs (t1), ETpositiongs (t1) = STpositiong(t2), ..., ETpositiong(t,) =
ETpositiong, (t) and each markup uses the same glue attribute. FILTER(d*, D;
joins all markup ty,t,...t, in a single node t' € d} so that element(t') =
element(t) and STpositiong (') = STpositiong.(t;) = STpositiong,(t), and
ETpositiong (t') = ETpositiong: (t,) = ETposition,,(t).

We show now that d; contains all markup in d; at the same position as in d,
by using a converse argument for the above. Let t' € d]. Since d} is a result of a
filter operation, then element(t') € D; and t' has no glue attributes. Moreover,
since FILTER doesn’t remove markup (except for joining consecutive markup
linked by a glue attribute), then d* must contain a markup sequence as de-
scribed above. Similarly, since MERGE doesn’t remove markup and the only
markup created by it are fragments joined by the same glue attribute, it fol-
lows that d; (the only document that contains elements from D;) has a node
t € nodes(d;), so that element(t) € D; and STpositiong,(t) = STpositiong (t')
and ETpositiong,(t) = ETpositiong (t'). O

Proposition 17 The time complexity of FILTER(d,D) algorithm is O(|nodes(d)|+
|content(d)|).

PROQOF. The FILTER algorithm scans each position in content(d) and for
each ST or ET token performs a constant number of operations: test for glue
attributes, removing glue attributes, or joining markup. All these add up to
O(|nodes(d)| + |content(d)|) time complexity. O

21

MERGE Algorithm, content size = 10000 bytes

—— 2DTDs
—— 3DTDs
—x— 4DTDs
2L | —e— 5DTDs

I I I I I I I I I)
0 5 10 15 20 25 30 35 40 45 50
Density [number of XML elements per 100 content bytes in a single document]

(a) (b)

Fig. 12. (a) Illustrating the work of the UPDATE algorithm; (b)Test 1: Dependence
of performance of the MERGE algorithm on markup density.
4.8 UPDATE Algorithm

The UPDATE algorithm updates the master XML document (see Figure 7)
with the new markup element. It takes as the input two integers, from and
to, the starting and ending positions for the markup in the content string
and the new markup element, TAG. Due to possible need to fragment the
new markup this process requires some care. The goal of the algorithm is
to introduce the new markup into the master XML document in a way that
minimizes the number of new fragments. The algorithm uses the DOM model
[21] for the XML document and performs the insertion of the node in the XML
document tree model. In this model, for an element with mixed content, the
text is always a leaf. Then from and to will be positions in some leaves of the
document tree. Let FROM and TO be the parent nodes of the text leaves
containing positions from and to respectively. We denote by LC A the lowest
common ancestor of nodes FROM and TO. Let AFROM be child of LCA
that is the ancestor of FROM, and let AT'O be the child of LC'A that is the
ancestor of TO (see Figure 12).

The UPDATE algorithm traverses the path FROM — ... - AFROM —
LCA — ATO — ... — TO and inserts TAG nodes with glue attributes as
needed. The pseudo-code description of the algorithm is shown in Figure 11.
The following theorem states that the result of UPDATE allows for correct
recovery of components of the distributed document.

Theorem 18 Let dd =< dy,...,d >; d* be the output of MERGE(dd). Let
TAG € elements(D;), (from,to,TAG) be an update request and d} be the

22

Content Size || Avg. Num. of Tags Avg. Num. of Conflicts
[bytes] Sparse ‘ Med. Dens. | Dense Sparse ‘ Med. Dens. | Dense
1000 294.8 1285.4 2522.8 96.2 85.8 96.8
2000 479.6 | 2476.4 4977.6 188.2 197.2 160.6
3000 679.4 3692.4 7438 313.2 294.2 284
4000 905.4 | 4903 9900.8 329.2 | 360 365.6
5000 1092.8 | 6108.8 12350 445.6 | 451.6 555.2
6000 1307 7306 14803.4 || 540.2 597.6 593.6
7000 1522.8 | 8507.2 17256.4 || 646.6 | 721.6 753.6
8000 1707 9705.8 19727 774.4 | 828.4 805.8
9000 1921.2 | 10930.8 22175 830.6 | 900.6 921.4
10000 2144 12142.2 24644.2 || 1031.4 | 991 909
Table 1

Datasets used for Test 2.

well-formed result of tagging the content between from and to positions. Then,

FILTER(UPDATE(d*, (from, to, TAG)), D;) = d..

PROOF. The UPDATE algorithm is a markup insertion (using DOM model

for the XML document) combined with fragmentation (to preserve well-formedness).
Hence, if d™ is the output of UPDATE(d*, (from, to, TAG)) then d'* is a merger
ofdd =< ds,...,d,,...,d; > where the markup corresponding to TAG might

be fragmented using glue attributes. Then FILTER(d™, D;) removes all markup
elements not in D; and joins adjacent markup with glue attributes. Hence

FILTER(UPDATE(d*, (from, to, TAG)), D;) = FILTER(d", D;) = d!. O

5 Evaluating Performance of the Merging Algorithm

In this section we describe the results of testing the performance of the MERGE
algorithm described in previous section.

The tests were conducted in the following manner. We have designed an XML
generator that, given a DTD, a root element, number of tags and length of a
content string generates an XML document with these parameters. The XML
document may not necessarily be valid w.r.t. the DTD, but the encoding does
not violate any DTD constraints. Rather, the cause of invalidity is the possible
incompleteness of the markup. Such XML documents model the process by
which editors introduce document-centric markup — only the final version of
the document is guaranteed to be valid.

In our tests we have used the same DTD repeated five times, with tags renamed
in each copy. The base DTD is shown in the Appendix. The performance of
the MERGE algorithm on a specific problem can be affected by the following

23

MERGE Algorithm, sparse data set MERGE Algorithm, medium density data set

o
3
il
N

—— 2DTDs —— 2DTDs
—— 3DTDs 0.9 —— 3DTDs
—=— 4DTDs —=— 4DTDs
06 —o— 5DTDs —o— 5DTDs

Time [sec]
Time [sec]

o o o o o

2 & &5 2 &

:

o
P

°
N

0.1

0 , 0 ,
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Content size [bytes] Content size [bytes]

(a) (b)

MERGE Algorithm, 5 DTDs
25r

MERGE Algorithm, dense data set
25+ —&~ dense
—+ medium density
—+— 2DTDs — sparse

151

Time [sec]

Time [sec]

. , 0 v v v v v y . . g
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 60O 7000 8000 9000 10000
Content size [bytes] Content size [bytes]

(©) ()

Fig. 13. Test 2: Dependence of performance of the MERGE algorithm on content
size for (a) sparse, (b) medium density and (c) dense datasets. Running times for

all three datasets for 5 DTDs are compared side-by-side in (d).
parameters:

e Number of DTDs in the CMH;

e Size of the content string of the input distributed XML document. We mea-
sured the size in the number of characters (bytes);

e Markup density in individual components of the input distributed XML
document. It was measured in the number of XML elements per 100 bytes
of content.

We have ran two separate experiments:
e Test 1: study dependence of the performance of the algorithm on the density

of markup. The content size for this experiment was fixed at 10000 bytes,
and the density ranged from 5 elements per 100 bytes to 50 elements per

24

MERGE Algorithm, content size 5000 [bytes] MERGE Algorithm, content size 10000 [bytes]
0.8 251

05
0.2
L L , L L L
4

L L
0 1 2

(a) (b)

Fig. 14. Test 2: Dependence of performance of the MERGE algorithm on the number
of DTDs for content size of (a) 5000 and (b) 10000 bytes.

100 bytes. The tests were ran on the distributed XML documents with 2,
3, 4 and 5 components.

e Test 2: study dependence of the performance of the algorithm on the size of
the content. Three datasets called sparse, medium density and dense were
generated, with the density of markup of 5, 25 and 50 elements per 100 bytes
respectively. In each dataset, distributed XML documents were generated
for content sizes of 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000 and
10000 bytes. The tests were ran on the distributed XML documents with 2,
3, 4 and 5 components.

In both tests, for each point of the graph, we have generated five different
distributed XML documents. We measured the performance of the MERGE
algorithm on each of the five distributed XML documents and plotted the
average time.

The MERGE algorithm was implemented in Java, and run on a Dell Optiplex
GX240 PC with 1.4Ghz Pentium 4 processor and 256 Mb main memory. On
each run, the input files were first read into main memory. From there, the
SAX parser tokenized the input and provided it for the MERGE algorithm.
Only the running time of the MERGE algorithm proper was counted and is
reported in the graphs. The time for parsing reading data from disk had been
excluded. Below, we briefly discuss the results of the tests.

Figure 12 contains the results of the Test 1 series for all numbers of DTDs. As
seen from the graph, for two and three DTDs, the growth of running time is
linear in the density of markup, whereas for four and five DTDs, it appears
to be quadratic.

25

Figure 13 shows the main results of Test 2 for each of the three data sets
used (graphs (a), (b) and (c)). Graph (d) compares the 5 DTD results for all
three datasets. Table 1 summarizes the three datasets used in Test 2. For each
dataset and for each content size we indicate the average number of elements
in the distributed XML documents (among the five documents generated) and
the average number of markup conflicts the MERGE algorithm had to resolve
(the data is provided for the distributed XML documents consisting of five
components). Looking at the graphs on Figure 13 we observe that for the
sparse and medium density datasets, the running time grows linearly with the
size of the content. For the dense dataset, we were able to observe quadratic
running time behavior only for the 5 DTD CMH. A general observation is
that on all datasets, the algorithm performed well in real-time, finishing most
of the tests in under 1 second.

Figure 14 inverts the data from Figure 13 to show the dependence of running
time on the number of DTDs in the CMH. Graph (a) shows this dependence
for the size of content equal to 5000 bytes, while graph (b) — for 10000 bytes.
It appears from these two graphs that the dependence of running time on
the number of DTDs (distributed XML document components in the input)
is quadratic at 10000 bytes for the dense and medium dense dataset, and is
linear elsewhere.

The overall conclusion we draw from the tests is two-fold:

(1) The MERGE algorithm as implemented in this work is applicable in prac-
tice.

(2) The running time of the MERGE algorithm shows linear dependency on
various parameters (markup density, content size, number of DTDs) on
smaller values, and gradually changes into quadratic dependency as the
values grow. This behavior is consistent with the result of Theorem 15.

6 Conclusions

In this paper we introduce the general framework for managing concurrent
XML markup hierarchies. In particular, we formally define notions of concur-
rent markup hierarchies and distributed XML documents over them. The key
problem studied here is that of representation of distributed XML documents
as single well-formed XML documents. Via the notions of filters and mergers,
we defined what is means for a single XML document to faithfully represent
a distributed XML document. We have provided efficient algorithms for con-
structing such representations from distributed XML documents (MERGE),
extracting distributed document components from them (FILTER) and incre-

26

mentally updating them when new markup is introduced (UPDATE).

Acknowledgments

This article is based on work supported, in part, by the National Science Foundation
under Grant No. 0219924. The work of the second author is also supported, in part,
by The Electronic Boethius Project funded by a Collaborative Research Award
from the National Endowment for the Humanities (NEH grant RZ-20887-02) and
the Andrew W.Mellon Foundation, and sponsored by The British Library and the
Bodleian Lirary, Oxford, who are providing digital images of the relevant documents.
The manuscript image [18] appearing in this paper was digitized for the Electronic
Boethius project by David French and Kevin Kiernan and is used with permission
of the British Library Board. The authors would like to thank Kevin Kiernan for
the introduction to the problem of concurrent hierarchies and inspiration. We would
also like to thank Dorothy C. Porter for useful comments, and Jerzy W. Jaromczyk
all the students working on the ARCHway project for useful discussions.

References

[1] A. Renear, E. Mylonas, D. Durand, Refining our notion of what text really is:
The prob lem of overlapping hierarchies, Research in Humanities ComputingN.
Ide and S. Hockey, (Eds.).

[2] C.M. Sperberg-McQueen, L. Burnard(Eds.), Guidelines for Text Encoding and
Interchange (P4), http://www.tei-c.org/P4X /index.html, the TEI Consortium
(2001).

[3] P. Durusau, M. B. O’Donnell, Concurrent Markup for XML Documents, in:
Proc. XML Europe, 2002.

[4] A. Witt, Meaning and interpretation of concurrent markup, in: Proc., Joint
Conference of the ALLC and ACH, 2002, pp. 145-147.

[6] P. Durusau, M. O’Donnell, Declaring trees: The future of the evolution of
markup?, in: Proc. Conference on Extreme Markup Languages, 2002.

[6] S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, J. L. Wiener, Incremental
maintenance for materialized views over semistructured data, in: Proc. 24th
Int. Conf. Very Large Data Bases, VLDB, 1998, pp. 38—49.

[7] W. May, Integration of XML data in XPathLog, in: DIWeb, 2001, pp. 2-16.

[8] W. May, Lopix: A system for XML data integration and manipulation, in: The
VLDB Journal, 2001, pp. 707-708.

27

[9] I. Manolescu, D. Florescu, D. Kossmann, Answering XML queries over
heterogeneous data sources, in: Proc. of the Int’l. Conf. on Very Large Databases
(VLDB) , Roma, Italy, 2001, pp. 241-250.

[10] C. Huitfeldt, C. M. Sperberg-McQueen,
TexMECS: An experimental markup meta-language for complex documents,
http://www.hit.uib.no/claus/mlcd /papers/texmecs.html (February 2001).

[11] C. M. Sperberg-McQueen, C. Huitfeldt, GODDAG: A Data Structure for
Overlapping Hierarchies, early draft presented at the ACH-ALLC Conference
in Charlottesville, June 1999 (Sept. 2000).

[12] K. Kiernan, J. Jaromczyk, A. Dekhtyar, D. Porter, K. Hawley, S. Bodapati,
I. Tacob, The ARCHway project: Architecture for research in computing for
humanities through research, teaching, and learning, Literary and Linguistic
ComputingForthcoming.

[13] K. Kiernan, A. Prescott, E. Solopova,
D. French, L. Cantara, M. E. (Eds.), C. Yuan, I. Tacob, Electronic Beowulf,
http://www.uky.edu/~kiernan/eBeowulf/guide.htm (2003).

[14] E. Solopova, Encoding a transcript of the Beowulf manuscript in SGML, in:
Proc. ACH/ALCC, 1999.

[15] W. Seales, J. Griffioen, K. Kiernan, C. J. Yuan, L. Cantara, The Digital
Atheneum: New Technologies for Restoring and Preserving Old Documents,
Computers in Libraries 20 (2) (2000) 26-30.

[16] P. R. (Dir.), Canterbury tales project,
http://www.cta.dmu.ac.uk/projects/ctp/ (1999).

[17] C. Sperberg-McQueen, D. S. (Eds.), A TEI-based tag set for manuscript
transcription, Digital Scriptorium.

[18] British Library MS Cotton Otho A. vi, fol. 38v.

[19] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler(Eds.), Extensible Markup
Language (XML) 1.0 (Second Edition), http://www.w3.org/TR/REC-xml,
w3C, REC-xml1-20001006 (Oct 2000).

[20] Simple API for XML (SAX) 2.0.1, http://www.saxproject.org, sourceForge
project (Jan 2002).

[21] A. L. Hors, P. L. Hégaret,
L. Wood, G. Nicol, J. Robie, M. Champion, S. B. (Eds.), Document Object
Model (DOM) Level 2 Core Specification, http://www.w3.org/TR/2000/REC-
DOM-Level-2-Core-20001113/, w3C Recommendation (Nov 2000).

[22] F. Tian, D.J.DeWitt, J. Chen, C. Zhang, The design and performance
evaluation of alternative XML storage strategies, SIGMOD Record 31 (1) (2002)
5-10.

28

[23] D. Florescu, D. Kossmann, A performance evaluation of alternative mapping
schemes for storing XML data in a relational database, Tech. Rep. Technical
Report #3680, INRIA (1999).

[24] W. W. W. Consortium, XML Path Language (XPath) (Version 1.0),
http://www.w3.org/ TR /xpath, w3C, REC-xpath-19991116 (Nov 1999).

[25] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, J. Siméon,
XQuery 1.0: An xml query language, world wide web consortium working draft,
http://www.w3.org/TR/2001/WD-xquery-20011220 (November 2003).

Appendix:Sample DTD

This Appendix contains the DTD used in the tests described in Section 5. The
root element of the CMH was rr.

<!ELEMENT rr (al*)>

<!ELEMENT al (b1, cil, f1)x>
<!ELEMENT bl ((c1, f1) | (gl, el)*)>
<!ELEMENT c1 (41 | f1)>

<!ELEMENT d1 (#PCDATA | el | f1)*>
<!ELEMENT el (f1 | i1)>

<!ELEMENT f1 (g1l | (h1?, i1))>
<!ELEMENT g1 (#PCDATA)>

<!ELEMENT h1 (#PCDATA)>

<!ELEMENT i1 (#PCDATA)>

29

