TECHNOLOGY REVIEW

Deborah S. Ray
and Eric J. Ray
Editors

DITA: An XMI -based
Technical Documenta-

tion Authormg and
Publishing Architecture

Michael Priestley, Gretchen Hargis, and Susan Carpenter

his column examines
I emerging technologies of
interest to technical com-
municators to help them identify
those that are worthy of further
investigation. It is intended neither
as an endorsement of any technol-
ogy or product, nor as a recom-
mendation to purchase. The opin-
ions expressed by the column
editors are their own and do not
represent the views of the Society
for Technical Communication. All
URLs and site contents were ver-
ified at the time of writing.

The Darwin Information Typing Ar-
chitecture (DITA) is a technical docu-
mentation authoring and publishing
architecture that is based on princi-
ples of modular reuse and extensibil-
ity. This article discusses how DITA
affects how we write, how we de-
sign, and how we process technical
documentation, and what benefits
the DITA approach can deliver that
traditional documentation strategies
cannot.

Over the past few years, XML
(Extensible Markup Language) has
gained popularity in the technical
writing profession by offering us a

logical and fairly straightforward
framework for developing structured
information. For technical communi-
cators, XML promises capabilities to
separate form from content; to use
specific, customized markup to de-
scribe content; and to use a standard
solution without depending on pro-
prietary tools or formats. The prom-
ised result of XML is documentation
that is reusable in any medium, use-
ful for specialized tools and for our
customers, and interchangeable with-
out depending on a particular au-
thoring environment.

XML in and of itself, however,
has not, to date, been a panacea in
our quest to achieve these goals; in-
stead, we often still struggle to de-
velop processes that realize the po-
tential of XML. In this article, we
introduce the Darwin Information
Typing Architecture (DITA), which
provides technical communicators
with an XML-based architecture for
authoring, producing, and delivering
technical information.

As you'll see, DITA goes further
than other currently available solu-
tions by allowing us to easily create
highly specialized structure and con-
tent, yet still retain interchangeability

352 Technica COMMUNICATION o Volume 48, Number 3, August 2001

and reuse of the content and pro-
cess. As a result, DITA helps solve
current problems in information de-
velopment, including those of infor-
mation reuse and information deliv-
ery in multiple media (single-
sourcing), and helps us maximize the
potential of XML for technical com-
municators.

In the following sections, we
provide a brief overview of terms
and concepts; describe the promise
of XML and its shortcomings; and
describe how DITA addresses con-
tent-, design-, and process-related
problems.

A BRIEF INTRODUCTION

TO MARKUP

LANGUAGES AND XML
If you are already familiar with XML
DTDs and XSLT as used for docu-
mentation, you can skip to the next
section. Otherwise, read on for a
brief introduction to the principles of
markup languages in general, and
XML and related standards in
particular.

A markup language is a set of
start and end tags you can use to
“mark up” text with additional infor-
mation about your content—for ex-
ample, <xmp>the xmp tag set tells
processes that this text is part of an
example<</xmp >. This information
can be used for

@ Displaying the text, to apply dif-
ferent fonts and styles to differ-
ent types of information

@ Processing the text, to extract
particular subsets of the informa-
tion for particular uses

@ Scarching the text for particular
kinds of information

XML is a standard for defining
markup languages. XHTML (Extensible
HTML) is an example of an XML-com-
pliant markup language, as are WML
(Wireless Markup Language) and Doc-
Book. XML is a streamlined version of
SGML (Standard Generalized Markup
Language), an older and broader stan-
dard for defining markup languages.

TECHNOLOGY REVIEW

Priestley, Hargis, and Carpenter

While this article will concentrate on
XML, most of the issues noted here, as
well as most of the solution, could be
applied using SGML.

An XML document type defini-
tion (DTD) is a file that defines the
allowable markup and markup rules
for a particular markup language. For
example, XHTML's DTD defines
<head > and <body > elements,
and says that you can’t put <head >
after <body >. The core of the XML
standard is really just a set of rules
and guidelines for creating DTDs.

An XML document, for the pur-
poses of this article, is any marked
up document that points to an XML
DTD to describe what markup rules
it is following.

A stylesheet (Cascading Stylesheet
[CSS] or Extensible Style Language
[XSLD is a mapping of XML elements
(tag sets) to display properties. For
example, a stylesheet could say that
<xmp> content should be displayed
using the Courier font.

An XSLT transform is a mapping
of one XML structure to another XML
structure or to plain text. This allows
you to transform your XML source
into an HTML or Acrobat PDF file, or
create summaries and indexes and
links automatically.

Figure 1 shows how the different
parts of an XML solution fit together.

In this article, we describe how
information architecture can follow
this same basic scheme, but rework
the elements into a system designed
to support more reuse, faster deploy-
ment, and easier maintenance.

THE PROMISE OF XML
XML has been touted as the philoso-
pher’s stone of technical writing—
able to turn documentation into gold
with the application of three simple
principles:

@ Separate form from content, so
you can reuse the same content
with different presentation me-
dia. For example, the <exam-
ple > tag describes content,

XML-based Technical Documentation Architecture

HTML

XML
document

PDF

Figure 1. XML documents created
following the rules in a DTD can be

processed with XSLT transforms to
create different outputs.

while <font name =

“courier” > describes form

(presentation).

@ Use specific markup to de-
scribe your content, so you can
apply presentation styles intel-
ligently, mine information for
later reuse, and allow intelli-
gent online search. For exam-
ple, if your markup distin-
guishes a task <step >, then
users can search for the text
string address, wherever it oc-
curs in a task step, to retrieve a
short list of tasks they might
have to repeat when their ad-
dress changes. While the same
results could be retrieved with
simple text search, the good
hits could be buried in thou-
sands of irrelevant matches.

¢ Use a standard solution, so
your information can be easily
exchanged with others, without
dependencies on particular
authoring tools or proprietary
formats. For example, WML for
wireless applications and
XHTML for Web information
provide these exchange
abilities.

The promised result is documenta-
tion that is reusable in any media, use-
ful for specialized tools and for your
customers, and interchangeable with-
out dependencies on a particular au-
thoring environment or proprietary
format.

THE REALITY GAP
The problem with the three simple
principles is that they’re not that sim-
ple. XML documentation solutions,
like SGML solutions before them, can
be expensive to implement and
maintain; and promises are not al-
ways what they seem.

The problem of form

versus content
Although this is a much-hyped and
fundamentally accurate separation,
the fact is that “form” isn’t just about
fonts and page breaks; it is also
about structure. You can take the
font information out of a book, but if
you leave the content in a foreword-
chapter-appendix structure, it’s still
going to look like a book when it
goes online. Many of the most popu-
lar or commonly used documenta-
tion DTDs today are actually book
DTDs or helpset DTDs. They mix
presentation structures with content-
specific markup, until the best you
can hope for is a book that looks
nice online, or a helpset that prints
nicely from a browser.

The problem with

specific markup
A heavy-duty documentation DTD
can take years to develop (and usu-
ally does) and is heavily dependent
on your environment, your needs,
and your special cases. Once you
have your specific markup, you still
have to develop those intelligent ap-
plications and data mining tools that
take advantage of your markup. And
what happens when your needs
change, or your understanding of the
information evolves and your
markup doesn’t support your new
requirements?

In the world of software docu-
mentation in particular, where whole
categories of information appear and
disappear within the span of a year,
a heavy upfront investment in analy-
sis and tools can be untenable, espe-
cially if those categories will evolve

Volume 48, Number 3, August 2001 ® Technica COMMUNICATION 353

TECHNOLOGY REVIEW

XML-based Technical Documentation Architecture

and change and require rewriting of
the tools and processes you spent so
much time developing.

The existing model of DTD de-
velopment seems geared for heavy
upfront investment and long-term
payoffs; but these assumptions ring
false in the world of technical com-
munication, where technologies can’t
wait to be documented, and analyses
have a useful half-life of a year or
two at most, not decades. So despite
the promise, many people using XML
or SGML for documentation simply
pick a general DTD, use existing
tools, and forget about the promise
of specific markup.

The problem with

standard solutions
Although XML is a standard, most of
the markup languages created with it
are not. If you use one of the stan-
dards (for example, XHTML or
WML), you usually get something
that is not content specific (
rather than <step >). In other
words, when you create a new
markup language (using XML to de-
fine its markup and rules), you shut
yourself off from interchange with
the rest of the world; when you
adopt a standard markup language,
you lose the benefits promised by
content-specific markup.

If you want useful markup (that
is, markup specific to your content),
you need to spend a lot of time on
upfront analysis and need to create
custom tools. Existing solutions often
have formatting structures embedded
in them, and those formatting struc-
tures create a customization cost
even when they are specific enough
in their markup. And the more
widely supported a markup language
is, the less likely it is to be useful for
your specific content.

That’s the tradeoff. The more
useful your markup is to you, the
more it will cost you, and the fewer
people there will be to share those
COsts.

THE SOLUTION: DARWIN
INFORMATION TYPING
ARCHITECTURE
It is possible to get the benefits with-
out the tradeoffs, but this reward re-
quires some serious thinking about
what your content is, how you cate-
gorize it, and what you do with it.

We propose the XML-based Dar-
win Information Typing Architecture
(DITA) as an end-to-end architecture
for creating and delivering modular
technical information. This architec-
ture consists of a set of design princi-
ples for creating information-typed
topic modules and for using that
content in various ways, such as on-
line help and product support portals
on the Web. At its heart, DITA is an
XML DTD that expresses many of
these design principles. The architec-
ture, however, is the defining part of
this proposal for technical informa-
tion; the DTD, or any schema based
on it, is just an implementation of
the design principles of the
architecture.

As you'll see in the following
sections, this solution has three parts:
Fix the content—Authors need
to rethink how to write content

to thoroughly separate form
from content.

@ Fix the design—Architects need
to rethink how to classify and
design information, to reduce
the cost of upfront analysis and
ongoing maintenance for con-
tent-specific markup.

@ Fix the process—Programmers
need to rethink how to create
transforms and processes, to
allow content-specific informa-
tion to be exchanged, and
to make it easier to create
and maintain specialized
processes.

You can implement these con-
cepts by using the DITA DTDs, XSLT
transforms and other supporting in-
formation available on the Web, and
any XML and XSLT tools at your dis-
posal, including a variety of freely

354 Technical COMMUNICATION e Volume 48, Number 3, August 2001

Priestley, Hargis, and Carpenter

available or open-source implemen-
tations. In the next sections, we’ll
discuss strategies for each of these
three areas—fixing content, design,
and process—and explain how DITA
supports these strategies.

FIX THE CONTENT

How can technical writers write so
that the content is reusable and not
oriented toward a particular presen-
tation, such as a book? One aspect of
the solution to the reuse problem is
to fix the content. Writers must see
beyond a linear or sequential presen-
tation when they write the content.

Ditch the book as

the basic structure
Many technical writers start a writing
project by forming an outline. They
use containers such as parts and chap-
ters, and drill down on each major
content area, subdividing some sub-
jects into at least two other subjects.

Arranging information in a linear
structure usually proves both chal-
lenging and awkward. For example,
the first chapter in a book might set
the stage for the whole book and not
just for the next chapter. The first
subject in a chapter might set the
stage for the whole chapter and not
just for the next subject. When writ-
ing in a linear structure, writers must
force subjects into order, even
though some subjects could fit in
different places. Writers often pick
the order that flows best for most of
the material and that requires the
least repetition and cross-referencing.
Writers might add advance organiz-
ers, overviews, summaries, or some
combination of these features to help
clarify the flow and make sense of
the order for users.

Information written for a linear
structure tends to explicitly receive the
strand of meaning from the preceding
subject and pass the strand to the next
one. This type of information also of-
ten refers to more distant subjects
within the same linear structure. These

TECHNOLOGY REVIEW

Priestley, Hargis, and Carpenter

—

Q,pim
/

N
\

1A
Subtopic
\ 1B

Subtopic ™\
1c

—

/su

- - ubtopic
‘/'(\\ A
Topic 2

Figure 2. A network of subjects shows
connections among them.

transitions and cross-references mean
that a subject is not independent. Writ-
ers have a hard time rearranging the
material for different presentations,
and users who come into this structure
somewhere other than at the begin-
ning can be confused.

A network of subjects, as shown
in Figure 2, is less artificial and rigid
than a linear structure. Such a net-
work consists of nodes (for the sub-
jects) and connections, which show
relationships between the nodes. In
a network there is obviously more
than one path from start to finish,
and more than one place to start or
to finish. Although less tidy, a net-
work more closely resembles, ac-
cording to educational theory, the
way that people actually store
knowledge. This representation is
related to concept maps, semantic
networks, and knowledge maps,
which might add labels (such as cre-
ates or causes) to the connections to
clarify the relationships.

The network also more closely
resembles the way that users actually
retrieve the information. The place at
which a user enters the document
can easily be different for different
users with different needs.

Write chunks of information
An alternative to forcing a linear struc-
ture on inherently nonlinear informa-
tion is to write chunks (or topics) of
information. Each chunk treats a spe-
cific subject, signified by its title.

In this approach, each chunk is a

XML-based Technical Documentation Architecture

discrete entity. It can stand alone
because it does not explicitly indi-
cate that users arrived there by a par-
ticular route or that users will read a
particular chunk of information next.
The chunk is untethered—that is, it
has no sentence or paragraph at the
start to tie it backward and no sen-
tence or paragraph at the end to tie
it forward. It has no lead-in such as
“As you saw in the last chapter” or
references to parts of other topics
such as “in Figure 10 of Chapter 4.”
The subject of a chunk should
be small enough that it can be
treated within a few paragraphs,
which is an amount that a user can
reasonably read online without hav-
ing to scroll more than a single
screen. A subject that would be ap-
propriate for a chapter in a book is
too long for a topic. The subject
should also be large enough that us-
ers are likely to find the information
that they need. One sentence or
even one paragraph is probably too
short. A subject that is at the third or
fourth level of a traditional outline is
probably appropriate in length.
So a chunk (or topic) has these
characteristics:
¢ One subject, signified by the
title
¢ Wording that is independent of
any other topic
¢ Appropriate length to treat the
topic adequately yet not require
lots of scrolling
Topics, then, can be freely com-
bined as appropriate for various
needs. For example, topics A, B, and
C could be used in a task-oriented
presentation or as B, C, and A in a
different task-oriented presentation.
With the addition of overviews as
topics, topics can then be collected
again in even a book format, as
shown in Figure 3.
Although a topic is not locked into
a particular sequence, it does have
relationships to other topics. These
relationships are based on organiza-
tions that a writer might want to im-

Figure 3. A book can be a collection
of topics in a hierarchy.

pose, such chronology, frequency,
comparison, or priority. Some, if not
most, relationships can be stored in
the delivery context and thus be acces-
sible to readers. For example, if a
writer is developing online help, the
relationships can exist as a page with
links—in the appropriate order—that
refer to the topics, thus providing any
alternative structure that the writer
wants to deliver.

Categorize topics by

type of information
When writing software manuals,
technical writers have historically
distinguished task-based instructions
(guidance information) from refer-
ence information. The content and
organization of a user’s guide, for
example, is different from the con-
tent and organization of a reference
manual. By writing topics, however,
you can make finer-grained distinc-
tions about the type of information
that a user can expect than just at
the level of the whole document.

A topic can contain task informa-
tion, concept information, or refer-
ence information. Each of these
(task, concept, reference) is a spe-
cialized type of information and
shares the characteristics of a topic,
but each type has its own distin-
guishing features (Figure 4).

Task (or procedure) information
contains steps describing how to do
something. The instructions typically
take the form of a numbered list
with an imperative sentence for each
list item. Additional information for a

Volume 48, Number 3, August 2001 ® Technica COMMUNICATION 355

TECHNOLOGY REVIEW

XML-based Technical Documentation Architecture

Topic

l ﬂ

Task Concept

Reference

Figure 4. A task, concept, or reference
is a specific type of information, each
of which also shares the characteristics
of a topic.

task might include:

Rationale for the task: why or
when a user would want to per-
form this task

¢ Prerequisites for the task: what a
user should do before perform-
ing this task

@ Responses to the actions: what
the user should see as a result of
doing the action

¢ Examples: examples of what
information to enter or what to
do

@ Postrequisites for this task: what
to do next after this task is
completed
A task is usually the right size for

a topic. If a task runs into tens of
instructions, it should be broken
down into meaningful parts that a
user can reasonably accomplish
without feeling overwhelmed.

The second main kind of infor-
mation is a concept. A concept is an
extended definition of a major ab-
straction such as a process or func-
tion. It might also include an exam-
ple and a graphic, but otherwise
there are not many parts to a
concept.

The last major type of informa-
tion is reference, which is factual in
nature. It includes properties and
syntax. The breakdown of reference
information is often prescribed by
conventions, such as those used in
documenting a programming
language.

Multiple outputs

Single source

Information

HTML processing| e

SGML
(book files +
conditional
coding)

PDF processing Pnb?)t:iale

PostScript Printed
processing book

Figure 5. Processing book files as the
single source for multiple outputs.

These types of information are
media-neutral. That is, an informa-
tion type can be presented in any
form. By contrast, a chapter, part, or
appendix makes sense only as part
of a book. Topics made up of these
information types can be assembled
into various forms, including helpsets,
information webs, or books.

Provide multiple outputs

to multiple contexts
Many technical writers have tried to
use their book files as a single
source for multiple outputs such as a
user’s guide (in PostScript or PDF)
and an information web (in HTML),
as shown in Figure 5. Although it
might be relatively easy to specify a
file format to export to, a different
file format is usually not all that’s
needed. The optimal organization of
an information web, for example, is
different from that of a book. Simi-
larly, only certain files or parts of
files might be needed for certain out-
puts, reflecting the specialized types
of audience or product.

The means for achieving multi-
ple outputs from a single source has
historically been tortuous for writers:

¢ Conditional coding to control
what'’s included and what isn’t
for the type of output and for
the type of audience or product

¢ Conversion tools (or transforms)
to produce the right output in
the right format (such as HTML
in frames for a web and PDF for

356 Technical COMIMUNICATION e Volume 48, Number 3, August 2001

Priestley, Hargis, and Carpenter

Single source Multiple contexts

Information web.
A f—
1,2

Print A:

@ -
Information web
B: s
2,3,4

Figure 6. Processing XML topics as
the single source for multiple contexts.

a printable book)

The conditional coding (usually
supported by homegrown tools) is
stored with the content and gener-
ates more and more programming
requirements to untangle the right
pieces for the right output. For ex-
ample, for a product that is available
on more than one operating system,
a particular function might have
some variations by platform; docu-
menting the right variation for the
output by platform can require con-
ditional coding even of sentences
and parts of sentences. With each
new output, the source becomes
more complex and more difficult to
maintain.

Topics (written according to the
guidelines in this article) offer the
possibility of a single source that
writers can combine in many differ-
ent delivery contexts. By listing the
appropriate files, you can collect the
necessary topics for a particular de-
liverable. So instead of having a sin-
gle large book that you process
twice to produce two outputs, you
have a single collection of topics
with two different sets of selection
criteria. The same task topic, for ex-
ample, can be part of several differ-
ent information webs and several
different printable or printed docu-
ments, as shown in Figure 6.

Topics free you from having to
concentrate on the output or the me-
dium as you write. Instead, you can
concentrate on writing good chunked

TECHNOLOGY REVIEW

Priestley, Hargis, and Carpenter

information on specific topics based
on appropriate information types. The
reuser (such as an information archi-
tect, information designer, or even a
program) is responsible for assembling
the topics to fit the need.

A business procedure for prepar-
ing an expense report shows several
of the parts of a task topic, as in
Figure 7.

What do chunking and

information typing gain you
In summary, chunking and informa-
tion typing have several benefits for
writers and for users. As a writer,
you benefit in these ways:

@ You can write stand-alone chunks
of typed information once rather
than the same information several
times in different formats.

¢ You can provide for new reuse
contexts without having to
change the source.

¢ You can update the single source,
and have the updates picked up
automatically wherever the source
is used. This technique is called
reuse by reference.

Similarly, users benefit in these ways:

@ Users get information that is
clearly organized as tasks, con-
cepts, or reference, and the in-
formation is delivered in chunks
that they can easily use.

@ Users can take advantage of in-
formation that is appropriate to
them and their situation (assum-
ing that presentation methods
can mediate more effectively
between the XML and the user
than in the past).

@ Users can get up-to-date infor-
mation sooner because less time
is needed to produce it.
Information-typed topics support

reuse by default. You would have to
break the information type architecture
to thwart reuse. Furthermore, adding a
reuse context does not increase the
overall complexity of the information.
The information stays simple, at least
from each perspective.

XML-based Technical Documentation Architecture

Using this information-typed topic
as a basis for writing content can fix
the content problem and separate form
from content; however, to realize the
full potential of XML and implement
the DITA proposal, the design and
processes must also be fixed. The fol-
lowing section describes how to ad-
dress the information design.

FIX THE DESIGN

How can we make new types of in-
formation easier to define? Architects
don’t have years to spend on DTD
design, especially not a design that
will require multiple revisions over
the following years, with each revi-
sion requiring more investment in
tools and processes. We need a way
to define new types of information
more quickly and more effectively,
so we can get the benefits of con-
tent-specific markup for our authors

Preparing an expense report

Before you start, have the following handy:

* [Itinerary from the travel agent

and our users. But we need to do so
in a way that still allows interchange
with other groups, and reuse of com-
mon tools and processes.

Easy typing
DITA provides the basic structure for
documents corresponding to the
three information types discussed
earlier in this article (tasks, reference,
and concepts). However, you will still
probably need more specific or more
specialized markup to address charac-
teristics of your tasks, reference, or
concepts that are unique to your
needs or context. To do this, you will
still need to create a “new” information
type, but DITA gives you a head
start.

DITA doesn’t eliminate all the
work required to create a new docu-
ment type. You still need to create a
DTD, and before you do that, you

Task title

Prerequisites

* Airplane ticket stubs or e-ticket confirmation number

* Meal receipts totaling more than $25 total

* Transportation receipts {car rental contract or taxi receipt)

1.

N

If you traveled internationally, find the exchange rates for the
days that you traveled at http://sample.only.com/travel. This
information will be requested later.

. Using the GETPAID accounting tool, enter information about
your trip. GETPAID is available from Jane Doe in IT

a. On the itinerary, find the trip reference number. Type it in
the Trip number field and press Enter.
This action transfers itinerary information into the form.

b. On subsequent pages, enter additional information as
requested.

c. On the last page, click Finish.

The tool displays a summary report and saves it to the hard
disk as an HTML file.

. Using a Web browser, submit the report. Your browser must
support Java 1.2.2.

a. Open the newly created HTML file and verify the
information

b. If all is correct, click Submit. Otherwise, return to the
GETPAID step.

This action submits the report to the accounting system and
requests a paper copy from your default printer.

4, Send the paper copy with receipts to John Doe in Accounting

If you do not receive a confirmation within two weeks, contact John
Doe at (800) 655-1212.

Step

Step

Substep

Result

Substep

Substep
Result

Step

Substep

Substep

Result

Step

Postrequisite

Figure 7. A business procedure shows several characteristic parts of a task topic.

Volume 48, Number 3, August 2001 ® Technicat COMMUNICATION 357

TECHNOLOGY REVIEW

XML-based Technical Documentation Architecture

still need to analyze your information
and figure out what markup the DTD
should allow. But DITA does make it
easier to define DTDs.

First, you can concentrate on
topic types rather than entire
document architectures. The
rules within a single topic are a
lot easier to analyze than the
rules that might apply across an
entire book or web.

¢ Second, using a technique DITA
calls specialization, you can cre-
ate new topic types relative to
an existing topic type: so instead
of defining all the markup you’ll
need and all the rules that ap-
ply, you need only to define the
delta: the new elements and
rules you require.

A complete documentation DTD
can have thousands of elements. In
DITA, we make do with about a hun-
dred, most of them already familiar
from HTML: simple elements like
<p> for a paragraph and for a
list item. Then we specialize these to
create more specific elements for tasks,
concepts, or reference topics. For ex-
ample, in a task, becomes
<step > or <substep > or
<choice > (all variants of a list item),
and rules state where each of those
elements is allowed inside a task.

Taking the next step and defin-
ing a new type of task (specializing
task) might require five new ele-
ments. Once you know which ele-
ments you need, a new DTD file can
be written in about ten lines (two for
each element). That’s less analysis
than would be required for a com-
plete document type analysis be-
cause you're looking only at single
topics, and it’s less analysis than
would be required to create a topic
type from scratch because you're
reusing a hundred-odd elements
from the existing definitions of what
a topic is and what a task is. Figure 8
shows how a specialized task relates
to the task information type dis-
cussed above.

Topic

Concept Task Reftopic

bctask

Figure 8. Specialization of the
information type Task creates a new
kind of task, called bctask.

Low-cost design
You now have a way to define new
types of information more quickly and
easily by restricting your analysis to
the topic level, and by reusing existing
design work that works at more gen-
eral levels. This strategy reduces the
cost of entry for content-specific
markup, which makes it easier for you
to deliver advanced functions like in-
telligent search to your users. But it
can also reduce the cost of mainte-
nance: because the new task type re-
uses the more general designs by ref-
erence, it automatically picks up
enhancements made to the more gen-
eral types that it specializes. Specializa-
tion also lets you manage groups of
related types by making changes to
their common ancestor, instead of
maintaining each instance separately.

Specialization can also reduce
the cost of changing a type: as we'll
discuss later, processes you create to
work with a specific type will auto-
matically work with its child types.
So if you need to enhance a type to
meet new requirements, you can
simply create a new specialized type
based on the existing one, and start
using it immediately: all your tools
and processes will continue working
without any extra maintenance.

If this scheme sounds like the
inheritance feature in object-oriented
systems, that's because it’s very simi-

358 Technical COMMUNICATION e Volume 48, Number 3, August 2001

Priestley, Hargis, and Carpenter

lar. In both cases, you're reusing a
general design to create more spe-
cific designs, using a hierarchy with
general types at the base and specific
types at the ends of the branches. So
when an ancestor type gets edited,
its descendant types pick up the
changes automatically. The key dif-
ference is that while inheritance lets
you add new kinds of information in
child classes, specialization only lets
you more closely define the kinds of
information you already have.

For example, in inheritance
terms, there would be nothing
wrong with adding an extra level of
steps to a new task type (steps,
substeps, subsubsteps, and so on).
But in specialization terms, since
such structures aren’t allowed in
the parent type, they can’t be al-
lowed in the child type. The con-
tent that you allow in a child type
must be the same as or a subset of
the content that you allow in the
parent type.

This restriction is important be-
cause it vastly widens your reuse
community. You can share your
content not only with your immedi-
ate community (those who need
the same specific markup that you
do) but also with a larger commu-
nity of people (or processes) who
care only about your content’s
more general features. This larger
community can use your content
because they have a guarantee that
what you’re providing is a subset
of what they already know how to
handle.

For example, here is one branch
of the hierarchy showing the special-
ization levels for a customized busi-
ness process task:

¢ Topic—anyone can share con-
tent and all processes

¢ Tasks—people who care

about how-do-I information
and task-specific processes

¢ Business-control tasks—people

who care about business tasks
and their processes

TECHNOLOGY REVIEW

Priestley, Hargis, and Carpenter

¢ My business tasks—people

within my particular com-

pany or group, and our spe-

cific processes
The further down the hierarchy you
are, the more specific your design
and the more useful your content
can be to you. But being far down
the hierarchy doesn’t lock anyone
out: people with more general con-
cerns can access your information as
the ancestor type that makes sense
to them. They don’t lose access to
your information, and you don’t
lose access to their tools and pro-
cesses.

The way specialization works
We'll discuss later how to make tools
and processes that can be reused on
different types. For now, let’s look at
how DITA supports specialization
and how you can create new types
based on DITA using specialization.

DITA distinguishes between
DTD files and DTD modules. DTD
files provide all the information you
need to create a topic of a particular
type. DTD modules store only snip-
pets of DTDs that contain the unique
markup for a particular type. Each
type gets its own module, which de-
fines the markup that is unique to
that type. That’s all you need when
you're defining the type (which
keeps the file short), but it’s not
enough for your authors. They need a
real authoring DTD that pulls in both
the specialized elements for the new
type and the more general elements it
reuses it from ancestor types.

An authoring DTD can pull in
other DTD and module files dynami-
cally (that is, by reference). When an
XML tool (like an editor or a parser)
encounters an external entity refer-
ence in a DTD, it pulls in the refer-
enced file and treats it as part of the
DTD. This is important functionality
for DITA, because it lets you split
your DTD into chunks based on
topic type and maintain each chunk
in a separate module. This approach

XML-based Technical Documentation Architecture

lets you get the type maintenance
you need: you can manipulate gen-
eral characteristics of your types by
editing the elements in the ancestor
modules, and you can tweak specific
characteristics of your types by ed-
iting the elements in the child mod-
ules. This lets you choose what
markup is shared across some or
all your types, and what markup is
specific to a single type. Even
though each module defines only
part of a full DTD, assembled to-
gether they define a complete topic
type.

For example, to define the DTD
for a new task type (bctask), you
need modules for the topic (topic.
dtd), for the task (task.mod), and
for the new specific type (bctask.
mod). You can make the process a
little simpler by just pulling in
task.dtd (which will pull in top-
ic.dtd for you) and bctask.mod
This also helps insulate you from any
changes further up the hierarchy: for
example, if topic.dtd were
changed, you wouldn’t be directly
affected, since you need to reference
only task.dtd | which in turn refer-
ences topic.dtd

The three information types dis-
cussed (task, concept, and reference
or reftopic) form the base of a hier-
archy of types that you can add to.
When you add a new type to the
hierarchy, you need to

1. Identify the elements that you
need.

2. Identify the mapping to ele-
ments of a more general type.

3. Verify that the content mod-
els of specialized elements are more
restrictive than their general equiva-
lents.

4. Create a module file that
holds your specialized element and
attribute declarations.

5. Create an authoring DTD file
that imports the new type modules,
and the modules for its ancestor types.
The ancestor type modules can be
referenced either directly, by referenc-

ing each of their module files, or indi-
rectly, by referencing the authoring
DTD for the parent type only.
For example, for a new task type
(bctask), that specialized task
would need the following files:
bctask.mod —declares
bctask -specific elements
¢ bctask.dtd —embeds
bctask.mod and task.dtd
The modular format lets you easily
assemble an authoring DTD that in-
cludes the topic types that you need.
The DITA package includes author-
ing DTDs for each individual type,
plus an authoring DTD for creating
compound documents.

By following these conventions
when you create a new topic type,
you should

¢ Reduce the cost of entry by mak-
ing it easier to define a new type

@ Reduce the cost of maintenance
by making it easier to maintain
types, and type hierarchies

¢ Reduce the cost of exiting the
type by allowing easy specializa-
tion from your existing type to
even more specialized types

A topic with a specialized type is
still, conceptually, a topic of a more
a general type as well. That is, a spe-
cialized task is still a task and still a
topic; and a Java API description is
still an API description, still a refer-
ence topic, and still a topic. The
more specific types are subsets of
the more general types.

This type of relationship exists
not only at the topic type level, but
also at the individual element level.
A specialized kind of task step is still
a kind of step, which is still a kind of
list item. These equivalencies are
very important for allowing inter-
change at more general levels (you
may care that an element is a step,
but someone else may need to know
only that it’s a list item), and also for
allowing reuse of processes (many
processes will care only about list
items, and may not know about
steps at alD).

Volume 48, Number 3, August 2001 ® Technica COMMUNICATION 359

TECHNOLOGY REVIEW

XML-based Technical Documentation Architecture

Preparing an expense report

Eefore you start, have the following handy:

ftinerary from the travel agent

Airplane ticket stubs or e-ticket confirmation number
Meal receipts totaling more than $25.00

Transportation receipts: car rental contract or taxi receipt

1. Ifyou traveled internationally, find the exchange rates for
the days you traveled at hitp:/fsample.only.comitravel. This
information will be requested later.

2. .ﬁ Using the GETPAID accounting tool, enter information

GETPAID is available from Jane Doe in I7.]

a. Onthe itinerary, find the trip reference number. Type
itinthe Trip number field and press Enter.
This action transfers itinerary information into the

form.

b. Onsubsequent pages, enter additional information

as requested.

c. Onthe last page, click Finish.
The tool displays a summary report and saves itto
the hard disk as an HTML file.

Figure 9. Specialized content allows specialized display.

While it’s pretty easy for humans
to figure out the type hierarchy (fig-
uring out that bctask is a task is a
topic isn’t very hard work), XML
tools and processes aren’t as smart.
Class or type hierarchies aren’t things
that XML currently does very well.
To make the equivalency between a
type and a subtype available to pro-
cesses that need to work on one
level or the other, the mapping be-
tween general and specific elements
needs to be stored somewhere.

The answer is to store the infor-
mation as default attribute values for
each element type. The default val-
ues will be treated as if they’re there
in every XML document that refer-
ences the type DTD. For example,
here are three increasingly special-
ized versions of a list item (showing
the spec attributes, though an author
wouldn’t necessarily see them):

1. This element is part of
a topic.

2. <step spec =" topic.li
task.step ” >This element is part
of a task, but can be treated as part of
a topic.</step >

3. <appstep spec =
“ topic.li task.step

bctask.appstep ” >This element
is part of a specialized task, but can
be treated as part of a general task,
or as part of a topic.</appstep >

And here’s the actual DTD decla-
ration for the spec attribute for
<appstep >:

<IATTLIST appstep spec
CDATA “ topic.li task.step
bctask.appstep ” >

This spec attribute is the key to
two of the biggest promises of DITA:
the ability to interchange information
in a wider community, and the ability
to define a new topic type and still use
processes that were created for a more
general type. No matter how special-
ized your type is, it always maps all
the way up to simple topic structures,
and thus it’s interchangeable with any-
one else using DITA. And no matter
how specialized your information is,
you can still use any of the general
processes and transforms that apply,
such as publishing to HTML or prepar-
ing a PDF file.

Right now, DITA is still in its
infancy, and there aren’t actually a
lot of processes around to be reused.
But the architecture is in place, and
processes will follow. The good

360 Tcchnical COMMUNICATION e Volume 48, Number 3, August 2001

Priestley, Hargis, and Carpenter

news is that when they come, even
though they weren’t written with
your specialized types in mind,
they’ll still work on your content be-
cause of the spec attributes.

Extended example:

bctask.dtd

Earlier, we discussed a sample
task: how to complete an expense
report. The basic structure of that
task is as follows:

1. What you need before you
start (prerequisite items or tasks)

2. Steps for this task

3. Follow-up after this task is
completed (post-requisites)

For this example, we've chosen to
distinguish steps that involve software
from other kinds of steps, presumably
because employees need to know
where to get these tools to use them.
For “application steps,” a small com-
puter graphic indicates that the step
requires software. Alternative text for
the graphic indicates the name of the
tool and where to get it. Figure 9
shows how the final product looks.

To implement this design in a
DTD module, we extended the task
info-type to create a specialization
called bctask (for “business-control
task”). We added one element for
the new step type, appstep (an
extension of the step element) and
one for appdesc , which includes an
attribute for the alternative text. Its
label attribute is used in the XSL
script to select the correct graphic.
Figure 10 shows a snippet from the
DTD module.

We also had to implement the
container elements up to and includ-
ing the info-type container, as
shown in Figure 11.

Then we included specialization
attributes for each of these elements
so that existing XSL scripts for the
task info-type could be used, as
shown in Figure 12.

The result is an XML DTD mod-
ule that defines five elements and
their attributes but can be com-

TECHNOLOGY REVIEW

Priestley, Hargis, and Carpenter

XML-based Technical Documentation Architecture

<!ELEMENT appstep
stepresult?) >

<!ATTLIST appdesc
suniv-atts;>

<!-- new step type and description -->

(cmd, appdesc,

(info|substeps|taskxmp | choices) *,

< !ELEMENT appdesc #PCDATA)* >

label (SAP|Web|Notes|Custom)

“Web "

Figure 10. An excerpt from a DTD module defining specialized elements.

bined with the more general types
to create an XML document that
looks like Figure 13. The special-
ized element names are in bold; all
the other elements are reused from
task or topic.

Only a few of the elements are
actually defined by bcstep ; most of
them are just reused from task, or
even from topic. The spec attributes
aren’t shown because they don’t
need to be there: as long as they are
defined in the DTD, XSLT (XSL
Transformation) processors will treat
them as if they’re present.

The advantages of specialization
In summary, specialization offers
several benefits:

¢ You have to do less up-front
analysis.

¢ Because of general categories,
you can share information with
wider groups.

#® Because of specific categories,
you can concentrate on meeting
your audience’s needs.

¢ Because of reuse by reference,
your information can remain
compatible, even when the gen-
eral categories evolve.

FIX THE PROCESSES
How can we make it easier to create
the processes you need for your spe-
cialized markup? We’ve discussed
how processes can make use of the
spec attribute to allow specialized
content to reuse general processes,
but that's not enough. We also need
to make it easier for you to create
new processes so that you can get
the benefit of your new markup with
as little investment as possible.

In this section, we’ll cover in
more detail how general processes
can work on specialized content, and

< !ELEMENT bctask

$univ-atts;>

postreg?) >

<!ELEMENT bcsteps
<!ATTLIST bcsteps

(title,
<!ATTLIST bctask appid CDATA #IMPLIED
id CDATA #REQUIRED

<!-- specialize the task element to include bctaskbody -->
($info-types;)*)>

prolog?, bctaskbody,

<!-- gpecialize the taskbody element to include bcsteps -->
<!ELEMENT bctaskbody

(prereqg?, context?,

<!ATTLIST bctaskbody %univ-atts;>
<!-- specialize the steps element to include appstep -->

((step|appstep)*) >
guniv-atts; >

bcsteps?,

result?, xmp?,

Figure 11. Implementing additional custom elements in a DTD.

bctask.bctask “

<!ATTLIST bcsteps
bctask.bcsteps ™
<!ATTLIST appstep
bctask.appstep “
<!ATTLIST appdesc
bctask.appdesc “

<!ATTLIST bctaskbody spec CDATA “ topic.body
bctask.bctaskbody “ >

<!-- specialization attributes -->
<!ATTLIST bctask spec CDATA “ topic.topic task.task

spec CDATA “ topic.ol task.steps
>
spec CDATA “ topic.li task.step
>
spec CDATA “ topic.ph task.info

>

task.taskbody

Figure 12. Adding specialization attributes for new elements to allow generic transforms to handle custom elements.

Volume 48, Number 3, August 2001 ® Technicat CONMMUNICATION 361

TECHNOLOGY REVIEW

XML-based Technical Documentation Architecture Priestley, Hargis, and Carpenter

<?xml version="1.0"7?>

<!DOCTYPE bctask SYSTEM “bctask.dtd”>

<bctask id=“sample”>

<title>Preparing an expense report</titles>

<bctaskbody>

<prereqg>

<p>Before you start, have the following handy:

Itinerary from the travel agent</lis>

Airplane ticket stubs or e-ticket confirmation number</lis>
Meal receipts totaling more than $25.00</1li>
Transportation receipts: car rental contract or taxi receipt</lis>
</uls>

</p>

</prereg>

<bcsteps>

<step>

<cmd>If you traveled internationally,

find the exchange rates for the days you traveled at
http://sample.only.com/travel.

This information will be requested later.</cmd>

</step>

<appstep>

<cmd>Using the GETPAID accounting tool, enter information about your
trip.</cmd>

<appdesc label=“Custom”>GETPAID is available from Jane Doe in
IT.</appdesc>

<substeps>

<substep>

<cmd>On the itinerary, find the trip reference number.

Type it in the Trip number field and press Enter.</cmd>

<info>

This action transfers itinerary information into the form.
</info>

</substep>

<substep><cmd>On subsequent pages, enter additional information as
requested.</cmd>

</substep>

<substep>

<cmd>On the last page, click Finish.</cmd>

<info>The tool displays a summary report and saves it to the hard disk
as an HTML file.

</info>

</substep>

</substeps>

</appstep>

<appstep>

<cmd>Using a Web browser, submit the report.</cmd>
<appdesc>Your browser must support Java 1.2.2.</appdesc>
<substeps>

<substep>

<cmd>Open the newly created HTML file and verify the information.</cmd>
</substep>

<substep>

<cmd>If all is correct, click Submit.

Otherwise, return to the GETPAID step.

</cmd>

</substep>

</substeps>

<stepresult>This submits the report to the accounting system and
sends a paper copy to your workstation’s default printer.
</stepresult>

</appstep>

<step>

<cmd>Send the paper copy with receipts to John Doe in Accounting.
</cmd>

</step>

</bcstepss>

<postreqg>

<p>If you do not receive a confirmation within two weeks,
contact John Doe at (800) 555-1212.</p>

</postreg>

</bctaskbody>

</bctask>

Figure 13. The specialized element names are in bold; all the other elements are reused from task or topic.

we'll also discuss how to create new thing you need when you specialize: can create and maintain new pro-
processes that reuse the general pro- your content-specific markup doesn’t cesses as easily as you create and
cesses by reference. The first capabil- cut you off from the world of general maintain new topic types.

ity (upwards compatibility) ensures processes. The second capability (re- To get the reuse and compatibil-
that you don’t lose access to any- use by reference) ensures that you ity your specialized types require,

362 Technica COMMUNICATION o Volume 48, Number 3, August 2001

TECHNOLOGY REVIEW

Priestley, Hargis, and Carpenter

XML-based Technical Documentation Architecture

basictransform.xsl

<xsl:stylesheet version="“1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform” >
<xsl:template match="/">

<html>
<body>
<xsl:apply-templates/>
</body>
</html>
</xsl:template>
<xsl:template match="title”>
<hl>
<xsl:apply-templates/>
</hl>
</xsl:template>
<xsl:template match="“steps”>
<ols>
<xsl:apply-templates/>

</xsl:template>
<xsl:template match="“step”>
<xsl:apply-templates/></1i>
</xsl:template>
</xsl:stylesheet>
<!--any markup that doesn’t have a rule
taskbody) is stripped out by default-->

<!--match the root - add the html and body tags-->

associated with it

(like

Figure 14. An XSLT transform to convert to XHTML.

you need to
@ Create processes around topic

key. For processes, it means that if a
fix or enhancement is applied to the

types instead of around docu-
ment types.

@ Create processes that depend on
the information in the spec at-
tribute, so they can tell not just
what the current element is, but
what its equivalents are in high-
er-level types.

Create new processes by extend-
ing existing ones, reusing gen-
eral logic by reference, and de-
fining your specialized logic
only as a delta, relative to the
general process.

As with content chunking and
DTD design, reuse by reference is

original process, your new processes
automatically pick up the change.
This approach guarantees that you
have the specific behavior your spe-
cific content needs without balloon-
ing maintenance costs.

Some XSLT background

The examples in this section use pro-

cesses implemented as XSLT trans-
forms. XSLT is a programming lan-
guage specifically created to work
with XML. Generally, an XSLT trans-
form consists of a number of template
rules that say what to do when the
transform encounters a particular kind

of element. Typically the template rule
instructs the process to continue work-
ing on the current element’s children,
applying any template rules that
match. Figure 14 shows a simple XSLT
transform that turns the content into an
HTML document.
Given the following input:
<task >
<tite >My title
<taskbody >
<steps >
<step >My step </step >
</steps >
</taskbody >
<[task >
the result is an XHTML document
with the following structure:

<ftitle >

overridingtransform.xsl

<xsl:stylesheet version=“1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform” >
<xsl:import href=“task.xsl”/>
<xsl:template match="“step”>
<xsl:apply-templates/>
</1li>
<!--br/ is the XHTML way of saying br-->
</xsl:template>
</xsl:stylesheet>

Figure 15. A specialized XSLT transform that extends and customizes the formatting from a standard transform.

Volume 48, Number 3, August 2001 ® Technica COMMUNICATION 363

TECHNOLOGY REVIEW

XML-based Technical Documentation Architecture

mydoc1.htm

——»

mydoc.xml
task.xsl
L topic.xsl
all.xsl
Reftopic

-

task xsl
concept.xsl

reftopic.xsl Reftopic

3
~l
o
Q
o,
=
=
3

Figure 16. A compound document gets processed by a specific transform that
treats unknown content generically, and then processed again by a compound

transform.

<html >
<body >
<hl>My title

</h1l >
<ljMy step
<lol >
</body >

</html >

XSLT takes a while to get the
hang of, but provides a very flexible
way to work with documents.

XSLT also lets you override be-
havior in an existing transform by
defining new template rules in one
file and then importing the existing
transform to provide default behavior
for everything else. For example, if
you wanted to force a new line after
each step (to create more white
space in a printed version), you
could create a new XSLT transform
that imports the old one and then
overrides the step template, as in
Figure 15.

The <xsl:import/ > state-
ment always gives higher precedence
to template rules in the importing
stylesheet, so even though two tem-

plates match <step > (one in
basictransform.xsl and one in
overridingtransform.xsl), it’s
the expanded list template (in
overridingtransform.xsl) that
is applied, because it’s in the import-
ing (top-level) stylesheet. So you can

Priestley, Hargis, and Carpenter

use basictransform.xsl when
you want compact lists, and
overridingtransform.xsl when

you want expanded lists, with com-
plete reuse of all the transform logic
except the template for <step >. This
overriding behavior is very import for
DITA, because it lets you create a
complete stylesheet out of multiple
smaller modules without worrying
about potential conflicts: the importing
stylesheet always takes precedence.

Design processes

around topic types
Earlier in this article, we covered
chunking your content into topics and
chunking your design into modules.
Now you need to do the same kind of
chunking with your processes for
many of the same reasons: smaller
chunks let you easily reuse logic
among transforms, let you assemble
document-specific transforms easily,
and let you maintain common rules
and behavior in a hierarchy.

So instead of a single large XSLT
process, you get a bunch of smaller
modules. You can then create the
process you need by including the
modules for each of the types you
care about. For example, if all you

Preparing an expense report

Befare you start, have the following handy:

ftinerary from the travel agent

Airplane ticket stubs or e-ticket confirmation number
Weal receipts totaling more than $25.00

Transportation receipts: car rental contract or taxi receipt

1. fyou traveled internationally, find the exchange rates for
the days you traveled at http fsample only comitravel. This
information will be requested later

2. Using the GETPAID accounting tool, enter infarmation

about your trip.

GETRAID is available from Jane Doe in [T
a. Onthe itinerary, find the trip reference number. Type
itinthe Trip number field and press Enter.
This action transfers itinerary information into the

farm

b Onsubseguent pages, enter additional information

as requested.

c. Inthe last page, click Finish.
The tool displays a summary report and saves itto
the hard disk as an HTMWL file.

Figure 17. Task transform applied to bctask content.

364 Technical COMMUNICATION e Volume 48, Number 3, August 2001

TECHNOLOGY REVIEW

Priestley, Hargis, and Carpenter

XML-based Technical Documentation Architecture

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform” »

<!--get default behavior by importing the more general module--»>

<xs8l:import href=“task.xsl”/>

<!--specify that you’re outputting html-->

<xsl:output method=“html” encoding=“iso-8859-1"
indent="no” />

<!-- Assign graphic variable for each application type.
For now, they’re all the same -->

<xsl:variable name=“webicon”>appstep.gif</xsl:variables>
<xsl:variable name=“notesicon”s>appstep.gif</xsl:variable>
<xgl:variable name=“sapicon”>appstep.gif</xsl:variable>
<xsl:variable name=“customicon”>appstep.gif</xsl:variable>

<!l--
<xsl
<!--
->
<xsl

</xsl:variable>
<xsl:choose>

</xsl:when>

</xsl:when>

</xsl:whens>
<xsl:otherwise>

</xsl:choose>

</1li>
</xsl:template>

-->

dummy template rule;

</xsl:stylesheet>

:template match:“appstep|*[contains(@spec,’ bctask.appstep ‘)17>

<xsl:variable name=“alt-text”>
<xsl:value-of select=“appdesc” />

<xsl:when test=“@label=‘Custom’ “>

<xsl:when test="@label='Notes’ “»>

<xsl:when test="@label='SAP’ “>

</xsl:otherwise>

<xsl:text> </xsl:texts>
<xsl:apply-templates />

<!-- Templates for other specialized elements should not be necessary
because no specialized processing ig done for them in this sample.
The more generic template rules should apply.

this is actually processed with appstep -->
:template match=“appdesc|* [contains (@spec,’ bctask.appdesc ‘)17 />
The following template rule reflects default label value of “Web” -

Figure 18. The XSLT stylesheet for custom formatting.

care about are topics, all your pro-
cess needs is a topic module. Every
kind of DITA content you throw at
this process will get treated the same
way, as a topic. But if you want to
distinguish between tasks and refer-
ence topics, you'll need to add a
task module and a reftopic
module, where you can define what
you want to do differently for tasks
and reference topics.

Each XSLT module needs to ad-
dress only the special behavior that
you need for that type. If there is

existing general behavior that is ap-
propriate, you can incorporate it by
reference. Generally speaking, each
XSLT module will import the module
for the parent type as well.

This modular approach lets you
assemble the behavior that you
need for a particular document,
regardless of the topic types in it.
And the inclusion of the general
rules means that you have a fall-
back for content that you hadn’t
anticipated. For example, if your
task process gets applied to a mix

of concepts, tasks, and reftopics,
then the tasks get treated as tasks
but the others get treated as topics
(as with mydocl.htm in Figure
16). If you want to extend your
process, add the modules for the
other topic types (as with
mydoc2.htm , in Figure 16).

Extend processes with

reuse by reference
When you want to extend a process to
create special handling for a new in-
formation type or to change the han-

Volume 48, Number 3, August 2001 ® Technica COMMUNICATION 365

TECHNOLOGY REVIEW

XML-based Technical Documentation Architecture

dling for an existing type, you don’t
need to recreate all the logic of the
generic process. You need to create
only the logic that’s different from the
generic. Then you can import the ge-
neric process to provide the rest of the
behavior.

To create an XSLT transform that
provides specialized behavior, you
need to

1. Import the transform that you
want to extend (probably the trans-
form for one of the existing ancestor
types), using the <xsl:import/ >
statement.

2. Identify the elements that you
need to treat specially.

3. Add template rules that
match those elements, both by ele-
ment name and by spec attribute
content.

The new template rules will take
precedence over the existing ones,
thanks to the way import works (im-
ported templates have lower prece-
dence). New template rules will be
used in place of their equivalents in
the original transform. And the rest
of the rules (those that you didn’t
override) handle the rest of your
content.

One of the advantages of reuse
by reference is that if you apply a fix
or enhancement to the original pro-
cess, your new transform picks up
the change automatically.

Your transform can be special-
ization-aware: it will work not only
with your content but also with
any content written in more spe-
cialized types. If you choose to ex-
tend your type hierarchy at some
later date, your process will
handle the new subtypes automati-
cally.

Extended example:

bctask.xsl
Once you have a specialized topic
type, you can decide whether any of
your specialized elements need special
treatment. In our business control task,
appstep and appdesc are the only

elements that require special treatment:
all the other elements (including spe-
cialized ones) can be handled by the
more generic task.xsl

Figure 17 shows what our sample
content would look like, with just the
default task transform applied.

By comparing Figure 17 with
the earlier version in Figure 9, you
can see that the computer graphic
is gone, and the sidebar informa-
tion is included inline. Everything
else is as it was in the first case. In
fact, almost all processing in the
first case was handled through the
task-based script. Figure 18 shows
the complete XSLT transform that
produces Figure 9.

Because we've included specializa-
tion attributes for the new elements, we
can rely on existing scripts to handle any
new element that does not require spe-
cial processing. Processing for both
appstep and appdesc is handled
under a single template rule for app-
step ; only an empty rule is included for
appdesc .

And because this transform also
checks the spec attribute (that’s
what the “contains” part of the
match statement is doing), it too
can be reused by further specializa-
tions: no matter how specialized

mod

DTD 4{ DTD | |DTD

mod

i e

Priestley, Hargis, and Carpenter

your task hierarchy gets, any topic
types that are descendants of bc-
task can be validly processed by
this transform.

The benefits of specialization-
aware transforms
In summary, specialization-aware
transforms offer several benefits:
¢ You don’t absolutely require
custom tools and scripts to sup-
port your custom DTD.
¢ You can more easily create cus-
tom tools, because you can re-
use general logic.
¢ You get the benefit of improve-
ments or fixes to the core logic
automatically because of reuse
by reference.

CONCLUSION
Each of these three components of
the DITA solution focuses on a dif-
ferent aspect of reuse: content, de-
sign, and processes. In each case,
we need to make some changes in
the way that we do things before
we can get the reuse that we need.
In each case, we get the benefits of
reuse by reference: control of reuse
is in the hands of the reuser, re-
used content is insulated from the
contexts that reuse it, and reusers

HTML

PDF

Figure 19. Documents reuse topics, DTDs reuse modules, and transforms reuse

templates.

366 Tcchnical COMMUNICATION e Volume 48, Number 3, August 2001

TECHNOLOGY REVIEW

Priestley, Hargis, and Carpenter

dynamically pick up changes to
content.
To summarize:

Content reuse

¢ Chunking lets us reuse content
without compromising the
source.

Typing lets us describe content
within a chunk.

Design reuse

@ Specialization lets us describe
content in both general terms
and specific terms.

@ Standard information types make
it easier to create the specific
information types your audience
needs.

¢ Specialized information types au-
tomatically pick up fixes or en-
hancements to higher-level types.

Process reuse

¢ General processes work auto-
matically on specialized informa-
tion types.

& Specialized processes can reuse
the general processes and
need define only the differ-
ences.

@ Specialized processes automati-
cally pick up fixes or enhance-
ments to higher-level types.

This solution gives us an XML pub-
lishing scenario in which the three
major components—design, con-
tent, and process—are factored out
into smaller, reusable chunks, and
assembled as required to build the
solutions your content requires.
The concept shown in Figure 19
isn’t as simple as the one shown in
Figure 1 at the beginning of this
article, where each component was
a single file. But the reality is that it
never was that simple. If you want
to reconcile reuse and usefulness,
you need an architecture that
breaks things down to the level of
reuse you need, so you can build
them up into the useful solutions

XML-based Technical Documentation Architecture

you require.

The promises of XML were re-
use, descriptive markup, and inter-
changeability. By using the principles
outlined in this article, it is possible
to deliver on these promises. Infor-
mation typing and topic chunking
get us content reuse, but DITA goes
further by easing the creation of spe-
cialized topic types for descriptive
markup and by defining a mecha-
nism for accessing a type hierarchy
that allows interchangeability both of
content and of processes.

The fundamental tradeoff of
XML has always been that the more
useful the markup is to you, the
less interchangeable it is with other
people. The fundamental promise
of DITA is that you can have both
useful markup and interchange-
ability. TC

RESOURCES

XML
http://www.w3.0rg/TR/REC-xml
http://www.oasis-open.org/cover/
index.html
http://www.oasis-open.org/cover/
xmlIntro.html

XSLT
http://www.w3.0rg/TR/xslt
http://www.ibiblio.org/xml/books/
Bible/updates/14.html

Introductions to

XML and XSLT
http://www-106.ibm.com/
developerworks/xml/[Select “Educa-
tion.”]

Information architecture
http://argus-acia.com/
http://www.builder.com/
Authoring/AllAboutIA/

DITA on developerWorks
http://www-106.ibm.com/
developerworks/xml/library/
x-dital/index.html [Registration
required.]

The DITA forum
news://news.software.ibm.com/ibm.
software.developerworks.xml.dita

The DITA package

(DTDs and samples)
http://www-106.ibm.com/
developerworks/xml/library/
x-dital/dita00.zip

MICHAEL PRIESTLEY is an infor-
mation developer for the IBM Toronto
Software Development Laboratory. He has
worked as a writer, team leader, and infor-
mation architect for various application
development products. He has written nu-
merous papers on subjects such as single-
sourcing, hypertext design, and documen-
tation processes. He is currently the
specialization architect for the Darwin In-
formation Typing Architecture. Contact in-
formation: mpriestl@ca.ibm.com

GRETCHEN HARGIS is a senior
software engineer at the Silicon Valley
Laboratory of IBM. She has worked as
a writer, team leader, and editor on
many projects, including knowledge-
based systems and application develop-
ment tools. She is an author of Devel-
oping quality technical information
(Prentice Hall). Contact information:
ghargis@us.ibm.com

SUSAN CARPENTER carned an MS
in journalism (science communication)
from Boston University in 1982. Shortly
thereafter, she joined what was IBM’s
Federal Systems Division (FSD) labora-
tory at Manassas, VA. For the last 7
years, she has written product informa-
tion or sample code to support C++,
Java, and Smalltalk tooling on various
workstation operating systems at IBM’s
Research Triangle Park, NC, software
laboratory. She recently joined the
WebSphere Application Server team,
where she writes about Java application
programming. She has been an avid fan
of markup languages since her FSD
days. Contact information: carpnter@
us.ibm.com

Volume 48, Number 3, August 2001 ® Technica COMIMUNICATION 367

