
DITA Version 1.1
Architectural Specification
OASIS Standard, 1 August 2007
 Document identifier:

DITA_v1.1ArchSpecification
 Locations:

This Version:
http://docs.oasis-open.org/dita/v1.1/OS/archspec/archspec.html
http://docs.oasis-open.org/dita/v1.1/OS/archspec/archspec.pdf
http://docs.oasis-open.org/dita/v1.1/OS/archspec/archspec.zip (DITA source; see archspec.ditamap)
Previous Version:
http://docs.oasis-open.org/dita/v1.1/CS01/archspec/archspec.html
http://docs.oasis-open.org/dita/v1.1/CS01/archspec/archspec.pdf
Latest Version:
http://docs.oasis-open.org/dita/v1.1/archspec/archspec.html
http://docs.oasis-open.org/dita/v1.1/archspec/archspec.pdf
http://docs.oasis-open.org/dita/v1.1/archspec/archspec.zip (DITA source; see archspec.ditamap)

Technical Committee:
OASIS Darwin Information Typing Architecture (DITA) TC
Chair(s):
Don Day
Editor(s):
Michael Priestley
JoAnn Hackos

 Related Work:
This specification replaces or supercedes:
OASIS DITA Version 1.0 Language Specification
This specification is related to:
OASIS DITA Version 1.1 Language Specification
(http://docs.oasis-open.org/dita/v1.1/OS/langspec/ditaref-type.html)
OASIS DITA Version 1.1 DTDs (http://docs.oasis-open.org/dita/v1.1/OS/dtd/ditadtd.zip)
OASIS DITA Version 1.1 Schemas
(http://docs.oasis-open.org/dita/v1.1/OS/schema/ditaschema.zip)
Declared XML Namespace(s):
[none]

 Abstract:
The Darwin Information Typing Architecture (DITA) 1.1 specification defines both a) a set of document
types for authoring and organizing topic-oriented information; and b) a set of mechanisms for combining
and extending document types using a process called specialization.

 Status:
This document was last revised or approved by the Darwin Information Typing Architecture (DITA) TC on
the above date. The level of approval is also listed above. Check the "Latest Version" or "Latest Approved
Version" location noted above for possible later revisions of this document.
Technical Committee members should send comments on this specification to the Technical Committee’s
email list. Others should send comments to the Technical Committee by using the “Send A Comment”
button on the Technical Committee’s web page at
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita.

Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

http://docs.oasis-open.org/dita/v1.1/OS/archspec/archspec.html
http://docs.oasis-open.org/dita/v1.1/OS/archspec/archspec.pdf
http://docs.oasis-open.org/dita/v1.1/OS/archspec/archspec.zip
http://docs.oasis-open.org/dita/v1.1/CS01/archspec/archspec.html
http://docs.oasis-open.org/dita/v1.1/CS01/archspec/archspec.pdf
http://docs.oasis-open.org/dita/v1.1/archspec/archspec.html
http://docs.oasis-open.org/dita/v1.1/archspec/archspec.pdf
http://docs.oasis-open.org/dita/v1.1/archspec/archspec.zip
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita
http://docs.oasis-open.org/dita/v1.1/OS/langspec/ditaref-type.html
http://docs.oasis-open.org/dita/v1.1/OS/dtd/ditadtd.zip
http://docs.oasis-open.org/dita/v1.1/OS/schema/ditaschema.zip
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita

For information on whether any patents have been disclosed that may be essential to implementing this
specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section
of the Technical Committee web page (http://www.oasis-open.org/committees/dita/ipr.php).
The non-normative errata page for this specification is located at
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita.

Notices
Copyright © OASIS® 1993-2007. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS
ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY
THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS
OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification. OASIS invites any party to contact the OASIS TC Administrator if it is aware
of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this
specification by a patent holder that is not willing to provide a license to such patent claims in a manner
consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS
may include such claims on its website, but disclaims any obligation to do so. OASIS takes no position
regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain
to the implementation or use of the technology described in this document or the extent to which any license
under such rights might or might not be available; neither does it represent that it has made any effort to
identify any such rights. Information on OASIS' procedures with respect to rights in any document or
deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of
claims of rights made available for publication and any assurances of licenses to be made available, or
the result of an attempt made to obtain a general license or permission for the use of such proprietary
rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained
from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual
property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.
The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against misleading
uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

2 | OpenTopic | Preface

Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

http://www.oasis-open.org/committees/dita/ipr.php
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita
http://www.oasis-open.org/
http://www.oasis-open.org/who/trademark.php

Contents

Chapter 1. About the DITA 1.1

Specification 1

Chapter 2. An introduction to DITA . . . 5

Definitions and background concepts 5

Terminology 6

Naming conventions and file extensions 8

DTD organization 8

XML Schema organization 10

Chapter 3. DITA markup 13

DITA topics 13

What are topics? 13

Why topics? 14

Information typing 14

Transitional text 14

Generic topics 16

Concepts 18

Tasks 18

Reference 20

Glossary 21

Topic domains 22

DITA maps 22

What are maps? 22

Why DITA maps? 23

Common DITA map attributes and metadata . . 23

DITA map structure 26

DITA map modules 27

Inheritance of attributes and metadata in maps 27

Bookmap 28

Map domains 31

Metadata elements and common attributes 31

Common metadata elements 32

Common attributes 33

Topic properties in topics and maps 35

Chapter 4. DITA processing 39

IDs and references 39

Navigation behaviors 40

Content inclusion (conref) 40

Conditional processing (profiling) 41

Conditional processing attributes 42

Using metadata attributes 43

Processing metadata attributes 43

Filtering logic 43

Flagging logic 43

Chunking 44

Usage of the chunk attribute 44

Translation 47

The xml:lang attribute 48

The dir attribute 49

All elements with translation properties 51

Chapter 5. DITA specialization 63

What is specialization? 63

Why specialization? 64

Structural versus domain specialization 64

Specializing foreign or unknown content 65

Data extensibility 67

Limits of specialization 68

Specialize from generic elements or attributes . . 68

Customized subset document types for authoring 69

Map from customized document type to DITA

during preprocessing 70

Specialization in content 70

Why specialization in content? 70

Specialization of attributes 70

The class attribute 71

Class attribute syntax 71

The domains attribute 72

Specialization validity 73

Generalization 73

Specialization in design 77

Why specialization in design? 77

Modularization and integration of design . . . 77

Integration 77

Modularization in DTDs 78

Modularization in schemas 81

Specialization in processing 85

Using the class attribute 85

Processing specialized attributes 86

Processing foreign content 86

Modularization and integration of processing . . 86

Customization 86

Modularization in CSS 87

Modularization in XSLT 88

 iii
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

iv DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Chapter 1. About the DITA 1.1 Specification

The Darwin Information Typing Architecture (DITA) 1.1 specification defines both a) a set of document

types for authoring and organizing topic-oriented information; and b) a set of mechanisms for combining

and extending document types using a process called specialization.

The specification consists of:

v The DTDs and schemas that define DITA markup for the base DITA document types, as well as catalog

files. While the DTDs and schemas should define the same DITA elements, the DTDs are normative if

there is ever any discrepancy.

v The language reference that provides explanations for each element in the base DITA document types

v This document, which has the following parts:

– an introduction, which provides background concepts and an overview of the architecture

– the DITA markup specification, which provides an overview of DITA’s base document types

– the DITA processing specification, which provides descriptions of common DITA processing

expectations

– the DITA specialization specification, which provides details of the mechanisms DITA provides for

defining and extending DITA document types.

This document is part of the technical specification for the DITA architecture. While the specification does

contain some introductory information, it is not intended as an introduction to DITA nor as a users guide.

The intended audience of this specification consists of implementers of the DITA standard, including tool

developers and specializers.

Changes since DITA 1.0

The DITA 1.1 specification is designed to be backwards-compatible with 1.0-conforming applications. The

following major changes to the architecture provide added functionality for 1.1:

v A <bookmap> specialization for encoding book-specific information in a DITA map

v A <glossentry> specialization for glossary entries

v Indexing specializations for see, see-also, page ranges, and sort order

v Improvements to graphic scaling capability

v Improved short description flexibility through a new <abstract> element

v Specialization support for new global attributes, such as conditional processing attributes

v Support for integration of existing content structures through the <foreign> element

v Support for new kinds of information and structures through the <data> and <unknown> elements

v Formalization of conditional processing profiles

Editors

 Michael Priestley and JoAnn Hackos

Members of the OASIS DITA Technical Committee

 Robert Anderson, IBM

 Paul Antonov

 France Baril, IXIASOFT

 Paul Barley, IBM

 Bob Bernard, IBM

 1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Kylene Bruski, Comtech Services, Inc.

 Sissi Closs, Comet Communication

 Robin Cover, OASIS

 Don Day, IBM

 Greg DeVore, Blue Mango Learning Systems

 Stanley Doherty, Sun Microsystems

 Bruce Esrig, Lucent Technologies

 Yas Etessam, XMetal

 Kay Ethier

 Alice Etim, IBM

 Kevin Farwell, Lionbridge

 Klaus Fenchel, Ovidius

 Rob Frankland, Rascal Software

 Michael Gannon, XMetal

 Anne Gentle, BMC Software

 Gerald Goetz, Noxum GmbH

 Paul Grosso, PTC/Arbortext

 JoAnn Hackos, Comtech Services, Inc.

 Nancy Harrison, IBM

 Erik Hennum, IBM

 Eric Hixson, BMC Software

 Alan Houser

 Scott Hudson, Flatirons Solutions Corporation

 John Hunt, IBM

 Gershon Joseph, Tech-Tav Documentation Ltd.

 Eliot Kimber, Innodata Isogen

 Chris Kravogel

 Seraphim Larsen, Intel Corporation

 Indi Liepa, Nokia Corporation

 Jennifer Linton, Gambro BCT

 Steven Manning, Rockley Group

 Glen Mules, IBM

 Sukumar Munshi, Lionbridge

 Ultan Obroin, Oracle Corporation

 Frank Peters, Sun Microsystems

 Deborah Pickett, Moldflow Corporation

 Mark Poston, Mekon Limited

 Alex Povzner, SiberLogic, Inc.

 Paul Prescod, XMetaL

 Michael Priestley, IBM

 Rodolfo Raya, Heartsome Holdings Pte Ltd.

 Matthias Rehsoeft, Gesellschaft fur technische Kommunikation-tekom

 Nick Rosenthal

 David Schell, IBM

 Roland Schmeling

2 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Anthony Self, Hyperwrite Pty. Ltd.

 Punyanjan Sen, Adobe Systems

 Wendy Shepperd, BMC Software

 Peter Shepton, Intel Corporation

 Eric Sirois, IBM

 Jerry Smith, US Department of Defense (DoD)

 Dana Spradley, Oracle Corporation

 Robert Stayton

 Amber Swope, XMetaL

 Mark Tiegs, Research In Motion

 Armando Torres, Comtech Services, Inc.

 Scott Tsao, The Boeing Company

 Sharon Veach, Sun Microsystems

 Kate Wilhelm, Research in Motion

 Christopher Wong, Idiom Technologies, Inc

 Andrzej Zydron, XML Intl.

Special thanks

Special thanks to Robert Anderson of IBM for his work on improving the language reference through

document generation processes and through editing of topics to incorporate numerous review comments.

Special thanks to Jeff Ogden of PTC for his numerous detailed reviews of both the language specification

and architectural specification, which has resulted in a large number of editorial improvements.

History

 2004-04-12 OASIS DITA Technical Committee formed with initial submission of materials from IBM

2005-06-01 OASIS DITA 1.0 specification approved by OASIS

Chapter 1. About the DITA 1.1 Specification 3
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

4 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Chapter 2. An introduction to DITA

DITA is an architecture for creating topic-oriented, information-typed content that can be reused and

single-sourced in a variety of ways. It is also an architecture for creating new topic types and describing

new information domains based on existing types and domains.

The process for creating new topic types and domains is called specialization. Specialization allows the

creation of very specific, targeted document type definitions while still sharing common output

transforms and design rules developed for more general types and domains, in much the same way that

classes in an object-oriented system can inherit methods of ancestor classes.

DITA topics are XML conforming. As such, they are readily viewed, edited, and validated with standard

XML tools, although some features such as content referencing and specialization may benefit from

customized support.

Definitions and background concepts

The following terms have specific meanings in DITA which should be understood before reading either

the DITA markup specification or the DITA specialization specification.

Basic concepts

The following are basic concepts used in DITA.

 “What are topics?” on page 13
A topic is a unit of information with a title and some form of content, short enough to be specific to a

single subject or answer a single question, but long enough to make sense on its own and be authored

as a unit.

 “What are maps?” on page 22
DITA maps are documents that collect and organize references to DITA topics to indicate the

relationships among the topics. They can also serve as outlines or tables of contents for DITA

deliverables and as build manifests for DITA projects.

 “What is specialization?” on page 63
Specialization allows you to define new kinds of information (new structural types or new domains of

information), while reusing as much of existing design and code as possible, and minimizing or

eliminating the costs of interchange, migration, and maintenance.

 “Structural versus domain specialization” on page 64
Structural specialization defines new types of structured information, such as new topic types or new

map types. Domain specialization creates new markup that can be useful in multiple structural types,

such as new kinds of keywords, tables, or lists, or new attributes such as conditional processing

attributes.

 “Integration” on page 77
Each domain specialization or structural specialization has its own design module. These modules can

be combined to create many different document types. The process of creating a new document type

from a specific combination of modules is called integration.

 “Customization” on page 86
When you just need a difference in output, you can use DITA customization to override the default

output without affecting portability or interchange, and without involving specialization.

 “Generalization” on page 73
Specialized content can be generalized to any ancestor type. The generalization process can preserve

information about the former level of specialization to allow round-tripping between specialized and

unspecialized forms of the same content.

 5
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Terminology

DITA uses a number of terms in particular or unique ways. Within the scope of this specification, the

following terms are used when talking about DITA models, DITA declarations, and DITA instances.

When particular attributes are listed together with elements, attribute names may be preceded by @ to

distinguish them from elements. For example: @props, @class.

When particular elements are named outside of a list, they may be delimited with < and > to distinguish

them from surrounding text. For example: <keyword>, <prolog>.

Model terminology

DITA can be understood at the level of an abstract model without reference to particular DTDs, schemas,

or actual XML documents. When discussing DITA concepts at this level, the following terminology is

used.

Element type

Defines the structure and semantics for a fragment of content.

Specialized element type

Defines an element type as a semantic refinement of another element type. The content allowed

by the specialized element type must be a subset of or identical to the content allowed by the

original element type.

Attribute type

Defines the structure and semantics for an attribute.

Specialized attribute type

Defines an attribute type as a semantic refinement of another attribute type. The attribute must

specialize the base or props attribute, and its content must be a subset of or identical to the

content allowed by the original attribute type.

Topic type

An element type that defines a complete unit of content. The topic type provides the root element

for the topic and, through contained element types, substructure for the topic instances. The root

element of the topic type is not necessarily the same as the root element of a document type:

document types may nest multiple topic types, and may also declare non-DITA wrapper elements

as the root element for compatibility with other processes.

Map type

An element type that defines a set of relationships for topic instances. The map type provides the

root element and, through contained element types, substructure for the map instances. The map

substructure provides hierarchy, group, and matrix organization of references to topic instances.

Structural type

A topic type or map type.

Domain

A set of elements or an attribute that supports a specific subject area. Elements or attributes in a

domain can be integrated with topic or map types to enhance their semantic support for

particular kinds of content. For example, the structural type <topic> declares the <keyword>

element; when integrated with a domain for describing user interfaces, new keyword

specializations (such as <wintitle>) become available wherever <keyword> was allowed in the

original structural type.

Document type

The full set of element types and attribute types defined in the modules that are integrated by the

document type shell. A DITA document type may support authoring multiple topic types or

multiple map types, but not a mix of the two. The structural types can be augmented with

elements from domains. The term ″document type″ is used for compatibility with existing

6 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

standards, since this is the point at which DITA’s set of topic, domain, and map types are

assembled into a document type that is functionally equivalent to a traditional non-modularized

document type.

Declaration terminology

When the model is expressed in a DTD or schema, the various element types are declared. When

referring to these declarations, the following terminology is used.

Element declaration

The representation within a schema technology (such as DTD, XML Schema, or Relax NG) for an

element type.

Attribute declaration

The representation within a schema technology (such as DTD, XML Schema, or Relax NG) for an

attribute type.

Type module

The representation within a schema technology for the element and attribute types uniquely

defined by a topic type, map type, or domain.

Topic module

The representation within a schema technology for the element types uniquely defined by a topic

type.

Map module

The representation within a schema technology for the element types uniquely defined by a map

type.

Structural module

A topic or map module.

Domain module

The representation within a schema technology for the element types or attribute type uniquely

defined by a domain.

Document type shell, head schema

The representation within a schema technology for a DTD shell or head schema that declares no

element or attribute types itself (except potentially for a <dita> root element that allows multiple

peer topic types in the same document type) but points to and assembles topic and domain

modules or map and domain modules.

Document type declaration

The representation within a schema technology for a document type. The document type

declaration includes the declaration modules assembled by the document declaration shell.

Instance terminology

When actual documents, topics, and elements are created based on a DITA document type, the following

terminology is used.

Element instance

An occurrence of an element type in a document.

Attribute instance

An occurrence of an attribute type in a document.

Topic instance

An occurrence of a topic type in a document.

Map instance

An occurrence of a map type in a document.

Structural type instance

An occurrence of a topic type or a map type in a document.

Chapter 2. An introduction to DITA 7
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Document instance

A document whose meaning and validity are determined by a document type declaration.

Naming conventions and file extensions

The following naming conventions and file extensions are in use by DITA.

DITA topic instance files

*.dita (recommended), *.xml

DITA map instance files

*.ditamap

DTD structural module files

typename.mod

DTD domain module files

typenameDomain.mod

 typenameDomain.ent

Schema structural module files

typenameMod.xsd

 typenameGrp.xsd

Schema domain module files

typenameDomain.xsd

CSS override files (recommended convention for tool providers)

typename.css

 customization-purpose.css

XSLT override files (recommended convention for tool providers)

typename.xsl

 customization-purpose.xsl

Conditional processing profiles

profilename.ditaval

DTD organization

The OASIS DITA document types are implemented with a set of DTD modules. Some of these modules

are used by every DITA document type; others are only used by topics or by maps, and some are only

used in specific specializations.

DTDs versus Modules

A significant feature of the DITA implementation is that it places more importance on the modules than

on the actual DTD. All element and attribute type declarations are made in modules, which are then

integrated into a document type using a document type shell. Implementors are free to create new DTDs

that reorganize the modules, introduce new modules, or remove modules as appropriate. For example,

the standard topic DTD from OASIS includes all of the standard topic domains; in addition, while the

default topic DTD allows topics to nest, it is not possible to include concepts. A new DTD can change one

or both of these features and still be valid; the DTD may add or remove domains, and it may allow topic

to nest concepts, or allow authoring of different types at the same level, as in the ditabase document

type. When creating a new or changing an existing DTD, users should remember to give the new or

changed DTD a new public ID, so that various DITA tools will not confuse the new DTD with the default

OASIS version.

8 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Description of DITA Modules

Each specialization requires one or more modules to define elements for that specialization. Any DTD

that makes use of a specialization must include the modules for that specialization.

In addition to the modules specific to a specialization, there are several files that are used by every DITA

DTD. These are included in the base topic or map modules, so they do not need to be referenced in the

DTD – they are already included simply by including the topic or map module.

The tables below describe each of the DTD modules that come with the OASIS DITA standard.

 Table 1. Description of topic and its specialization modules

Common module file Purpose Used within DTD

topic.mod Define all elements that may be used

within the base topic type.

Must be included in any topic-based

DITA DTD.

concept.mod Define elements used within the

concept specialization.

concept.dtd, ditabase.dtd

glossary.mod Define elements used within the

glossary specialization

glossary.dtd, ditabase.dtd

reference.mod Define elements used within the

reference specialization.

reference.dtd, ditabase.dtd

task.mod Define elements used within the task

specialization.

task.dtd, ditabase.dtd

 Table 2. Description of map and its specialization modules

Common module file Purpose Used within DTD

map.mod Define all elements that may be used

within the base map type.

Must be included in any map-based

DITA DTD.

bookmap.mod Define elements used within the

bookmap specialization.

bookmap.dtd

 Table 3. Description of domain modules

Common module file Purpose Used within DTD

indexingDomain.ent,

indexingDomain.mod

Define entities and elements used by

the indexing domain.

bookmap.dtd, concept.dtd,

ditabase.dtd, glossary.dtd, map.dtd

reference.dtd, task.dtd, topic.dtd

highlightDomain.ent,

highlightDomain.mod

Define entities and elements used by

the highlighting domain.

concept.dtd, ditabase.dtd,

glossary.dtd, reference.dtd, task.dtd,

topic.dtd

programmingDomain.ent,

programmingDomain.ent

Define entities and elements used by

the programming domain.

concept.dtd, ditabase.dtd,

glossary.dtd, reference.dtd, task.dtd,

topic.dtd

softwareDomain.ent,

softwareDomain.mod

Define entities and elements used by

the software domain.

concept.dtd, ditabase.dtd,

glossary.dtd, reference.dtd, task.dtd,

topic.dtd

uiDomain.ent, uiDomain.mod Define entities and elements used by

the user interface domain.

concept.dtd, ditabase.dtd,

glossary.dtd, reference.dtd, task.dtd,

topic.dtd

utilitiesDomain.ent,

utilitiesDomain.mod

Define entities and elements used by

the utilities domain.

concept.dtd, ditabase.dtd,

glossary.dtd, reference.dtd, task.dtd,

topic.dtd

Chapter 2. An introduction to DITA 9
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Table 3. Description of domain modules (continued)

Common module file Purpose Used within DTD

mapGroup.ent, mapGroup.mod Define entities and elements used by

the map group domain.

map.dtd, bookmap.dtd

xnalDomain.ent, xnalDomain.mod Define entities and elements used by

the XNAL domain.

bookmap.dtd

 Table 4. Description of other common modules used by the files above

Common module file Purpose Used within module

commonElements.ent,

commonElements.mod

Define all content elements that may

appear in both maps and topics.

topic.mod, map.mod (this makes it a

part of any DITA DTD)

metaDecl.mod Define meta elements that may

appear in both maps and topics

topic.mod, map.mod (this makes it a

part of any DITA DTD)

tblDecl.mod Defines the complex tables used

within DITA, based on the OASIS

Exchange Table model.

commonElements.mod (this makes it

a part of any DITA DTD)

topicDefn.ent Defines entities used within the topic

module.

topic.mod (this makes it a part of any

topic-based DITA DTD)

XML Schema organization

The OASIS DITA document types are implemented with a set of schema modules. Some of these modules

are used by every DITA schema document; others are only used by topics or by maps, and some are only

used in specific specializations.

XML Schemas versus Modules

A significant feature of the DITA implementation is that it places more importance on the modules than

on the actual head schema. All element and attribute type declarations are made in modules, which are

then integrated into a document type using a head schema. Implementors are free to create new head

schemas that reorganize the modules, introduce new modules, redefine modules, or remove modules as

appropriate. For example, the standard topic XML Schema from OASIS includes all of the standard topic

domains; in addition, while the default topic XML Schema allows topics to nest, it is not possible to

include concepts. A new XML Schema can change one or both of these features and still be valid; the

XML Schema may add or remove domains, and it may allow topic to nest concepts, or allow authoring of

different types at the same level, as in the ditabase document type.

Description of DITA Modules

Each specialization requires one or more modules to define elements for that specialization. Any XML

Schema that makes use of a specialization must include the modules for that specialization.

In addition to the modules specific to a specialization, there are several files that are used by every DITA

XML Schema. These are included in the base topic or map modules, so they do not need to be referenced

in the XML Schema – they are already included simply by including the topic or map module.

The tables below describe each of the XML Schema modules that come with the OASIS DITA standard.

 Table 5. Description of topic and its specialization module

Common module file Purpose Used within XML Schema

topicMod.xsd, topicGrp.xsd Define all elements that may be used

within the base topic type.

Must be included in any topic-based

DITA XML Schema.

10 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Table 5. Description of topic and its specialization module (continued)

Common module file Purpose Used within XML Schema

conceptMod.xsd, conceptGrp.xsd Define elements used within the

concept specialization.

concept.xsd, ditabase.xsd

glossaryMod.xsd, glossaryGrp.xsd Define elements used within the

glossary specialization

glossary.xsd, ditabase.xsd

referenceMod.xsd, referenceGrp.xsd Define elements used within the

reference specialization.

reference.xsd, ditabase.xsd

taskMod.xsd, taskGrp.xsd Define elements used within the task

specialization.

task.xsd, ditabase.xsd

 Table 6. Description of map and its specialization modules

Common module file Purpose Used within DTD

mapMod.xsd Define all elements that may be used

within the base map type.

Must be included in any map-based

DITA XML Schema.

bookmapMod.xsd Define elements used within the

bookmap specialization.

bookmap.xsd

 Table 7. Description of domain modules

Common module file Purpose Used within DTD

indexingDomainMod.xsd Define entities and elements used by

the indexing domain.

bookmap.xsd, concept.xsd,

ditabase.xsd, glossary.xsd, map.xsd

reference.xsd, task.xsd, topic.xsd

highlightDomainMod.xsd Define entities and elements used by

the highlighting domain.

concept.xsd, ditabase.xsd,

glossary.xsd, reference.xsd, task.xsd,

topic.xsd

programmingDomainMod.xsd Define entities and elements used by

the programming domain.

concept.xsd, ditabase.xsd,

glossary.xsd, reference.xsd, task.xsd,

topic.xsd

softwareDomainMod.xsd Define entities and elements used by

the software domain.

concept.xsd, ditabase.xsd,

glossary.xsd, reference.xsd, task.xsd,

topic.xsd

uiDomainMod.xsd Define entities and elements used by

the user interface domain.

concept.xsd, ditabase.xsd,

glossary.xsd, reference.xsd, task.xsd,

topic.xsd

utilitiesDomainMod.xsd Define entities and elements used by

the utilities domain.

concept.xsd, ditabase.xsd,

glossary.xsd, reference.xsd, task.xsd,

topic.xsd

mapGroupMod.xsd Define entities and elements used by

the map group domain.

map.xsd, bookmap.xsd

xnalDomainMod.xsd Define entities and elements used by

the XNAL domain.

bookmap.xsd

 Table 8. Description of other common modules used by the files above

Common module file Purpose Used within module

commonElementsMod.xsd,

commonElementsGrp.xsd

Define all content elements that may

appear in both maps and topics.

topic.mod, map.mod (this makes it a

part of any DITA XML Schema)

metaDeclMod.xsd, metaDeclGrp.xsd Define meta elements that may

appear in both maps and topics

topic.mod, map.mod (this makes it a

part of any DITA XML Schema)

Chapter 2. An introduction to DITA 11
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Table 8. Description of other common modules used by the files above (continued)

Common module file Purpose Used within module

tblDeclMod.xsd, tblDeclGrp.xsd Defines the complex tables used

within DITA, based on the OASIS

Exchange Table model.

commonElements.mod (this makes it

a part of any DITA XML Schema)

ditaarch.xsd Defines the attribute that defines

DITA’s architectural version

Must be imported in any topic-based

DITA XML Schema.

xml.xsd Defines the attributes with the XML

namespace

Must be imported in any topic-based

DITA XML Schema.

12 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Chapter 3. DITA markup

The two main units of authoring in DITA are topics and maps. Each can be extended into new structural

types and domains through specialization.

DITA topics

DITA topics are the basic units of DITA content. Each topic should be organized around a single subject.

Topics may be of different types, such as task or reference, or may be generic, that is, without a specific

type.

What are topics?

A topic is a unit of information with a title and some form of content, short enough to be specific to a

single subject or answer a single question, but long enough to make sense on its own and be authored as

a unit.

In DITA, a topic is the basic unit of authoring and of reuse. An XML document may contain one topic or

multiple topics, and a document type may support authoring one or many kinds of topics. But regardless

of where they occur, all DITA topics have the same basic structure and capabilities. Books, PDF files,

Websites, and help sets, for example, can all be constructed from the same set of underlying topic

content, although there may be some topics that are unique to a particular deliverable, and the

organization of topics may differ to take advantage of the unique capabilities of each delivery

mechanism.

DITA topics can be as small as a title that organizes other subtopics or links or as large as a few pages or

screens of content. Larger units of content, such as complex reference documents or book chapters, can be

created by nesting topics, either directly in a single document or indirectly through references in a DITA

map. Nested DITA topics can be used to accommodate the migration of legacy non-topic-oriented

content, as well as information with specific authoring requirements, such as marketing material or API

reference documents.

Reference information is inherently topic-oriented, since it requires information to be modular and

self-contained for the sake of retrievability.

Topic-oriented authoring for conceptual and task information has its roots in Minimalism, an instructional

design technique first espoused by John Carroll. The minimalist approach to information design focusses

on identifying the smallest amount of instruction that allows for the successful completion of a task, or

that provides basic knowledge of a concept. Readers have goals, and they want to achieve those goals as

quickly as possible. Generally, readers don’t want to read information just for the pleasure of reading.

They are reading to learn or to do something.

Some of the key principles of Minimalism are:

v Support actions. Let people act as they learn, and let them pursue the goals they want to accomplish.

v Document tasks, not tools or functions.

v Help readers anticipate and avoid errors.

v Let readers explore. They don’t need explained what they can discover for themselves.

While DITA’s topic-oriented approach has its roots in instructional design, the topic-based approach can

be useful for any information that has human readers and a consistent structure.

 13
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Why topics?

Topics are the basis for high-quality information. They should be short enough to be easily readable, but

long enough to make sense on their own.

By organizing content into topics, authors can achieve several goals simultaneously:

v Content is readable even when accessed from an index or search, not just when read in sequence as

part of a chapter. Since most readers don’t read information end-to-end, it’s good information design to

make sure each unit of information can be read on its own to give just-in-time help.

v Content can be organized differently for online and print purposes. Authors can create task flows and

concept hierarchies for online orientation, and still have a print-friendly combined hierarchy that helps

people who do want an organized reading flow.

v Content can be reused in different collections. Since the topic is written to make sense when accessed

randomly (as by search), it should also make sense when included as part of different product

deliverables, so authors can refactor information as needed, including just the topics that apply for

each reuse scenario.

Topics are small enough to provide lots of opportunities for reuse, but large enough to be coherently

authored and read. While DITA supports reuse below the topic level, this requires considerably more

thought and review, since topics assembled out of smaller chunks often require editing to make them

flow properly. By contrast, since topics are already organized around a single subject, authors can

organize a set of topics logically and get an acceptable flow between them, since transitions from subject

to subject don’t need to be as seamless as the explanations within a single subject.

Information typing

Information typing is the practice of identifying types of topics that contain distinct kinds information,

such as concepts, tasks, and reference information. Topics that answer different kinds of questions can be

categorized as different information types. The base topic types provided by DITA provide a usable

starter set that can be adopted for immediate authoring.

Classifying information by type helps authors:

v Design new information more easily and consistently.

v Ensure the right design gets used for the kind of information (retrieval-oriented structures like tables

for reference information, simple sequences of steps for task information)

v Focus on tasks.

v Factor out supporting concepts and reference information into other topics, where they can be read if

required and ignored if not.

v Eliminate unimportant or redundant information. Identify common or reusable subjects.

Information typing is part of the general authoring approach called structured writing, which is used

across the technical authoring industry to improve information quality. It is based on extensive research

and experience, including Robert Horn’s Information Mapping, and Hughes Aircraft’s STOP (Sequential

Thematic Organization of Proposals).

Information types in DITA are expressed as topic types. The base topic types provided by DITA can be

used as a base for further specialization. New information types that require different structures and

semantics are directly supported by topic type modules, each of which defines the specific markup and

structural rules required to describe a particular type of topic. These modules can then be integrated into

document types to support authoring information-typed topics.

Transitional text

Most writers are familiar with narrative writing, in which writers provide transitions that lead a reader

from one section to the next (like ″Next, we will consider...″ or ″Having completed the previous tasks,...″).

14 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

The topic-oriented paradigm incorporated in DITA’s design--and implicit in the bookmap model derived

from DITA maps--favors a writing style that minimizes the use of such narrative filler between topics.

Why topic orientation in writing?

Topic-oriented writing is a disciplined approach to writing that emphasizes modularity and reuse of

concise units of information--topics. A topic is enough information to fully convey an idea or task in one

reading. Well-written topics can be reused in many contexts, as long as writers are careful about a few

things.

Conciseness and appropriateness

Readers who are trying to quickly learn or do something will appreciate if that information is written in

a clear pattern that is easy to follow and contains only the information they need to complete that task or

grasp a fact. Recipes, encyclopedia entries, car repair procedures--all are informational units that serve up

a uniquely focused unit of information that someone has consulted. Typically, anything before or after in

the sequence of the document is not of interest--the topic contains everything pertinent to the reason the

reader looked up the topic in the first place.

Locational independence

A well-written topic is reusable in other context if it is “context free,” meaning that it can be inserted into

a new document without revision of its content to refer to a changed context. This is where the issue of

transitional text is perhaps most obvious to writers who are new to topic orientation. Phrases like ″As we

considered earlier...″ or ″Now that you have completed the initial step...″ are likely to make little sense if

a topic is reused in a new context in which those preliminary conditions are different or perhaps no

longer existent. A well-written topic will read appropriately in any new context because the writing style

within it does not lead the reader outside of the topic.

Navigational independence

Most HTML web pages are a mixture of both content and navigation, with the contained links

representing the web of reading sequences and choices that a reader can make as he or she navigates

through a web site. A standalone topic obviously should not have any navigation within it that would

need to be changed if the topic were used in a different context. The DITA design supports this

separation of navigation from topics through the use of ditamaps, which represent how topics should be

organized for particular information deliverables. However, it is still tempting for writers to want to

provide links within the content of a topic that allow a reader to consult external resources. DITA does

not prohibit such linking, and in fact the markup allows writers to indicate that such links are

external--choosing them opens a new browser window rather than taking the reader on a navigational

tangent. A well-written DITA topic generally eschews internal linking to other topics within the document

set--these are best supported through the map, which allows the topics to be used in any context without

internal revision.

Transitional text workarounds

Topic orientation does not mean that transitions can’t be authored in DITA. The key to providing both

locational independence and intentional sequences is the adroit use of DITA markup features.

For DITA 1.1, the print attribute on the topicref element of a ditamap now allows a new value of

“printonly,” which directs processing to skip such a topic if the map is instead being output to an online

format, for which transitions are not necessary. A topic designated as printonly can be written in

whatever style an author feels necessary to let the topic serve as a transitional topic in the flow of printed

information. A DITA topic can be as minimal as just a title, so you can craft your transitional topic to

have just as much information as necessary for this output-specific nonce.

Another strategy that you can use to insert transitional sequences into a map of topics is the use of

conditionality to include or exclude the content of shortdescs or of paragraphs at the end of a topic. With

Chapter 3. DITA markup 15
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

rigor among your team, this can be made to work, but it is not as general as the printonly approach--if

you share your conditionally marked topics with other business partners or teams, you will have to

instruct them on the proper runtime settings to enable those conditions to be honored the way you

intended. The printonly method works generally for everyone who inherits maps that reference

transitional topics.

Generic topics

The generic or unspecialized topic type provides the base for other specialized topic types, and also

provides a place to author content that does not belong in existing specialized types.

Why generic topics?

For specializers, generic topics provide an appropriate base for new specializations that do not fit the

concept/task/reference mold. For authors, generic topics provide a way to author untyped content in

DITA.

Although typed content is always preferable for consistency and processing concerns, the generic type

can be useful when authors are not trained for information typing or when the currently available

specialized types are inappropriate.

Topic structure

All topics have the same basic structure, regardless of topic type: title, description or abstract, prolog,

body, related links, and nested topics.

All DITA topics must have an ID and a title. Topic structures can consist of the following parts:

Topic element

Required id attribute, contains all other elements

Title The subject of the topic.

Alternate titles

Titles specifically for use in navigation or search. When not provided, the base title is used for all

contexts.

Short description or abstract

A short description of the topic, or a longer abstract with an embedded short description. The

short description is used both in topic content (as the first paragraph), in generated summaries

that include the topic, and in links to the topic. Alternatively, the abstract lets you create more

complex introductory content, and uses an embedded short description element to define the part

of the abstract that is suitable for summaries and link previews.

 While short descriptions aren’t required, they can make a dramatic difference to the usability of

an information set, and should generally be provided for all topics.

Prolog Container for various kinds of topic metadata, such as change history, audience, product, and so

on.

Body The actual topic content: paragraphs, lists, sections - whatever the information type allows.

Related links

Links to other topics. When an author creates a link as part of a topic, the topic becomes

dependent on the other topic being available. To reduce dependencies between topics and thereby

increase the reusability of each topic, authors can use DITA maps to define and manage links

between topics, instead of embedding links directly in each related topic.

Nested topics

Topics can be defined inside other topics. Nesting can result in complex documents that are less

usable and less reusable, and should be used carefully. It is more often appropriate for reference

information, which can support longer documents organized into multiple topics for scanning

and retrieval. The rules for nesting topics can vary from document type to document type: for

16 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

example, the concept document type allows nesting of other concepts only, while the ditabase

document type allows nesting of any of the standard DITA topic type.

Topic content

All topics, regardless of topic type, build on the same common structures.

Topic bodies

While all topic types have the same elements for title, short description or abstract, and prolog,

they each allow different content in their body.

Sections and examples

Sections and examples can be contained only by the body of a topic. They cannot nest. They can

contain block-level elements like paragraphs, phrase-level elements like API names, or text.

Block-level elements

Paragraphs, lists, and tables are kinds of ″block″ elements. As a class of content, they can contain

other blocks, phrases, or text, though the rules vary for each structure.

Phrases and keywords

Authors can intermix markup with text when they need to identify part of a paragraph or even

part of a sentence as having special significance. Phrases can usually contain other phrases and

keywords as well as text. Keywords can only contain text.

Images

Authors can insert images using the image element. Images can be used at the block level, for

example to show screen captures or diagrams, or at the phrase level, for example to show what

icons or toolbar buttons look like.

Multimedia

Authors can create multimedia for online information using the object element, for example to

display SVG diagrams that can be rotated and explored.

Topic modules

There are several modules that provide the basic topic elements and attributes. Some are specific to topic

and its specializations, others are shared with DITA maps.

tblDecl.mod (DTD)
tblDeclMod.xsd, tblDeclGrp.xsd (Schema)

Defines the elements for authoring tables, based on the CALS table model but with some

DITA-specific extensions.

metaDecl.mod (DTD)
metaDeclMod.xsd, metaDeclGrp.xsd (Schema)

Defines metadata elements, which can appear in both topics and in maps, where metadata can be

defined for multiple topics at once.

commonElements.mod, commonElements.ent (DTD
commonElementsGrp.xsd (Schema)

Defines common elements such as ph or keyword that appear in both topics and maps.

topicAttr.mod, topicDefn.ent (DTD only - folded into other schema files))

Common DITA attributes and entities.

xml.xsd, ditaarch.xsd (Schema only - folded into other DTD files)

Common XML attributes and the DITA architecture version attribute

topic.mod (DTD)
topicMod.xsd, topicGrp.xsd (Schema)

Defines the rest of the elements in a topic.

Chapter 3. DITA markup 17
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Concepts

DITA concept topics answer ″What is...″ questions. They include a body-level element with a basic topic

structure, including sections and examples.

Why concepts?

Concepts provide background that helps readers understand essential information about a product,

interface, or task. Often, a concept is an extended definition of a major abstraction such as a process or

function. Conceptual information may explain a product and how it fits into its category of products.

Conceptual information helps users to map their existing knowledge to tasks and other essential

information about a product or system.

Concept structure

The <concept> element is the top-level element for a DITA concept topic. Every concept contains a <title>

and a <conbody> and optional <titlealts>, <shortdesc> or <abstract>, <prolog>, <related-links>, and

nested topics.

The <conbody> element is the main body-level element for a concept. Like the body element of a general

topic, <conbody> allows paragraphs, lists, and other elements as well as sections and examples. But

<conbody> has a constraint that a section or an example can be followed only by other sections or

examples.

Here is an example of a simple concept topic.

<concept id="concept">

 <title>Bird Calling</title>

 <conbody>

 <p>Bird calling attracts birds.</p>

 <example>

 <p>Bird calling requires learning:</p>

 Popular and classical bird songs

 How to whistle like a bird

 </example>

 </conbody>

</concept>

Modules

 concept.mod (DTD)

 conceptMod.xsd, conceptGrp.xsd (Schema)

Tasks

Task topics answer ″How do I?″ questions, and have a well-defined structure that describes how to

complete a procedure to accomplish a specific goal.

Why tasks?

Tasks are the essential building blocks for providing procedure information. A task topic answers the

″How do I?″ question by providing precise step-by-step instructions detailing what to do and the order in

which to do it. The task topic includes sections for describing the context, prerequisites, expected results,

and other aspects of a task.

18 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Task structure

The <task> element is the top-level element for a task topic. Every task topic contains a <title> and a

<taskbody> and optional <titlealts>, <shortdesc> or <abstract>, <prolog>, <related-links>, and nested

topics.

The <taskbody> element is the main body-level element inside a task topic. A task body has a very

specific structure, with the following elements in this order: <prereq>, <context>, <steps>, <result,

<example> and <postreq>. Each of the body sections is optional.

<prereq>

Describes information needed before starting the current task.

<context>

Provides background information for the task. This information helps the user understand what

the purpose of the task is and what they will gain by completing the task. This section should be

brief and does not replace or recreate a concept topic on the same subject, although the context

section may include some conceptual information.

<steps>

Provides the main content of the task topic. A task consists of a series of steps that accomplish

the task. The <steps> section must have one or more <step> elements, which provide the

specifics about each step in in the task.

 The <step> element represents an action that a user must follow to accomplish a task. Each step

in a task must contain a command <cmd> element which describes the particular action the user

must do to accomplish the overall task. The step element can also contain information <info>,

substeps <substeps>, tutorial information <tutorialinfo>, a step example <stepxmp>, choices

<choices> or a stepresult <stepresult>, although these are optional.

<result>

Describes the expected outcome for the task as a whole.

<example>

Provides an example that illustrates or supports the task.

<postreq>

Describes steps or tasks that the user should do after the successful completion of the current

task. It is often supported by links to the next task or tasks in the <related-links> section.

Here’s an example of a task topic.

<task id="ertx">

 <title>Creating an ERTX file</title>

 <taskbody>

 <context>Each morning before breakfast you need to

create a fresh ERTX file.</context>

 <steps>

 <step><cmd>Start ERTX.</cmd></step>

 <step><cmd>Click New ERTX File.</cmd></step>

 </steps>

 <result>You now have your ERTX file for today!</result>

 </taskbody>

</task>

Modules

 task.mod (DTD)

 taskMod.xsd, taskGrp.xsd (Schema)

Chapter 3. DITA markup 19
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Reference

Reference topics describe regular features of a subject or product, such as commands in a programming

language.

Why reference?

In technical information, reference topics are often used to cover subjects such as the commands in a

programming language. Reference topics can hold anything that has regular content, such as ingredients

for food recipes, bibliographic lists, catalogues, and the like. Reference topics provide quick access to

facts. Information needed for deeper understanding of a reference topic or to perform related procedures

should be provided in a concept or task topic.

Reference structure

The <reference> element is the top-level element for a reference topic. Every reference topic contains a

<title> and a <refbody> and optional <titlealts>, <shortdesc> or <abstract>, <prolog>, <related-links>,

and nested topics.

The <refbody> element holds the main content of the reference topic. Reference topics limit the body

structure to tables (both simple and standard), property lists, syntax sections, and generic sections and

examples.

All of the elements of <refbody> are optional and may appear in any sequence and number.

<section>

Represents an organizational division in a reference topic. Sections organize subsets of

information within a larger topic. You can only include a simple list of peer sections in a topic;

sections cannot be nested. A section may have an optional title.

<refsyn>

Contains syntax or signature content (for example, a command-line utility’s calling syntax, or an

API’s signature). The <refsyn> contains a brief, possibly diagrammatic description of the subject’s

interface or high-level structure.

<example>

Provides containing examples that illustrate or support the current topic. The <example> element

has the same content model as <section>.

<table>

Organizes information according into a tabular rows and columns structure. Table markup also

allows for more complex structures, including spanning rows and columns, as well as table

captions.

<simpletable>

Holds information in regular rows and columns and does not allow for a caption.

<properties>

Lists properties and their types, values, and descriptions.

Here’s an example of a reference topic.

<reference id="boldproperty">

<title>Bold property</title>

<shortdesc>(Read-write) Whether to use a bold font for the specified

text string.</shortdesc>

<refbody>

 <refsyn>

 <synph>

 <var>object</var><delim>.</delim><kwd>Font</kwd><delim>.</delim>

 <kwd>Bold</kwd><delim> = </delim><var>trueorfalse</var>

 </synph>

20 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

</refsyn>

 <properties>

 <property>

 <proptype>Data type</proptype>

 <propvalue>Boolean</propvalue>

 </property>

 <property>

 <proptype>Legal values</proptype>

 <propvalue>True (1) or False (0)</propvalue>

 </property>

 </properties>

</refbody>

</reference>

Modules

 reference.mod (DTD)

 referenceMod.xsd, referenceGrp.xsd (Schema)

Glossary

Each DITA glossary topic defines a single sense of one term. Besides identifying the term and providing a

definition, the topic can identify related terms.

Why glossary?

Defining terminology is helpful to the writer so a team of writers can use the same term for the same

thing. The reader can also get an explanation of unfamiliar terminology. More generally, identification of

the things described by the content encourages more precise treatment of those subjects. Glossary topics

can be assembled by authors or processes to create glossaries for various purposes, including books, Web

sites, or development projects.

Glossary structure

The <glossentry> element is the top-level element for a DITA glossary topic. Every glossary topic contains

a <glossterm> and a <glossdef> element and optional <related-links>.

Where a term has multiple senses, the writer should create multiple topics with the same term in the

<glossterm> element but different definitions in the <glossdef> element. A process can collate and group

glossary entries by term when generating formatted output. Note that definitions with the same term in

one language can have different terms in other languages, so translation can result in different collation

and grouping of the same set of glossary entries.

Here is an example of a simple glossary entry:

<glossentry id="ddl">

 <glossterm>Data Definition Language</glossterm>

 <glossdef>A language used for defining database schemas.</glossdef>

</glossentry>

To create a glossary, authors can group multiple entries together either by authoring in a single document

under a container topic using the ditabase document type (ditabase.dtd/ditabase.xsd), or by referencing

the glossary topics in a map, or by using an automated process, for example electing glossary topics from

a repository based on the <term> markup in a particular collection of topics.

Modules

 glossentry.mod (DTD)

 glossentryMod.xsd, glossentryGrp.xsd (Schema)

Chapter 3. DITA markup 21
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Topic domains

A DITA domain defines a set of elements associated with a particular subject area or authoring

requirement regardless of topic type.

The elements in a domain are defined in a domain module which can be integrated with a topic type to

make the domain elements available within the topic type structure. Currently the following domains are

provided:

 Table 9. DITA topic domains

Domain Description Short name Module name

Typographic For highlighting when the appropriate

semantic element doesn’t exist yet

hi-d highlightDomain.mod (DTD)

highlightDomain.xsd (Schema)

Programming For describing programming and

programming languages

pr-d programmingDomain.mod (DTD)

programmingDomain.xsd (Schema)

Software For describing software sw-d softwareDomain.mod (DTD)

softwareDomain.xsd (Schema)

User interfaces For describing user interfaces ui-d uiDomain.mod (DTD)

uiDomain.xsd (Schema)

Utilities For providing imagemaps and other

useful structures

ut-d utilitiesDomain.mod (DTD)

utilitiesDomain.xsd (Schema)

Indexing For extended indexing functions such as

see and see-also

indexing-d indexingDomain.mod (DTD)

indexingDomain.xsd (Schema)

DITA maps

Maps organize topics for output to a specific deliverable, including generating navigation files and links

to related topics.

What are maps?

DITA maps are documents that collect and organize references to DITA topics to indicate the relationships

among the topics. They can also serve as outlines or tables of contents for DITA deliverables and as build

manifests for DITA projects.

DITA maps represent the architecture of an information set – what topics are needed, in what order or

relationships, to support a particular set of user goals or other requirements.

Maps describe the context in which the topics will be read – the audience, platform, relationships,

requirements of the information set. In this way, the topics themselves become relatively context-free, and

can be more easily used and reused in many different contexts, as defined by maps.

Maps draw on a rich set of existing best practices and standards for defining information models, such as

hierarchical task analysis. They also support the definition of non-hierarchical relationships, such as

matrices and groups, which provide a set of capabilities that has some similarities to RDF (Resource

Description Framework) and ISO (International Standards Organization) topic maps. See

http://www.w3.org/RDF/ and http://www.topicmaps.org/ for more information on those standards.

A DITA map file references one or more DITA topic files using <topicref> elements. The <topicref>

elements can be nested or otherwise organized to reflect the desired relationships between the referenced

topics. Map files need to have a file extension of .ditamap to be processed properly.

22 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

http://www.w3.org/RDF/
http://www.topicmaps.org/

Why DITA maps?

Maps allow scalable reuse of content across multiple contexts. They can be used by information

architects, writers, and publishers to plan, develop, and deliver content.

Among the specific uses that maps support:

Defining an information architecture

The map can be used to define what topics are required for a particular audience and user goals,

even before the topics themselves exist.

Providing an authoring interface

The map can be used as a starting point for authoring new topics and integrating existing ones.

Defining what topics to build for a particular output

Maps point to topics that are included in output processing. Authors or publishers can use maps

to specify a set of topics to transform at the same time, instead of transforming each topic

individually.

Defining online navigation

Maps can define the online navigation or table of contents for the topics it points to.

Defining what topics to print

Maps can define a hierarchy that will determine how topics will be combined and nested for

printing.

Defining related links

Maps define relationships among the topics they reference; on output, these relationships can be

expressed as related links among the topics in each relationship.

Common DITA map attributes and metadata

DITA maps have many of the same common attributes as DITA content, but also have some additional

ones for controlling the way relationships are interpreted for different output purposes.

Because DITA maps may encode structures that are wholly or partially specific to a particular medium or

kind of output (for example, hyperlinked web pages or printed books), DITA maps contain attributes to

help processors interpret the map for each kind of output. These attributes (such as print and toc) are not

available in DITA content: individual topics, once separated from the high-level structures and

dependencies associated with a particular kind of output, should be entirely reusable across multiple

media.

Linking attributes

The collection-type and linking attributes affect how related links are generated for topics described in

the map.

collection-type

The collection-type attribute indicates how a particular set of sibling topicrefs relate to each other. The

collection-type attribute is set on the container element for the sibling topicrefs. The collection-type value

can indicate whether to generate links among the siblings, and what kind of links to generate (for

example, next and previous links for a sequence, or sibling links for a family). The collection-type

attribute can also indicate how the parent topic should link to its children (for example, showing the

child links as a numbered list when the collection-type is sequence).Where the collection-type attribute is

available on elements that cannot directly contain topicrefs (such as reltable and relcolspec), the behavior

of the attribute is reserved for future use.

Chapter 3. DITA markup 23
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

linking

By default, relationships between topics in a map are reciprocal: children link to parents and vice versa;

next and previous topics in a sequence link to each other; topics in a family link to their siblings; topics

in table cells of the same row in a relationship table link to each other. This default behavior can be

modified using the linking attribute, which lets a topic modify how it participates in a relationship:

v A topic reference with linking=″none″ does not exist in the map for the purposes of calculating links

v linking=″sourceonly″ means that the topic will link to its related topics but not vice versa

v linking=″targetonly″ means that the related topics will link to it, but not vice versa

v linking=″normal″ is the default, and means that linking will be reciprocal (the topic will link to related

topics, and they will link back to it)

You can also create links directly in a topic using the <xref> or <link> elements, but in many cases

map-based linking is preferable, because links in topics create dependencies between topics that can

hinder reuse.

<topicref href="A.dita" collection-type="sequence">

 <topicref href="A1.dita"/>

 <topicref href="A2.dita"/>

</topicref>

<reltable>

 <relrow>

 <relcell>A.dita</relcell>

 <relcell>B.dita</relcell>

 </relrow>

</reltable>

A links to A1, A2 as children

 links to B as related

A1 links to A as a parent

 links to A2 as next in the sequence

A2 links to A as a parent

 links to A1 as previous in the sequence

B links to A as related

Figure 1. Simple linking example

24 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Navigation, media, and chunking attributes

There are standard attributes available for identifying output-media-specific content and for rechunking

topics.

toc, navtitle, locktitle

Authors can exclude entries from navigation output (such as an online table of contents, or a Web site

map) using the toc attribute. By default, hierarchies are included in navigation output, and tables are

excluded.

Authors can provide a shorter version of the title for use in the navigation using the navtitle attribute. By

default the navtitle attribute is ignored, and used only to help the author keep track of the target topic’s

title. The locktitle attribute can be set to ensure that the navtitle takes effect and overrides any title values

in the target topic, or defined elsewhere in the topic reference metadata.

print, search

You can set attributes on a topic to indicate whether it should be included in printed output and search

indexes.

chunk

When a set of topics is transformed using a map, multi-topic files can be broken into smaller files, and

multiple individual topics can be combined into a single larger file, using the chunk attribute. There is no

default value for the chunk attribute, but a default for an entire map may be established by setting the

chunk attribute on the map element or a specialization. For a detailed description of the chunk attribute

and its usage see “Chunking” on page 44.

<topicref href="A.dita" collection-type="sequence">

 <topicref href="B.dita" linking="none"/>

 <topicref href="A1.dita"/>

 <topicref href="A2.dita"/>

</topicref>

<reltable>

 <relrow>

 <relcell>A.dita</relcell>

 <relcell linking="sourceonly">B.dita</relcell>

 </relrow>

</reltable>

A links to A1, A2 as children

 (no links to B as a child, no links to B as related)

A1 links to A as a parent

 links to A2 as next in the sequence

 (no links to B as previous)

A2 links to A as a parent

 links to A1 as previous in the sequence

B links to A as related

Figure 2. Linking example with the linking attribute

Chapter 3. DITA markup 25
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

copy-to

When a set of topics is transformed using a map, duplicate topic versions can be created using the

copy-to attribute. The copied topic will have a new file name or location as provided in the copy-to

attribute, and the map can override the default title and shortdesc for this particular copy by providing

values for them in the map using the topicref’s navtitle and shortdesc. For information on how the

copyto attribute can be used with the chunk attribute see “Chunking” on page 44.

Shared attributes

DITA maps use the same metadata and reuse attributes that DITA topics use.

v product, platform, audience, otherprops, rev, status, importance, xml:lang, translate

v id, conref

v props, base

DITA maps also use many of the same attributes that are used with link or xref elements in DITA content:

v format, scope, href, keyref, type, query

When new attributes are specialized off of props or base as a domain, they may be incorporated into

both map and topic structural types.

DITA map structure

Maps organize topics into hierarchies, tables, and groups, and have special elements for referencing other

maps.

topicref elements are the basic elements of a map. A topicref can point to a DITA topic, map, or to any

other resource that can be processed or linked to. They can also have a title, short description, and the

same kinds of prolog-level metadata available in topics.

topicref elements can be nested to create a hierarchy, which can be used to define print output, online

navigation, and parent/child links. The topichead element can be used for nodes in the hierarchy that

provide containers without equivalent topics: they are equivalent to topicref elements with a navtitle but

no href or equivalent referencing attribute.

Relationship tables are defined with the reltable element. Relationship tables can be used to define

relationships among the topics in different cells of the same row. In a relationship table, the columns

define common attributes or metadata for the topics in that column. The rows define relationships, with

each cell representing a different role in the relationship. For example, a table with different columns for

concepts, tasks, and reference topics could be used to define the relationship between a task and the

topics that support it.

Both hierarchies and tables can be annotated using the collection-type attribute to define sets of siblings

that are part of a particular kind of collection, for example a set of choices, a sequence, or a family. These

collection-types can affect link generation, and may be interpreted differently for different outputs.

Groups or collections outside of a hierarchy or table can be defined with the topicgroup element, which is

equivalent to a topicref with no referencing attributes or titles. Groups can be combined with hierarchies

and tables, for example by including a group within a table cell or within a set of siblings in a hierarchy.

Most elements in the map, including the map itself, can contain metadata, which typically applies to the

element and its descendants, as described in “Inheritance of attributes and metadata in maps” on page

27.

26 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Example of a simple map with a relationship table

<map>

<reltable>

 <relheader>

 <relcolspec type="concept"/>

 <relcolspec type="task"/>

 <relcolspec type="reference"/>

 </relheader>

 <relrow>

 <relcell>

 <topicref href="A.dita"/>

 </relcell>

 <relcell>

 <topicref href="B.dita"/>

 </relcell>

 <relcell>

 <topicref href="C1.dita"/>

 <topicref href="C2.dita"/>

 </relcell>

 </relrow>

</reltable>

</map>

 type=″concept″ type=″task″ type=″reference″

A B C1

C2

A links to B, C1, C2

B links to A, C1, C2

C1, C2 link to A, B

DITA map modules

Maps have the same module structure as topics, and share some of the same modules for defining

metadata.

map.mod (DTD)
mapMod.xsd, mapGrp.xsd (Schema)

Defines the base map structures.

mapGroup.mod (DTD)
mapGroup.xsd (Schema)

Adds topicgroup and topichead as specialized variants of topicref.

Inheritance of attributes and metadata in maps

Some of the attributes and metadata in a map can be inherited based on the structures in the map.

Inheritance is additive except where this would cause a conflict. When there is a conflict, the value

defined closest (most specifically) to the topicref takes effect. In a relationship table, row-level metadata is

considered more specific than column-level metadata, as shown in the following containment hierarchy:

v map (most general)

– topichead/topicgroup/topicref container (more specific)

- topicref (most specific)
– reltable (more specific)

- relcolspec (more specific)

v relrow (more specific)

– topichead/topicgroup/topicref container (more specific)

Chapter 3. DITA markup 27
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

- topicref (most specific)

The following attributes and metadata elements are inheritable:

Attributes

audience, platform, product, otherprops, rev

 props and any attribute specialized from props

 linking, toc, print, search

 format, scope, type

 xml:lang, dir, translate

Elements

author, source, publisher, copyright, critdates, permissions

 audience, category, prodinfo, othermeta

Attributes and metadata can be defined at the root level (attributes on the map element itself, topicmeta

as a direct child of the map element) to apply them to the entire map. They can also be applied at any

point in a hierarchy, group, or table. Tables can be particularly useful for attribute and metadata

management, since they can be applied to entire columns or rows as well as individual cells.

While the chunk attribute no longer inherits a value from containers (new with DITA 1.1), specifying a

value for the chunk attribute on the map or map specialization element establishes a default value for

chunking that applies to the entire map unless overridden by more specific chunk attribute settings

elsewhere within the document.

 Related reference

 “Metadata inheritance between maps and topics” on page 36
The topicmeta element in maps contains numerous elements for the declaration of metadata. In

general, specifying metadata in a topicmeta element is equivalent to specifying it in the topic, while

allowing that topic to be reused in other maps where the metadata does not apply. Many items in the

metadata also cascade to nested topic references within the map.

Bookmap

The bookmap specialization of DITA’s standard DITA map allows you to organize your DITA topics into

a collection that can be printed as a book or other paged layout.

Why use a bookmap?

The OASIS bookmap application of DITA allows you to produce your DITA topics and even whole DITA

maps as the content of a formally defined book. This allows you to produce not only maps for online

deliverables, but also PDFs with the same content, replete with covers, formal notices and frontmatter,

and so forth.

What is a bookmap?

A bookmap is a special kind of DITA map that defines the major structures and setup information for

producing maps of information as a book.

A typical DITA map might have a title and then a set of topicrefs, in a sequence, in a hierarchy, or both,

that define the structure by which topics are to be viewed as a complete information deliverable. A DITA

map does not have structures to specifically designate how topics are to be treated as chapters, preface

content, or even for constructing a cover or special content (such as edition notice boilerplate). To enable

DITA content to be viewed in a more booklike manner, you need a context that represents all the special

processing that might be invested on producing a map or set of maps as a book. That is the role of

DITA’s bookmap specialization.

A bookmap has the following specialized major structures:

28 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

v An optional title or booktitle (which itself can have substructure for complex titles)

v Optional bookmeta (all the information about the book--its owners, authors, publishing data, and so

forth)

v Optional frontmatter (the usual preface and introductory topics in a book prior to the gist of the book,

and also including booklists--containers for special collections of information in a book)

v Any number of chapters or parts (which can contain chapters)

v Any number of appendix topics

v Optional backmatter (often for special notices or supplementary information, and also for booklists)

v Any number of reltables, as in a typical map.

What is bookmeta?:

Bookmeta is a specialization of the topicmeta element in a DITA map. It has specialized content for

holding information about a particular book represented by the bookmap.

What are booklists?:

A booklist is a specialized topicref that indicates a collection of information from the content of a book.

Sets of <booklist> elements (or elements derived from booklist) are contained in the <booklists> element.

 A common kind of booklist is the Table of Contents. If you wish, you can define a completely new

collection such as a Table of Footnotes and provide either a pre-populated topic with that content, or

provide processing that will collect and insert that topical content during the book processing.

Specific booklist elements are provided in the OASIS bookmap for:

v toc--the usual Table of Contents (commonly located in the frontmatter booklists)

v figurelist--a list of figures

v tablelist--a list of tables

v abbrevlist--a list of abbreviations

v trademarklist--a list of trademarks

v bibliolist--a list of bibliographic references

v glossarylist--a list of glossary terms and definitions

v indexlist--an index (commonly located in the backmatter booklists)

v booklist--reference any other topic that contains booklist-like material, or specialize the element to

represent a collection that will be gathered by new override processing.

What is in frontmatter?:

Front matter of a book typically contains prefaces, instructions, or other introductory material prior to the

actual content of a book.

 Specific frontmatter elements include any number of:

v booklists--collections of book parts, like ToC

v notices--edition notices, safety notices, terms and conditions, and so forth

v dedication--to my forebearing significant other...

v colophon--how the book was produced

v bookabstract--handy for search tools and registry into tracking/workflow systems

v draftintro--special content for reviewers

v preface--an introduction or introductory statement

v topicref--extensible placeholder for any topic

Chapter 3. DITA markup 29
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

v topichead--as in a DITA map, this element allows grouping with a navigation title

v topicgroup--as in DITA map, this element allows grouping without a navigation title.

What is in backmatter?:

Back matter of a book typically contains closing information that follows the main content of a book.

 Specific backmatter elements include any number of:

v booklists--collections of book parts, like the index

v notices--edition notices, safety notices, terms and conditions, and so forth

v dedication--to my first grade teacher...

v colophon--how the book was produced

v amendments--points to a list of amendments or updates to the book

v topicref--extensible placeholder for any topic

v topichead--as in a DITA map, this element allows grouping with a title

v topicgroup--as in DITA map, this element allows grouping without a title.

How is a bookmap authored and produced?

As a specialization of DITA map, the DITA bookmap will be supported by default like a typical DITA

map in DITA-aware editors and processing tools.

With appropriate style and functional overrides, XML editors can display a DITA bookmap just as they

would the XML structure for other book-supporting DTDs, and specialized DITA processing or DITA

bookmaps will exploit the book metadata and book features in high quality paged output.

For example, you might have a DITA map that represents the hierarchy you intend for a particular Web

deliverable of your DITA topics. Now you wish to also produce that map as a formal book to be

packaged along with your boxed product. You can open a new bookmap instance and define a title for

the book, indicate any required publisher information in the bookmeta area, link in a preface, indicate

whether you want a table of figures along with the table of contents, and finally create a chapter element

that references your existing DITA map. You have created a complete book deliverable, at least in a

simplistic manner. The design of bookmap allows you to refine your deliverable and even make the book

version of the map have content that is specific to the book version, versus the Web version.

Example

<bookmap id="taskbook">

 <booktitle>

 <mainbooktitle>Product tasks</mainbooktitle>

 <booktitlealt>Tasks and what they do</booktitlealt>

 </booktitle>

 <bookmeta>

 <author>John Doe</author>

 <bookrights>

 <copyrfirst>

 <year>2006</year>

 </copyrfirst>

 <bookowner>

 <person href="janedoe.xml">Jane Doe</person>

 </bookowner>

 </bookrights>

 </bookmeta>

 <frontmatter>

 <preface/>

 </frontmatter>

 <chapter format="ditamap" href="installing.ditamap"/>

 <chapter href="configuring.xml"/>

 <chapter href="maintaining.xml">

30 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

<topicref href="maintainstorage.xml"/>

 <topicref href="maintainserver.xml"/>

 <topicref href="maintaindatabase.xml"/>

 </chapter>

 <appendix href="task_appendix.xml"/>

</bookmap>

Modules

DTD:

bookmap.dtd

bookmap.mod

Schema:

bookmap.xsd

bookmapGrp.xsd

bookmapMod.xsd

Map domains

The following domains provide expanded functionality for map document types that incorporate them.

The xNAL domain

Book metadata has many commonalities with other metadata standards, in particular those for

addressing persons and places. The OASIS xNAL Standard (extensible Name and Address Language) was

selected to represent close mappings from the DITA bookmap metadata content model to an existing

standard.

The OASIS CIQ standard for global customer information management contains the definition of the

OASIS extensible Name and Address Language (xNAL) metadata elements. Version 2 of the standard

states:

The objective of xNAL is to describe a common structure for Personal/Organization Names and

Addresses that would enable any applications that want to represent customer names and addresses

in a common standard format. The applications could be CRM/e-CRM, Customer Information

Systems, Data Quality (Parsing, Matching, Validation, Verification, etc), Customer Data Warehouses,

Postal services, etc.

However, any party for its own purposes and applications may use xNAL grammar or parts of it.

 The metadata elements defined for bookmap naturally include structures that identify the authors and

content owners. Although it was not possible to subset the xNAL standard definitions directly into DITA

due to differences between the two processing architectures, OASIS DITA Technical Committee members

determined that there was value in having at least a transformational equivalence between bookmap and

xNAL definitions for names and addresses. This equivalence enables XML-aware tools in workflow

systems to capture and manipulate DITA bookmap names and addresses in a standard way.

For DITA 1.1, the xNAL domain is part of the bookmap specialization. This means that the xNAL

elements appear any place that bookmap allows the <author> element - within bookmeta and topicmeta.

Metadata elements and common attributes

The same metadata elements and many of the same attributes are available in both DITA topic types and

DITA map types. The sharing of metadata elements allows the metadata assigned to a topic when it is

created to be supplemented or overridden when the topic is included in a collection. The sharing of

attributes allows processing behaviors, such as content reuse and conditional processing, to be

implemented consistently across both maps and topics.

Chapter 3. DITA markup 31
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

http://www.oasis-open.org/committees/ciq/ciq.html#4

Common metadata elements

The following metadata elements occur in both maps and topic prologs.

Many of the DITA metadata elements map to Dublin Core metadata (http://dublincore.org/), with the

exception of Dublin Core elements such as title, which maps to the DITA <title> element.

Publication metadata elements

These elements provide standard information about the topic as a publication.

Some content providers might choose to provide such information only in the map or the initial topic for

a deliverable.

author The person or organization who created the content. This element is equivalent to the Dublin

Core Creator.

publisher

The organization who provides and distributes the content. This element is equivalent to the

Dublin Core Publisher.

copyright

The legal ownership for the content. This element is equivalent to the Dublin Core Rights.

Management metadata elements

These elements provide a basis for managing the publication process for topics.

The management elements might get updated by workflow processes or provide input for such processes:

source An identifier or name for the original form of the content. This element is equivalent to Dublin

Core Source.

critdates

Milestones in the publishing cycle. This element is equivalent to Dublin Core Date.

permissions

Specification of the level of entitlement needed to access for content.

resourceid

The identifier associated with the topic when provided to the specified application.

Metadata qualification elements

These elements can be used to provide additional information about a topic, and may be used in

conjunction with conditional processing attributes to provide more information about the attribute values.

The metadata elements apply to an entire topic, and can also be used in a map to apply metadata to

multiple topics at a time. Metadata elements can expand on the values used in metadata attributes. (See

metadata attributes.) For example, the audience element in a topic’s prolog can define an audience in

terms of type, job, and experience level, and give it a name; when there is content within the topic’s body

that applies only to that audience, that content can identify its audience by the same name used in the

prolog.

When metadata is expressed in a map, it supplements any metadata expressed in the topics it references.

When metadata in a map and a topic conflict (for example, both define a publisher), by default the value

in the map takes precedence, on the assumption that the author of the map has more knowledge of the

reusing context than the author of the topic.

audience

The type, job, experience level, and other characteristics of the reader for the topic. Many of these

characteristics have enumerated values, but the enumeration can be extended through associated

32 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

http://dublincore.org/

attributes. For instance, the audience type enumeration can be extended through an othertype

attribute. The audience element can provide more information about a value used by an audience

attribute.

category

A classification of the topic content. Such classifications are likely to come from an enumerated or

hierarchical set. This element is equivalent to both Dublin Core Coverage and Dublin Core

Subject.

keywords

Terms from a controlled or uncontrolled subject vocabulary that apply to the topic.

prodinfo

The definition of the product or platform for the topic. The prodinfo element can provide more

information about values used by the product and platform attributes.

othermeta

A name-value pair specifying other metadata about the topic.

data Additional data or metadata about the topic or map, or elements in the topic or map; allows for

more complex metadata using nested values. Primarily used as the base for specialized metadata

structures.

Common attributes

The following attributes are common across most DITA elements.

Identifier and content referencing attributes

The id and conref attributes are available on almost all DITA elements, and allow sharing of content

between DITA topics or maps.

 Related concepts

 “IDs and references” on page 39
The DITA identity attribute provides mechanisms for identifying content for retrieval or linking. The

syntax for referencing IDs is consistent regardless of the referencing mechanism.

 “Content inclusion (conref)” on page 40
The DITA conref attribute provides a mechanism for reuse of content fragments. The conref attribute

stores a reference to another element and is processed to replace the referencing element with the

referenced element.

Metadata attributes

The metadata attributes express qualifications on the content. These qualifications can be used to modify

the processing of the content.

One typical use of the metadata attributes is to filter content based on their values. Another typical use is

to flag content based on their values, for example by highlighting the affected text on output. Typically

audience, platform, product, and otherprops are used for filtering, and the same attributes plus rev are

used for flagging. Status and importance are used for tool-specific or transform-specific behavior, for

example marking steps in a task as optional or required.

Conditional processing attributes:

In general, a conditional processing attribute provides a list of one or more values separated with

whitespace. For instance, audience="administrator programmer" qualifies the content as applying to

administrators and programmers.

 There are several attributes intended for conditional processing, available on most elements:

v product: the product that is the subject of the discussion.

v platform: the platform on which the product is deployed.

Chapter 3. DITA markup 33
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

v audience: the intended audience of the text

v rev: the revision or draft number of the current document (typically used for flagging only, not for

filtering)

v otherprops: other properties that do not require semantic identification

v props: a generic conditional processing attribute that can be specialized to create new semantic

conditional processing attributes
 Related concepts

 “Conditional processing attributes” on page 42

Other metadata attributes:

Other attributes are still considered part of an element’s metadata but are not designed for conditional

processing, such as filtering or flagging.

importance

The degree of priority of the content. This attribute takes a single value from an enumeration.

status The current state of the content. This attribute takes a single value from an enumeration.

Miscellaneous Attributes

DITA has several elements for supporting translation and for providing additional classification or typing

of a specific element.

Miscellaneous attributes of DITA elements include the following:

xml:lang

The xml:lang attribute’s behavior is described in detail in the XML specification:

http://www.w3.org/TR/REC-xml/#sec-lang-tag The attribute identifies a language by means of

the standard language and country codes (as described in RFC 4646). For instance, French

Canadian would be identified by the value fr-ca. As is usual, the language applies to the

contained content and attributes of the current element and contained elements, other than

fragments that declare a different language.

translate

Determines whether the element requires translation. A default value may be inferred from the

element type: for example, <apiname> may be untranslated by default, whereas <p> may be

translated by default. A list of suggested defaults is provided in “All elements with translation

properties” on page 51.

dir Determines the direction in which the content should be read.

outputclass

The outputclass attribute provides a label on one or more element instances, typically to specify a

role or other semantic distinction. As the outputclass attribute doesn’t provide a formal type

declaration or the structural consistency of specialization, it should be used sparingly, often only

as a temporary measure while a specialization is developed. For example, <uicontrol> elements

that define button labels could be distinguished by adding an outputclass: <uicontrol

outputclass="button">Cancel</uicontrol>. The outputclass value could be used to trigger XSLT

or CSS rules, as well as providing a mapping to be used for future migration to a more

specialized set of UI elements.

base A generic attribute that has no specific purpose, but is intended to act as a base for specialized

attributes that have a simple value syntax like the conditional processing attributes (one or more

alphanumeric values separated by whitespace).

 The attributes @xml:lang, @translate, and @dir are described in more detail in “Translation” on page 47.

34 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

http://www.w3.org/TR/REC-xml/#sec-lang-tag
http://www.ietf.org/rfc/rfc4646.txt

Architectural attributes

DITA provides some attributes to provide type information to processors instead of qualifications or

properties of content.

Ordinarily, architectural attributes don’t appear in the source files for document instances. Instead,

architectural attributes appear in document instances through defaults set in the DTD or Schema

declaration. This practice ensures that the creation of document instances cannot produce invalid values

for the architectural attributes. These attributes are as follows:

class This attribute identifies the specialization module for the element type as well as the ancestor

element types and the specialization modules to which they belong. Every DITA element has a

class attribute.

domains

This attribute identifies the domain specialization modules used in a topic and, for each domains

module, its module dependencies. Every topic and map element has a domains attribute.

DITAArchVersion

This attribute identifies the version of the DITA architecture used by the DTD or schema. Every

topic and map element has a DITAArchVersion attribute. The attribute is declared in a DITA

namespace to allow namespace-sensitive tools to detect DITA markup.

 To make the document instance usable without the DTD or Schema declaration, a normalization process

can instill the architectural attributes in the document instance.

Topic properties in topics and maps

The properties of a topic (including metadata attributes and metadata elements) can be specified in the

topic itself or in references to the topic within maps.

Within a topic, properties can be expressed using metadata attributes on the topic element or using

publication, management, or metadata elements in the topic prolog.

DITA offers users three levels at which to apply topic properties. Topic attributes and metadata elements

can be defined within the topic itself. Properties can also be set as attributes or subelements of a topicref

that points to the topic. In addition, properties can be set on container or ancestor elements of the topicref

within the map. Because the topics in a branch of the navigation hierarchy typically have some common

subjects or properties, this is a convenient mechanism to set properties for a set of topics.

If a property is set in both the map and topic, the map properties are additive if the property (such as the

audience type) takes a list of values. If, instead, the property (such as the importance) takes a single

value, the map property overrides the topic property.

Example of audience metadata in prolog and body

Prolog metadata elements can provide more information about values used in metadata attributes on

content. However, prolog metadata and attribute metadata can also be used and expressed independently.

The coordination shown here is possible but is not required.

<prolog>

 <metadata>

 <audience name="AdminNovice"

 type="administrator"

 job="customizing"

 experiencelevel="novice">

 </metadata>

Chapter 3. DITA markup 35
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

</prolog>

....

<p audience="AdminNovice ProgrammerExp">This paragraph applies to both

novice administrators and expert programmers</p>

In the preceding example, the attribute value ″AdminNovice″ is associated with the audience element

with the same name, which gives authors and processes more information about the audience in

question: in this case, that the ″AdminNovice″ audience is administrators who are customizing and are

new at it.

Shared metadata elements, and the lockmeta attribute

You can associate topic metadata with a topic or branch of topics in a map. By default metadata in the

map supplements or overrides metadata in the topic. If the lockmeta attribute is set to ″no″, then the

metadata in the map will not take precedence over the metadata in the topic, and conflicts will be

resolved in favor of the topic.

In a map, metadata elements are authored within a <topicmeta> element, which associates metadata with

the <topicref> or other element that contains it, plus the other children of that element. For example,

<topicmeta> in a <relcolspec> can associate metadata with all the topics referenced in a <reltable>

column.

The metadata elements in a map are the same as those in a topic, although they may be in a different

order. The map metadata also includes a short description and alternate titles, which can override their

equivalents in the content. In sum, the map can override or supplement everything about a topic except

its content (in the topic’s body element) and primary title.

Metadata inheritance between maps and topics

The topicmeta element in maps contains numerous elements for the declaration of metadata. In general,

specifying metadata in a topicmeta element is equivalent to specifying it in the topic, while allowing that

topic to be reused in other maps where the metadata does not apply. Many items in the metadata also

cascade to nested topic references within the map.

For each element in the topicmeta, the following table provides three different behaviors.

v How does it apply to the topic? This describes how the metadata in a topicref interacts with the

specified topic. In most cases, the properties are additive, within the current context. For example, when

an audience is set to ″user″ within a topicref, this means that the audience for the specified topic is

″user″ when viewed within this context. This is in addition to any audience values specified within the

topic, and does not apply to the topic when it is viewed in other contexts.

v Does it cascade to other topics in the map? This indicates whether the specified meta value cascades

to nested topicrefs. For example, setting an audience to ″user″ implicitly means that other topicrefs

within that branch of the map also have an audience of ″user″. Elements like linktext, which can apply

only to the specified target, do not cascade.

v What is the purpose when specified at the map level? The map element allows for metadata to be

specified for the entire map. This column describes what effect, if any, each element has when specified

at this level.

 Table 10. Topicmeta elements and their properties

Element

How does it apply to the

topic (in this context)?

Does it cascade to other

topics in the map?

What is the purpose when

specified at the map level?

audience Add to the topic Yes Specify an audience for the

entire map

author Add to the topic Yes Specify an author for the

entire map

category Add to the topic Yes Specify a category for the

entire map

36 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Table 10. Topicmeta elements and their properties (continued)

Element

How does it apply to the

topic (in this context)?

Does it cascade to other

topics in the map?

What is the purpose when

specified at the map level?

copyright Add to the topic Yes Specify a copyright for the

entire map

critdates Add to the topic Yes Specify critical dates for the

entire map

data Add to the topic No, unless specialized for a

purpose that inherits

No stated purpose, until

the element is specified

data-about Add the property to the

specified target

No, unless specialized for a

purpose that inherits

No stated purpose, until

the element is specified

foreign Add to the topic No, unless specialized for a

purpose that inherits

No stated purpose, until

the element is specified

keywords Add to the topic No No stated purpose

linktext Not added to the topic;

applies to links created

based on this occurrence in

the map

No No stated purpose

othermeta Add to the topic No Define metadata for the

entire map

permissions Add to the topic Yes Specify permissions for the

entire map

prodinfo Add to the topic Yes Specify product info for the

entire map

publisher Add to the topic Yes Specify a publisher for the

map

resourceid Add to the topic No Specify a resource ID for

the map

searchtitle Replace the one in the

topic. If multiple

searchtitles are given for

one target, processors may

choose to issue a warning.

No No stated purpose

shortdesc Not added to the topic;

applies to links created

based on this occurrence in

the map

No Provide a description of the

map

source Add to the topic No Specify a source for the

map

unknown Add to the topic No, unless specialized for a

purpose that cascades

No stated purpose, until

the element is specified

 Related concepts

 “Inheritance of attributes and metadata in maps” on page 27
Some of the attributes and metadata in a map can be inherited based on the structures in the map.

Chapter 3. DITA markup 37
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

38 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Chapter 4. DITA processing

Several common DITA processing behaviors are driven by attributes, including navigation, content reuse,

and conditional processing.

IDs and references

The DITA identity attribute provides mechanisms for identifying content for retrieval or linking. The

syntax for referencing IDs is consistent regardless of the referencing mechanism.

The id attribute assigns a unique identifier to an element so the element can be referenced. The scope of

uniqueness for the id attribute depends on the role of the element within the DITA architecture:

Topic IDs

Because topics are the basic units of information within DITA, the id attribute for the topic must

be unique within the document instance.

 A topic architecture assembles topics into a deliverable by reference. To ensure that topics can be

referenced, the id attribute is required on the topic element.

 The complete identifier for a topic consists of the combination of the URI for the document

instance, a separating hash character, and the topic id (as in http://some.org/some/directory/
topicfile.xml#topicid). URIs are described in RFC 2396. As is typical with URIs, a relative URI

can be used as the identifier for the document instance so long as it is resolvable in the

referencing context. For instance, within a file system directory, the filename of the document

instance suffices (as in some/directory/topicfile.xml#topicid). Within the same document, the

topic id alone suffices (as in #topicid). Where the topic element is the root element of the

document instance, contexts outside the document instance may omit the topic id when referring

to the topic element (as in topicfile.xml). If the target contains multiple peer topics organized

by a <dita> element (as in the ditabase document type), then the reference is resolved to the first

topic in the target, except in the case of topicrefs being resolved as inclusion directives (for

example during PDF output), in which case the entire target file is included, regardless of

whether a specific topic is targeted.

 The topic id can be referenced by other elements, including topicrefs, links, xrefs, or conrefs to

the topic, as well as being used as part of references to the topic content.

 The id attribute for DITA topics is of type ID in XML, and so must be unique within the

document instance.

Element IDs within a topic

Because topic content is always contained within a topic, the id attribute for a topic content

element must be unique only within the one topic that immediately contains it. This approach

ensures maintainable references to content because the identifier remains valid so long as the

document instance, topic, and content exist. The position of the content within the topic and the

position of the topic within the document instance can change without invalidating the content

identifier. In addition, this approach avoids the need to rewrite topic content ids to avoid naming

collisions when aggregating topics.

 The id is optional and need be added only to make the content referenceable.

 The complete identifier for topic content consists of the combination of the complete identifier for

the topic, a separating solidus (/), and the topic content id (as in http://some.org/some/
directory/topicfile.xml#topicid/contentid). As noted before, the topic identifier portion can

use a relative URI for the document instance in contexts where the relative URI can be resolved

(as in some/directory/topicfile.xml#topicid/contentid).

 39
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

The containing topic id must always be included when referencing an element id. Otherwise, a

reference to another topic couldn’t be distinguished from a reference to an element within the

same topic. For references within the same document instance, the identifier for the document

instance can be omitted altogether (as in #topicid/contentid).

 The id attribute for elements within DITA topics is not of type ID and is not required to be

unique within a document, although it should be unique within the topic.

Map IDs and element IDs within a map

For a map, the id of an element should be unique within the document instance. This approach

ensures that these elements can be referenced outside the map without qualification by the map

id.

 For the anchor element, which exists only to identify a position within a map as a target for

references, the id attribute is required. For the other elements, the id attribute is optional.

 The complete identifier for a map element consists of the combination of the absolute URI for the

map document instance and the element id (as in http://some.org/some/directory/
mapfile.xml#topicrefid).

 The id attributes for maps and anchors are of type ID and are required to be unique within the

document instance. The id attributes for other elements in map are not of type ID and are not

required to be unique.

Navigation behaviors

The following behaviors support the creation of reader navigation to or across DITA topics.

Tables of contents (TOCs)

Generated from DITA maps; can be compiled from multiple DITA maps. Parts of maps can be

omitted from the generated TOC using the toc attribute.

Related links

Authored in individual topics, or generated from maps. Map-generated linking can be controlled

using the linking attribute.

Indexing

Generated from index entries occurring in topic bodies, topic prologs, or DITA maps.

Content inclusion (conref)

The DITA conref attribute provides a mechanism for reuse of content fragments. The conref attribute

stores a reference to another element and is processed to replace the referencing element with the

referenced element.

The element containing the content reference acts as a placeholder for the referenced element. The

identifier for the referenced element must be either absolute or resolvable in the context of the referencing

element. (See “IDs and references” on page 39 for the details on identifiers.)

More formally, the DITA conref attribute can be considered a transclusion mechanism. In that respect,

conref is similar to XInclude as well as HyTime value references. DITA differs from these mechanisms,

however, by comparing the constraints of each context to ensure the ongoing validity of the replacement

content in its new context. In other words, conref validity does not apply simply to the current content at

the time of replacement, but to the ranges of possible content given the constraints of the two document

types. A valid conref processor does not allow the resolution of a reuse relationship that could be

rendered invalid under the rules of either the reused or reusing content.

If the referenced element is the same type as the referencing element and the list of domains in the

referenced topic instance (declared on the domains attribute) is the same as or a subset of the list of

domains in the referencing document, the element set allowed in the referenced element is guaranteed to

40 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

be the same as, or a subset of, the element set allowed in the placeholder element. In the preferred

approach, a processor resolving a conref should tolerate specializations of valid elements and generalize

elements in the content fragment as needed for the referencing context.

Replacement of the placeholder occurs after parsing of the document but prior to any styling or other

transformational or presentational operations on the full topic.

The target of the conref may be substituted based on build-time or runtime conditions. For example,

content such as product names or install paths can be separated out from topic content since they change

when the topic is reused by other products; the reusing product can substitute their own targets for the

conref to allow resolution to their own product name and install paths, and so on.

The target of a conref must be within a DITA topic or DITA map (or point to the entire topic or map).

Fragments of DITA content (such as a document containing only a single paragraph) do not contain

enough information on their own to allow the conref processor to determine the validity of a reference to

them.

The resolved element’s attribute specifications can be drawn from both source and target elements in the

following priority:

1. All attributes as specified on the source element except for attributes which specify the value

″-dita-use-conref-target″

2. All attributes as specified on the target element except:

a. The id attribute

b. Any attribute also specified on the source element such that its specified value (on the source

element) is not ″-dita-use-conref-target″
3. The xml:lang attribute has special treatment as described in “The xml:lang attribute” on page 48.

The only time the resolved element would include an attribute whose specified value is

″-dita-use-conref-target″ is when the target element had that attribute specified with the

″-dita-use-conref-target″ value and the source element either had no specification for that attribute or had

it specified with the ″-dita-use-conref-target″ value. If the final resolved element (after the complete

resolution of any conref chain) has an attribute with the ″-dita-use-conref-target″ value, that should be

treated as equivalent to having that attribute unspecified.

A given attribute value on the resolved element comes in its entirety from either the source or target: the

attribute values of the target and source for a given attribute are never additive, even if the property

(such as the audience type) takes a list of values.

If the target element has a conref attribute specified, the above rules should be applied recursively with

the resolved element from one source/target combination becoming one of the two elements participating

in the next source/target combination. The result should preserve without generalization all elements that

are valid in the originating context, even if they are not valid in an intermediate context. For example, if

topicA and topicC allow highlighting, and topicB does not, then a content reference chain of

topicA->topicB->topicC should preserve any highlighting elements in the referenced content. The result is

the same as if the conref pairs are resolved recursively starting from the source element.

Conditional processing (profiling)

Conditional processing, also known as profiling, is the filtering or flagging of information based on

processing-time criteria.

DITA tries to implement conditional processing in a semantically meaningful way: rather than allowing

arbitrary values to accumulate in a document over time in a general-purpose processing attribute, with

meaning only to the original author, we encourage the authoring of metadata using specific metadata

Chapter 4. DITA processing 41
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

attributes on content. These metadata values can then be leveraged by any number of processes,

including filtering, flagging, search, and indexing, rather than being suitable for filtering only.

Conditional processing attributes

For a topic or topicref, the audience, platform, and product metadata can be expressed with attributes on

the topic or topicref element or with elements within the topic prolog or topicmeta element. While the

metadata elements are more expressive, the meaning of the values is the same, and can be used in

coordination: for example, the prolog elements can fully define the audiences for a topic, and then

metadata attributes can be used within the content to identify parts that apply to only some of those

audiences.

audience

The values from the enumerated attributes of the audience metadata element have the same

meaning when used in the audience attribute of a content element. For instance, the ″user″ value

has the same meaning whether appearing in the type attribute of the audience element for a topic

or in the audience attribute of a content element. The principle applies to the type, job, and

experience level attributes of the audience element.

 The values in the audience attribute may also be used to reference a more complete description of

an audience in an audience element. Use the name of the audience in the audience element when

referring to the same audience in an audience attribute.

 The audience attribute takes a blank-delimited list of values, which may or may not match the

name value of any audience elements.

platform

The platform might be the operating system, hardware, or other environment. This attribute is

equivalent to the platform element for the topic metadata.

 The platform attribute takes a blank-delimited list of values, which may or may not match the

content of a platform element in the prolog.

product

The product or component name, version, brand, or internal code or number. This attribute is

equivalent to the prodinfo element for the topic metadata.

 The product attribute takes a blank-delimited list of values, which may or may not match the

value of the prodname element in the prolog.

rev The identifier for the revision level. For example, if a paragraph was changed or added during

revision 1.1, the rev attribute might contain the value ″1.1″.

otherprops

A catchall for metadata qualification values about the content. This attribute is equivalent to the

othermeta element for the topic metadata.

 The attribute takes a blank-delimited list of values, which may or may not match the values of

othermeta elements in the prolog.

For example, a simple otherprops value list: <codeblock otherprops="java cpp">
The attribute can also take labelled groups of values, but this syntax is deprecated in DITA 1.1 in

favor of attribute specialization. The labelled group syntax is similar to the generalized attribute

syntax and may cause confusion for processors. A labelled group consists of a string value

followed by an open parenthesis followed by one or more blank-delimited values followed by a

close parenthesis. The simple format is sufficient when an information set requires only one

additional metadata axis, in addition to the base metadata attributes of product, platform, and

audience. The full format is similar to attribute specialization in that it allows two or more

additional metadata axes. For example, a complex otherprops value list: <codeblock

otherprops="proglang(java cpp) commentformat(javadoc html)">

props A generic attribute for conditional processing values. In DITA 1.1, the props attribute can be

specialized to create new conditional processing attributes.

42 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Using metadata attributes

Each attribute takes zero or more space-delimited string values. For example, you can use the product

attribute to identify that an element applies to two particular products.

Processing metadata attributes

At processing time, you specify the values you want to exclude and the values you want to flag using a

conditional processing profile (described in the DITA Language Specification). For example, a publisher

producing information for a mixed audience using the basic product could choose to flag information

that applies to administrators, and exclude information that applies to the extended product, and express

those choices in a conditional processing profile like this:

<prop att="audience" val="administrator" action="flag" >

 <startflag>ADMIN</startflag>

</prop>

<prop att="product" val="extendedprod" action="exclude"/>

At output time, the paragraph is flagged, and the first list item is excluded (since it applies to

extendedprod), but the second list item is still included (even though it does apply to extendedprod, it

also applies to basicprod, which was not excluded).

The result should look something like:

Filtering logic

When deciding whether to exclude a particular element, a process should evaluate each attribute, and

then evaluate the set of attributes:

v If all the values in an attribute have been set to ″exclude″, the attribute evaluates to ″exclude″

v If any of the attributes evaluate to exclude, the element is excluded.

For example, if a paragraph applies to three products and the publisher has chosen to exclude all of

them, the process should exclude the paragraph; even if the paragraph applies to an audience or platform

that you aren’t excluding. But if the paragraph applies to an additional product that has not been

excluded, then its content is still relevant for the intended output and should be preserved.

Flagging logic

When deciding whether to flag a particular element, a process should evaluate each value. Wherever a

value that has been set as flagged appears in its attribute (for example, audience=″ADMIN″) the process

should add the flag. When multiple flags apply to a single element, multiple flags should be output,

typically in the order they are encountered.

<p audience="administrator">Set the configuration options:

 <li product="extendedprod">Set foo to bar

 <li product="basicprod extendedprod">Set your blink rate

 Do some other stuff

 <li platform="Linux">Do a special thing for Linux

</p>

Figure 3. Example source

ADMIN Set the configuration options:

v Set your blink rate

v Do some other stuff

v Do a special thing for Linux

Chapter 4. DITA processing 43
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Flagging could be done using text (for example, bold text against a colored background) or using images.

When the same element evaluates as both flagged and filtered (for example, flagged because of an

audience attribute value and filtered because of its product attribute values), the element should be

filtered.

Chunking

Content may be chunked (divided or merged into new output documents) in different ways for the

purposes of authoring, for delivering content, and for navigation. For example, something best authored

as a set of separate topics may need to be delivered as a single Web page. A map author can use the

chunk attribute to split up single documents into component topics or combine multiple topics into a

single document as part of output processing.

Examples of use

Here are some examples of potential uses of the chunk attribute:

Reuse of a nested topic

A content provider creates a set of topics as a single document. A reuser wants to incorporate

only one of the nested topics from the document. The reuse can reference the nested topic from a

DITA map, using the chunk attribute to specify that the topic should be produced in its own

document.

Identification of a set of topics as a unit

A curriculum developer wants to compose a lesson for a SCORM LMS (Learning Management

System) from a set of topics without constraining reuse of those topics. The LMS can save and

restore the learner’s progress through the lesson if the lesson is identified as a referenceable unit.

The curriculum developer defines the collection of topics with a DITA map, using the chunk

attribute to identify the learning module as a unit before generating the SCORM manifest.

Usage of the chunk attribute

When a set of topics is transformed for output using a map, the map author may use the chunk attribute

to override whatever default chunking behavior applies. The chunk attribute allows the map author to

request that multi-topic documents be broken into multiple documents, and that multiple individual

topics be combined into a single document.

Chunking is necessarily output transformation specific with chunked output required for some and not

supported for other types of output. Chunking is also implementation specific with some

implementations supporting some, but not all, chunking methods, or adding new implementation specific

chunking methods to the standard methods described in this specification.

The value of the chunk attribute consists of one or more space delimited tokens:

by–topic

When the chunk attribute value includes the “by–topic” token, a chunking policy is established

for the current topicref element where a separate output chunk is produced for the target topic

and each of its descendants. The policy only applies for a chunk action of the current element (for

example, to-content), except when it is set on the map element, when the “by-topic” policy is

established for the entire map.

by–document

When the chunk attribute value includes the “by–document” token, a chunking policy is

established for the current topicref element where a single output chunk is produced for the

referenced document. The policy only applies for a chunk action of the current element (for

example, to-content), except when it is set on the map element, when the “by-document” policy

is established for the entire map.

44 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

select–topic

When the chunk attribute value includes the “select–topic” token, an individual topic, without

any other topics (ancestors, descendents, or peers) from within the same document, is selected.

The value is ignored when the element it is specified on does not point to a topic.

select–document

When the chunk attribute value includes the “select–document” token, the content for the

referenced topic, as well as any other topics (ancestors, descendents, or peers) contained within

the same document are selected. The value is ignored when the element it is specified on does

not point to a topic.

select–branch

When the chunk attribute value includes the “select–branch” token, an individual topic as well as

any nested topics it contains are selected. The value is ignored when the element it is specified on

does not point to a topic.

to–content

When the chunk attribute value includes the “to–content” token, processing generates a new

chunk of content. When specified on the map element, creates a single document that contains all

the topics referenced by the map.

to–navigation

When the chunk attribute value includes the “to–navigation” token, processing generates new

chunk of navigation (toc, related-links). When specified on the map element, creates a single

navigation chunk with the entire contents of the map.

Note that the set of select––xxxxx token values are only useful when addressing a topic in a document

that contains multiple topics.

Some tokens or combinations of tokens may not be appropriate for all output types. When unsupported

or conflicting tokens are encountered during output processing, warning or error messages should be

produced. Recovery from such conflicts or other errors is implementation dependent.

There is no default value for the chunk attribute and the chunk attribute does not inherit values from

container elements. A default by-xxx policy for an entire map may be established by setting the chunk

attribute on the map element.

When no chunk attribute values are given, chunking behavior is implementation dependent and may

vary for different implementations. When variations of this sort are not desired, a default for the entire

map may be established by including a chunk attribute value on the map element.

When creating new documents via chunk processing, the storage object name or identifier (if relevant) is

taken from the copyto attribute if set, otherwise the root name is taken from the id attribute if the

by-topic policy is in effect and from the name of the referenced document if the by-document policy is in

effect.

Examples

Given several single topic documents, parent1.dita, parent2.dita, ..., child1.dita, child2.dita, ...,

grandchild1.dita, grandchild2.dita containing topics with ids P1, P2, ..., C1, C2, ..., GC1, GC2, , several

nested topic documents, nested1.dita, nested2.dita, ..., each containing two topics, parent topics with ids

N1, N2, ... and child topics with ids N1a, N2a, ... nested within the parent, and ditabase.dita with the

following contents:

<dita>

 <topic id="X"/>

 <topic id="Y">

 <topic id="Y1">

 <topic id="Y1a"/>

 </topic>

Chapter 4. DITA processing 45
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

<topic id="Y2"/>

 </topic>

 <topic id="Z">

 <topic id="Z1"/>

 </topic>

</dita>

map1.ditamap:

<map chunk="by-document">

 <topicref href="parent1.dita" chunk="to-content">

 <topicref href="ditabase.dita#Y1"

 chunk="select-topic"/>

 </topicref>

</map>

Produces a single output document, parent1.xxxx containing topic P1 with topic Y1, but not topic Y1a

nested in it.

map2.ditamap:

<map chunk="by-document">

 <topicref href="parent1.dita" chunk="to-content">

 <topicref href="ditabase.dita"

 chunk="select-branch"/>

 </topicref>

</map>

Produces a single output document, parent1.xxxx containing topic P1, topic Y1 nested within topic P1,

and topic Y1a nested within Y1.

map3.ditamap:

<map chunk="by-topic">

 <topicref href="parent1.dita" chunk="to-content">

 <topicref href="ditabase.dita#Y1"

 chunk="select-document"/>

 </topicref>

</map>

Produces a single output document, P1.xxxx, containing topic P1 and topics X, Y, and Z together with

their children nested within topic P1.

map4.ditamap:

<map chunk="by-document">

 <topicref href="parent1.dita" copyto="parentchunk">

 <topicref href="nested1.dita" chunk="select-branch"/>

 </topicref>

 </map>

Produces a single output document named parentchunk.xxxx containing topic P1 with topic N1 nested

within P1 and topic N1a nested within N1.

map5.ditamap:

<map chunk="by-document">

 <topicref href="parent1.dita"

 chunk="to-content" copyto="parentchunk">

 <topicref href="child1.dita" chunk="select-branch"/>

 <topicref href="child2.dita"

 chunk="to-content select-branch"

 copyto="child2chunk">

 <topicref href="grandchild2.dita"/>

 </topicref>

 <topicref href="child3.dita">

46 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

<topicref href="grandchild3.dita"

 chunk="select-branch"/>

 </topicref>

 </topicref>

 </map>

Produces two output documents: the P1, C1, C3, and GC3 topics in parentchunk.xxxx, and the C2 and

GC2 topics in child2chunk.xxx.

map6.ditamap:

<map>

 <topicref href="nested1.dita#N1" copyto="nestedchunk"

 chunk="to-content select-topic"/>

</map>

Produces a single output document, nestedchunk.xxxx, which contains topic N1 with no topics nested

within.

map7.ditamap:

<map>

 <topichead navtitle="How to do lots of things"

 chunk="to-navigation">

 <topicref href="parent1.dita"

 navtitle="How to set up a web server">

 <topicref href="child1.dita"

 chunk="select-branch"/>

 ...

 </topicref>

 <topicref href="parent2.dita"

 navtitle="How to ensure database security">

 <topicref href="child2.dita"

 chunk="select-branch"/>

 ...

 </topicref>

 ...

 </topicref>

</map>

Produces two navigation chunks, one for P1, C1, ... and a second for P2, C2,

The above example identifies a “how to” for setting up a product as a single unit. The “how to” might be

provided both as navigable HTML pages and as a printable PDF attached to the root HTML page.

Implementation specific tokens and future considerations

Additional chunk tokens may be added to the DITA Standard in the future. Additional implementation

specific tokens may be defined as well. To avoid name conflicts between implementations or with future

additions to the standard, implementation specific tokens should consist of a prefix that gives the name

or an abbreviation for the implementation followed by a colon followed by the chunking method name.

For example: “acme:level2” could be a token for the Acme DITA Toolkit that requests the “level2”

chunking method.

Translation

DITA has specific capabilities for preparing content for translation and working with multilingual

content, including the xml:lang attribute, the dir attribute, and the translate attribute.

Chapter 4. DITA processing 47
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

The xml:lang attribute

Specifies the language (and optionally the locale) of the element content. The intent declared with

xml:lang is considered to apply to all attributes and content of the element where it is specified, unless

overridden with an instance of xml:lang on another element within that content. When no xml:lang value

is supplied, the processor should assume a default value.

This attribute must be set to a language identifier, as defined by IETF RFC 4646 (http://www.ietf.org/
rfc/rfc4646.txt) or successor.

Recommended usage

For a DITA document that contains a single language, the highest level element containing content should

always set the xml:lang attribute to the language (and optionally the locale) that applies to the document.

Since the dita element does not support the xml:lang element, the highest level element that should set

the xml:lang attribute is the topic element (or derivatives at the same level).

For a DITA document that contains more than one language, the highest level element should always set

the xml:lang attribute to the primary language (and optionally the locale) that applies to the document.

Wherever an alternate language occurs in the document, the element containing the text or structure in

the alternate language should set the xml:lang attribute appropriately. The above way of overriding the

default document language applies to both block and inline elements that use the alternate language.

Using markup to identify language is strongly recommended to make the document as portable as

possible. In addition, the marked-up document can be read and understood by humans. Finally, when

updating the document, the boundaries of each language are clear, which makes it much easier for the

author to update the document.

Applications should ensure every highest level topic element and the root map element explicitly assign

the xml:lang attribute.

Usage in maps

The xml:lang attribute can be specified on the map element. The expected language inheritance behavior

on the map is similar to that on the topic. That is, the primary language for the map should be set on the

map element (or assumed by the application if not explicitly set), and should remain in effect for all

children unless a child specifies a different value for xml:lang.

If the xml:lang value on a topicref does not match the xml:lang value on a topic, the value on the topic

takes precedence.

Usage with the conref attribute

When conref is used to include content from one topic in another topic, the xml:lang value must be

obtained from the topic being included. If the included content does not explicitly set xml:lang, the

processor must obtain the xml:lang value from the nearest parent of the included content. If the included

content does not have a parent element that sets xml:lang, the application should default to the same

value used for topics that do not set the xml:lang attribute.

This behavior is shown in the following example, where the xml:lang value of the included note is

obtained from its ancestor section element (id=″qqwwee″) that sets xml:lang. In this example, the

xml:lang value applied to the note whose id is ″mynote″ is ″fr″.

****************installingAcme.xml*********************

<?xml version="1.0"?>

<!DOCTYPE dita PUBLIC "-//OASIS//DTD DITA Composite//EN" "ditabase.dtd">

<dita>

 <topic id="topic_3FD87D" xml:lang="en">

48 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

http://www.ietf.org/rfc/rfc4646.txt
http://www.ietf.org/rfc/rfc4646.txt

<title>Installing Acme</title>

 <shortdesc>Step by step details on how to install Acme</shortdesc>

 <body>

 <p id="p_60A72">Welcome message goes here</p>

 <section id="section_C25">

 <title>Before you begin</title>

 <p id="p_E57324D">Special notes when installing Acme in

 France:</p>

 <note id="mynote" conref="warningsAcme.xml#topic_warnings/frenchwarnings"></note>

 </section>

 </body>

 </topic>

</dita>

****************warningsAcme.dita*********************

<?xml version="1.0"?>

<!DOCTYPE dita PUBLIC "-//OASIS//DTD DITA Composite//EN" "ditabase.dtd">

<dita>

 <topic id="topic_warnings">

 <title>Warnings</title>

 <shortdesc>warnings in all languages</shortdesc>

 <body>

 <section id="qqwwee" xml:lang="fr">

 <title>French warnings</title>

 <p id="p_F2A">These are our French warnings.</p>

 <note id="frenchwarnings">Note in French!</note>

 </section>

 <section xml:lang="en" id="aassdd">

 <title>English warnings</title>

 <p id="p_5F961">These are our English warnings.</p>

 <note id="englishwarnings">Note in English!</note>

 </section>

 </body>

 </topic>

</dita>

The dir attribute

While most languages are written in text where characters flow from left to right, Hebrew and many

Arabic languages are written from right to left. In some languages, including Hebrew and Arabic,

numbers and other content is written left to right. Also, a multilingual document containing, for example,

English and Hebrew, contains some text that flows left to right and other text that flows right to left.

Text directionality is controlled by the following:

1. Directionality explicitly set on the root element (via the dir attribute) or, when not set, assumed by the

processing application.

2. dir=″ltr|rtl″ attribute on an element that overrides the inherited direction. The specified direction

overrides the Unicode bidirectional algorithm only on neutral Unicode characters (e.g. spaces and

punctuation) in the element’s content. The ″ltr″ and ″rtl″ values do not override the strongly

bidirectional characters.

3. dir=″lro|rlo″ attribute on an element. The specified direction overrides the Unicode bidirectional

algorithm on all Unicode characters in the element’s content.

In most cases, authors need to use dir=″rtl|ltr″ to ensure punctuation surrounding a RTL phrase inside a

LTR element is rendered correctly. In order to override the direction of strongly typed Unicode characters

(most characters that apply to a language except for punctuation, spaces and digits), the author would

need to use dir=″lro|rlo″. The use of the dir attribute and the Unicode algorithm is clearly explained in

the article Specifying the direction of text and tables: the dir attribute (http://www.w3.org/TR/html4/
struct/dirlang.html#adef-dir) . The referenced article has several examples on the use of dir=″rtl|ltr″.

Chapter 4. DITA processing 49
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

http://www.w3.org/TR/html4/struct/dirlang.html#adef-dir
http://www.w3.org/TR/html4/struct/dirlang.html#adef-dir

There is no example on the use of dir=″lro|rlo″, though it can be inferred from the example using the

bdo element (the old W3C way of overriding the entire Unicode bidirectional algorithm; the now favored

method uses the override values on the dir attribute).

From the HTML 4.0 spec:

The dir attribute specifies the directionality of text: left-to-right (dir=″ltr″, the default) or right-to-left

(dir=″rtl″). Characters in Unicode are assigned a directionality, left-to-right or right-to-left, to allow

the text to be rendered properly. For example, while English characters are presented left-to-right,

Hebrew characters are presented right-to-left. Unicode defines a bidirectional algorithm that must be

applied whenever a document contains right-to-left characters. While this algorithm usually gives

the proper presentation, some situations leave directionally neutral text and require the dir attribute

to specify the base directionality. Text is often directionally neutral when there are multiple

embeddings of content with a different directionality. For example, an English sentence that contains

a Hebrew phrase that contains an English quotation would require the dir attribute to define the

directionality of the Hebrew phrase. The Hebrew phrase, including the English quotation, would be

contained within a ph element with dir=″rtl″.

Recommended usage

The Unicode Bidirectional algorithm provides for various levels of bidirectionality, as follows:

1. Directionality is either explicitly specified via the dir attribute on the highest level element (topic or

derived peer for topics, map for ditamaps) or assumed by the processing application. It is

recommended to specify the dir attribute on the highest level element in the topic or document

element of the map.

2. When embedding a RTL text run inside a LTR text run (or vice-verse), the default direction often

provides incorrect results, especially if the embedded text run includes punctuation that is located at

one end of the embedded text run. Unicode defines spaces and punctuation as having neutral

directionality, and defines directionality for these neutral characters when they appear between

characters having a strong directionality (most characters that are not spaces or punctuation). While

the default direction is often sufficient to determine the correct directionality of the language,

sometimes it renders the characters incorrectly (for example, a question mark at the end of a Hebrew

question may appear at the beginning of the question instead of at the end). To control this behavior,

the dir attribute is set to ″ltr″ or ″rtl″ as needed, to ensure that the desired direction is applied to the

characters that have neutral bidirectionality. The ″ltr|rtl″ values override only the neutral characters,

not all Unicode characters.

3. Sometimes you may want to override the default directionality for strongly bidirectional characters.

This is done using the ″lro″ and ″rlo″ values, which overrides the Unicode directionality algorithm.

This essentially forces a direction on the contents of the element. These override attributes give the

author a brute force way of setting the directionality independently of the Unicode BIDI algorithm.

The gentler ″ltr|rtl″ values have a less radical effect, only effecting punctuation and other so-called

neutral characters.

For most authoring needs, the ″ltr″ and ″rtl″ values are sufficient. Only when the desired effect cannot be

achieved using these values, should the override values be used.

While the Unicode standard includes hidden markers for directionality without the need for markup,

these markers should not be used. It is strongly recommended to mark up the document using the dir

attribute to set directionality. Using markup instead of the Unicode markers has the following

advantages:

v The document will be as portable as possible.

v The document can be processed by applications that do not fully implement the Unicode BIDI

algorithm.

v The marked-up document can be read and understood by humans.

50 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

v When updating the document, the boundaries of each text flow are clear, which makes it much easier

for the author to update the document.

Implementation precautions

Users should be aware that descriptive markup isn’t necessarily the end of their work. Each possible

output rendition or display tool may have different requirements for managing bidirectional text. Just as

different HTML browsers offer different levels of support for CSS, different output tools implement the

bidirectional algorithm, and its accompanying directional controls, differently. For example, HTML

displayed in Internet Explorer may have different requirements than HTML displayed in Firefox.

Similarly, a control that works in one part of an HTML file, such as the body of the page, might not work

in another, such as the title or the index in compiled HTML Help. The same uncertainty can be found in

almost any output. PostScript or PDF rendering tools treat bidirectional text differently. Microsoft Word

and OpenOffice Writer don’t handle bidirectional RTF in the same way. Flash has little concern for

directional markup of any kind, but does format strings according to the Unicode algorithm.

Because input is unpredictably dependent on eventual output, it is not sufficient to apply the “dir”

attribute in such a way as to make the XML appear as it should in an editor. Additional care must be

taken to make sure that markup is correctly transformed (or added to the source XML, if needed), with

respect both to the target output format and the target output tool. To use the case of HTML, this could

mean creating output tailored to the capabilities of the most common likely browser or creating output

tailored to the least capable browser and ensuring the markup functions for the most likely and capable

one. For example, bidirectional HTML that displays perfectly in Internet Explorer might not display

correctly in Safari. However, if the HTML displays perfectly in Safari, chances are very good it will

display correctly in Internet Explorer as well. This isn’t a certainty, however. Each case should be tested

and confirmed by qualified individuals.

Applications that process DITA documents, whether at the authoring, translation, publishing, or any

other stage, should fully support the Unicode algorithm to correctly implement the script and

directionality for each language used in the document. The recommended practice is to write all

directionality markers via XML markup and not to use the Unicode Bidirectional markers. When reading

XML markup that embeds the Unicode Bidirectional markers, these markers should be replaced with

markup when the document is saved.

Applications should ensure every highest level topic element and the root map element explicitly assign

the dir attribute.

 Related information

What you need to know about the bidi algorithm and inline markup (http://www.w3.org/
International/articles/inline-bidi-markup/)

XHTML Bi-directional Text Attribute Module (http://www.w3.org/TR/2004/WD-xhtml2-
20040722/mod-bidi.html)

Specifying the direction of text and tables: the dir attribute (http://www.w3.org/TR/html4/
struct/dirlang.html#adef-dir)

HTML 4.0 Common Attributes (http://www.htmlhelp.com/reference/html40/attrs.html)

All elements with translation properties

This contains a list of all current TC-approved elements, divided up by module. It describes which are

usually block elements and which are usually inline, and lists which elements should typically be

translated by default.

Since the distinction between block and inline elements is ultimately controlled by the container of the

element and the processing associated with it, the same element may be a block in one context and an

Chapter 4. DITA processing 51
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

http://www.w3.org/International/articles/inline-bidi-markup/
http://www.w3.org/International/articles/inline-bidi-markup/
http://www.w3.org/TR/2004/WD-xhtml2-20040722/mod-bidi.html
http://www.w3.org/TR/2004/WD-xhtml2-20040722/mod-bidi.html
http://www.w3.org/TR/html4/struct/dirlang.html#adef-dir
http://www.w3.org/TR/html4/struct/dirlang.html#adef-dir
http://www.htmlhelp.com/reference/html40/attrs.html

inline element in another. Specializing document types may vary this behavior according to the needs of

the document type being created, and the distinctions given below are provided only as a guide to

known behavior with the base DITA document types.

Notes on the tables below

v For specializations, the second column gives the ancestor element, and the third column gives a quick

yes/no guide to indicate whether all behavior is inherited. If something is not inherited, the change

will appear in bold.

v For any specialization not listed below, the default should be to fall back to the closest listed ancestor.

v The block/inline presentation column indicates whether the element is formatted as a single block.

v The block/inline translation column indicates whether the element represents a complete translatable

segment. For example, the element <cmd> is presented inline with other elements, but represents a

complete translation segment.

v Items marked as block*** are blocks on their own, but may appear in the middle of a segment. They

should not break the flow of the current segment. These are considered ″subflow″ elements for

translation. We recommend that, when possible, these elements should only be placed at sentence

boundaries to aid in translation.

v For all elements, the translate attribute will override the suggested default translation setting. So, a

translation setting of ″yes″ or ″no″ in the table below does not guarantee that an element will always,

or never, be translated.

v If an element has translatable attributes, they are listed in the last column. Note that the spectitle and

specentry attributes are described with a footnote.

v The keyword element (as well as derivations of keyword) is an inline, phrase-like element when it

appears in the body of a document. It may also appear in the keywords element in topicmeta (for

maps) or in the prolog (for topic). When it appears in the <keywords> element, each keyword

represents an individual segment, and is not part of a larger segment; in that location, keyword can be

considered a ″subflow″ element.

topic elements

Element name Specialized from

Block/Inline

(presentation)

Block/Inline

(translation)

Translatable

content?

Translatable

attributes?

abstract (New in

DITA 1.1)

N/A block block yes

alt N/A block***1 block yes

audience N/A block (metadata) block yes

author N/A block (metadata) block yes

body N/A block block yes

boolean N/A inline inline n/a

brand N/A block (metadata) block yes

category N/A block (metadata) block yes

1. This element is considered a ″subflow″ element for translation. If it is located in the middle of a translation segment, it should not

be translated as part of that segment. For example, indexterm, fn, and draft-comment may divide a sentence in two, but should

be treated as blocks, and should not interrupt the sentence.

2. The spectitle and specentry attributes can contain translatable text. The direct use of fixed-in-the-DTD text by tools is discouraged,

in favor of using the value as a lookup string to find the translation outside of the file, using accepted localization methods for

generated text.

3. The block vs. inline designation for the foreign element is likely to change for some specializations

4. The desc, object, and image elements inside <foreign> should still be translatable; they provide an alternative display if the

foreign content cannot be processed

5. The use of the alt attribute is deprecated in favor of the alt element.

52 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Element name Specialized from

Block/Inline

(presentation)

Block/Inline

(translation)

Translatable

content?

Translatable

attributes?

cite N/A inline inline yes

colspec N/A n/a n/a n/a

component N/A block (metadata) block yes

copyrholder N/A block (metadata) block yes

copyright N/A block (metadata) block yes

copyryear N/A block (metadata) block yes

created N/A block (metadata) block yes

critdates N/A block (metadata) block yes

data (New in DITA

1.1)

N/A N/A (metadata) block no (likely to change

for some

specializations)

data-about (New in

DITA 1.1)

N/A N/A (metadata) block no

dd N/A block block yes

ddhd N/A block block yes

desc N/A block block yes

dl N/A block block yes @spectitle2

dlentry N/A block block yes

dlhead N/A block block yes

draft-comment N/A block***1 block no

dt N/A block block yes

dthd N/A block block yes

entry N/A block block yes

example N/A block block yes @spectitle2

featnum N/A block (metadata) block yes

fig N/A block block yes @spectitle2

figgroup N/A block block yes

fn N/A block***1 block yes

foreign (New in

DITA 1.1)

N/A block3 block3 no4

image N/A block when

@placement= break,

otherwise inline

block when

@placement= break,

otherwise inline

yes @alt5

index-base (New in

DITA 1.1)

N/A block***1 block yes

indexterm N/A block***1 block yes

indextermref N/A inline n/a n/a

itemgroup N/A inline inline yes

keyword N/A inline inline (except when

within <keywords>

– see note above the

table)

yes

keywords N/A block block yes

li N/A block block yes

lines N/A block block yes @spectitle2

link N/A block block yes

linkinfo N/A block block yes

linklist N/A block block yes @spectitle2

Chapter 4. DITA processing 53
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Element name Specialized from

Block/Inline

(presentation)

Block/Inline

(translation)

Translatable

content?

Translatable

attributes?

linkpool N/A block block yes

linktext N/A block block yes

lq N/A block block yes @reftitle

metadata N/A block (metadata) block yes

navtitle N/A block block yes

no-topic-nesting N/A n/a n/a n/a

note N/A block block yes @othertype,

@spectitle2

object N/A block block yes @standby

ol N/A block block yes @spectitle2

othermeta N/A block (metadata) block yes @content

p N/A block block yes

param N/A block block n/a

permissions N/A block (metadata) block yes

ph N/A inline inline yes

platform N/A block (metadata) block yes

pre N/A block block yes @spectitle2

prodinfo N/A block (metadata) block yes

prodname N/A block (metadata) block yes

prognum N/A block (metadata) block yes

prolog N/A block (metadata) block yes

publisher N/A block (metadata) block yes

q N/A inline inline yes

related-links N/A block block yes

required-cleanup N/A block***1 block no

resourceid N/A block (metadata) block yes

revised N/A block (metadata) block yes

row N/A block block yes

searchtitle N/A block block yes

section N/A block block yes @spectitle2

series N/A block (metadata) block yes

shortdesc N/A block block yes

simpletable N/A block block yes @spectitle2

sl N/A block block yes @spectitle2

sli N/A block block yes

source N/A block (metadata) block yes

state N/A inline inline yes @value

stentry N/A block block yes @specentry2

sthead N/A block block yes

strow N/A block block yes

table N/A block block yes

tbody N/A block block yes

term N/A inline inline yes

tgroup N/A block block yes

thead N/A block block yes

54 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Element name Specialized from

Block/Inline

(presentation)

Block/Inline

(translation)

Translatable

content?

Translatable

attributes?

title N/A block block yes

titlealts N/A block block yes

tm N/A inline inline yes

topic N/A block block yes

ul N/A block block yes @spectitle2

unknown (New in

DITA 1.1)

N/A block block no

vrm N/A block (metadata) block yes

vrmlist N/A block (metadata) block yes

xref N/A inline inline yes

map elements

Element name Specialized from

Block/Inline

(presentation)

Block/Inline

(translation)

Translatable

content?

Translatable

attributes?

anchor N/A n/a n/a n/a

linktext N/A block block yes

map N/A block block yes @title

navref N/A n/a n/a n/a

relcell N/A block block yes

relcolspec N/A block block yes

relheader N/A block block yes

relrow N/A block block yes

reltable N/A block block yes

searchtitle N/A block block yes

shortdesc N/A block block yes

topicmeta N/A block block yes

topicref N/A block block yes @navtitle

bookmap elements (new in DITA 1.1)

The bookmap specialization contains many phrase-based elements inside the bookmeta. These are

metadata, and should not be translated.

Element name Specialized from

Inherits

everything

from

ancestor?

Block/Inline

(presentation)

Block/Inline

(translation)

Translatable

content?

Translatable

attributes?

abbrevlist topicref yes block block yes @navtitle

amendments topicref yes block block yes @navtitle

appendix topicref yes block block yes @navtitle

approved data yes block block no

backmatter topicref yes block block yes

bibliolist topicref yes block block yes @navtitle

bookabstract topicref yes block block yes @navtitle

bookchangehistory data yes block block no

bookevent data yes block block no

Chapter 4. DITA processing 55
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Element name Specialized from

Inherits

everything

from

ancestor?

Block/Inline

(presentation)

Block/Inline

(translation)

Translatable

content?

Translatable

attributes?

bookeventtype data yes block block no

bookid data yes block block no

booklibrary ph yes inline inline yes

booklist topicref yes block block yes @navtitle

booklists topicref yes block block yes

bookmap map no block block yes removed title attribute

bookmeta topicmeta yes block block yes

booknumber data yes block block no

bookowner data yes block block no

bookpartno data yes block block no

bookrestriction data yes block block no

bookrights data yes block block no

booktitle title yes block block yes

booktitlealt ph yes inline inline yes

chapter topicref yes block block yes @navtitle

colophon topicref yes block block yes @navtitle

completed ph no inline inline no

copyrfirst data yes block block no

copyrlast data yes block block no

day ph no inline inline no

dedication topicref yes block block yes @navtitle

draftintro topicref yes block block yes @navtitle

edited data yes block block no

edition data yes block block no

figurelist topicref yes block block yes @navtitle

frontmatter topicref yes block block yes @navtitle

glossarylist topicref yes block block yes @navtitle

indexlist topicref yes block block yes @navtitle

isbn data yes block block no

mainbooktitle ph yes inline inline yes

maintainer data yes block block no

month ph no inline inline no

notices topicref yes block block yes @navtitle

organization data yes block block no

part topicref yes block block yes @navtitle

person data yes block block no

preface topicref yes block block yes @navtitle

printlocation data yes block block no

published data yes block block no

publisherinformation publisher yes block block yes

publishtype data yes block block no

reviewed data yes block block no

revisionid ph no inline inline no

started ph no inline inline no

summary ph yes inline inline yes

tablelist topicref yes block block yes @navtitle

tested data yes block block no

toc topicref yes block block yes @navtitle

trademarklist topicref yes block block yes @navtitle

56 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Element name Specialized from

Inherits

everything

from

ancestor?

Block/Inline

(presentation)

Block/Inline

(translation)

Translatable

content?

Translatable

attributes?

volume data yes block block no

year ph no inline inline no

concept elements

Element name Specialized from

Inherits

everything from

ancestor?

Block/Inline

(presentation)

Block/Inline

(translation)

Translatable

content?

Translatable

attributes?

conbody body yes block block yes

concept topic yes block block yes

glossary elements (new in DITA 1.1)

Element name Specialized from

Inherits

everything from

ancestor?

Block/Inline

(presentation)

Block/Inline

(translation)

Translatable

content?

Translatable

attributes?

glossdef abstract yes block block yes

glossentry topic yes block block yes

reference elements

Element name Specialized from

Inherits

everything from

ancestor?

Block/Inline

(presentation)

Block/Inline

(translation)

Translatable

content?

Translatable

attributes?

propdesc stentry yes block block yes @specentry2

propdeschd stentry yes block block yes @specentry2

properties simpletable yes block block yes @spectitle2

property strow yes block block yes

prophead sthead yes block block yes

proptype stentry yes block block yes @specentry2

proptypehd stentry yes block block yes @specentry2

propvalue stentry yes block block yes @specentry2

propvaluehd stentry yes block block yes @specentry2

refbody body yes block block yes

reference topic yes block block yes

refsyn section yes block block yes @spectitle2

task elements

Element name Specialized from

Inherits

everything from

ancestor?

Block/Inline

(presentation)

Block/Inline

(translation)

Translatable

content?

Translatable

attributes?

chdesc stentry yes block block yes @specentry2

chdeschd stentry yes block block yes @specentry2

chhead sthead yes block block yes

choice li yes block block yes

choices ul yes block block yes removes @spectitle

choicetable simpletable yes block block yes @spectitle2

Chapter 4. DITA processing 57
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Element name Specialized from

Inherits

everything from

ancestor?

Block/Inline

(presentation)

Block/Inline

(translation)

Translatable

content?

Translatable

attributes?

choption stentry yes block block yes @specentry2

choptionhd stentry yes block block yes @specentry2

chrow strow yes block block yes

cmd ph NO inline block yes

context section yes block block yes removes @spectitle

info itemgroup NO inline block yes

postreq section yes block block yes removes @spectitle

prereq section yes block block yes removes @spectitle

result section yes block block yes removes @spectitle

step li yes block block yes

stepresult itemgroup NO inline block yes

steps ol yes block block yes removes @spectitle

steps-unordered ul yes block block yes removes @spectitle

stepxmp itemgroup NO inline block yes

substep li yes block block yes

substeps ol yes block block yes removes @spectitle

task topic yes block block yes

taskbody body yes block block yes

tutorialinfo itemgroup NO inline block yes

hi-d elements (highlight domain)

Element name Specialized from

Inherits

everything from

ancestor?

Block/Inline

(presentation)

Block/Inline

(translation)

Translatable

content?

Translatable

attributes?

b ph yes inline inline yes

i ph yes inline inline yes

sub ph yes inline inline yes

sup ph yes inline inline yes

tt ph yes inline inline yes

u ph yes inline inline yes

indexing-d elements (indexing domain) (new in DITA 1.1)

Element name Specialized from

Inherits

everything from

ancestor?

Block/Inline

(presentation)

Block/Inline

(translation)

Translatable

content?

Translatable

attributes?

index-see index-base yes block***1 block yes

index-see-also index-base yes block***1 block yes

index-sort-as index-base yes block***1 block yes

58 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

pr-d elements (programming domain)

Element name Specialized from

Inherits

everything

from

ancestor?

Block/Inline

(presentation)

Block/Inline

(translation)

Translatable

content?

Translatable

attributes?

apiname keyword yes inline inline yes

codeblock pre yes block block yes @spectitle2

codeph ph yes inline inline yes

delim ph yes inline inline yes

fragment figgroup yes block block yes

fragref xref yes inline inline yes

groupchoice figgroup yes block block yes

groupcomp figgroup yes block block yes

groupseq figgroup yes block block yes

kwd keyword yes inline inline yes

oper ph yes inline inline yes

option keyword yes inline inline yes

parml dl yes block block yes @spectitle2

parmname keyword yes inline inline yes

pd dd yes block block yes

plentry dlentry yes block block yes

pt dt yes block block yes

repsep ph yes inline inline yes

sep ph yes inline inline yes

synblk figgroup yes block block yes

synnote fn yes block block yes

synnoteref xref yes inline inline yes

synph ph yes inline inline yes

syntaxdiagram fig yes block block yes removes @spectitle

var ph yes inline inline yes

sw-d elements (software domain)

Element name Specialized from

Inherits

everything from

ancestor?

Block/Inline

(presentation)

Block/Inline

(translation)

Translatable

content?

Translatable

attributes?

cmdname keyword yes inline inline yes

filepath ph yes inline inline yes

msgblock pre yes block block yes @spectitle2

msgnum keyword yes inline inline yes

msgph ph yes inline inline yes

systemoutput ph yes inline inline yes

userinput ph yes inline inline yes

varname keyword yes inline inline yes

Chapter 4. DITA processing 59
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

ui-d elements (UI domain)

Element name Specialized from

Inherits

everything from

ancestor?

Block/Inline

(presentation)

Block/Inline

(translation)

Translatable

content?

Translatable

attributes?

menucascade ph yes inline inline yes

screen pre yes block block yes @spectitle2

shortcut keyword yes inline inline yes

uicontrol ph yes inline inline yes

wintitle keyword yes inline inline yes

ut-d elements (Utilities domain)

Element name Specialized from

Inherits

everything from

ancestor?

Block/Inline

(presentation)

Block/Inline

(translation)

Translatable

content?

Translatable

attributes?

area figgroup yes block block yes

coords ph NO inline inline no

imagemap fig yes block block yes (can contain

translatable

alternate text)

@spectitle2

shape keyword NO inline inline no

mapgroup-d elements (mapgroup domain)

Element name Specialized from

Inherits

everything from

ancestor?

Block/Inline

(presentation)

Block/Inline

(translation)

Translatable

content?

Translatable

attributes?

topicgroup topicref yes block block yes @navtitle

topichead topicref yes block block yes @navtitle

xnal-d elements (XNAL domain) (new in DITA 1.1)

The XNAL information is all metadata, so it generally does not need to be translated. Exceptions may be

needed when selections from this metadata are used for display purposes. The standard behavior may

need to change based on local business rules. For example, in some cases it may be appropriate to

translate the honorific, country, or organizationname elements.

Element name

Specialized

from

Inherits

everything from

ancestor?

Block/Inline

(presentation)

Block/Inline

(translation)

Translatable

content?

Translatable

attributes?

addressdetails ph no block block no

administrativearea ph no block block no

authorinformation author no block block no

contactnumber data no block block no

contactnumbers data no block block no

country ph no block block no

emailaddress data no block block no

emailaddresses data no block block no

firstname data no block block no

generationidentifier data no block block no

honorific data no block block no

60 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Element name

Specialized

from

Inherits

everything from

ancestor?

Block/Inline

(presentation)

Block/Inline

(translation)

Translatable

content?

Translatable

attributes?

lastname data no block block no

locality ph no block block no

localityname ph no block block no

middlename data no block block no

namedetails data no block block no

organizationinfo data no block block no

organizationname ph no block block no

organizationnamedetails ph no block block no

otherinfo data no block block no

personinfo data no block block no

personname data no block block no

postalcode ph no block block no

thoroughfare ph no block block no

url data no block block no

urls data no block block no

Chapter 4. DITA processing 61
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

62 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Chapter 5. DITA specialization

Specialization is the process by which new designs are created based off existing designs, allowing new

kinds of content to be processed using existing processing rules.

Specialization provides a way to reconcile the needs for centralized management of major architecture

and design with the needs for localized management of group-specific and content-specific guidelines

and behaviors. Specialization allows multiple definitions of content and output to co-exist, related

through a hierarchy of types and transforms. This hierarchy lets general transforms know how to deal

with new, specific content, and it lets specialized transforms reuse logic from the general transforms. As a

result, any content can be processed by any transform, as long as both content and transform are

specialization-compliant, and part of the same hierarchy. Specializers get the benefit of specific solutions,

but also get the benefit of common standards and shared resources.

 Content Processing Result

Unspecialized Unspecialized Base processing, expected output

Unspecialized Specialized Base processing, specialized overrides

are ignored, expected output

Specialized Unspecialized Base processing, specialized content

treated as general, output may fall

short of expectations

Specialized Specialized Specialized processing, expected

output

Specialized Differently specialized Some specialized processing,

specialized content treated as nearest

common denominator, output may

fall short of expectations

The following topics provide an overview of specialization, some recommendations for use, and detailed

rules for its mechanisms.

What is specialization?

Specialization allows you to define new kinds of information (new structural types or new domains of

information), while reusing as much of existing design and code as possible, and minimizing or

eliminating the costs of interchange, migration, and maintenance.

Specialization is used when new structural types or new domains are needed. DITA specialization can be

used when you want to make changes to your design for the sake of increased consistency or

descriptiveness or have extremely specific needs for output that cannot be addressed using the current

data model. Specialization is not recommended for simply creating different output types as DITA

documents may be transformed to different outputs without resorting to specialization (see

“Customization” on page 86).

There are two kinds of specialization hierarchy: one for structural types (with topic or map at the root)

and one for domains (with elements in topic or map at their root, or the attributes props or base).

Structural types define topic or map structures, such as concept or task or reference, which often apply

across subject areas (for example, a user interface task and a programming task may both consist of a

series of steps). Domains define markup for a particular information domain or subject area, such as

programming, or hardware. Each of them represent an “is a” hierarchy, in object-oriented terms, with

 63
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

each structural type or domain being a subclass of its parent. For example, a specialization of task is still

a task; and a specialization of the user interface domain is still part of the user interface domain.

Use specialization when you are dealing with new semantics (new, meaningful categories of information,

either in the form of new structural types or new domains). The new semantics can be encoded as part of

a specialization hierarchy, that allows them to be transformed back to more general equivalents, and also

ensures that the specialized content can be processed by existing transforms.

Why specialization?

Specialization can have dramatic benefits for the development of new document architectures.

Among the benefits:

v No need to reinvent the base vocabulary - Create a module in 1/2 day with 10 lines vs. 6 months with

100s of lines; allows faster design iterations and scalable prototyping; automatically pick up changes to

the base

v No impact from other designs that customize for different purposes - Avoid enormous, kitchen-sink

vocabularies; Plug in the modules for your requirements

v Interoperability at the base type - Guaranteed mapping from specialized type documents to base type

documents

v Reusable type hierarchies - Share understanding of information across groups, saving time and

presenting a consistent picture to customers

v Output tailored to customers and information - More specific search, filtering, and reuse that is

designed for your customers and information not just the common denominator

v Consistency - Both with base standards and within your information set

v Learning support for new writers - Instead of learning standard markup plus specific ways to apply

the markup, writers get specific markup with guidelines built in

v Explicit support of different product architectural requirements - Requirements of different products

and architectures can be supported and enforced, rather than suggested and monitored by editorial

staff

Structural versus domain specialization

Structural specialization defines new types of structured information, such as new topic types or new

map types. Domain specialization creates new markup that can be useful in multiple structural types,

such as new kinds of keywords, tables, or lists, or new attributes such as conditional processing

attributes.

Structural types define structures for modules of information, such as concept or task or reference, which

often apply across subject areas (for example, a user interface task and a programming task may both

consist of a series of steps). When new elements are introduced through structural specialization, the

elements that contain the new elements must be specialized as well; and the new container elements

must have their containers specialized in turn, all the way to the root element for the module (for

example, the <topic> element or <map> element).

Domains typically define markup for a particular domain or subject area, such as programming, or

hardware. Domain elements become available wherever their ancestor elements are allowed once the

domains are integrated with the structural specializations in a document type. Domain attributes (based

off of props or base) become available wherever the props or base attributes are allowed.

Both structural specialization hierarchies and domain specialization hierarchies are “is a” hierarchies, in

object-oriented terms, with each structural type or domain being a subclass of its parent. For example, a

specialization of task is still a task; and a specialization of the programming domain is still concerned

with programming.

64 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Structural and domain hierarchies must share a common base module in order to be integrated together.

For example, domains for use across topic types must ultimately be specialized off of elements or the

specializable attributes in <topic>; domains for use across both topic types and map types must be

specialized off of the elements or specializable attributes that are common to both types.

With the exception of the common base modules (topic and map), a domain cannot be specialized from a

structural type. For example, a domain cannot be specialized from elements in <task>, only from the root

structural modules for <topic> or <map>. This rule ensures that domains can be integrated and

document types can be generalized predictably.

Elements and attributes created by specialization are scoped by the name of the structural type or domain

in which they were declared. For structural types, the name is the same as the root element: for example,

task is the name of the structural type whose root element is <task>. For domains, the name is not shared

with any element, but is assigned by the developer of the specialization. By convention, domain names

end with ″-d″ and are kept short; for example, ui-d for the user interface domain and pr-d for the

programming domain. Attribute domains are a special case, typically named after the attribute being

defined, with the addition of ″-a″.

Specializing foreign or unknown content

Specializing <foreign> or <unknown> elements is an open extension to the DITA Architecture that allows

DITA adopters to incorporate new or existing standard vocabularies for non-textual content, like MathML

and SVG, as in-line objects.

Incorporating foreign or unknown content

 There are three methods in which a DITA adopter can incorporate foreign content into DITA.

v Implement <foreign> or <unknown> as a domain specialization.

v Implement <foreign> or <unknown> as part of a structural specialization.

v Do nothing; simply embed the foreign content within <foreign> or <unknown>.

 Specialization of <foreign> or <unknown> should usually be implemented as a domain, but for

those looking for more control over the content can implement foreign vocabulary as part of a

structural specialization.

 Embedding the content within an unspecialized <foreign> or <unknown> element, because of the

ANY content model, offers the least amount of control over the content and hinders

interoperability.

Foreign or unknown content and the architectural class attribute

 The class attribute is used for a specific purpose in DITA. It identifies the specialization module

for the element type as well as the ancestor element types and the specialization modules to

which they belong. Every DITA element has to have a class attribute. Since the elements defined

within the foreign vocabulary are non-DITA elements, there is no requirement for those elements

to have an architectural class attribute. Elements that specialize <foreign> or <unknown>,

therefore a DITA element, are required to have a class attribute.

Specializing foreign or unknown content using DTDs.

 For more specific information on specializing DTDs, see Modularization in DTDs

<!-- declaration for the specialized wrapper -->

<!ENTITY % svg "svg">

<!-- included SVG document type -->

<!ENTITY % SVG.prefix "svg" >

<!ENTITY % svg-qname.mod

 PUBLIC "-//W3C//ENTITIES SVG 1.1 Qualified Name//EN"

 "svg-qname.mod" >

Chapter 5. DITA specialization 65
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

<!-- definition for the specialized wrapper -->

<!ELEMENT svg ((%SVG.svg.qname;)>

<!ATTLIST svg %global-atts;

 class CDATA "+ topic/foreign svg-d/svg "

>

An SVG example within a paragraph element

 <p>This is an ellipse.

 <svg>

 <svg:svg width="100%" height="100%" version="1.1"

xmlns="http://www.w3.org/2000/svg">

<ellipse cx="300" cy="150" rx="200" ry="80"

style="fill:rgb(200,100,50);

stroke:rgb(0,0,100);stroke-width:2"/>

 </svg:svg>

 </svg>.

</p>

Specializing foreign content using XML Schemas

For more specific information on specializing XML Schemas, see Modularization in schemas

 <!-- importing MathML document type -->

<xs:import namespace="http://www.w3.org/1998/Math/MathML" schemaLocation="mathml2.xsd">

<!-- definition for the specialized wrapper -->

<xs:element name="mathML" type="mathML.class" />

<xs:complexType name="mathML.class">

 <xs:choice>

 <xs:element ref="mml:math" />

 </xs:choice>

 <xs:attribute name="outputclass" type="xs:string"/>

 <xs:attributeGroup ref="univ-atts"/>

 <xs:attributeGroup ref="global-atts"/>

 <xs:attribute ref="class" default="+ topic/foreign mathML/mathML"/>

</xs:complexType>

<!-- definition for each element extended by the domain -->

<xs:group name="ma-d-foreign">

 <xs:choice>

 <xs:element ref="mathML" />

 </xs:choice>

</xs:group>

<!-- definition for the named model groups -->

<xs:group name="foreign">

 <xs:choice>

 <xs:group ref="foreign"/>

 <xs:group ref="ma-d-foreign"/>

 </xs:choice>

</xs:group>

An XML Schema MathML specialization example

Use of a specialized <foreign> element with a <object> element using MathML.

 <p>... as in the formula

<object>

 <desc>4 + x</desc>

 <mathML>

 <mml:math display="block">

 <mml:mrow>

 <mml:mo>∑</mml:mo>

 <mml:mn>4</mml:mn>

 <mml:mo>+</mml:mo>

 <mml:mi>x</mml:mi>

 </mml:mrow>

66 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

</mml:math>

 </mathML>

 <object>.

</p>

Data extensibility

The <data> element represents properties ranging from simple values to complex structures. Processes

can harvest the <data> element for automated manipulation or to format data associated with the body

flow. The <data> element is primarily intended for use in creating specializations.

You can nest <data> elements for structures. You can use the name attribute to indicate the semantic of

instances of the <data> element such as addresses, times, amounts, and so on. In many cases, however,

you may prefer to specialize the <data> element for more precise semantics and for constraints on

structures and values. For instance, a specialization can specify an enumeration for the value attribute.

In some cases, it isn’t possible or convenient to maintain a property as part of the content of its subject.

For instance, you might prefer to maintain extensive data in the <prolog> that applies to a note or

example within the body. To handle such exceptions, you can use the <data-about> element to identify

the subject of the property.

A process can harvest the data values for a machine-processable representation such as RDF. The default

formatting ignores the <data> element within the <body> element. Understanding whether and how the

properties should display, customized or specialized processing can extend formatting to include data

values in some formatted outputs.

 CAUTION:

It is an abuse of the DITA architecture to specialize <data> element for text that is part of the body

flow, particularly to escape the constraints of the base content models. For example, a special kind of

paragraph must specialize the base <p> element rather than the <data> element. When exchanging

content with others or retiring a specialization, a paragraph specialized from the <data> element will

be generalized and thus skipped by the base formatting, mangling the discourse flow and resulting in

invalid content.

Applications

Uses of the <data> element include the following:

v Complex metadata properties such as bibliographic records corresponding to citations.

v Hybrid documents with data values as part of the content. (Word processor formats using form fields

provide an example of such hybrid documents.)

v Messages in which the payload includes human-readable content. Such applications can use the <data>

element to define the addressing on the message envelope. For instance, a topic could model an email

by representing the address with specialized <data> elements in the <prolog> element and the content

with the <body> element.

v Transactional documents in which the values are processed but also displayed with human-readable

content. In particular, a library of building blocks for transaction documents can be implemented

through a DITA domain as specialized <data> elements including those from the UN/CEFACT Core

Components Technical Specification (http://www.unece.org/cefact/).

The following example specifies the delimited source code for a code fragment so an automated process

can refresh the code fragment. The <fragmentSource>, <sourceFile>, <startDelimiter>, and

<endDelimiter> elements are specialized from <data> but the <codeFragment> is specialized from

<codeblock>. These properties wouldn’t appear in the formatted output (except perhaps for debugging

problems in the refresh):

Chapter 5. DITA specialization 67
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

http://www.unece.org/cefact/

<example>

 <title>An important coding technique</title>

 <codeFragment>

 <fragmentSource>

 <sourceFile value="helloWorld.java"/>

 <startDelimiter value="FRAGMENT_START_1"/>

 <endDelimiter value="FRAGMENT_END_1"/>

 </fragmentSource>

 ...

 </codeFragment>

</example>

The following example identifies a real estate property as part of a house description. The

<realEstateProperty> element and everything it contains are specialized from <data>. The

<houseDescription> element is specialized from <section>. A specialized process can format the values to

identify the lot if appropriate for the brochure.

<houseDescription>

 <title>A great home for sale</title>

 <realEstateProperty>

 <realEstateBlock value="B7"/>

 <realEstateLot value="4003"/>

 ...

 </realEstateProperty>

 <p>This elegant....</p>

 <object data="B7_4003_tour360Degrees.swf"/>

</houseDescription>

Limits of specialization

There are times when a new structural or domain type appears not to fit into the existing hierarchy,

based on the semantics of the existing types and the restrictions of the specialization process. In these

cases there are a variety of options to consider.

The basic specialization mechanism used by the DITA document types can also be used for non-DITA

document types in order to provide the same re-use, specialization, and interoperation benefits that one

can get from the DITA document types, but restricted to the specific domain within which the new

document types apply. Note that even if one uses the DITA-defined types as a starting point, any change

to those base types not accomplished through specialization defines a completely new document type

that has no meaningful or normative relationship to the DITA document types and cannot be considered

in any way to be a conforming DITA application. In other words, the use of DITA specialization from

non-DITA base types does not produce DITA-compliant document types.

However, given the substantial benefits of building from the common DITA base classes (including the

ability to generalize to a common format, use of standards-compliant tools and processes, and reuse of

content across document types through DITA maps and conref) there are some techniques to consider

before complete departure from the DITA content architecture.

Specialize from generic elements or attributes

The first option to consider is to choose more generic base elements or attributes from the available set.

There are generic elements in DITA available at every level of detail, from whole generic topics down to

individual generic keywords, and the generic attribute base is available for attribute domain

specialization.

For example, if you want to create a new kind of list but cannot usefully do so specializing from ,

, <sl>, or <dl>, you can create a new set of list elements by specializing nested <ph> elements. This

new list structure will not be semantically tied to the other lists by ancestry, and so will require

68 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

specialized processing to receive appropriate output styling. However, it will remain a valid DITA

specialization, with the standard support for generalization, content referencing, conditional processing,

and so forth.

The following base elements in <topic> are generic enough to support almost any structurally valid

specialization:

topic any content unit that has a title and associated content

section

any non-nesting division of content within a topic, titled or not

p any non-titled block of content below the section level

fig any titled block of content below the section level

ul, ol, dl, sl, simpletable

any structured block of content that consists of listed items in one or more columns

ph any division of content below the paragraph level

keyword

any non-nesting division of content below the paragraph level

data any content designed for internal processing rather than human-readable output

foreign

any content that already has a non-DITA markup standard but needs to be authored as part of

the DITA document

unknown

any non-standard markup that does not fit the DITA model but needs to be managed as part of a

DITA document

The following attributes in topic are suitable for domain specialization to provide new attributes that are

required throughout a document type:

props any new conditional processing attribute

base any new attribute that is universally available, has a simple syntax (space-delimited alphanumeric

values), and doesn’t already have a semantic equivalent

You should specialize from the semantically closest match whenever possible. When some structural

requirement forces you to pick a more general ancestor, please inform the technical committee: over time

a richer set of generic elements should become available.

Customized subset document types for authoring

DITA markup is organized into domain and structural type modules so that authoring groups can easily

select the markup subset they require by creating a new document type shell. However, when an

authoring group requires a subset of markup rules that does not follow the boundaries of the type

modules (for example, global removal of certain attributes or elements), you can if necessary create a

customized document type for the sake of enforcing these rules at authoring time, as long as the

document types are validated using a standards-compliant document type at processing time.

A customized subset document type should be created without editing of the type modules. The

document type shell can override entities in the module files, including attributes and content models, by

providing a new definition of the entity before importing the module files.

Customized subset document types are not conformant with the DITA standard, and may not be

supported by standards-conformant tools. For example, if you customize document types to remove the

<xref> element, you may not be able to use off-the-shelf DITA editors to create your content.

Chapter 5. DITA specialization 69
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Map from customized document type to DITA during preprocessing

While specialization can be used to adapt document types for many different authoring purposes, there

are some authoring requirements that cannot be met through specialization, in particular, splitting or

renaming attributes, or renaming elements through specialization without also specializing their

containers.

In cases where structural and domain specialization of elements or attributes is not sufficient, and where

the new document type can be straightforwardly and reliably transformed to a standard document type,

the authoring group may be best served by a customized document type that is transformed to a

standard document type as part of the publishing pipeline. For example, if an authoring group requires

the <p> element to be spelled out as <paragraph>, the document type could be customized to change

<p> to <paragraph> and then preprocessed to rename <paragraph> back to <p> before feeding the

documents into a standard publishing process.

A customized document type should be created without editing of the type modules. The document type

shell can override entities in the module files, including attributes and content models, by providing a

new definition of the entity before importing the type module files.

Customized document types are not compliant with the DITA standard, and will not be supported by

standards-compliant tools. Preprocessing can ensure compatibility with existing publishing processes, but

does not ensure compatibility with DITA-supporting authoring tools or content management systems.

However, when an implementation is being heavily customized in any case, a customized document

types can help isolate and control the implications of non-standard design in a customized

implementation.

Specialization in content

Specialization is expressed in content through the use of two attributes: the class attribute and the

domain attribute. These are not typically present in the document instance, but are provided by default

values expressed in a DTD or schema.

Why specialization in content?

Specialization attributes let processes and tools know what set of rules your markup conforms to. This

allows reuse of tools and processes for unfamiliar markup.

Specialization of attributes

When creating a structural specialization, you can limit the contents of existing attributes on your new

elements; you can also create new attributes through domain specialization based off of the props

attribute (for conditional processing) or the base attribute (for other simple token attributes).

Domain attribute specialization allows DITA document type developers to incorporate new conditional

processing attributes that can be used for filtering and flagging, or new attributes with no existing

equivalent that can be managed and generalized in the same way as conditional processing attributes.

The new attributes need to be based off of either props or base:

v Attributes specialized from props are identified as conditional processing attributes

v Attributes specialized from base have no existing behavior associated with them

v Values in specialized attributes should be preserved during generalization and respecialization

v While generalized, the attribute values should still be understandable by both general and specialized

behaviors, and be treated as equivalent to their specialized form. For example, conditional filtering

should work the same way on specialized attributes and on generalized attributes.

70 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Because there is a strong possibility that the existing conditional processing attributes (audience, platform,

product, and otherprops) will be moved into a domain based off of props in the future, structural

specializations are discouraged from limiting the values in those attributes.

The class attribute

Each element declared in the DITA architecture has a class attribute. This attribute provides a mapping

between the element’s current name and its more general equivalents. The more specialized the element

type, the longer its class attribute value.

For example, the class attribute for the task topic type’s step element is:

<!ATTLIST step class CDATA "- topic/li task/step ">

This tells us that the step element is equivalent to the li element in a generic topic. It also tells us that

step is equivalent to a step in a task topic, which we already knew, but it’s worth noting this in the

attribute because it enables round-trip migration between upper level and lower level types without loss

of information. For example, if a user runs a ″generalize″ transform that maps all elements to their first

class value, but preserves their content and attribute values, then the user can follow it up with a

″specialize″ transform that maps all elements to their last class value (preserving content and attribute

values), and provide a full round trip for all content between the two document types, using nothing but

two generic transforms and the information in the class attribute.

The class attribute tells a processor what general classes of elements the current element belongs to. DITA

scopes values by module type (for example topic type, domain type, or map type) instead of document

type, which lets document type developers combine multiple topic types in a single document without

complicating transform logic.

The sequence of the values is important because it tells processors which value is the most general and

which is most specific. This is especially important for ″specializing″ transforms, where you can apply a

general rule that says: if the element doesn’t have a mapping to the target topic type, simply use the last

value of the class attribute (and assume that the specialized topic type is reusing some general element

declarations, which only have mappings for the level at which they were declared).

The class attribute value is provided as a default value that can be overridden and is not fixed. The

ability to change the class attribute becomes important for mapping persistence through migration: when

you migrate content to a more abstract element, you can preserve its more specialized history in the class

attribute, allowing round-tripping of content between more specialized and more general representations,

so it can be processed by different applications at whichever level they understand or support.

Class attribute syntax

The class attribute has a particular syntax that must be followed for it to be processed correctly.

Every element must have a class attribute. The class attribute starts with a ″-″ if it is declared in a

structural module, or a ″+″ if it is declared in a domain module. After the starting token are one or more

blank-delimited values, ending with a blank. Each value has two parts: the first part identifies a

specialization module, for example a topic type or domain name, and the second part (after a /)

identifies an element type. Structural names are taken from the root element for the topic type or map

type. Domain names are defined in the domain module.

Typically, the class attribute value should be declared as a default attribute value in the DTD or schema

rather than directly in the document instance. The class attribute should not be modified by the author.

Chapter 5. DITA specialization 71
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

When the class attribute is declared in the DTD or schema, it must be declared with a default value. In

order to support generalization round-tripping (generalizing specialized content into a generic form and

then returning it to the specialized form) the default value must not be fixed. This allows the

generalization process to overwrite the default values in a general document type with specialized values

taken from the document being generalized.

When a specialized type declares new elements, it must provide a class attribute for the new element.

The class attribute must include a mapping for every structural type or domain in the specialized type’s

ancestry, even those in which no element renaming occurred. The mapping should start with the value

for the base type (for example topic or map), and finish with the current element type.

 Intermediate values are necessary so that generalizing and specializing transforms can map values simply

and accurately. For example, if task/kwd was missing as a value, and a user decided to generalize this

guitask up to a task topic, then the transform would have to guess whether to map to kwd (appropriate

if task is more general than guitask, which it is) or leave as windowname (appropriate if task were more

specialized, which it isn’t). By always providing mappings for more general values, we can then apply

the simple rule that missing mappings must by default be to more specialized values than the one we are

generalizing to, which means the last value in the list is appropriate. For example, when specializing to

<task>, if a <p> element has no target value for <task>, we can safely assume that <p> does not

specialize from <task> and should not be generalized.

While this example is trivial, more complicated hierarchies (say, five levels deep, with renaming occurring

at two and four only) make explicit intermediate values essential.

A specialized type does not need to change the class attribute for elements that it does not specialize, but

simply reuses by reference from more generic levels. For example, since task, bctask, and guitask use the

p element without specializing it, they don’t need to declare mappings for it.

A specialized type only declares class attributes for the elements that it uniquely declares. It does not

need to declare class attributes for elements that it reuses or inherits.

The domains attribute

The domains attribute lists the names of the domains in use by the current document type, and the

ancestry for each domain. The domains attribute is declared on the root element for each topic type.

Each domain in use contributes a string in parentheses that gives the names of each ancestor domain plus

the name of the contributing domain. Within each set of parentheses, the domain and its ancestry should

be listed starting with the most distant ancestor (the root type off of which the domain hierarchy is

based) and finishing with the name of the domain in use.

Example: task with three domains

<task id="mytask" class="- topic/topic task/task "

 domains="(topic ui-d) (topic sw-d) (topic pr-d cpp-d)">

...

</task>

<appstep class="- topic/li task/step bctask/appstep ">A specialized step</appstep>

Figure 4. Example structural type element with class attribute

<wintitle class="+ topic/keyword ui-d/wintitle ">A specialized keyword</wintitle>

Figure 5. Example domain element with class attribute

<windowname class="- topic/kwd task/kwd guitask/windowname ">

Figure 6. Example attribute with intermediate value

72 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

In this example, the task allows the use of tags for describing user interfaces (ui-d), software (sw-d), and

also C++ programming (cpp-d).

Specialization validity

When you specialize one element from another, or a new attribute from props or base, the new element

or attribute must obey certain rules in order to be a valid specialization.

v A new element must have a content model that is equivalent to or more restrictive than its parent.

v A new element must have attributes that are equivalent to or a subset of the attributes of its parent.

v A new element’s attributes must have values or value ranges that are equivalent to or a subset of the

parent’s attributes’ values or value ranges.

v A new element must have a properly formed class attribute.

v A new attribute must be specialized from props or base, following the rules for attribute domain

specialization.

v A new attribute’s values must conform to the rules for conditional processing values, that is,

alphanumeric space-delimited values, except when in generalized form, when the values should

conform to the rules for attribute generalization.

Generalization

Specialized content can be generalized to any ancestor type. The generalization process can preserve

information about the former level of specialization to allow round-tripping between specialized and

unspecialized forms of the same content.

The generalization can either be for the purpose of migration (for example, when retiring an unsuccessful

specialization) or for temporary round-tripping (for example, when moving content through a process

that is not specialization aware and has only been enabled for instances of the base structural type).

When generalizing for migration, the class attribute and domains attribute should be absent from the

generalized instance document so that the default values in the general DTD or schema will be used.

When generalizing for round-tripping, the class attribute and domains attribute should retain the original

specialized values in the generalized instance document.

Any DITA document can contain a mix of markup from at least one structural type and zero or more

domains. The structural types and domains allowed in a particular document type are defined by the

document type shell.

When generalizing the document, the generalizer may choose to leave a structural type or domain as-is,

or may choose to generalize that type or domain to any of its ancestors.

The generalizer can supply the source and target for each generalization: for example, generalize from

reference to topic. The generalizer can specify multiple targets in one pass: for example, generalize from

reference to topic and from ui-d to topic. When the source and target are not supplied, generalization is

assumed to be from all structural types to the base (topic or map), and no generalization for domains.

The generalizer can also supply the target document type. When the target document type is not

supplied, the generalized document will not contain a DTD or schema reference. At some time in the

future it may be possible to automatically generate a document type shell and target document type

based on the class and domains attributes in the generalized document.

The generalization process should be able to handle cases where it is given just sources for generalization

(in which case the designated source types are generalized to topic or map), just targets for generalization

(in which case all descendants of the target are generalized to that target), or both (in which case only the

specified descendants of the target are generalized to that target).

Chapter 5. DITA specialization 73
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

For each structural type instance, the generalization process checks whether the structural type instance is

a candidate for generalization, or whether it has domains that are candidates for generalization. It is

important to be selective about which structural type instances to process: if the process simply

generalizes every element based on its class attribute values, an instruction to generalize ″reference″ to

″topic″ could leave an APIReference topic with an invalid content model, since any elements it reuses

from ″reference″ would have been renamed to topic-level equivalents.

The class attribute for the root element of the structural type is checked before generalizing structural

types:

 Target and source Source unspecified Source specified

Target unspecified Generalize this structural type to its

base ancestor

Check whether the root element of

the topic type matches a specified

source; generalize to its base ancestor

if it does, otherwise ignore the

structural type instance unless it has

domains to generalize.

Target specified Check whether the class attribute

contains the target; generalize to the

target if it does, otherwise skip the

structural type instance unless it has

domains to generalize.

If the root element matches a

specified source but its class attribute

does not contain the target, emit an

error message. If the root element

matches a specified source and its

class attribute does contain the target,

generalize to the target. Otherwise

ignore the structural type instance

unless it has domains to generalize.

The domains attribute for the root element of the structural type is checked before generalizing domains:

 Target and source Source unspecified Source specified

Target unspecified Do not generalize domain

specializations in this structural type.

Check whether the domains attribute

lists the specified domain; proceed

with generalization if it does,

otherwise ignore the structural type

instance unless it is itself a candidate

for generalization.

Target specified Check whether the domains attribute

contains the target; generalize to the

target if it does, otherwise skip the

structural type instance unless it is

itself a candidate for generalization.

If the domains attribute matches a

specified source but the domain

value string does not contain the

target, emit an error message. If the

domains attribute matches a specified

source and the domain value string

does contain the target, generalize to

the target. Otherwise ignore the

structural type instance unless it is

itself a candidate for generalization.

For each element in a candidate structural type instance:

 Target and source Source unspecified Source specified

Target unspecified If the class attribute starts with ″-″

(part of a structural type) rename the

element to its base ancestor

equivalent. Otherwise ignore it.

Check whether the last value of the

class attribute matches a specified

source; generalize to its base ancestor

if it does, otherwise ignore the

element.

74 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Target and source Source unspecified Source specified

Target specified Check whether the class attribute

contains the target; rename the

element to the value associated with

the target if it does contain the target,

otherwise ignore the element.

If the last value in the class attribute

matches a specified source but the

previous values do not include the

target, emit an error message. If the

last value in the class attribute

matches a specified source and the

previous values do include the target,

rename the element to the value

associated with the target. Otherwise

ignore the element.

When renaming elements during round-trip generalization, the generalization process should preserve

the values of all attributes. When renaming elements during one-way or migration generalization, the

process should preserve the values of all attributes except the class and domains attribute, both of which

should be supplied by the target document type.

Attribute generalization

Attributes specialized from props or base can be generalized using a special attribute generalization

syntax. Specialization-aware processes should be able to recognize and process both the specialized and

generalized forms of an attribute as being equivalent in their values.

When generalized, specialized attribute values are added to the end of their target ancestor attribute,

within parentheses preceded by the name of the specialized attribute. For each attribute that has been

generalized, a separate label and parentheses-enclosed set of values is added to the ancestor attribute.

For example, given that ″jobrole″ is an attribute specialized from ″person″, which in turn is specialized

from ″props″:

v jobrole=″programmer″ can be generalized to person=″jobrole(programmer)″ or to

props=″jobrole(programmer)″

v props=″jobrole(programmer)″ can be respecialized to person=″jobrole(programmer)″ or to

jobrole=″programmer″

Generalization and respecialization can use the domains attribute to determine the ancestry of role, and

therefore the validity of person as an intermediate target for generalization.

Generalized attributes are typically not expected to be authored or edited directly, but to preserve the

values of the specialized attributes while the document is temporarily in a generalized form.

If a single element contains values for an attribute in more than one syntax, that is an error. For example

<p person=″role(programmer)″ role=″admin″>...</p> both provide values for the role attribute, but one

in a generalized syntax and one in a specialized syntax. This is an error condition, since it means the

document has been only partially generalized, or has been generalized and then edited using a

specialized document type.

Foreign generalization

During generalization, DITA elements are modified based on the class attribute to use the name of an

ancestor element. This cannot be done with the contents of a specialized <foreign> element, because the

contents are not DITA elements and do not have class attributes.

Instead, only the specialized foreign element itself should be generalized with normal rules. The contents

of the foreign element should be exported to a separate file, and replaced in-line with an <object>

element. The object element should point to the generated file using its data attribute. The type attribute

on the object element should be set to ″DITA-foreign″.

Chapter 5. DITA specialization 75
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

The object element is already allowed within the <foreign> element. If it is present during generalization,

it should not be exported to the separate file. The original object element should not be modified unless

required by the ordinary rules of generalization. That object element is used for alternate content in

publishing systems that cannot display the foreign content.

A foreign content element may contain several main elements, apart from the alternate content. To

accommodate this, the exported content should have a root <foreign> element.

The name of the exported file should start with ″dita-generalized-″ in order to help users recognize the

origin of the generated files. It is recommended that the file name also contain the topic ID, specialization

type, and element ID or generated identifier. For example, the first mathml object in topic ″topicid″ might

be named ″dita-generalized-topicid-mathml1.xml″.

Example: Simple object generalization

For example, a DITA document may contain a specialization of <foreign> for MathML. It could look like

this:

<mathml class="+ topic/foreign mathml/mathml ">

 <math xmlns="http://www.w3.org/1998/Math/MathML">

 <mi>x</mi><mo>+</mo><mn>3</mn>

 </math>

 <object><desc>X plus three</desc></object>

</mathml>

The mathml container, which is a normal DITA element, should be generalized using normal rules. The

<math> element, which is not a DITA element, will be exported to another file. The <object> element will

remain:

<foreign class="+ topic/foreign mathml/mathml ">

 <object data="dita-generalized-topicid_mathml1.xml" type="DITA-foreign"/>

 <object><desc>X plus three</desc></object>

</foreign>

Contents of dita-generalized-topicid_mathml1.xml:

<foreign class="+ topic/foreign mathml/mathml ">

 <math xmlns="http://www.w3.org/1998/Math/MathML">

 <mi>x</mi><mo>+</mo><mn>3</mn>

 </math>

</foreign>

Example: Multiple object generalization

An object might also contain multiple object elements:

<mathml class="+ topic/foreign mathml/mathml ">

 <math xmlns="http://www.w3.org/1998/Math/MathML">

 <mi>x</mi><mo>+</mo><mn>3</mn>

 </math>

 <object><desc>X plus three</desc></object>

 <math xmlns="http://www.w3.org/1998/Math/MathML">

 <mi>y</mi><mo>-</mo><mn>2</mn>

 </math>

</mathml>

The mathml container, which is a normal DITA element, should be generalized using normal rules. A file

should generated for each set of elements bounded by the container and any existing object elements. In

this case, two files will be generated, and two new object elements added to the source:

<foreign class="+ topic/foreign mathml/mathml ">

 <object data="dita-generalized-topicid_mathml1.xml" type="DITA-foreign"/>

 <object><desc>X plus three</desc></object>

 <object data="dita-generalized-topicid_mathml2.xml" type="DITA-foreign"/>

</foreign>

76 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Contents of dita-generalized-topicid_mathml1.xml:

<foreign class="+ topic/foreign mathml/mathml ">

 <math xmlns="http://www.w3.org/1998/Math/MathML">

 <mi>x</mi><mo>+</mo><mn>3</mn>

 </math>

</foreign>

Contents of dita-generalized-topicid_mathml2.xml:

<foreign class="+ topic/foreign mathml/mathml ">

 <math xmlns="http://www.w3.org/1998/Math/MathML">

 <mi>y</mi><mo>-</mo><mn>2</mn>

 </math>

</foreign>

Specialization in design

Specialization in design enables reuse of design elements, just as specialization in content allows reuse of

processing rules. These rules involve the creation and management of markup modules as separate

reusable units.

Why specialization in design?

Following the rules for specialization design enables reuse of design elements, just as following the rules

for specialized content enables reuse of content

By using standard schemes for developing design modules, a specializer enables:

v Reuse of their design modules by others, allowing shared development of specific parts of a document

type

v Faster integration of their designs with other specializations, allowing quicker deployment of new

design elements and quicker adoption of new markup standards

v Better management of differences between authoring groups in the same organization: each group can

create specific document types that integrate just the modules they require.

Modularization and integration of design

Specialization hierarchies are implemented as sets of module files that declare the markup and entities

that are unique to each specialization. The modules must be integrated into a document type before they

can be used.

The separation of markup into modules, as with the XHTML modularization initiative,

(http://www.w3.org/TR/xhtml-modularization/), allows easy reuse of specific parts of the

specialization hierarchy, as well as allowing easy extension of the hierarchy (since new modules can be

added without affecting existing document types). This makes it easy to assemble design elements from

different sources into a single integrated document type.

Integration

Each domain specialization or structural specialization has its own design module. These modules can be

combined to create many different document types. The process of creating a new document type from a

specific combination of modules is called integration.

Integration is accomplished using a document type shell, which defines the modules to be integrated and

how they will be integrated. Integration defines both what topic types and domains will be allowed in

the document type, and how the topic types will be allowed to nest.

The module for a specific type should contain only the declarations for elements and attributes that are

unique to that type, and should not embed any other modules. The shell should contain no markup

declarations, and should directly reference all the modules it requires. Nesting shells or nesting modules

Chapter 5. DITA specialization 77
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

(having shells that embed other shells, or modules that embed other modules) is discouraged since it

adds complexity and may break some tools. Sharing between document types should be accomplished

through shared modules, not through direct reference to any other document type. Dependencies

between modules should be satisfied by the integrating shell, not through the module itself.

Modularization in DTDs

To support extensibility and pluggability, DITA requires that a DTD implementation of structural and

domain specialization modules conform to well-defined design patterns.

This section describes those design patterns. These design patterns realize the specialization architecture

with the capabilities and within the limitations of the DTD grammar.

Structural specialization pattern

Each structural type must be defined in a separate DTD module with a name consisting of the topic

element name and the mod extension. To see an example, look at the concepts.mod module for the

concept topic type.

The structural type module must conform to the following design pattern.

Default element entities

Each element defined in the module must have a corresponding entity whose default value is the

name of the element. The following example comes from the definition for the concept topic.

<!ENTITY % conbody "conbody">

The document type shell can predefine an element entity to add domain specialized elements into

every context in which the base element occurs.

Default included domains entity

The module must define the included-domains entity with a default empty that is empty as in the

following example:

<!ENTITY included-domains "">

The document type shell can predefine the included-domains entity to list domains added to the

document type.

Default nested topics entity

Topic type modules must define an info-types entity that is named with a prefix of the topic

element name and a suffix of -info-types. This entity can default to a list of element entities if

the topic has default subordinate topics. If the topic doesn’t have default subordinate topics, the

entity can default to the value of the info-types entity as in the following example:

<!ENTITY % concept-info-types "%info-types;">

The document type shell can then control how topics are allowed to nest by redefining the

topictype-info-types entity for each topic type, or quickly create common nesting rules by

redefining the main info-types entity.

Structural type’s root element content model

As with all specializations, the root element of a structural specialization must have a content

model that restricts or conserves the content model of the element it specializes. In addition, for

topic types, the last position in the content model must be the nested topics entity as in the

following example:

<!ELEMENT concept ((%title;), (%titlealts;)?, (%shortdesc;)?,

 (%prolog;)?, (%conbody;), (%related-links;)?,

 (%concept-info-types;)*)>

Attributes

As with all specializations, the root element’s attributes must restrict or conserve the attributes of

78 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

the element it specializes. In particular, the topic must set the DITAArchVersion attribute to the

DITAArchVersion entity and the domains attribute to the included-domains entity.

<!ATTLIST concept id ID #REQUIRED

 ...

 DITAArchVersion CDATA "&DITAArchVersion;"

 domains CDATA "&included-domains;"

>

These attributes give processes a reliable way to check the architecture version and look up the

list of domains available in the document type.

Element and attribute definitions

The module defines every specialized element used as substructure within the topic. The

specialized elements must follow the rules of the architecture in defining content models and

attributes. Content models must use element entities instead of literal element names.

 In particular, the module defines a class attribute for every specialized element. The class

attribute must include the value of the class attribute of the base element and append the element

name qualified by the topic element name with at least one leading and trailing space. The class

attribute for an element introduces by a structural specialization must start with a minus sign.

Domain specialization pattern

Each domain specialization must have two files:

v A DTD entity declaration file with a name consisting of the domain name and the ent extension.

v A DTD definition module with a name consisting of the domain name and the mod extension.

To see an example, look at the highlightDomain.ent and highlightDomain.mod files.

Domain entity declaration file

The domain entity declaration file must conform to the following design pattern:

Element extension entity

The declaration file must define an entity for each element extended by the domain. The contents

of the entity must be the list of specialized elements for the extended element. The name of the

entity has a prefix of the abbreviation for the domain and an extension of the name of the

extended element. In the following example, the highlight domain (abbreviated as hi-d) extends

the ph element.

<!ENTITY % hi-d-ph "b | u | i | tt | sup | sub">

Domain declaration entity

The declaration file must define one entity for the document type shell to register the domain.

The name of the entity has a prefix of the abbreviation for the domain and an att extension. The

value of the entity must list the dependencies of the domain module in order of dependency

from left to right within enclosing parentheses, starting with the topic module and listing domain

dependencies using their abbreviations (including the defining domain as the last item in the list).

The following example declares the dependency of the highlight domain on the base topic

module.

<!ENTITY hi-d-att "(topic hi-d)">

Domain definition module

The domain definition module conforms to the following design pattern:

Default element entities

As in a topic module, the domain definition module must declare a default entity for each

element defined by the domain so that other domains can extend the elements.

<!ENTITY % b "b">

Chapter 5. DITA specialization 79
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Element and attribute definitions

As in a topic module, the domain definition module must define each specialized element and its

attributes. As with any specialization, the domain element must restrict the base element. The

class attribute of the domain element must start with a plus sign but, otherwise, follows the same

rules as the class attribute for an element introduced by a topic specialization.

Attribute domain specialization pattern

The attribute domain pattern is a special case of the domain specialization pattern, which allows the

creation of new attributes specialized from the props or base attribute.

Create one module entity file per attribute, for example newAttDomain.ent. Each module should contain

the following:

Attribute extension entity

The entity which holds the actual declaration of the attribute in entity form. This entity can then

be used in document type shells to add the new attribute. For example:

<!ENTITY % newAtt-d-attribute "new CDATA #IMPLIED">

Domain declaration entity

The entity which holds the name of the attribute domain in entity form. This entity can then be

used in document type shells to signal the availability of the attribute to DITA-aware processes. It

uses the same syntax as a regular domain declaration entity but with the addition of a leading ″a″

to signal that it is in attribute domain. For example:

<!ENTITY newAtt-d-att "a(props new)" >

Document type shell pattern

The document type shell must conform to the following design pattern. To see an example, look at the

concepts.dtd module for the concept document type.

Domain entity inclusions

The document type shell starts by including the domain entity declaration files. The entity for the

domain declaration consists of the domain name prefix with the dec suffix, as in the following

examples:

<!ENTITY % hi-d-dec PUBLIC

 "-//OASIS//ENTITIES DITA Highlight Domain//EN" "highlightDomain.ent">

 %hi-d-dec;

<!ENTITY % newAtt-d-dec PUBLIC

 "-//My Company//ENTITIES new Attribute Domain//EN" "newAttDomain.ent">

 %newAtt-d-dec;

Element extension redefinitions

For each element extended by one or more domains, the document type shell redefines the entity

for the element to a list of alternatives including the literal name of the element and the element

extension entity from each domain that is providing specializations.

<!ENTITY % pre

 "pre | %pr-d-pre; | %sw-d-pre; | %ui-d-pre;">

For each attribute extended by one or more domains, the document type shell redefines the entity

for the attribute to a list of alternatives including the literal name of the attribute and the

attribute extension entity from each domain that is providing specializations. Attributes can only

be specialized from props or base in DITA 1.1.

<!ENTITY % props-attribute-extensions

 "%newAtt-d-attribute;

 %othernewAtt-d-attribute;">

<!ENTITY % base-attribute-extensions

 "%newfrombaseAtt-d-attribute;

 %othernewfrombaseAtt-d-attribute;">

Topic nesting redefinitions

For each topic type, the document type shell can control nesting of subtopics by redefining the

80 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

nested topics entity to the literal element name for any of the topics included in the document

type. The document type shell can also simply define the info-types entity to set the default for

most topic types. Here is an example:

<!ENTITY % concept-info-types "concept">

Domain declaration redefinition

The document type shell redefines the included-domains entity to list the domains included in

the document type as in the following example:

<!ENTITY included-domains

 "&ui-d-att; &hi-d-att; &pr-d-att; &sw-d-att; &ut-d-att; &newAtt-d-att">

Structural definition inclusions

The document type shell includes the definitions for the structural type modules used in the

document type. The entity for the structural definition consists of the structural type’s name with

the type suffix, as in the following example:

<!ENTITY % topic-type PUBLIC

 "-//OASIS//ELEMENTS DITA Topic//EN" "topic.mod">

 %topic-type;

Domain definition inclusions

The document type shell includes the domain definitions for the domains used in the document

type. The entity for the domain definition consists of the domain name prefix with the def suffix,

as in the following example:

<!ENTITY % hi-d-def PUBLIC

 "-//OASIS//ELEMENTS DITA Highlight Domain//EN" "highlightDomain.mod">

 %hi-d-def;

There are no domain definition files for attribute domains.

Modularization in schemas

To support extensibility and pluggability, DITA requires that an XML schema implementation of

structural and domain specialization modules conform to well-defined design patterns.

This section describes those design patterns. These design patterns realize the specialization architecture

with the capabilities and within the limitations of the XML schema grammar.

Structural specialization pattern

For each structural type, the document type shell document collects the schema documents, parent

structural type modules, domain type modules, and content models needed to implement new topic type

specializations. Each new structural type requires three files. To see an example, look at the concept.xsd

document type shell document for the concept topic type.

1. Each structural type must define a separate module schema document with a name consisting of the

root structural element name and Mod.xsd

2. Each structural type must define a separate model group definition schema document with a name

consisting of the root structural element name and Grp.xsd

The module schema document must define an info-type model group that is named with a prefix of the

topic element name and a suffix of -info-types. Here is an example of a info-types model group that is

defined in conceptMod.xsd:

<xs:group name="concept-info-types">

 <xs:choice>

 <xs:group ref="concept"minOccurs="0"/>

 <xs:group ref="info-types" minOccurs="0"/>

 </xs:choice>

</xs:group>

Chapter 5. DITA specialization 81
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

The module schema document defines every specialized element used as substructure within the

structural type. The specialized elements must follow the rules of the architecture in defining content

models and attributes. The naming convention for content models must use the root structural element

name and.class

As with all specializations, the root element of a structural specialization must have a content model that

restricts or conserves the content model of the element it specializes. The root element must also reference

the DITAArchVersion attribute and domains attribute. For the schemas, the domains attribute value is set in

the document type shell. See Document type shell pattern for more information on how to set the values

for the domains attibute. In addition the last position in the content model must be the nested topics

entity as in the following example:

<xs:complexType name="concept.class">

 <xs:sequence>

 <xs:group ref="title"/>

 <xs:group ref="titlealts" minOccurs="0"/>

 <xs:choice minOccurs="0">

 <xs:group ref="shortdesc" />

 <xs:group ref="abstract" />

 </xs:choice>

 <xs:group ref="prolog" minOccurs="0"/>

 <xs:group ref="conbody" minOccurs="0"/>

 <xs:group ref="related-links" minOccurs="0"/>

 <xs:group ref="concept-info-types" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

</xs:complexType>

These attributes give processes a reliable way to check the architecture version and look up the list of

domains available in the document type.

<xs:attribute name="id" type="xs:ID" use="required"/>

<xs:attribute ref="ditaarch:DITAArchVersion" />

The new file topictypeGrp.xsdis needed to mimic substitutionGroups in XML Schema without using the

inheritance model in W3C XML Schema 1.0 specification. The process is very similar to the DITA DTD

design pattern. For a structural type the name of the schema document consists of the root structural

element name and Grp.xsd extension. To see an example of a model group schema document, look at the

file conceptGrp.xsd :

<xs:group name="concept">

 <xs:sequence>

 <xs:element ref="concept"/>

 </xs:sequence>

</xs:group>

The model group schema document defines model groups for each new specialized element in a

structural type. Each structural type and domain must have a model group schema document . The

model group schema document is an essential part of the specialization.

Binding the class attribute to an element:

The class attribute must include the value of the class attribute of the base element and append the

element name qualified by the root structural element name or domain name with at least one leading

and trailing space. The class attribute starts with a �-� if it is declared in a structural module, or a �+� if

it is declared in a domain module.

This attribute provides a mapping between the element’s current name and its more general equivalents.

It must be bound the elements declaration, and not in the complexType referenced by the element. To see

an example, look at the reference.xsd schema document.

82 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

<xs:element name="reference">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="reference.class">

 <xs:attribute ref="class" default="- topic/topic reference/reference "/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

</xs:element>

Domain specialization pattern

A domain type schema document with a name consisting of the domain name and the Domain.xsd

extension.

As in a structural module, the domain module must define each specialized element, its attributes and its

model groups. As with any specialization, the domain element must restrict the base element. The class

attribute of the domain element must start with a plus sign but, otherwise, follows the same rules as the

class attribute for an element introduced by a topic specialization.

For each element extended by one or more domains, the domain type schema document defines a model

group for the base element to a list of alternatives including the literal name of the element and the

element extension entity from each domain that is providing specializations.

The schema document must define an a model group for each element extended by the domain. The

contents of the model group must be the list of specialized elements for the extended element. The name

of the model group has a prefix of the abbreviation for the domain and an extension of the name of the

extended element. In the following example, the user interface domain (abbreviated as ui-d) extends the

ph element.

<xs:group name="ui-d-ph">

 <xs:choice>

 <xs:element ref="uicontrol" />

 <xs:element ref="menucascade" />

 </xs:choice>

</xs:group>

Document type shell pattern

For each document shell type, the following named model group info-typesmust be defined. This model

group can define a list of default subordinate topics. If the topic type does not have default subordinate

topics, then the default value for theinfo-types model group must be defined as an empty group.

<xs:group name="info-types">

 <xs:sequence/>

</xs:group>

The default values for the domains attributes in the base root structural element and the specialized root

structural elements must be defined using the schema <redefine> mechanism to populate the domains

attribute. It identifies the domains used in the structural type. This attribute give processes a reliable way

to look up the list of domains available in the document type. The list the domains is included in the

document type as in the following example:

<xs:redefine schemaLocation="topicMod.xsd" >

 <xs:complexType name="topic.class">

 <xs:complexContent>

 <xs:extension base="topic.class">

 <xs:attribute

name="domains" type="xs:string" default="(topic ui-d)

(topic hi-d) (topic sw-d) (topic pr-d) (topic ut-d) (topic indexing-d)"/>

Chapter 5. DITA specialization 83
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

</xs:extension>

 </xs:complexContent>

 </xs:complexType>

</xs:redefine>

For each element extended by one or more domains, the document type shell redefines the model group

for the element to a list of alternatives including the literal name of the element and the element

extension model group from each domain that is providing specializations. To integrate a new domain in

the document type shell use the schema <redefine> mechanism to manage the number of domains used

by the document type shell. The model group requires a reference to itself to extend the base model

group. To see an example, look at the topic.xsd schema document.

<xs:group name="pre">

 <xs:choice>

 <xs:group ref="pre" />

 <xs:group ref="pr-d-pre" />

 <xs:group ref="ui-d-pre" />

 <xs:group ref="sw-d-pre" />

 </xs:choice>

</xs:group>

To add domains to a new structural type you can copy the contents of the parent structural type domains

schema document into the document type shell. Add or remove the model group from the new domain

to the appropriate named group.

<xs:group name="pre">

 <xs:choice>

 <xs:group ref="pre"/>

 <xs:group ref="pr-d-pre" />

 <xs:group ref="domainName-d-element"/>

 </xs:choice>

</xs:group>

For each attribute extended by one or more domains, the document type shell redefines the attribute

extension model group for the attribute to a list of alternatives including the literal name of the attribute

and the attribute extension model group from each domain that is providing specializations. Attributes

can only be specialized from props or base in DITA 1.1. To integrate a new attribute domain in the

document type shell use the schema <redefine> mechanism to manage the number of attribute domains

used by the document type shell.

<xs:attributeGroup name="props-attribute-extensions">

 <xs:attributeGroup ref="props-attribute-extensions"/>

 <xs:attributeGroup ref="newAtt-d-attribute"/>

 <xs:attributeGroup ref="othernewAtt-d-attribute"/>

</xs:attributeGroup>

<xs:attributeGroup name="base-attribute-extensions">

 <xs:attributeGroup ref="base-attribute-extensions"/>

 <xs:attributeGroup ref="newfrombaseAtt-d-attribute"/>

 <xs:attributeGroup ref="othernewfrombaseAtt-d-attribute"/>

</xs:attributeGroup>

Attribute domain specialization pattern

The attribute domain pattern is a special case of the domain specialization pattern, which allows the

creation of new attributes specialized from the props or base attribute.

Create one module entity file per attribute, for example newAttDomain.xsd. Each module should contain

the following:

The entity which holds the actual declaration of the attribute in entity form. This entity can then be used

in document type shells to add the new attribute. For example:

84 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

<xs:attributeGroup name="newAtt-d-attribute">

 <xs:attribute name="new" type="xs:string"/>

</xs:attributeGroup>

This attribute domain declaration value can then be used in document type shells to signal the

availability of the attribute to DITA-aware processes. It uses the same syntax as a regular domain

declaration value but with the addition of a leading ″a″ to signal that it is in attribute domain. For

example:

<xs:attribute name="domains" type="xs:string" default="... a(props new)"/>

Specialization in processing

Specialized processing is not necessary for every specialized element, only for those elements which do

not have appropriate default behavior based on their ancestors.

Whether creating a new transform or extending an existing one, there are several rules that should be

followed to ensure the effectiveness of the transform for other specialized types, and also the

maintainability and extensibility of the transform to accommodate new requirements.

Using the class attribute

Applying an XSLT template based on class attribute values allows a transform to be applied to whole

branches of element types, instead of just a single element type.

Wherever you would check for element name (any XPath statement that contains an element name

value), you need to change this to instead check the contents of the element’s class attribute. Even if the

element is unknown to the processor, the class attribute can let the transform know that the element

belongs to a class of known elements, and can be safely treated according to the rules for that class.

Be sure to include a leading and trailing blank in your class attribute string check. Otherwise you could

get false matches (without the blanks, ’task/step’ would match on both ’task/step’ and on

’notatask/stepaway’).

Make sure that when you create a transform that targets more than one type that you give the more

specific rules a higher precedence to avoid conflicts. For example, when you combine the existing

processing rules for topics with more specific processing rules for tasks, use a shell file to import both

sets of rules and use import precedence to ensure task-specific rules will not conflict with generic rules

for topics.

Example: match statement for list items

<xsl:template match="li">

becomes

<xsl:template match="*[contains(@class,’ topic/li ’)]">

This match statement will work on any li element it encounters. It will also work on step and appstep

elements, even though it doesn’t know what they are specifically, because the class attribute tells the

template what they are generally.

Example: match statement for steps

<xsl:template match="*[contains(@class,’ task/step ’)]">

This match statement won’t work on generic li elements, but it will work on both step elements and

appstep elements; even though it doesn’t know what an appstep is, it knows to treat it like a step.

Chapter 5. DITA specialization 85
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

Processing specialized attributes

There are two kinds of specialized attributes: those specialized from props for conditional processing, and

those specialized from base for other purposes.

Attributes specialized from props should inherit conditional processing behavior by default, which

should also work with their generalized forms. In other words, values in a new attribute specialized from

props can be conditionally processed to filter or flag the element in exactly the same way as any other

conditional processing attribute (such as platform or audience).

Attributes specialized from base will have no processing by default; any processing provided should be

enabled to work with their generalized form as well.

See “Attribute generalization” on page 75 for information on the syntax of generalized attributes.

Processing foreign content

The default behavior for <foreign> is to try to display the content. If the processor cannot render the

content, it may emit a warning. The default processing behavior for <unknown> is to suppress.

This section describes processing behaviour of specialized foreign content based on existing standard

vocabularies for non-textual content.

Default processing for <foreign>

 The enabler of the foreign vocabulary must provide the processing by overriding the base

processing for <foreign>.

v If <foreign> contains more than one alternative content element, they will all be processed. In

the case of <desc> they will be concatenated in a similar way to <section> but no title (similar

to <div> in HTML).

v Where appropriate, the specializer may specialize a nested <desc> element to provide alternate

content that is valid in the contexts for the <foreign> specialization. If an instance of the

<foreign> element doesn’t contain a <desc>, <object>, or <image> element, the base processing

may emit a warning about the absence of processable content.

v If the instance of the <foreign> element doesn’t contain a <desc>, <object>, or <image>

element, the base processing may emit a warning about the absence of processable content.

v The base processing for <object> can emit the content of <foreign> as a file at the location

specified by the data attribute of the <object> element. The <object> element should have a

data attribute or an <foreign> sub-element but not both. In the event that an <object> element

contains both a data attribute and an <foreign> sub-element the processing system will ignore

one of them.

Default processing for <unknown>

 The base processing for <unknown> is to suppress unless otherwise instructed.

Modularization and integration of processing

Processing should be divided into modules based on the structural types or domains they support, and

can be integrated together into transforms or stylesheets in the same way that structural type and domain

modules can be integrated into document types.

Customization

When you just need a difference in output, you can use DITA customization to override the default

output without affecting portability or interchange, and without involving specialization.

86 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

For example, if your readers are mostly experienced users, you could concentrate on creating many

summary tables, and maximizing retrievability; or if you needed to create a brand presence, you could

customize the transforms to apply appropriate fonts and indent style, and include some standard

graphics and copyright links.

Use customization when you need new output, with no change to the underlying semantics (you aren’t

saying anything new or meaningful about the content, only its display).

Modularization in CSS

Stylesheet support in CSS for DITA specializations can be applied using the same principles as for the

DTDs or Schemas, resulting in stylesheets that are easy to maintain and that will support any subsequent

specialization with a minimum of effort.

Specification of module definition

A specialization-aware property for CSS has this form of selector:

*[class~="topic\/section"] {

 margin-top: 12pt;

 display: block;

}

The CSS selector that associates the style to the element does not use a literal match to the element name.

Instead, based on an element having the defaulted value class="- topic/section reference/refsyn "

(for example) this rule will trigger on the “topic/section” value (or “word”) and perform the associated

styling or transform, regardless of what the actual element name is.

Note that the attribute string must contain an escape character for the “/” character which is otherwise

not valid in a CSS selector.

The selector pattern in this example effectively reads, in CSS terminology, ″Selects any element with a

class attribute that contains the word topic\/section.″

Not all CSS systems can match based on values that are not physically present in the instance document.

Since the class attribute values in DITA are typically provided by default declarations in the DTD or

schema, not all CSS systems can match directly on DITA source.

When direct specialization-aware matches are not possible, alternatives include normalization

(preprocessing the DITA source to push values from the DTD or schema directly into the instance) or the

use of element-name-based rules.

Element-name-based rules will not be specialization-aware. Your calling-stylesheet will have to import

each additional stylesheet required by the scope of specialized topics and vocabularies, each explicitly

defined using element-name selectors. In this scheme, unsupported new elements will have no rendering

properties associated, whereas in the specialization-aware systems such elements can fall back to a rule

that triggers off a previously-supported value in the class attribute string.

Assembly rules for CSS

CSS supports specialization similarly to XSLT. This document describes a best practice for naming and

populating CSS stylesheets that follow the specialization design pattern for DITA DTDs and Schemas.

Although this practice is not required in order to implement CSS support for DITA, following the practice

will make subsequent specializations off the pattern to be done with minimal work, and the files should

be correspondingly easier to maintain.

To support a newly-specialized DITA DTD or Schema that has been specialization-enabled with unique

class attribute values, create a module that will contain ONLY the rules required for the uniquely new

Chapter 5. DITA specialization 87
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

elements in the specialization. This is similar to the mod files that declare the unique elements in the

specialization. The name of this module should be the same as the root name for the specialization

module. In the case of DITA’s reference DTD, the element declarations are in reference.mod and the

corresponding delta rules for CSS are in reference.css.

Next, create an “override”CSS stylesheet that starts off with the @import instruction, naming the CSS file

used by this specialization’s parent DTD. This import picks up support for all elements that are common

with the parent DTD. Then add another @import instruction in sequence, naming the CSS delta module

that you created previously. Then copy in the CSS rules for any previously defined support that need to

be associated to the new element names, and rename the selectors as needed to the new specialized

values for each new element. These added CSS rules are deltas for the new stylesheet, much as

specialized DTDs build on previous DTDs by adding delta element definitions. This technique

approximates the “fall-through” support for what would normally happen if the class attribute actually

could map to the root class.

Finally, if necessary, modify the behaviors of any of these new, delta CSS rules. Because this process

reuses a great deal of previous behaviors, the time spent supporting the delta changes is minimal.

To use a specialization-enabled CSS stylesheet with a specialized DITA topic, simply associate it to the

topic using either the W3C defined stylesheet link processing instruction or by following configuration

rules for your editor or browser.

Modularization in XSLT

Stylesheet support in XSLT for DITA specializations can be applied using the same principles as for the

DTDs or Schemas, resulting in stylesheets that are easy to maintain and that will support any subsequent

specialization with a minimum of effort.

Specification of module definition

A specialization-aware template for XSLT has this form of match pattern:

<xsl:template match="*[contains(@class,’ topic/section ’)]">

 <div>

 <xsl:apply-templates/>

 </div>

</xsl:template>

The XSLT match statement that associates the style to the element does not use a literal match to the

element name. Instead, based on an element having the defaulted value class="- topic/section

reference/refsyn " (for example) this rule will trigger on the “ topic/section ” value (note the required

space delimiters in the match string) and perform the associated template actions, regardless of what the

actual element name is.

The XPath pattern in this example effectively reads, ″Selects any element whose class attribute contains

the space-delimited substring “topic/section”.″

Assembly rules for XSLT

XSLT pattern matching is the basis for DITA’s specialization-aware processing. As such, the base XSLT

stylesheet for a DITA topic should minimally support any specialization, no matter how far removed in

generations from the archetype topic.

To support a newly-specialized DITA DTD or Schema that has been specialization-enabled with unique

class attribute values, create a module that will contain ONLY the templates required for the uniquely

new elements in the specialization. This is similar to the mod files that declare the unique elements in the

specialization. The name of this module should be the same as the root name for the specialization

88 DITA Architectural Specification v1.1
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

module. In the case of DITA’s reference DTD, the element declarations are in reference.mod and the

corresponding delta rules for XSLT are in reference.xsl.

Next, create an “override”XSLT stylesheet that starts off with the xsl:import instruction, naming the XSLT

file used by this specialization’s parent DTD. This import picks up support for all elements that are

common with the parent DTD. Then add another xsl:import instruction in sequence, naming the XSLT

delta module that you created previously. Additionally you can add imports for any domain-specific

templates that need to be applied with this shell. Then copy in the XSLT templates for any previously

defined support that needs to be associated uniquely to the new element names, and rename the match

pattern strings as needed to the new specialized values for each new element. These added XSLT

templates are deltas for the new stylesheet, much as specialized DTDs build on previous DTDs by adding

delta element definitions. For XSLT support, you only need to define templates if you need new behavior

or if you need to modify the behavior of an ancestor element’s processing.

Because this process reuses a great deal of previous behaviors, the time spent supporting the delta

changes is minimal.

To use a specialization-enabled XSLT stylesheet with a specialized DITA topic, simply associate it to the

topic using either the W3C defined stylesheet link processing instruction or by following configuration

rules for your processing tools (usually an XSLT processing utility such as saxon or xsltproc).

Chapter 5. DITA specialization 89
Copyright © OASIS® 1993-2007. All Rights Reserved. 1 August 2007

	Contents
	Chapter 1. About the DITA 1.1 Specification
	Chapter 2. An introduction to DITA
	Definitions and background concepts
	Terminology
	Model terminology
	Declaration terminology
	Instance terminology

	Naming conventions and file extensions
	DTD organization
	XML Schema organization

	Chapter 3. DITA markup
	DITA topics
	What are topics?
	Why topics?
	Information typing
	Transitional text
	Why topic orientation in writing?
	Transitional text workarounds

	Generic topics
	Why generic topics?
	Topic structure
	Topic content
	Topic modules

	Concepts
	Tasks
	Reference
	Glossary
	Topic domains

	DITA maps
	What are maps?
	Why DITA maps?
	Common DITA map attributes and metadata
	Linking attributes
	Navigation, media, and chunking attributes
	Shared attributes

	DITA map structure
	DITA map modules
	Inheritance of attributes and metadata in maps
	Bookmap
	Why use a bookmap?
	What is a bookmap?
	How is a bookmap authored and produced?
	Modules

	Map domains
	The xNAL domain

	Metadata elements and common attributes
	Common metadata elements
	Publication metadata elements
	Management metadata elements
	Metadata qualification elements

	Common attributes
	Identifier and content referencing attributes
	Metadata attributes
	Miscellaneous Attributes
	Architectural attributes

	Topic properties in topics and maps
	Shared metadata elements, and the lockmeta attribute
	Metadata inheritance between maps and topics

	Chapter 4. DITA processing
	IDs and references
	Navigation behaviors
	Content inclusion (conref)
	Conditional processing (profiling)
	Conditional processing attributes
	Using metadata attributes
	Processing metadata attributes
	Filtering logic
	Flagging logic

	Chunking
	Usage of the chunk attribute

	Translation
	The xml:lang attribute
	The dir attribute
	All elements with translation properties

	Chapter 5. DITA specialization
	What is specialization?
	Why specialization?
	Structural versus domain specialization
	Specializing foreign or unknown content
	Data extensibility
	Limits of specialization
	Specialize from generic elements or attributes
	Customized subset document types for authoring
	Map from customized document type to DITA during preprocessing

	Specialization in content
	Why specialization in content?
	Specialization of attributes
	The class attribute
	Class attribute syntax
	The domains attribute
	Specialization validity
	Generalization
	Attribute generalization
	Foreign generalization

	Specialization in design
	Why specialization in design?
	Modularization and integration of design
	Integration
	Modularization in DTDs
	Structural specialization pattern
	Domain specialization pattern
	Attribute domain specialization pattern
	Document type shell pattern

	Modularization in schemas
	Structural specialization pattern
	Domain specialization pattern
	Document type shell pattern
	Attribute domain specialization pattern

	Specialization in processing
	Using the class attribute
	Processing specialized attributes
	Processing foreign content
	Modularization and integration of processing
	Customization
	Modularization in CSS
	Modularization in XSLT

