
Darwin Information Typing Architecture

(DITA) Specification 1.0

First Edition (February 2005)

This edition applies to version 1.0 of the Darwin Information Typing Architecture (DITA) and to all subsequent

releases and modifications until otherwise indicated in new editions.

Contents

Chapter 1. About the DITA Specification 1

Chapter 2. An introduction to DITA . . . 3

Definitions and background concepts 3

Basic concepts 3

Terminology 4

Naming conventions and file extensions 6

Chapter 3. DITA markup 7

DITA topics 7

What are topics? 7

Why topics? 7

Information typing 8

Topic structure 9

Topic content 9

Topic modules 10

Concepts 10

Tasks 11

Reference 12

Domains 14

DITA maps 14

What are maps? 14

Why DITA maps? 15

Common DITA map attributes and metadata . . 15

DITA map structure 18

Inheritance of attributes and metadata 19

DITA map modules 19

Common metadata elements 20

Publication metadata elements 20

Management metadata elements 20

Metadata qualification elements 20

Topic properties in topics and maps 21

Common attributes 22

Identity attribute 22

Content reference attribute 23

Metadata attributes 24

Miscellaneous Attributes 25

Architectural attributes 26

Conditional processing 26

Chapter 4. DITA specialization 29

What is specialization? 29

Why specialization? 30

Structural versus domain specialization 30

Limits of specialization 31

Specialization in content 33

Why specialization in content? 33

The class attribute 33

Class attribute syntax 34

The domains attribute 35

Specialization validity 36

Generalization 36

Specialization in design 39

Why specialization in design? 39

Modularization and integration of design . . . 39

Specialization in processing 45

Using the class attribute 45

Modularization and integration of processing . . 46

 iii

iv Darwin Information Typing Architecture (DITA) Specification 1.0

Chapter 1. About the DITA Specification

The Darwin Information Typing Architecture (DITA) specification defines both a) a

set of document types for authoring and organizing topic-oriented information;

and b) a set of mechanisms for combining and extending document types using a

process called specialization.

The specification consists of:

v The DTDs and schemas that define DITA markup for the base DITA document

types, as well as catalog files

v The language reference that provides explanations for each element in the base

DITA document types

v This document, which comes in three parts:

– an introduction, which provides background concepts and an overview of the

architecture

– the DITA markup specification, which provides an overview of DITA’s base

document types

– the DITA specialization specification, which provides details of the

mechanisms DITA provides for defining and extending DITA document types.

This document is part of the technical specification for the DITA architecture.

While the specification does contain some introductory information, it is not

intended as an introduction to DITA nor as a users guide. The intended audience

of this specification consists of implementers of the DITA standard, including tool

developers and specializers.

 1

2 Darwin Information Typing Architecture (DITA) Specification 1.0

Chapter 2. An introduction to DITA

DITA is an architecture for creating topic-oriented, information-typed content that

can be reused and single-sourced in a variety of ways. It is also an architecture for

creating new topic types and describing new information domains based on

existing types and domains.

The process for creating new topic types and domains is called specialization.

Specialization allows the creation of very specific, targeted document type

definitions while still sharing common output transforms and design rules

developed for more general types and domains, in much the same way that classes

in an object-oriented system can inherit methods of ancestor classes.

DITA topics are XML conforming. As such, they are readily viewed, edited, and

validated with standard XML tools, although some features such as content

referencing and specialization may benefit from customized support.

Definitions and background concepts

The following terms have specific meanings in DITA which should be understood

before reading either the DITA markup specification or the DITA specialization

specification.

Basic concepts

The following are basic concepts used in DITA.

 “What are topics?” on page 7
A topic is a unit of information with a title and content, short enough to be

specific to a single subject or answer a single question, but long enough to

make sense on its own and be authored as a unit.

 “What are maps?” on page 14
DITA maps are documents that collect and organize references to DITA topics

to indicate the relationships among the topics. They can also serve as outlines

or tables of contents for DITA deliverables and as build manifests for DITA

projects.

 “What is specialization?” on page 29
Specialization allows you to define new kinds of information (new structural

types or new domains of information), while reusing as much of existing design

and code as possible, and minimizing or eliminating the costs of interchange,

migration, and maintenance.

 “Structural versus domain specialization” on page 30
Structural specialization defines new types of structured information, such as

new topic types or new map types. Domain specialization creates new markup

that can be useful in multiple structural types, such as new kinds of keywords,

tables, or lists.

 “Integration” on page 39
Each domain specialization or structural specialization has its own design

module. These modules can be combined to create many different document

types. The process of creating a new document type from a specific

combination of modules is called integration.

 3

“Customization” on page 46
When you just need a difference in output, you can use DITA customization to

override the default output without affecting portability or interchange, and

without involving specialization.

 “Generalization” on page 36
Specialized content can be generalized to any ancestor type. The generalization

process can preserve information about the former level of specialization to

allow round-tripping between specialized and unspecialized forms of the same

content.

Terminology

DITA uses a number of terms in particular or unique ways. Within the scope of

this specification, the following terms are used when talking about DITA models,

DITA declarations, and DITA instances.

Model terminology

DITA can be understood at the level of an abstract model without reference to

particular DTDs, schemas, or actual XML documents. When discussing DITA

concepts at this level, the following terminology is used.

Element type

Defines the structure and semantics for a fragment of content.

Specialized element type

Defines an element type as a semantic refinement of another element type.

The content allowed by the specialized element type must be a subset of or

identical to the content allowed by the original element type.

Topic type

An element type that defines a complete unit of content. The topic type

provides the root element for the topic and, through contained element

types, substructure for the topic instances. The root element of the topic

type is not necessarily the same as the root element of a document type:

document types may nest multiple topic types, and may also declare

non-DITA wrapper elements as the root element for compatibility with

other processes.

Map type

An element type that defines a set of relationships for topic instances. The

map type provides the root element and, through contained element types,

substructure for the map instances. The map substructure provides

hierarchy, group, and matrix organization of references to topic instances.

Structural type

A topic type or map type.

Domain

A set of elements that support a specific subject area. Elements in a domain

can be integrated with topic or map types to enhance their semantic

support for particular kinds of content. For example, the structural type

<topic> declares the <keyword> element; when integrated with a domain

for describing user interfaces, new keyword specializations (such as

<wintitle>) become available wherever <keyword> was allowed in the

original structural type.

Document type

The full set of element types defined in the modules that are integrated by

the document type shell. A DITA document type may support authoring

multiple topic types or multiple map types, but not a mix of the two. The

4 Darwin Information Typing Architecture (DITA) Specification 1.0

structural types can be augmented with elements from domains. The term

″document type″ is used for compatibility with existing standards, since

this is the point at which DITA’s set of topic, domain, and map types are

assembled into a document type that is functionally equivalent to a

traditional non-modularized document type.

Declaration terminology

When the model is expressed in a DTD or schema, the various element types are

declared. When referring to these declarations, the following terminology is used.

Element declaration

The representation within a schema technology (such as DTD, XML

Schema, or Relax NG) for an element type.

Type module

The representation within a schema technology for the element types

uniquely defined by a topic type, map type, or domain.

Topic module

The representation within a schema technology for the element types

uniquely defined by a topic type.

Map module

The representation within a schema technology for the element types

uniquely defined by a map type.

Structural module

A topic or map module.

Domain module

The representation within a schema technology for the element types

uniquely defined by a domain.

Document type shell

The representation within a schema technology for a shell that declares no

element types itself but points to and assembles topic, map, and domain

modules.

Document type declaration

The representation within a schema technology for a document type. The

document type declaration includes the declaration modules assembled by

the document declaration shell.

Instance terminology

When actual documents, topics, and elements are created based on a DITA

document type, the following terminology is used.

Element instance

An occurrence of an element type in a document.

Topic instance

An occurrence of a topic type in a document.

Map instance

An occurrence of a map type in a document.

Structural type instance

An occurrence of a topic type or a map type in a document.

Document instance

A document whose meaning and validity are determined by a document

type declaration.

Chapter 2. An introduction to DITA 5

Naming conventions and file extensions

The following naming conventions and file extensions are in use by DITA.

DITA topics

*.xml, *.dita

DITA maps

*.ditamap

DTD structural type files

typename.mod

DTD domain type files

typename.mod

 typename.ent

Schema structural type files

typename_mod.xsd

 typename_group.xsd

Schema domain type files

typename-domain.xsd

CSS override files

typename.css

 customization-purpose.css

XSLT override files

typename.xsl

 customization-purpose.xsl

6 Darwin Information Typing Architecture (DITA) Specification 1.0

Chapter 3. DITA markup

The two main units of authoring in DITA are topics and maps. Each can be

extended into new structural types and domains through specialization.

DITA topics

DITA topics are the basic units of DITA content. Each topic should be organized

around a single subject.

What are topics?

A topic is a unit of information with a title and content, short enough to be specific

to a single subject or answer a single question, but long enough to make sense on

its own and be authored as a unit.

In DITA, a topic is the basic unit of authoring and of reuse. A document may

contain one topic or multiple topics, and a document type may support authoring

one or many kinds of topics. But regardless of where they occur, all topics have the

same basic structure and capabilities. Books, PDF files, Websites, and help sets, for

example, can all be constructed from the same set of underlying topic content,

although there may be some topics that are unique to a particular deliverable, and

the organization of topics may differ to take advantage of the unique capabilities of

each delivery mechanism.

Reference information is inherently topic-oriented, since it requires information to

be modular and self-contained for the sake of retrievability.

Topic-oriented authoring for conceptual and task information has its roots in

Minimalism, an instructional design technique first espoused by John Carroll. The

minimalist approach to information design focusses on identifying the smallest

amount of instruction that allows for the successful completion of a task, or that

provides basic knowledge of a concept. Readers have goals, and they want to

achieve those goals as quickly as possible. Generally, readers don’t want to read

information just for the pleasure of reading. They are reading to learn or to do

something.

Some of the key principles of Minimalism are:

v Support actions. Let people act as they learn, and let them pursue the goals they

want to accomplish.

v Document tasks, not tools or functions.

v Help readers anticipate and avoid errors.

v Let readers explore. They don’t need explained what they can discover for

themselves.

While DITA’s topic-oriented approach has its roots in instructional design, the

topic-based approach can be useful for any information that has human readers

and a consistent structure.

Why topics?

Topics are the basis for high-quality information. They should be short enough to

be easily readable, but long enough to make sense on their own.

 7

By organizing content into topics, authors can achieve several goals

simultaneously:

v Content is readable even when accessed from an index or search, not just when

read in sequence as part of a chapter. Since most readers don’t read information

end-to-end, it’s good information design to make sure each unit of information

can be read on its own to give just-in-time help.

v Content can be organized differently for online and print purposes. Authors can

create task flows and concept hierarchies for online orientation, and still have a

print-friendly combined hierarchy that helps people who do want an organized

reading flow.

v Content can be reused in different collections. Since the topic is written to make

sense when accessed randomly (as by search), it should also make sense when

included as part of different product deliverables, so authors can refactor

information as needed, including just the topics that apply for each reuse

scenario.

Topics are small enough to provide lots of opportunities for reuse, but large

enough to be coherently authored and read. While DITA supports reuse below the

topic level, this requires considerably more thought and review, since topics

assembled out of smaller chunks often require editing to make them flow properly.

By contrast, since topics are already organized around a single subject, authors can

organize a set of topics logically and get an acceptable flow between them, since

transitions from subject to subject don’t need to be as seamless as the explanations

within a single subject.

Information typing

Information typing is the practice of identifying types of topics that contain distinct

kinds information, such as concepts, tasks, and reference information. Topics that

answer different kinds of questions can be categorized as different information

types. The base topic types provided by DITA (a generic topic, plus concept, task,

and reference) provide a usable starter set that can be adopted for immediate

authoring.

Classifying information by type helps authors:

v Design new information more easily and consistently.

v Ensure the right design gets used for the kind of information (retrieval-oriented

structures like tables for reference information, simple sequences of steps for

task information)

v Focus on tasks.

v Factor out supporting concepts and reference information into other topics,

where they can be read if required and ignored if not.

v Eliminate unimportant or redundant information. Identify common or reusable

subjects.

Information typing is part of the general authoring approach called structured

writing, which is used across the technical authoring industry to improve

information quality. It is based on extensive research and experience, including

Robert Horn’s Information Mapping, and Hughes Aircraft’s STOP (Sequential

Thematic Organization of Proposals).

Information types in DITA are expressed as topic types. The base topic types

provided by DITA can be used as a base for further specialization. New

information types that require different structures and semantics are directly

8 Darwin Information Typing Architecture (DITA) Specification 1.0

supported by topic type modules, each of which defines the specific markup and

structural rules required to describe a particular type of topic. These modules can

then be integrated into document types to support authoring information-typed

topics.

Topic structure

All topics have the same basic structure, regardless of topic type: title, description,

prolog, and body.

All DITA topics must have an ID, a title, and a body. Topic structures can consist of

the following parts:

Topic element

Required id attribute, contains all other elements

Title The subject of the topic.

Alternate titles

Titles specifically for use in navigation or search. When not provided, the

base title is used for all contexts.

Short description

A short description of the topic. Used both in topic content, in generated

summaries that include the topic, and in links to the topic. While short

descriptions aren’t required, they can make a dramatic difference to the

usability of an information set, and should generally be provided for all

topics.

Prolog Container for various kinds of topic metadata, such as change history,

audience, product, and so on.

Body The actual topic content: paragraphs, lists, sections - whatever the

information type allows.

Related links

Links to other topics. When an author creates a link as part of a topic, the

topic becomes dependent on the other topic being available. To reduce

dependencies between topics and thereby increase the reusability of each

topic, authors can use DITA maps to define and manage links between

topics, instead of embedding links directly in each related topic.

Nested topics

Topics can be defined inside other topics. Nesting can result in complex

documents that are less usable and less reusable, and should be used

carefully. It is more often appropriate for reference information, which can

support longer documents organized into multiple topics for scanning and

retrieval.

Topic content

All topics, regardless of topic type, build on the same common structures.

Topic bodies

While all topic types have the same elements for title, short description,

and prolog, they each allow different content in their body.

Sections and examples

Sections and examples can be contained only by the body of a topic. They

cannot nest. They can contain block-level elements like paragraphs,

phrase-level elements like API names, or text.

Chapter 3. DITA markup 9

Block-level elements

Paragraphs, lists, and tables are kinds of ″block″ elements. As a class of

content, they can contain other blocks, phrases, or text, though the rules

vary for each structure.

Phrases and keywords

Authors can intermix markup with text when they need to identify part of

a paragraph or even part of a sentence as having special significance.

Phrases can usually contain other phrases and keywords as well as text.

Keywords can only contain text.

Images

Authors can insert images using the image element. Images can be used at

the block level, for example to show screen captures or diagrams, or at the

phrase level, for example to show what icons or toolbar buttons look like.

Multimedia

Authors can create multimedia for online information using the object

element, for example to display SVG diagrams that can be rotated and

explored.

Topic modules

There are three basic modules in topic: for tables, for metadata, and for everything

else.

tbl_xml.mod

Defines the elements for authoring tables, based on the CALS table model

but with some DITA-specific extensions.

meta_xml.mod

Defines metadata elements. Also used by DITA maps, where metadata can

be defined for multiple topics at once.

topic.mod

Defines the rest of the elements in a topic.

Concepts

DITA concept topics answer ″What is...″ questions. They include a body-level

element with a basic topic structure, including sections and examples.

Why concepts?

Concepts provide background that helps readers understand essential information

about a product, interface, or task. Often, a concept is an extended definition of a

major abstraction such as a process or function. Conceptual information may

explain a product and how it fits into its category of products. Conceptual

information helps users to map their existing knowledge to tasks and other

essential information about a product or system.

Concept structure

The <concept> element is the top-level element for a DITA concept topic. Every

concept contains a <title> and a <conbody> and optional <titlealts>, <shortdesc>,

<prolog>, and <related-links>.

The <conbody> element is the main body-level element for a concept. Like the

body element of a general topic, <conbody> allows paragraphs, lists, and other

elements as well as sections and examples. But <conbody> has a constraint that a

10 Darwin Information Typing Architecture (DITA) Specification 1.0

section or an example can be followed only by other sections or examples.

Here is an example of a simple concept topic.

<concept id="concept">

 <title>Bird Calling</title>

 <conbody>

 <p>Bird calling attracts birds.</p>

 <example>

 <p>Bird calling requires learning:</p>

 Popular and classical bird songs

 How to whistle like a bird

 </example>

 </conbody>

</concept>

Modules

dtd\concept.mod, schema\concept.mod

Tasks

Task topics answer ″How do I?″ questions, and have a well-defined structure that

describes how to complete a procedure to accomplish a specific goal.

Why tasks?

Tasks are the essential building blocks for providing procedure information. A task

topic answers the ″How do I?″ question by providing precise step-by-step

instructions detailing what to do and the order in which to do it. The task topic

includes sections for describing the context, prerequisites, expected results, and

other aspects of a task.

Task structure

The <task> element is the top-level element for a task topic. Every task topic

contains a <title> and a <taskbody> and optional <titlealts>, <shortdesc>,

<prolog>, and <related-links>.

The <taskbody> element is the main body-level element inside a task topic. A task

body has a very specific structure, with the following elements in this order:

<prereq>, <context>, <steps>, <result, <example> and <postreq>. Each of the body

sections is optional.

<prereq>

Describes information needed before starting the current task.

<context>

Provides background information for the task. This information helps the

user understand what the purpose of the task is and what they will gain

by completing the task. This section should be brief and does not replace

or recreate a concept topic on the same subject, although the context

section may include some conceptual information.

<steps>

Provides the main content of the task topic. A task consists of a series of

steps that accomplish the task. The <steps> section must have one or more

<step> elements, which provide the specifics about each step in in the task.

Chapter 3. DITA markup 11

The <step> element represents an action that a user must follow to

accomplish a task. Each step in a task must contain a command <cmd>

element which describes the particular action the user must do to

accomplish the overall task. The step element can also contain information

<info>, substeps <substeps>, tutorial information <tutorialinfo>, a step

example <stepxmp>, choices <choices> or a stepresult <stepresult>,

although these are optional.

<result>

Describes the expected outcome for the task as a whole.

<example

Provides an example that illustrates or supports the task.

<postreq>

Describes steps or tasks that the user should do after the successful

completion of the current task. It is often supported by links to the next

task or tasks in the <related-links> section.

Here‘s an example of a task topic.

<task id="ertx">

 <title>Creating an ERTX file</title>

 <taskbody>

 <context>Each morning before breakfast you need to create a fresh ERTX file.</context>

 <steps>

 <step><cmd>Start ERTX.</cmd></step></steps>

 <step><cmd>Click New ERTX File.</cmd></step></steps>

 </steps>

 <result>You now have your ERTX file for today!</result>

 </taskbody>

</task>

Modules

dtd\task.mod, schema\task.mod

Reference

Reference topics describe regular features of a subject or product, such as

commands in a programming language.

Why reference?

In technical information, reference topics are often used to cover subjects such as

the commands in a programming language. Reference topics can hold anything

that has regular content, such as ingredients for food recipes, bibliographic lists,

catalogues, and the like. Reference topics provide quick access to facts. Information

needed for deeper understanding of a reference topic or to perform related

procedures should be provided in a concept or task topic.

Reference structure

The <reference> element defines a top-level container for a reference topic.

Reference topics have the same high-level structure as the other core DITA topic

types, with a title, short description, and body. Within the body, reference topics

organize content into one or more sections, property lists, or tables.

12 Darwin Information Typing Architecture (DITA) Specification 1.0

The <refbody> element holds the main content of the reference topic. Reference

topics limit the body structure to tables (both simple and standard), property lists,

syntax sections, and generic sections and examples.

All of the elements of <refbody> are optional and may appear in any sequence and

number.

<section>

Represents an organizational division in a reference topic. Sections

organize subsets of information within a larger topic. You can only include

a simple list of peer sections in a topic; sections cannot be nested. A section

may have an optional title.

<refsyn>

Contains syntax or signature content (for example, a command-line utility’s

calling syntax, or an API’s signature). The <refsyn> contains a brief,

possibly diagrammatic description of the subject’s interface or high-level

structure.

<example>

Provides containing examples that illustrate or support the current topic.

The <example> element has the same content model as <section>.

<table>

Organizes information according into a tabular rows and columns

structure. Table markup also allows for more complex structures, including

spanning rows and columns, as well as table captions.

<simpletable>

Holds information in regular rows and columns and does not allow for a

caption.

<properties>

Lists properties and their types, values, and descriptions.

Here‘s an example of a reference topic.

<reference id = "boldproperty">

<title>Bold property</title>

<shortdesc>(Read-write) Whether to use a bold font for the specified

text string.</shortdesc>

<refbody>

 <refsyn>

 <synph>

 <var>object</var><delim>.</delim><kwd>Font</kwd><delim>.</delim>

 <kwd>Bold</kwd><delim> = </delim><var>trueorfalse</var>

 </synph>

 </refsyn>

 <properties>

 <property>

 <proptype>Data type</proptype>

 <propvalue>Boolean</propvalue>

 </property>

 <property>

 <proptype>Legal values</proptype>

 <propvalue>True (1) or False (0)</propvalue>

 </property>

 </properties>

</refbody>

</reference>

Chapter 3. DITA markup 13

Modules

dtd\reference.mod, schema\reference.mod

Domains

A DITA domain defines a set of elements associated with a particular subject area

or authoring requirement regardless of topic type.

The elements in a domain are defined in a domain module which can be

integrated with a topic type to make the domain elements available within the

topic type structure. Currently the following domains are provided:

 Table 1. DITA domains

Domain Description

Short

name Module name

Typographic For highlighting when the appropriate

semantic element doesn’t exist yet

hi-d highlight-
domain.mod

Programming For describing programming and

programming languages

pr-d programming-
domain.mod

Software For describing software sw-d software-
domain.mod

User interfaces For describing user interfaces ui-d ui-domain.mod

Utilities For providing imagemaps and other

useful structures

ut-d utilities-domain.mod

DITA maps

Maps organize topics for output to a specific deliverable, including generating

navigation files and links to related topics.

What are maps?

DITA maps are documents that collect and organize references to DITA topics to

indicate the relationships among the topics. They can also serve as outlines or

tables of contents for DITA deliverables and as build manifests for DITA projects.

DITA maps represent the architecture of an information set – what topics are

needed, in what order or relationships, to support a particular set of user goals or

other requirements.

Maps describe the context in which the topics will be read – the audience,

platform, relationships, requirements of the information set. In this way, the topics

themselves become relatively context-free, and can be more easily used and reused

in many different contexts, as defined by maps.

Maps draw on a rich set of existing best practices and standards for defining

information models, such as hierarchical task analysis. They also support the

definition of non-hierarchical relationships, such as matrices and groups, which

provide a set of capabilities that has some similarities to RDF and ISO topic maps.

A map file references one or more DITA topic files using <topicref> elements. The

<topicref> elements can be nested or otherwise organized to reflect the desired

relationships between the referenced topics. Map files need to have a file extension

of .ditamap to be processed properly

14 Darwin Information Typing Architecture (DITA) Specification 1.0

Why DITA maps?

Maps allow scalable reuse of content across multiple contexts. They can be used by

information architects, writers, and publishers to plan, develop, and deliver

content.

Among the specific uses that maps support:

Defining an information architecture

The map can be used to define what topics are required for a particular

audience and user goals, even before the topics themselves exist.

Providing an authoring interface

The map can be used as a starting point for authoring new topics and

integrating existing ones.

Defining what topics to build for a particular output

Maps point to topics that are included in output processing. Authors or

publishers can use maps to specify a set of topics to transform at the same

time, instead of transforming each topic individually.

Defining online navigation

Maps can define the online navigation or table of contents for the topics it

points to.

Defining what topics to print

Maps can define a hierarchy that will determine how topics will be

combined and nested for printing.

Defining related links

Maps define relationships among the topics they reference; on output,

these relationships can be expressed as related links among the topics in

each relationship.

Common DITA map attributes and metadata

DITA maps have many of the same common attributes as DITA content, but also

have some additional ones for controlling the way relationships are interpreted for

different output purposes.

Because DITA maps may encode structures that are wholly or partially specific to a

particular medium or kind of output (for example, hyperlinked web pages or

printed books), DITA maps contain attributes to help processors interpret the map

for each kind of output. These attributes are not available in DITA content:

individual topics, once separated from the high-level structures and dependencies

associated with a particular kind of output, should be entirely reusable across

multiple media.

collection-type, linking

The containment structure in a map can be used to generate related links or

references on output. The author can annotate the containment structure to identify

a particular set of siblings as being part of a specific type of collection, such as a

family or sequence. The collection-type value for a group of siblings can indicate

whether to generate links among the siblings, and what kind of links to generate

(for example, next and previous links for a sequence). The collection-type attribute

can also indicate how the parent topic should link to its children (for example,

showing the child links as a numbered list when the collection-type is sequence).

Chapter 3. DITA markup 15

By default, relationships between topics in a map are reciprocal: children link to

parents and vice versa; next and previous topics in a sequence link to each other;

topics in neighboring table cells link to each other, and so on. This default behavior

can be modified using the linking attribute, which lets a topic modify how it

participates in a relationship:

v A topic reference with linking=″none″ does not exist in the map for the

purposes of calculating links

v linking=″sourceonly″ means that the topic will link to its related topics but not

vice versa

v linking=″targetonly″ means that the related topics will link to it, but not vice

versa

v linking=″normal″ is the default, and means that linking will be reciprocal (the

topic will link to related topics, and they will link back to it)

<topicref href="A.dita" collection-type="sequence">

 <topicref href="A1.dita"/>

 <topicref href="A2.dita"/>

</topicref>

<reltable>

 <relrow>

 <relcell>A.dita</relcell>

 <relcell>B.dita</relcell>

 </relrow>

</reltable>

A links to A1, A2, A3 as children

 links to B as related

A1 links to A as a parent

 links to A2 as next in the sequence

A2 links to A as a parent

 links to A1 as previous in the sequence

B links to A as related

Figure 1. Simple linking example

16 Darwin Information Typing Architecture (DITA) Specification 1.0

toc, navtitle, locktitle

Authors can exclude entries from navigation output (such as an online table of

contents, or a Web site map) using the toc attribute. By default, hierarchies are

included in navigation output, and tables are excluded.

Authors can provide a shorter version of the title for use in the navigation using

the navtitle attribute. By default the navtitle attribute is ignored, and used only to

help the author keep track of the target topic’s title. The locktitle attribute can be

set to ensure that the navtitle takes effect and overrides any title values in the

target topic, or defined elsewhere in the topic reference metadata.

print, search

You can set attributes on a topic to indicate whether it should be included in

printed output and search indexes.

chunk, copy-to

When a set of topics is transformed using a map, multi-topic files can be broken

into smaller files, and multiple individual topics can be combined into a single

larger file, using the chunk attribute.

New topic versions can be created using the copy-to attribute. The copied topic

will have a new file name, and the map can override the default title and

shortdesc by providing values for them in the map.

Shared attributes

DITA maps use the same metadata and reuse attributes that DITA topics use:

v product, platform, audience, otherprops, rev, status, importance, xml:lang,

translate

<topicref href="A.dita" collection-type="sequence">

 <topicref href="B.dita" linking="none"/>

 <topicref href="A1.dita"/>

 <topicref href="A2.dita"/>

</topicref>

<reltable>

 <relrow>

 <relcell>A.dita</relcell>

 <relcell linking="sourceonly">B.dita</relcell>

 </relrow>

</reltable>

A links to A1, A2, A3 as children

 (no links to B as a child, no links to B as related)

A1 links to A as a parent

 links to A2 as next in the sequence

 (no links to B as previous)

A2 links to A as a parent

 links to A1 as previous in the sequence

B links to A as related

Figure 2. Linking example with the linking attribute

Chapter 3. DITA markup 17

v id, conref

DITA maps also use many of the same attributes that are used with link or xref

elements in DITA content:

v format, scope, href, keyref, type, query

Shared metadata elements, and the lockmeta attribute

You can associate topic metadata with a topic or branch of topics in a map. By

default metadata in the map supplements or overrides metadata in the topic. If the

lockmeta attribute is set to ″no″, then the metadata in the map will not take

precedence over the metadata in the topic, and conflicts will be resolved in favor

of the topic.

The metadata elements in a map are the same as those in a topic, although they

may be in a separate order. The map also includes a short description and alternate

titles, which can override their equivalents in the content. In sum, the map can

override or supplement everything about a topic except its content (in the topic’s

body element).

DITA map structure

Maps organize topics into hierarchies, tables, and groups, and have special

elements for referencing other maps.

topicref elements are the basic elements of a map. A topicref can point to a DITA

topic, map, or to any other resource that can be processed or linked to.

topicref elements can be nested to create a hierarchy, which can be used to define

print output, online navigation, and parent/child links. The topichead element can

be used for nodes in the hierarchy that provide containers without equivalent

topics: they are equivalent to topicref elements with a navtitle but no href or

equivalent referencing attribute.

Relationship tables are defined with the reltable element. Relationship tables can be

used to define relationships among the topics in different cells of the same row. In

a relationship table, the columns define common attributes or metadata for the

topics in that column. The rows define relationships, with each cell representing a

different role in the relationship. For example, a table with different columns for

concepts, tasks, and reference topics could be used to define the relationship

between a task and the topics that support it.

Both hierarchies and tables can be annotated using the collection-type attribute to

define sets of siblings that are part of a particular kind of collection, for example a

set of choices, a sequence, or a family. These collection-types can affect link

generation, and may be interpreted differently for different outputs.

Groups or collections outside of a hierarchy or table can be defined with the

topicgroup element, which is equivalent to a topicref with no referencing attributes

or titles. Groups can be combined with hierarchies and tables, for example by

including a group within a table cell or within a set of siblings in a hierarchy.

Example of a simple relationship table

<reltable>

 <relheader>

 <relcolspec type="concept"/>

 <relcolspec type="task"/>

18 Darwin Information Typing Architecture (DITA) Specification 1.0

<relcolspec type="reference"/>

 </relheader>

 <relrow>

 <relcell>

 <topicref href="A.dita"/>

 </relcell>

 <topicref href="B.dita"/>

 </relcell>

 <topicref href="C1.dita"/>

 <topicref href="C2.dita"/>

 </relcell>

 </relrow>

</reltable>

 type=″concept″ type=″task″ type=″reference″

A B C1

C2

A links to B, C1, C2

B links to A, C1, C2

C1, C2 link to A, B

Inheritance of attributes and metadata

Some of the attributes and metadata in a map can be inherited based on the

structures in the map.

Inheritance is additive except where this would cause a conflict. When there is a

conflict, the value defined closest to the topicref takes effect.

The following attributes and metadata elements are inheritable:

Attributes

audience, platform, product, otherprops, rev

 linking, toc, print, search

 chunk, format, scope, type

Elements

author, source, publisher, copyright, critdates, permissions

 audience, category, keywords, prodinfo, othermeta

Attributes and metadata can be defined at the root level (attributes on the map

element itself, topicmeta as a direct child of the map element) to apply them to the

entire map. They can also be applied at any point in a hierarchy, group, or table.

Tables can be particularly useful for attribute and metadata management, since

they can be applied to entire columns or rows as well as individual cells.

DITA map modules

Maps have the same module structure as topics, and share some of the same

modules for defining metadata.

map.mod defines the base map structures.

mapgroup.mod adds topicgroup and topichead as specialized variants of topicref.

Chapter 3. DITA markup 19

Common metadata elements

The same metadata elements are available in both DITA topic types and DITA map

types. This allows the metadata assigned to a topic when it is created to be

supplemented or overridden when the topic is included in a collection.

Publication metadata elements

These elements provide standard information about the topic as a publication.

Some content providers might choose to provide such information only in the map

or the initial topic for a deliverable.

author The person or organization who created the content. This element is

equivalent to the Dublin Core Creator.

publisher

The organization who provides and distributes the content. This element is

equivalent to the Dublin Core Publisher.

copyright

The legal ownership for the content. This element is equivalent to the

Dublin Core Rights.

Management metadata elements

These elements provide a basis for managing the publication process for topics.

The management elements might get updated by workflow processes or provide

input for such processes:

source An identifier or name for the original form of the content. This element is

equivalent to Dublin Core Source.

critdates

Milestones in the publishing cycle. This element is equivalent to Dublin

Core Date.

permissions

Specification of the level of entitlement needed to access for content.

resourceid

The identifier associated with the topic when provided to the specified

application.

Metadata qualification elements

These elements qualify the topic for processes such as flagging, filtering, or

retrieval.

The metadata elements apply to an entire topic, and can also be used in a map to

apply metadata to multiple topics at a time. Metadata elements can expand on the

values used in metadata attributes. (See metadata attributes.) For example, the

audience element in a topic’s prolog can define an audience in terms of type, job,

and experience level, and give it a name; when there is content within the topic’s

body that applies only to that audience, that content can identify its audience by

the same name used in the prolog.

When metadata is expressed in a map, it supplements any metadata expressed in

the topics it references. When metadata in a map and a topic conflict (for example,

20 Darwin Information Typing Architecture (DITA) Specification 1.0

both define a publisher), by default the value in the map takes precedence, on the

assumption that the author of the map has more knowledge of the reusing context

than the author of the topic.

audience

The type, job, experience level, and other characteristics of the reader for

the topic. Many of these characteristics have enumerated values, but the

enumeration can be extended through associated attributes. For instance,

the audience type enumeration can be extended through an othertype

attribute. The audience element can elaborate values used by audience

attributes.

category

A classification of the topic content. Such classifications are likely to come

from an enumerated or hierarchical set. This element is equivalent to both

Dublin Core Coverage and Dublin Core Subject.

keywords

Terms from a controlled or uncontrolled subject vocabulary that apply to

the topic.

prodinfo

The definition of the product or platform for the topic. The prodinfo

element can elaborate values used by the product and platform attributes.

othermeta

A name-value pair specifying other metadata about the topic.

Topic properties in topics and maps

The properties of a topic can be specified in the topic itself or on references to the

topic within maps.

Within a topic, properties can be expressed using metadata attributes on the topic

element or using publication, management, or metadata elements in the topic

prolog.

Within a map, the same properties can be expressed on the topicref element that

refers to the topic. That is, the topicref attributes and the topicref subelements

within the topicmeta container apply to the referenced topic. In addition, the

metadata properties map or topicref element set the default properties for nested

topicref elements within the map hierarchy. Because the topics in a branch of the

navigation hierarchy typically have common subject or properties, this mechanism

provides a convenient way to set the properties for a set of topics.

If a property is set in both the map and topic, the map properties are additive if

the property (such as the audience type) takes a list of values. If, instead, the

property (such as the importance) takes a single value, the map property overrides

the topic property.

Example of audience metadata in prolog and body

The practice of providing full metadata in the prolog and referencing it from

attributes when a subset of metadata applies is not a best practice. Prolog metadata

and attribute metadata can be used and expressed independently. The coordination

shown here is possible but is not required.

<prolog>

 <metadata>

 <audience name="AdminNovice"

Chapter 3. DITA markup 21

type="administrator"

 job="customizing"

 experiencelevel="novice">

 </metadata>

</prolog>

....

<p audience="AdminNovice ProgrammerExp">This paragraph applies to both

novice administrators and expert programmers</p>

Common attributes

The following attributes are common across most DITA elements.

Identity attribute

The DITA identity attribute provides mechanisms for identifying content for

retrieval or linking.

The id attribute assigns a unique identifier to an element so the element can be

referenced. The scope of uniqueness for the id attribute depends on the role of the

element within the DITA architecture:

v Because topics are the basic units of information within DITA, the id attribute

for the topic must be unique within the document instance.

A topic architecture assembles topics into a deliverable by reference. To ensure

that topics can be referenced, the id attribute is required on the topic element.

The complete identifier for a topic consists of the combination of the URI for the

document instance, a separating hash character, and the topic id (as in

http://some.org/some/directory/topicfile.xml#topicid).URIs are described in

RFC 2396. As is typical with URIs, a relative URI can be used as the identifier

for the document instance so long as it is resolvable in the referencing context.

For instance, within a file system directory, the filename of the document

instance suffices (as in some/directory/topicfile.xml#topicid).Within the same

document, the topic id alone suffices (as in #topicid). Where the topic element is

the root element of the document instance, contexts outside the document

instance may omit the topic id when referring to the topic element (as in

topicfile.xml).

The topic id can be referenced by topicrefs, links, xrefs, or conrefs to the topic as

well as indirectly as part of references to the topic content.

The id attribute for DITA topics is of type ID in XML.

v Because topic content is always contained within a topic, the id attribute for a

topic content element must be unique only within the topic. This approach

ensures maintainable references to content because the identifier remains valid

so long as the document instance, topic, and content exist. The position of the

content within the topic and the position of the topic within the document

instance can change without invalidating the content identifier. In addition, this

approach avoids the need to rewrite topic content ids to avoid naming collisions

when aggregating topics.

The id is optional and need be added only to make the content referenceable.

The complete identifier for topic content consists of the combination of the

complete identifier for the topic, a separating solidus (/), and the topic content

id (as in http://some.org/some/directory/topicfile.xml#topicid/contentid).

As noted before, the topic identifier portion can use a relative URI for the

document instance in contexts where the relative URI can be resolved (as in

some/directory/topicfile.xml#topicid/contentid).

22 Darwin Information Typing Architecture (DITA) Specification 1.0

The containing topic id must always be included when referencing an element

id. Otherwise, a reference to another topic couldn’t be distinguished from a

reference to an element within the same topic. For references within the same

document instance, the identifier for the document instance can be omitted

altogether (as in #topicid/contentid).

The id attribute for elements within DITA topics is not of type ID and is not

required to be unique.

v For a map, the id of a map, topicref, or anchor must be unique within the

document instance. This approach ensures that these elements can be referenced

outside the map without qualification by the map id.

For the anchor element, which exists only to identify a position within a map as

a target for references, the id attribute is required. For the other elements, the id

attribute is optional.

As with a topic, the complete identifier consists of the combination of the

absolute URI for the map document instance and the element id (as in

http://some.org/some/directory/mapfile.xml#topicrefid).

The id attribute for maps, topicrefs, and anchors is of type ID.

v The id for a relationship table element must be unique only within the map.

As with topic content, the full identifier consists of the combination of the

absolute URI for the map and the id for the relationship table element (as in

http://some.org/some/directory/mapfile.xml#mapid/reltableid).

The id attribute for reltable elements is not of type ID and is not required to be

unique.

Content reference attribute

The DITA conref attribute provides a mechanism for reuse of content fragments.

The conref attribute stores a reference to another element and is processed to

replace the referencing element with the referenced element.

The element containing the content reference acts as a placeholder for the

referenced element. The identifier for the referenced element must be either

absolute or resolvable in the context of the referencing element. (See “Identity

attribute” on page 22 for the details on identifiers.)

More formally, the DITA conref attribute can be considered a transclusion

mechanism. In that respect, conref is similar to XInclude as well as HyTime value

references. DITA differs from these mechanisms, however, by comparing the

constraints of each context to ensure the ongoing validity of the replacement

content in its new context. In other words, conref validity does not apply simply to

the current content at the time of replacement, but to the ranges of possible content

given the constraints of the two document types. A valid conref processor does not

allow the resolution of a reuse relationship that could be rendered invalid under

the rules of either the reused or reusing content.

If the referenced element is the same type as the referencing element and the list of

domains in the referenced topic instance (declared on the domains attribute) is the

same as or a subset of the list of domains in the referencing document, the element

set allowed in the referenced element is guaranteed to be the same as, or a subset

of, the element set allowed in the placeholder element. In the preferred approach, a

processor resolving a conref should tolerate specializations of valid elements and

generalize elements in the content fragment as needed for the referencing context.

Chapter 3. DITA markup 23

Replacement of the placeholder occurs after parsing of the document but prior to

any styling or other transformational or presentational operations on the full topic.

The target of the conref may be substituted based on build-time or runtime

conditions. For example, content such as product names or install paths can be

separated out from topic content since they change when the topic is reused by

other products; the reusing product can substitute their own targets for the conref

to allow resolution to their own product name and install paths, and so on.

Metadata attributes

The metadata attributes express qualifications on the content. These qualifications

can be used to modify the processing of the content.

One typical use of the metadata attributes is to filter content based on their values.

Another typical use is to flag content based on their values, for example by

highlighting the affected text on output. Typically audience, platform, product, and

otherprops are used for filtering, and the same attributes plus rev are used for

flagging. Status and importance are used for tool-specific or transform-specific

behavior, for example marking steps in a task as optional or required.

In general, a metadata attribute provides a list of one or more qualification values,

separating those values with whitespace. For instance, an audience attribute of

administrator programmer qualifies the content as applying to administrators and

programmers.

For a topic, the audience, platform, and product metadata can be expressed with

attributes on the topic element or with elements within the topic prolog. While the

metadata elements are more expressive, the meaning of the values is the same, and

can be used in coordination: for example, the prolog elements can fully define the

audiences for a topic, and then metadata attributes can be used within the content

to identify parts that apply to only some of those audiences.

audience

The values from the enumerated attributes of the audience metadata

element have the same meaning when used in the audience attribute of a

content element. For instance, the ″user″ value has the same meaning

whether appearing in the type attribute of the audience element for a topic

or in the audience attribute of a content element. The principle applies to

the type, job, and experience level attributes of the audience element.

 The values in the audience attribute may also be used to reference a more

complete description of an audience in an audience element. Use the name

of the audience in the audience element when referring to the same

audience in an audience attribute.

 The audience attribute takes a blank-delimited list of values, which may or

may not match the name value of any audience elements.

platform

The platform might be the operating system, hardware, or other

environment. This attribute is equivalent to the platform element for the

topic metadata.

 The platform attribute takes a blank-delimited list of values, which may or

may not match the content of a platform element in the prolog.

24 Darwin Information Typing Architecture (DITA) Specification 1.0

product

The product or component name, version, brand, or internal code or

number. This attribute is equivalent to the prodinfo element for the topic

metadata.

 The product attribute takes a blank-delimited list of values, which may or

may not match the value of the prodname element in the prolog.

importance

The degree of priority of the content. This attribute takes a single value

from an enumeration.

rev The identifier for the revision level.

status The current state of the content. This attribute takes a single value from an

enumeration.

otherprops

A catchall for metadata qualification values about the content. This

attribute is equivalent to the othermeta element for the topic metadata.

 The product attribute takes a blank-delimited list of values, which may or

may not match the values of othermeta elements in the prolog.

 The attribute can also take labelled groups of values. A labelled group

consists of a string value followed by an open parenthesis followed by one

or more blank-delimited values followed by a close parenthesis. The simple

format is sufficient when an information set requires only one additional

metadata axis, in addition to the base metadata attributes of product,

platform, and audience. The full format is useful when an information set

requires two or more additional metadata axes. A process can detect which

format is in use by the presence of parentheses in the attribute.

 For example, a simple otherprops value list: <codeblock otherprops="java

cpp">

 For example, a complex otherprops value list: <codeblock

otherprops="proglang(java cpp) commentformat(javadoc html)">

Miscellaneous Attributes

The xml:lang attribute identifies the language of a topic or content fragment. The

outputclass attaches a classifying label to an element.

Miscellaneous attributes of DITA elements include the following

xml:lang

The xml:lang attribute’s behavior is described in detail in the XML

specification: http://www.w3.org/TR/REC-xml/#sec-lang-tag The

attribute identifies a language by means of the standard language and

country codes (as described in RFC 3066). For instance, French Canadian

would be identified by the value fr-ca. As is usual, the language applies

to the contained content and attributes of the current element and

contained elements, other than fragments that declare a different language.

outputclass

The outputclass attribute provides a label on one or more element

instances, typically to specify a role or other semantic distinction. As the

outputclass attribute doesn’t provide a formal type declaration or the

structural consistency of specialization, it should be used sparingly, often

only as a temporary measure while a specialization is developed. For

example, <uicontrol> elements that define button labels could be

Chapter 3. DITA markup 25

http://www.w3.org/TR/REC-xml/#sec-lang-tag
http://www.ietf.org/rfc/rfc3066.txt

distinguished by adding an outputclass: <uicontrol

outputclass="button">Cancel</uicontrol>. The outputclass value could be

used to trigger XSLT or CSS rules, as well as providing a mapping to be

used for future migration to a more specialized set of UI elements.

Architectural attributes

DITA provides some attributes to provide type information to processors instead of

qualifications or properties of content.

Ordinarily, architectural attributes don’t appear in the source files for document

instances. Instead, architectural attributes appear in document instances through

defaults set in the DTD or Schema declaration. This practice ensures that the

creation of document instances cannot produce invalid values for the architectural

attributes. These attributes are as follows:

class This attribute identifies the specialization module for the element type as

well as the ancestor element types and the specialization modules to which

they belong. Every DITA element has a class attribute.

domains

This attribute identifies the domain specialization modules used in a topic

and, for each domains module, its module dependencies. Every topic and

map element has a domains attribute.

DITAArchVersion

This attribute identifies the version of the DITA architecture used by the

DTD or schema.Every topic and map element has a DITAArchVersion

attribute. The attribute is declared in a DITA namespace to allow

namespace-sensitive tools to detect DITA markup.

 To make the document instance usable without the DTD or Schema declaration, a

normalization process can instill the architectural attributes in the document

instance.

Conditional processing

Conditional processing is the filtering or flagging of information based on

processing-time criteria

DITA tries to implement conditional processing in a semantically meaningful way:

rather than allowing arbitrary values to accumulate in a document over time in a

general-purpose processing attribute, with meaning only to the original author, we

encourage the authoring of metadata using specific metadata attributes on content.

These metadata values can then be leveraged by any number of processes,

including filtering, flagging, search, and indexing, rather than being suitable for

filtering only.

There are four attributes intended for conditional processing, available on most

elements:

v product: the product that is the subject of the discussion.

v platform: the platform on which the product is deployed.

v audience: the intended audience of the text

v rev: the revision or draft number of the current document (typically used for

flagging only, not for filtering)

v otherprops: anything else

26 Darwin Information Typing Architecture (DITA) Specification 1.0

Using metadata attributes

Each attribute takes zero or more space-delimited string values. For example, you

can use the product attribute to identify that an element applies to two particular

products.

Processing metadata attributes

At processing time, you specify the values you want to exclude and the values you

want to flag. For example, a publisher producing information for a mixed audience

using the basic product could choose to flag information that applies to

administrators, and exclude information that applies to the extended product:

<prop att="audience" val="administrator" action="flag" use="ADMIN"/>

<prop att="product" val="extendedprod" action="exclude"/>

The format shown here for identifying values for filtering and flagging is not

normative, and is shown purely for the sake of illustrating the expected processing

logic.

At output time, the paragraph is flagged, and the first list item is excluded (since it

applies to extendedprod), but the second list item is still included (even though it

does apply to extendedprod, it also applies to basicprod, which was not excluded).

The result should look something like:

Filtering logic

When deciding whether to exclude a particular element, a process should evaluate

each attribute, and then evaluate the set of attributes:

v If all the values in an attribute have been set to ″exclude″, the attribute evaluates

to ″exclude″

v If any of the attributes evaluate to exclude, the element is excluded.

For example, if a paragraph applies to three products and the publisher has chosen

to exclude all of them, the process should exclude the paragraph; even if the

paragraph applies to an audience or platform that you aren’t excluding. But if the

paragraph applies to an additional product that has not been excluded, then its

content is still relevant for the intended output and should be preserved.

<p audience="administrator">Set the configuration options:

 <li product="extendedprod">Set foo to bar

 <li product="basicprod extendedprod">Set your blink rate

 Do some other stuff

 <li platform="Windows">Do a special thing for Windows

</p>

Figure 3. Example source

ADMIN Set the configuration options:

v Set your blink rate

v Do some other stuff

v Do a special thing for Windows

Chapter 3. DITA markup 27

Flagging logic

When deciding whether to flag a particular element, a process should evaluate

each value. Wherever a value that has been set as flagged appears in its attribute

(for example, audience=″ADMIN″) the process should add the flag. When multiple

flags apply to a single element, multiple flags should be output, typically in the

order they are encountered.

Flagging could be done using text (for example, bold text against a colored

background) or using images. When the same element evaluates as both flagged

and filtered (for example, flagged because of an audience attribute value and

filtered because of its product attribute values), the element should be filtered.

28 Darwin Information Typing Architecture (DITA) Specification 1.0

Chapter 4. DITA specialization

Specialization is the process by which new designs are created based off existing

designs, allowing new kinds of content to be processed using existing processing

rules.

Specialization provides a way to reconcile the needs for centralized management of

major architecture and design with the needs for localized management of

group-specific and content-specific guidelines and behaviors. Specialization allows

multiple definitions of content and output to co-exist, related through a hierarchy

of types and transforms. This hierarchy lets general transforms know how to deal

with new, specific content, and it lets specialized transforms reuse logic from the

general transforms. As a result, any content can be processed by any transform, as

long as both content and transform are specialization-compliant, and part of the

same hierarchy. Specializers get the benefit of specific solutions, but also get the

benefit of common standards and shared resources.

 Content Processing Result

Unspecialized Unspecialized Base processing, expected

output

Unspecialized Specialized Base processing, specialized

overrides are ignored,

expected output

Specialized Unspecialized Base processing, specialized

content treated as general,

output may fall short of

expectations

Specialized Specialized Specialized processing,

expected output

Specialized Differently specialized Some specialized processing,

specialized content treated as

nearest common

denominator, output may fall

short of expectations

The following topics provide an overview of specialization, some recommendations

for use, and detailed rules for its mechanisms.

What is specialization?

Specialization allows you to define new kinds of information (new structural types

or new domains of information), while reusing as much of existing design and

code as possible, and minimizing or eliminating the costs of interchange,

migration, and maintenance.

Specialization is used when new structural types or new domains are needed.

DITA specialization can be used when you want to make changes to your design

for the sake of increased consistency or descriptiveness or have extremely specific

needs for output that cannot be addressed using the current data model.

Specialization is not recommended for simply creating different output types as

 29

DITA documents may be transformed to different outputs without resorting to

specialization (see “Customization” on page 46).

There are two kinds of specialization hierarchy: one for structural types (with topic

or map at the root) and one for domains (with elements in topic or map at their

root). Structural types define topic or map structures, such as concept or task or

reference, which often apply across subject areas (for example, a user interface task

and a programming task may both consist of a series of steps). Domains define

markup for a particular information domain or subject area, such as programming,

or hardware. Each of them represent an “is a” hierarchy, in object-oriented terms,

with each structural type or domain being a subclass of its parent. For example, a

specialization of task is still a task; and a specialization of the user interface

domain is still part of the user interface domain.

Use specialization when you are dealing with new semantics (new, meaningful

categories of information, either in the form of new structural types or new

domains). The new semantics can be encoded as part of a specialization hierarchy,

that allows them to be transformed back to more general equivalents, and also

ensures that the specialized content can be processed by existing transforms.

Why specialization?

Specialization can have dramatic benefits for the development of new document

architectures.

Among the benefits:

v No need to reinvent the base vocabulary - Create a module in 1/2 day with 10

lines vs. 6 months with 100s of lines; automatically pick up changes to the base

v No impact from other designs that customize for different purposes - Avoid

enormous, kitchen-sink vocabularies; Plug in the modules for your requirements

v Interoperability at the base type - Guaranteed reversion from special to base

v Reusable type hierarchies - Share understanding of information across groups,

saving time and presenting a consistent picture to customers

v Output tailored to customers and information - More specific search, filtering,

and reuse that is designed for your customers and information not just the

common denominator

v Consistency - Both with base standards and within your information set

v Learning support for new writers - Instead of learning standard markup plus

specific ways to apply the markup, writers get specific markup with guidelines

built in

v Explicit support of different product architectural requirements - Requirements

of different products and architectures can be supported and enforced, rather

than suggested and monitored by editorial staff

Structural versus domain specialization

Structural specialization defines new types of structured information, such as new

topic types or new map types. Domain specialization creates new markup that can

be useful in multiple structural types, such as new kinds of keywords, tables, or

lists.

Structural types define structures for modules of information, such as concept or

task or reference, which often apply across subject areas (for example, a user

interface task and a programming task may both consist of a series of steps). When

30 Darwin Information Typing Architecture (DITA) Specification 1.0

new elements are introduced through structural specialization, the elements that

contain the new elements must be specialized as well; and the new container

elements must have their containers specialized in turn, all the way to the root

element for the module (for example, the <topic> element or <map> element).

Domains typically define markup for a particular domain or subject area, such as

programming, or hardware. Domain elements become available wherever their

ancestor elements are allowed once the domains are integrated with the structural

specializations in a document type.

Both structural specialization hierarchies and domain specialization hierarchies are

“is a” hierarchies, in object-oriented terms, with each structural type or domain

being a subclass of its parent. For example, a specialization of task is still a task;

and a specialization of the programming domain is still concerned with

programming.

Structural and domain hierarchies must share a common base module in order to

be integrated together. For example, domains for use across topic types must

ultimately be specialized off of elements in <topic>.

With the exception of the common base module, a domain cannot be specialized

from a structural type. For example, a domain cannot be specialized from elements

in <task>, only from the root structural modules for <topic> or <map>. This rule

ensures that domains can be integrated and document types can be generalized

predictably. The rule may be relaxed in future versions of DITA if a mechanism is

added for tracking dependencies between structural and domain specializations in

use by a document type.

Elements created by specialization are scoped by the name of the structural type or

domain in which they were declared. For structural types, the name is the same as

the root element: for example, task is the name of the structural type whose root

element is <task>. For domains, the name is not shared with any element, but is

assigned by the developer of the specialization. By convention, domain names end

with ″-d″ and are kept short; for example, ui-d for the user interface domain and

pr-d for the programming domain.

Limits of specialization

There are times when a new structural or domain type appears not to fit into the

existing hierarchy, based on the semantics of the existing types and the restrictions

of the specialization process. In these cases there are a variety of options to

consider.

The basic specialization mechanism used by the DITA document types can also be

used for non-DITA document types in order to provide the same re-use,

specialization, and interoperation benefits that one can get from the DITA

document types, but restricted to the specific domain within which the new

document types apply. Note that even if one uses the DITA-defined types as a

starting point, any change to those base types not accomplished through

specialization defines a completely new document type that has no meaningful or

normative relationship to the DITA document types and cannot be considered in

any way to be a conforming DITA application. In other words, the use of DITA

specialization from non-DITA base types does not produce DITA-compliant

document types.

Chapter 4. DITA specialization 31

However, given the substantial benefits of building from the common DITA base

classes (including the ability to generalize to a common format, use of

standards-compliant tools and processes, and reuse of content across document

types through DITA maps and conref) there are some techniques to consider before

complete departure from the DITA content architecture.

Specialize from generic elements

The first option to consider is to choose more generic base elements from the

available set. For example, if you want to create a new kind of list but cannot

usefully do so specializing from , , <sl>, or <dl>, you can create a new set

of list elements by specializing nested <ph> elements. This new list structure will

not be semantically tied to the other lists by ancestry, and so will require

specialized processing to receive appropriate output styling. However, it will

remain a valid DITA specialization, with the standard support for generalization,

content referencing, conditional processing, and so forth.

The following base elements in <topic> are generic enough to support almost any

structurally valid specialization:

topic any content unit that has a title and associated content

section

any non-nesting division of content within a topic, titled or not

p any non-titled block of content below the section level

fig any titled block of content below the section level

ul, ol, dl, sl, simpletable

any structured block of content that consists of listed items in one or more

columns

ph any division of content below the paragraph level

keyword

any non-nesting division of content below the paragraph level

You should always specialize from the semantically closest match whenever

possible. When some structural requirement forces you to pick a more general

ancestor, please inform the technical committee: over time a richer set of generic

elements should become available.

Customized subset document types for authoring

DITA markup is organized into domain and topic type modules so that authoring

groups can easily select the markup subset they require by creating a new

document type shell. However, when an authoring group requires a subset of

markup rules that does not follow the boundaries of the type modules (for

example, global removal of certain attributes or elements), you can if necessary

create a customized document type for the sake of enforcing these rules at

authoring time, as long as the document types are validated using a

standards-compliant document type at processing time.

A customized subset document type should be created without editing of the type

modules. The document type shell can override entities in the module files,

including attributes and content models, by providing a new definition of the

entity before importing the module files.

32 Darwin Information Typing Architecture (DITA) Specification 1.0

Customized subset document types are not compliant with the DITA standard, and

may not be supported by standards-compliant tools. However, customized subset

document types can help limit the quantity and mitigate the consequences of

non-standard design in a customized implementation.

Map from customized document type to DITA during preprocessing

While specialization can be used to adapt document types for many different

authoring purposes, there are some authoring requirements that cannot be met

through specialization - particularly splitting or renaming attributes, and simple

renaming of elements. In these cases, where the new document type can be

straightforwardly and reliably transformed to a standard document type, the

authoring group may be best served by a customized document type that is

transformed to a standard document type as part of the publishing pipeline. For

example, if an authoring group requires additional metadata attributes, and finds

authoring multiple metadata axes in one attribute (otherprops) unusable, the

document type could be customized to add metadata attributes and then

preprocessed to push those values into otherprops before feeding the documents

into a standard publishing process.

A customized document type should be created without editing of the type

modules. The document type shell can override entities in the module files,

including attributes and content models, by providing a new definition of the

entity before importing the type module files.

Customized document types are not compliant with the DITA standard, and will

not be supported by standards-compliant tools. Preprocessing can ensure

compatibility with existing publishing processes, but does not ensure compatibility

with DITA-supporting authoring tools or content management systems. However,

when an implementation is being heavily customized in any case, a customized

document types can help isolate and control the implications of non-standard

design in a customized implementation.

Specialization in content

Specialization is expressed in content through the use of two attributes: the class

attribute and the domain attribute. These are not typically present in the document

instance, but are provided by default values expressed in a DTD or schema.

Why specialization in content?

Specialization attributes let processes and tools know what set of rules your

markup conforms to. This allows reuse of tools and processes for unfamiliar

markup.

The class attribute

Each element declared in the DITA architecture has a class attribute. This attribute

provides a mapping between the element’s current name and its more general

equivalents. The more specialized the element type, the longer its class attribute

value.

For example, the class attribute for the task topic type’s step element is:

<!ATTLIST step class CDATA "- topic/li task/step ">

This tells us that the step element is equivalent to the li element in a generic topic.

It also tells us that step is equivalent to a step in a task topic, which we already

Chapter 4. DITA specialization 33

knew, but it’s worth noting this in the attribute because it enables round-trip

migration between upper level and lower level types without loss of information.

For example, if a user runs a ″generalize″ transform that maps all elements to their

first class value, but preserves their content and attribute values, then the user can

follow it up with a ″specialize″ transform that maps all elements to their last class

value (preserving content and attribute values), and provide a full round trip for

all content between the two document types, using nothing but two generic

transforms and the information in the class attribute.

The class attribute tells a processor what general classes of elements the current

element belongs to. It’s something like an architectural forms attribute, except that

it contains multiple mappings in a single attribute, instead of one mapping per

attribute. Also, DITA scopes values by module type (for example topic type,

domain type, or map type) instead of document type, which lets us combine

multiple topic types in a single document without complicating transform logic.

Combining the mappings into a single attribute gives us the following benefits:

v preservation of sequence: you can tell by looking at the order of values which

one is the most general and which one is the most specific. This is especially

important for ″specializing″ transforms, where you can apply a general rule that

says: if the element doesn’t have a mapping to the target topic type, simply use

the last value of the class attribute (and assume that the specialized topic type is

reusing some general element declarations, which only have mappings for the

level at which they were declared).

v mapping persistence through migration: when you migrate to a higher-level

element, you can preserve its more specialized history in the class attribute. If

you were declaring a new attribute for each new mapping (as in architectural

forms), then when you migrated to the higher-level type the declaration for the

mapping attribute would disappear, and roundtripping would be considerably

more problematic.

Class attribute syntax

The class attribute has a particular syntax that must be followed for it to be

processed correctly.

Every element must have a class attribute. The class attribute starts with a ″-″ if it

is declared in a structural module, or a ″+″ if it is declared in a domain module.

After the starting token are one or more blank-delimited values, ending with a

blank. Each value has two parts: the first part identifies a module package, for

example a topic type or domain package name, and the second part (after a /)

identifies an element type. Structural names are taken from the root element for

the topic type or map type. Domain names are defined in the domain package.

Typically, the class attribute value should be declared as a default attribute value in

the DTD or schema rather than directly in the document instance. The class

attribute should not be modified by the author.

<appstep class="- topic/li task/step bctask/appstep ">A specialized step</appstep>

Figure 4. Example structural type element with class attribute

34 Darwin Information Typing Architecture (DITA) Specification 1.0

When the class attribute is declared in the DTD or schema, it must be declared

with a default value. In order to support generalization round-tripping

(generalizing specialized content into a generic form and then returning it to the

specialized form) the default value must not be fixed. This allows the

generalization process to overwrite the default values in a general document type

with specialized values taken from the document being generalized.

When a specialized type declares new elements, it must provide a class attribute

for the new element. The class attribute must include a mapping for every

structural type or domain in the specialized type’s ancestry, even those in which

no element renaming occurred. The mapping should start with the value for the

base type (for example topic or map), and finish with the current element type.

Intermediate values are necessary so that generalizing and specializing transforms

can map values simply and accurately. For example, if task/kwd was missing as a

value, and a user decided to generalize this guitask up to a task topic, then the

transform would have to guess whether to map to kwd (appropriate if task is more

general than guitask, which it is) or leave as windowname (appropriate if task

were more specialized, which it isn’t). By always providing mappings for more

general values, we can then apply the simple rule that missing mappings must by

default be to more specialized values than the one we are generalizing to, which

means the last value in the list is appropriate. For example, when specializing to

<task>, if a <p> element has no target value for <task>, we can safely assume that

<p> does not specialize from <task> and should not be generalized.

While this example is trivial, more complicated hierarchies (say, five levels deep,

with renaming occurring at two and four only) make explicit intermediate values

essential.

A specialized type does not need to change the class attribute for elements that it

does not specialize, but simply reuses by reference from more generic levels. For

example, since task, bctask, and guitask use the p element without specializing it,

they don’t need to declare mappings for it.

A specialized type only declares class attributes for the elements that it uniquely

declares. It does not need to declare class attributes for elements that it reuses or

inherits.

The domains attribute

The domains attribute lists the names of the domains in use by the current

document type, and the ancestry for each domain. The domains attribute is

declared on the root element for each topic type.

Each domain in use contributes a string in parentheses that gives the names of

each ancestor domain plus the name of the contributing domain. Within each set of

parentheses, the domain and its ancestry should be listed starting with the most

<wintitle class="+ topic/keyword ui-d/wintitle ">A specialized keyword</wintitle>

Figure 5. Example domain element with class attribute

<windowname class="- topic/kwd task/kwd guitask/windowname ">

Figure 6. Example attribute with intermediate value

Chapter 4. DITA specialization 35

distant ancestor (the root type off of which the domain hierarchy is based) and

finishing with the name of the domain in use.

Example: task with three domains

<task id="mytask" class="- topic/topic task/task "

 domains="(topic ui-d) (topic sw-d) (topic pr-d cpp-d)">

...

</task>

In this example, the task allows the use of tags for describing user interfaces (ui-d),

software (sw-d), and also C++ programming (cpp-d).

Specialization validity

When you specialize one element from another the new element must obey certain

rules in order to be a valid specialization.

v The new element must have a content model that is equivalent to or more

restrictive than its parent.

v The new element must have attributes that are equivalent to or a subset of the

attributes of its parent.

v The new element’s attributes must have values or value ranges that are

equivalent to or a subset of the parent’s attributes’ values or value ranges.

v The new element must have a properly formed class attribute.

Generalization

Specialized content can be generalized to any ancestor type. The generalization

process can preserve information about the former level of specialization to allow

round-tripping between specialized and unspecialized forms of the same content.

The generalization can either be for the purpose of migration (for example, when

retiring an unsuccessful specialization) or for temporary round-tripping (for

example, when moving content through a process that is not specialization aware

and has only been enabled for instances of the base structural type). When

generalizing for migration, the class attribute and domains attribute should be

absent from the generalized instance document so that the default values in the

general DTD or schema will be used. When generalizing for round-tripping, the

class attribute and domains attribute should retain the original specialized values

in the generalized instance document.

Any DITA document can contain a mix of markup from at least one structural type

and zero or more domains. The structural types and domains allowed in a

particular document type are defined by the document type shell.

When generalizing the document, the generalizer may choose to leave a structural

type or domain as-is, or may choose to generalize that type or domain to any of its

ancestors.

The generalizer can supply the source and target for each generalization: for

example, generalize from reference to topic. The generalizer can specify multiple

targets in one pass: for example, generalize from reference to topic and from ui-d

to topic. When the source and target are not supplied, generalization is assumed to

be from all structural types to the base (topic or map), and no generalization for

domains.

36 Darwin Information Typing Architecture (DITA) Specification 1.0

The generalizer can also supply the target document type. When the target

document type is not supplied, the generalized document will not contain a DTD

or schema reference. At some time in the future it may be possible to automatically

generate a document type shell and target document type based on the class and

domains attributes in the generalized document.

The generalization process should be able to handle cases where it is given just

sources for generalization (in which case the designated source types are

generalized to topic or map), just targets for generalization (in which case all

descendants of the target are generalized to that target), or both (in which case

only the specified descendants of the target are generalized to that target).

For each structural type instance, the generalization process checks whether the

structural type instance is a candidate for generalization, or whether it has

domains that are candidates for generalization. It is important to be selective about

which structural type instances to process: if the process simply generalizes every

element based on its class attribute values, an instruction to generalize ″reference″

to ″topic″ could leave an APIReference topic with an invalid content model, since

any elements it reuses from ″reference″ would have been renamed to topic-level

equivalents.

The class attribute for the root element of the structural type is checked before

generalizing structural types:

 Target and source Source unspecified Source specified

Target unspecified Generalize this structural

type to its base ancestor

Check whether the root

element of the topic type

matches a specified source;

generalize to its base

ancestor if it does, otherwise

ignore the structural type

instance unless it has

domains to generalize.

Target specified Check whether the class

attribute contains the target;

generalize to the target if it

does, otherwise skip the

structural type instance

unless it has domains to

generalize.

If the root element matches a

specified source but its class

attribute does not contain the

target, emit an error

message. If the root element

matches a specified source

and its class attribute does

contain the target, generalize

to the target. Otherwise

ignore the structural type

instance unless it has

domains to generalize.

The domains attribute for the root element of the structural type is checked before

generalizing domains:

Chapter 4. DITA specialization 37

Target and source Source unspecified Source specified

Target unspecified Do not generalize domain

specializations in this

structural type.

Check whether the domains

attribute lists the specified

domain; proceed with

generalization if it does,

otherwise ignore the

structural type instance

unless it is itself a candidate

for generalization.

Target specified Check whether the domains

attribute contains the target;

generalize to the target if it

does, otherwise skip the

structural type instance

unless it is itself a candidate

for generalization.

If the domains attribute

matches a specified source

but the domain value string

does not contain the target,

emit an error message. If the

domains attribute matches a

specified source and the

domain value string does

contain the target, generalize

to the target. Otherwise

ignore the structural type

instance unless it is itself a

candidate for generalization.

For each element in a candidate structural type instance:

 Target and source Source unspecified Source specified

Target unspecified If the class attribute starts

with ″-″ (part of a structural

type) rename the element to

its base ancestor equivalent.

Otherwise ignore it.

Check whether the last value

of the class attribute matches

a specified source; generalize

to its base ancestor if it does,

otherwise ignore the element.

Target specified Check whether the class

attribute contains the target;

rename the element to the

value associated with the

target if it does contain the

target, otherwise ignore the

element.

If the last value in the class

attribute matches a specified

source but the previous

values do not include the

target, emit an error

message. If the last value in

the class attribute matches a

specified source and the

previous values do include

the target, rename the

element to the value

associated with the target.

Otherwise ignore the

element.

When renaming elements during round-trip generalization, the generalization

process should preserve the values of all attributes. When renaming elements

during one-way or migration generalization, the process should preserve the

values of all attributes except the class and domains attribute, both of which

should be supplied by the target document type.

38 Darwin Information Typing Architecture (DITA) Specification 1.0

Specialization in design

Specialization in design enables reuse of design elements, just as specialization in

content allows reuse of processing rules. These rules involve the creation and

management of markup modules as separate reusable units.

Why specialization in design?

Following the rules for specialization design enables reuse of design elements, just

as following the rules for specialized content enables reuse of content

By using standard schemes for developing design modules, a specializer enables:

v Reuse of their design modules by others, allowing shared development of

specific parts of a document type

v Faster integration of their designs with other specializations, allowing quicker

deployment of new design elements and quicker adoption of new markup

standards

v Better management of differences between authoring groups in the same

organization: each group can create specific document types that integrate just

the modules they require.

Modularization and integration of design

Specialization hierarchies are implemented as sets of module files that declare the

markup and entities that are unique to each specialization. The modules must be

integrated into a document type before they can be used.

The separation of markup into modules, as with the XHTML modularization

initiative, (http://www.w3.org/TR/xhtml-modularization/), allows easy reuse of

specific parts of the specialization hierarchy, as well as allowing easy extension of

the hierarchy (since new modules can be added without affecting existing

document types). This makes it easy to assemble design elements from different

sources into a single integrated document type.

Integration

Each domain specialization or structural specialization has its own design module.

These modules can be combined to create many different document types. The

process of creating a new document type from a specific combination of modules

is called integration.

Integration is accomplished using a document type shell, which defines the

modules to be integrated and how they will be integrated. Integration defines both

what topic types and domains will be allowed in the document type, and how the

topic types will be allowed to nest.

The module for a specific type should contain only the declarations for elements

that are unique to that type, and should not embed any other modules. The shell

should contain no markup declarations, and should directly reference all the

modules it requires. Nesting shells or nesting modules (having shells that embed

other shells, or modules that embed other modules) is discouraged since it adds

complexity and may break some tools. Sharing between document types should be

accomplished through shared modules, not through direct reference to any other

document type. Dependencies between modules should be satisfied by the

integrating shell, not through the module itself.

Chapter 4. DITA specialization 39

Modularization in DTDs

To support extensibility and pluggability, DITA requires that a DTD

implementation of structural and domain specialization modules conform to

well-defined design patterns.

This section describes those design patterns. These design patterns realize the

specialization architecture with the capabilities and within the limitations of the

DTD grammar.

Structural specialization pattern: Each structural type must be defined in a

separate DTD module with a name consisting of the topic element name and the

mod extension. To see an example, look at the concepts.mod module for the

concept topic type.

The structural type module must conform to the following design pattern.

Default element entities

Each element defined in the module must have a corresponding entity

whose default value is the name of the element. The following example

comes from the definition for the concept topic.

<!ENTITY % conbody "conbody">

The document type shell can predefine an element entity to add domain

specialized elements into every context in which the base element occurs.

Default included domains entity

The module must define the included-domains entity with a default empty

that is empty as in the following example:

<!ENTITY included-domains "">

The document type shell can predefine the included-domains entity to list

domains added to the document type.

Default nested topics entity

Topic type modules must define an info-types entity that is named with a

prefix of the topic element name and a suffix of -info-types. This entity

can default to a list of element entities if the topic has default subordinate

topics. If the topic doesn’t have default subordinate topics, the entity can

default to the value of the info-types entity as in the following example:

<!ENTITY % concept-info-types "%info-types;">

The document type shell can then control how topics are allowed to nest

by redefining thetopictype-info-types entity for each topic type, or quickly

create common nesting rules by redefining the main info-types entity.

Structural type’s root element content model

As with all specializations, the root element of a structural specialization

must have a content model that restricts or conserves the content model of

the element it specializes. In addition, for topic types, the last position in

the content model must be the nested topics entity as in the following

example:

<!ELEMENT concept ((%title;), (%titlealts;)?, (%shortdesc;)?,

 (%prolog;)?, (%conbody;), (%related-links;)?,

 (%concept-info-types;)*)>

Attributes

As with all specializations, the root element’s attributes must restrict or

conserve the attributes of the element it specializes. In particular, the topic

40 Darwin Information Typing Architecture (DITA) Specification 1.0

must set the DITAArchVersion attribute to the DITAArchVersion entity and

the domains attribute to the included-domains entity.

<!ATTLIST concept id ID #REQUIRED

 ...

 DITAArchVersion CDATA #FIXED "&DITAArchVersion;"

 domains CDATA "&included-domains;"

>

These attributes give processes a reliable way to check the architecture

version and look up the list of domains available in the document type.

Element and attribute definitions

The module defines every specialized element used as substructure within

the topic. The specialized elements must follow the rules of the architecture

in defining content models and attributes. Content models must use

element entities instead of literal element names.

 In particular, the module defines a class attribute for every specialized

element. The class attribute must include the value of the class attribute of

the base element and append the element name qualified by the topic

element name with at least one leading and trailing space. The class

attribute for an element introduces by a structural specialization must start

with a minus sign.

Domain specialization pattern: Each domain specialization must have two files:

v A DTD entity declaration file with a name consisting of the domain name and

the ent extension.

v A DTD definition module with a name consisting of the domain name and the

mod extension.

To see an example, look at the highlight-domain.ent and highlight-domain.mod

files.

Domain entity declaration file

The domain entity declaration file must conform to the following design pattern:

Element extension entity

The declaration file must define an entity for each element extended by the

domain. The contents of the entity must be the list of specialized elements

for the extended element. The name of the entity has a prefix of the

abbreviation for the domain and an extension of the name of the extended

element. In the following example, the highlight domain (abbreviated as

hi-d) extends the ph element.

<!ENTITY % hi-d-ph "b | u | i | tt | sup | sub">

Domain declaration entity

The declaration file must define one entity for the document type shell to

register the domain. The name of the entity has a prefix of the abbreviation

for the domain and an att extension. The value of the entity must list the

dependencies of the domain module in order of dependency from left to

right within enclosing parentheses, starting with the topic module and

listing domain dependencies using their abbreviations (including the

defining domain as the last item in the list). The following example

declares the dependency of the highlight domain on the base topic module.

<!ENTITY hi-d-att "(topic hi-d)">

Chapter 4. DITA specialization 41

Domain definition module

The domain definition module conforms to the following design pattern:

Default element entities

As in a topic module, the domain definition module must declare a default

entity for each element defined by the domain so that other domains can

extend the elements.

<!ENTITY % b "b">

Element and attribute definitions

As in a topic module, the domain definition module must define each

specialized element and its attributes. As with any specialization, the

domain element must restrict the base element. The class attribute of the

domain element must start with a plus sign but, otherwise, follows the

same rules as the class attribute for an element introduced by a topic

specialization.

Document type shell pattern: The document type shell must conform to the

following design pattern. To see an example, look at the concepts.dtd module for

the concept document type.

Domain entity inclusions

The document type shell starts by including the domain entity declaration

files. The entity for the domain declaration consists of the domain name

prefix with the dec suffix, as in the following example:

<!ENTITY % hi-d-dec PUBLIC

 "-//OASIS//ENTITIES DITA Highlight Domain//EN" "highlight-domain.ent">

 %hi-d-dec;

Element extension redefinitions

For each element extended by one or more domains, the document type

shell redefines the entity for the element to a list of alternatives including

the literal name of the element and the element extension entity from each

domain that is providing specializations.

<!ENTITY % pre

 "pre | %pr-d-pre; | %sw-d-pre; | %ui-d-pre;">

Topic nesting redefinitions

For each topic type, the document type shell can control nesting of

subtopics by redefining the nested topics entity to the literal element name

for any of the topics included in the document type. The document type

shell can also simply define the info-types entity to set the default for

most topic types. Here is an example:

<!ENTITY % concept-info-types "concept">

Domain declaration redefinition

The document type shell redefines the included-domains entity to list the

domains included in the document type as in the following example:

<!ENTITY included-domains

 "&ui-d-att; &hi-d-att; &pr-d-att; &sw-d-att; &ut-d-att;">

Structural definition inclusions

The document type shell includes the definitions for the structural type

modules used in the document type. The entity for the structural definition

consists of the structural type’s name with the type suffix, as in the

following example:

<!ENTITY % topic-type PUBLIC

 "-//OASIS//ELEMENTS DITA Topic//EN" "topic.mod">

 %topic-type;

42 Darwin Information Typing Architecture (DITA) Specification 1.0

Domain definition inclusions

The document type shell includes the domain definitions for the domains

used in the document type. The entity for the domain definition consists of

the domain name prefix with the def suffix, as in the following example:

<!ENTITY % hi-d-def PUBLIC

 "-//OASIS//ELEMENTS DITA Highlight Domain//EN" "highlight-domain.mod">

 %hi-d-def;

Modularization in schemas

To support extensibility and pluggability, DITA requires that an XML schema

implementation of structural and domain specialization modules conform to

well-defined design patterns.

This section describes those design patterns. These design patterns realize the

specialization architecture with the capabilities and within the limitations of the

XML schema grammar.

Structural specialization pattern:

For each structural type, the document type shell document collects the schema

documents, parent structural type modules, domain type modules, and content

models needed to implement new topic type specializations. Each new structural

type requires three files. To see an example, look at the concept_shell.xsd document

type shell document for the concept topic type.

1. Each structural type must define a separate module schema document with a

name consisting of the root structural element name and _mod.xsd

2. Each structural type must define a separate model group definition schema

document with a name consisting of the root structural element name and

_grp.xsd

The default values for the domains attributes in the base root structural element

and the specialized root structural elements must be defined using the XML

Schema redefine to populate the domains attribute. It identifies the domains used in

the structural type. This attribute give processes a reliable way to look up the list

of domains available in the document type. The list the domains is included in the

document type as in the following example:

<xs:redefine schemaLocation="topic_mod.xsd" >

 <xs:complexType name="topic.class">

 <xs:complexContent>

 <xs:extension base="topic.class">

 <xs:attribute

name="domains" type="xs:string" default="(topic ui-d)

(topic hi-d) (topic sw-d) (topic pr-d) (topic ut-d)"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

</xs:redefine>

In the case of topic types, the head schema document can control nesting of

subtopics by redefining the nested topics to the literal element names the

document type author wishes to allow nested in the document type.

<xs:group name="info-types">

 <xs:choice>

 <xs:group ref="concept-info-types"/>

 </xs:choice>

</xs:group>

Chapter 4. DITA specialization 43

The module schema document must define an info-type model group that is

named with a prefix of the topic element name and a suffix of -info-types. Here

is an example of a info-types model group that is defined in concept_mod.xsd:

<xs:group name="concept-info-types">

 <xs:choice>

 <xs:group ref="concept"/>

 </xs:choice>

</xs:group>

The module schema document defines every specialized element used as

substructure within the structural type. The specialized elements must follow the

rules of the architecture in defining content models and attributes. The naming

convention for content models must use the root structural element name

and.class.

In particular, the module schema document defines a class attribute for every

specialized element. The class attribute must include the value of the class attribute

of the base element and append the element name qualified by the root structural

element name or domain name with at least one leading and trailing space. The

class attribute for an element introduced by structural specialization must start

with a minus sign.

The model group schema document defines model groups for each new

specialized element in a structural type. Each structural type and domain must

have a model group schema document . The model group schema document is an

essential part of the specialization.

The new file is needed to mimic substitutionGroups in XML Schema without using

the inheritance model in W3C XML Schema 1.0 specification. The process is very

similar to the DITA DTD design pattern. For a structural type the name of the

schema document consists of the root structural element name and _grp.xsd

extension. To see an example of a model group schema document, look at the file

concept_grp.xsd :

 <xs:group name="concept">

 <xs:sequence>

 <xs:element ref="concept"/>

 </xs:sequence>

</xs:group>

Domain specialization pattern:

A domain type schema document with a name consisting of the domain name and

the -domain.xsd extension.

As in a structural module, the domain module must define each specialized

element, its attributes and its model groups. As with any specialization, the

domain element must restrict the base element. The class attribute of the domain

element must start with a plus sign but, otherwise, follows the same rules as the

class attribute for an element introduced by a topic specialization.

For each element extended by one or more domains, the domain type schema

document defines a model group for the base element to a list of alternatives

including the literal name of the element and the element extension entity from

each domain that is providing specializations.

The schema document must define an a model group for each element extended

by the domain. The contents of the model group must be the list of specialized

44 Darwin Information Typing Architecture (DITA) Specification 1.0

elements for the extended element. The name of the model group has a prefix of

the abbreviation for the domain and an extension of the name of the extended

element. In the following example, the user interface domain (abbreviated as ui-d)

extends the ph element.

<xs:group name="ui-d-ph">

 <xs:choice>

 <xs:element ref="uicontrol" />

 <xs:element ref="menucascade" />

 </xs:choice>

</xs:group>

For each element extended by one or more domains, the document type shell

redefines the model group for the element to a list of alternatives including the

literal name of the element and the element extension entity from each domain that

is providing specializations. To integrate a new domain in the document type shell

use the schema redefine mechanism to manage the number of domains used by

the document type shell. The model group requires a reference to itself to extend

the base model group. To see an example, look at the topic.xsd schema document.

<xs:group name="pre">

 <xs:choice>

 <xs:group ref="pre" />

 <xs:group ref="pr-d-pre" />

 <xs:group ref="ui-d-pre" />

 <xs:group ref="sw-d-pre" />

 </xs:choice>

</xs:group>

To add domains to a new structural type you can copy the contents of the parent

structural type domains schema document into the document type shell. Add or

remove the model group from the new domain to the appropriate named group.

<xs:group name="pre">

 <xs:choice>

 <xs:group ref="pre"/>

 <xs:group ref="pr-d-pre" />

 <xs:group ref="domainName-d-element"/>

 </xs:choice>

</xs:group>

Specialization in processing

Specialized processing is not necessary for every specialized element, only for

those elements which do not have appropriate default behavior based on their

ancestors.

Whether creating a new transform or extending an existing one, there are several

rules that should be followed to ensure the effectiveness of the transform for other

specialized types, and also the maintainability and extensibility of the transform to

accommodate new requirements.

Using the class attribute

Applying an XSLT template based on class attribute values allows a transform to

be applied to whole branches of element types, instead of just a single element

type.

Wherever you would check for element name (any XPath statement that contains

an element name value), you need to change this to instead check the contents of

the element’s class attribute. Even if the element is unknown to the processor, the

Chapter 4. DITA specialization 45

class attribute can let the transform know that the element belongs to a class of

known elements, and can be safely treated according to the rules for that class.

Be sure to include a leading and trailing blank in your class attribute string check.

Otherwise you could get false matches (without the blanks, ’task/step’ would

match on both ’task/step’ and on ’notatask/stepaway’).

Make sure that when you create a transform that targets more than one type that

you give the more specific rules a higher precedence to avoid conflicts. For

example, when you combine the existing processing rules for topics with more

specific processing rules for tasks, use a shell file to import both sets of rules and

use import precedence to ensure task-specific rules will not conflict with generic

rules for topics.

Example: match statement for list items

<xsl:template match="li">

becomes

<xsl:template match="*[contains(@class,’ topic/li ’)]">

This match statement will work on any li element it encounters. It will also work

on step and appstep elements, even though it doesn’t know what they are

specifically, because the class attribute tells the template what they are generally.

Example: match statement for steps

<xsl:template match="*[contains(@class,’ task/step ’)]">

This match statement won’t work on generic li elements, but it will work on both

step elements and appstep elements; even though it doesn’t know what an appstep

is, it knows to treat it like a step.

Modularization and integration of processing

Processing should be divided into modules based on the structural types or

domains they support, and can be integrated together into transforms or

stylesheets in the same way that structural type and domain modules can be

integrated into document types.

Customization

When you just need a difference in output, you can use DITA customization to

override the default output without affecting portability or interchange, and

without involving specialization.

For example, if your readers are mostly experienced users, you could concentrate

on creating many summary tables, and maximizing retrievability; or if you needed

to create a brand presence, you could customize the transforms to apply

appropriate fonts and indent style, and include some standard graphics and

copyright links.

Use customization when you need new output, with no change to the underlying

semantics (you aren‘t saying anything new or meaningful about the content, only

its display).

46 Darwin Information Typing Architecture (DITA) Specification 1.0

Modularization in CSS

Stylesheet support in CSS for DITA specializations can be applied using the same

principles as for the DTDs or Schemas, resulting in stylesheets that are easy to

maintain and that will support any subsequent specialization with a minimum of

effort.

Specification of module definition

A specialization-aware property for CSS has this form of selector:

*[class~="topic\/section"] {

 margin-top: 12pt;

 display: block;

}

The CSS selector that associates the style to the element does not use a literal

match to the element name. Instead, based on an element having the defaulted

value class="- topic/section reference/refsyn " (for example) this rule will

trigger on the “topic/section” value (or “word”) and perform the associated styling

or transform, regardless of what the actual element name is.

Note that the attribute string must contain an escape character for the “/”

character which is otherwise not valid in a CSS selector.

The selector pattern in this example effectively reads, in CSS terminology, ″Selects

any element with a class attribute that contains the word topic\/section.″

Not all CSS systems can match based on values that are not physically present in

the instance document. Since the class attribute values in DITA are typically

provided by default declarations in the DTD or schema, not all CSS systems can

match directly on DITA source.

When direct specialization-aware matches are not possible, alternatives include

normalization (preprocessing the DITA source to push values from the DTD or

schema directly into the instance) or the use of element-name-based rules.

Element-name-based rules will not be specialization-aware. Your calling-stylesheet

will have to import each additional stylesheet required by the scope of specialized

topics and vocabularies, each explicitly defined using element-name selectors. In

this scheme, unsupported new elements will have no rendering properties

associated, whereas in the specialization-aware systems such elements can fall back

to a rule that triggers off a previously-supported value in the class attribute string.

Assembly rules for CSS

CSS supports specialization similarly to XSLT. This document describes a best

practice for naming and populating CSS stylesheets that follow the specialization

design pattern for DITA DTDs and Schemas. Although this practice is not required

in order to implement CSS support for DITA, following the practice will make

subsequent specializations off the pattern to be done with minimal work, and the

files should be correspondingly easier to maintain.

To support a newly-specialized DITA DTD or Schema that has been

specialization-enabled with unique class attribute values, create a module that will

contain ONLY the rules required for the uniquely new elements in the

specialization. This is similar to the mod files that declare the unique elements in

the specialization. The name of this module should be the same as the root name

Chapter 4. DITA specialization 47

for the specialization module. In the case of DITA’s reference DTD, the element

declarations are in reference.mod and the corresponding delta rules for CSS are in

reference.css.

Next, create an “override”CSS stylesheet that starts off with the @import

instruction, naming the CSS file used by this specialization’s parent DTD. This

import picks up support for all elements that are common with the parent DTD.

Then add another @import instruction in sequence, naming the CSS delta module

that you created previously. Then copy in the CSS rules for any previously defined

support that need to be associated to the new element names, and rename the

selectors as needed to the new specialized values for each new element. These

added CSS rules are deltas for the new stylesheet, much as specialized DTDs build

on previous DTDs by adding delta element definitions. This technique

approximates the “fall-through” support for what would normally happen if the

class attribute actually could map to the root class.

Finally, if necessary, modify the behaviors of any of these new, delta CSS rules.

Because this process reuses a great deal of previous behaviors, the time spent

supporting the delta changes is minimal.

To use a specialization-enabled CSS stylesheet with a specialized DITA topic,

simply associate it to the topic using either the W3C defined stylesheet link

processing instruction or by following configuration rules for your editor or

browser.

Modularization in XSLT

Stylesheet support in XSLT for DITA specializations can be applied using the same

principles as for the DTDs or Schemas, resulting in stylesheets that are easy to

maintain and that will support any subsequent specialization with a minimum of

effort.

Specification of module definition

A specialization-aware template for XSLT has this form of match pattern:

<xsl:template match="*[contains(@class,’ topic/section ’)]">

 <div>

 <xsl:apply-templates/>

 </div>

</xsl:template>

The XSLT match statement that associates the style to the element does not use a

literal match to the element name. Instead, based on an element having the

defaulted value class="- topic/section reference/refsyn " (for example) this

rule will trigger on the “topic/section ” value (note the required space delimiters

in the match string) and perform the associated template actions, regardless of

what the actual element name is.

The XPath pattern in this example effectively reads, ″Selects any element whose

class attribute contains the space-delimited substring “topic/section”.″

Assembly rules for XSLT

XSLT pattern matching is the basis for DITA’s specialization-aware processing. As

such, the base XSLT stylesheet for a DITA topic should minimally support any

specialization, no matter how far removed in generations from the archetype topic.

48 Darwin Information Typing Architecture (DITA) Specification 1.0

To support a newly-specialized DITA DTD or Schema that has been

specialization-enabled with unique class attribute values, create a module that will

contain ONLY the templates required for the uniquely new elements in the

specialization. This is similar to the mod files that declare the unique elements in

the specialization. The name of this module should be the same as the root name

for the specialization module. In the case of DITA’s reference DTD, the element

declarations are in reference.mod and the corresponding delta rules for XSLT are in

reference.xsl.

Next, create an “override”XSLT stylesheet that starts off with the xsl:import

instruction, naming the XSLT file used by this specialization’s parent DTD. This

import picks up support for all elements that are common with the parent DTD.

Then add another xsl:import instruction in sequence, naming the XSLT delta

module that you created previously. Additionally you can add imports for any

domain-specific templates that need to be applied with this shell. Then copy in the

XSLT templates for any previously defined support that needs to be associated

uniquely to the new element names, and rename the match pattern strings as

needed to the new specialized values for each new element. These added XSLT

templates are deltas for the new stylesheet, much as specialized DTDs build on

previous DTDs by adding delta element definitions. For XSLT support, you only

need to define templates if you need new behavior or if you need to modify the

behavior of an ancestor element’s processing.

Because this process reuses a great deal of previous behaviors, the time spent

supporting the delta changes is minimal.

To use a specialization-enabled XSLT stylesheet with a specialized DITA topic,

simply associate it to the topic using either the W3C defined stylesheet link

processing instruction or by following configuration rules for your processing tools

(usually an XSLT processing utility such as saxon or xsltproc).

Chapter 4. DITA specialization 49

50 Darwin Information Typing Architecture (DITA) Specification 1.0

	Contents
	Chapter 1. About the DITA Specification
	Chapter 2. An introduction to DITA
	Definitions and background concepts
	Basic concepts
	Terminology
	Model terminology
	Declaration terminology
	Instance terminology

	Naming conventions and file extensions

	Chapter 3. DITA markup
	DITA topics
	What are topics?
	Why topics?
	Information typing
	Topic structure
	Topic content
	Topic modules
	Concepts
	Tasks
	Reference
	Domains

	DITA maps
	What are maps?
	Why DITA maps?
	Common DITA map attributes and metadata
	DITA map structure
	Inheritance of attributes and metadata
	DITA map modules

	Common metadata elements
	Publication metadata elements
	Management metadata elements
	Metadata qualification elements
	Topic properties in topics and maps

	Common attributes
	Identity attribute
	Content reference attribute
	Metadata attributes
	Miscellaneous Attributes
	Architectural attributes
	Conditional processing
	Using metadata attributes
	Processing metadata attributes
	Filtering logic
	Flagging logic

	Chapter 4. DITA specialization
	What is specialization?
	Why specialization?
	Structural versus domain specialization
	Limits of specialization
	Specialization in content
	Why specialization in content?
	The class attribute
	Class attribute syntax
	The domains attribute
	Specialization validity
	Generalization

	Specialization in design
	Why specialization in design?
	Modularization and integration of design
	Integration
	Modularization in DTDs
	Modularization in schemas

	Specialization in processing
	Using the class attribute
	Modularization and integration of processing
	Customization
	Modularization in CSS
	Modularization in XSLT

