
DITA XML: A Reuse by Reference Architecture
for Technical Documentation

Michael Priestley
IBM Canada

mpriestl@ca.ibm.com

ABSTRACT
The Darwin Information Typing Architecture is an XML
architecture for producing and reusing technical information.
DITA promises the following:

• Scalable reuse, so you can reuse content in any number of
delivery contexts simultaneously without complicating the
source

• Descriptive markup, so you can use markup that describes
your information in terms your customers need

• Interchangeability, so you can treat specialized markup as if
it were general, getting reuse of tools and processes defined
at more general levels of descriptiveness

• Process inheritance, so you can reuse existing process logic
in your specialized processes.

It accomplishes these goals by applying the principle of reuse by
reference to the dimensions of content, design, and process
within a technical communications workflow.

1. BACKGROUND
For the past two years, a workgroup inside IBM's User
Technology community has been working on creating XML
architecture for the next generation of technical documentation.
It was released for public review and testing in March of 2001,
and is continuing to evolve with the input of a growing
community of writers and developers.
The Darwin Information Typing Architecture (DITA) is an
XML-based architecture for authoring, producing, and
delivering technical information. DITA is an end-to-end
architecture. It consists of a set of design principles for creating
information-typed topic modules and for using that content in
various ways, such as online help and product-support portals
on the Web. At its heart, DITA is an XML document type
definition (DTD) that expresses many of these design principles.
The architecture, however, is the defining part of this proposal
for technical information; the DTD, or any schema based on it,
is just an instantiation of the design principles of the
architecture.

2. DITA PRINCIPLES
DITA simplifies the creation of audience-specific content,
DTDs, and processes. It is based on principles of modularity and
reuse that allow not only the fast deployment of customer
solutions but also the painless evolution of those solutions as
customer needs, and our understanding of them, evolves.

2.1 Four principles
DITA's basic principles are as follows:

2.1.1 Topic orientation
DITA focuses on the topic as the smallest independently
maintainable unit of reuse. This allows authors to focus on
writing topics that efficiently and completely cover a particular
subject, or answer a particular question, without dwelling on the
various places the topic might end up being read.

2.1.2 Information typing
DITA focuses on information types as a way to describe content
independent of how that content is delivered. Instead of creating
chapters and appendixes, authors can focus on writing concepts,
tasks, and reference topics using structures and semantics that
remain valid regardless of how the information reaches the
reader.

2.1.3 Specialization
DITA allows authors to create more specialized information
types, so that the structures and semantics of the information are
as specific as they need to be for a particular audience

2.1.4 Inheritable processes
DITA-aware processes, such as publishing and translation, work
automatically on more specialized types, and can also be
specialized themselves.

2.2 Embodied in architectures
Those principles are embodied in two architectures:

2.2.1 Information architecture:
The information architecture describes what a topic is and what
the three core information types are. This provides a basic level
of consistency across all DITA content, which allows for reuse
of infrastructure and interchange of content across the entire
range of possible information types.

2.2.2 Specialization architecture:
The specialization architecture describes how a specialized type
of topic is derived from a more general type of topic, and it
describes how specialization-aware processes can access topics
at whatever level of specialization they require. For example, a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGDOC'01, October 21-24, 2001, Santa Fe, New Mexico, USA.
Copyright 2001 ACM 1-58113-295-6/01/0010...$5.00.

152

generic print process may treat all types as just topics, and a task
indexing system may treat all task types as just tasks.

2.3 Affecting content, design, and process
Both architectures are based around reuse by reference, in the
dimensions of content, design, and process:

2.3.1 Content reuse
The information architecture, by dividing content into topics and
freeing it of delivery-specific elements, allows content to be
reused in multiple contexts without being rewritten. This means
that many contexts can reuse the same topics without the reused
topics being affected. By contrast, large documents that are
conditionally processed to produce multiple outputs quickly run
into problems of scalability: with each new output, new
conditions must be added to the source, and ultimately the
source becomes unmaintainable. Reuse by reference, on the
other hand, makes sure that the source stays maintainable, by
moving control of the reuse into the reusing context, keeping the
source simple.

2.3.2 Design and process reuse
The specialization architecture, by creating a hierarchy of
information types, allows reuse by reference both of design and
of process.
When authors create a specialized type, they can reuse the
design of a more general type by reference. This means that the
new type can be created faster and requires less maintenance
than it would if it were created from scratch. And since the new
types can be processed just as if they were the more general
type, content in the new types can be deployed immediately,
giving customers immediate access to the more specific content
categories and structures. For example, when a new API
description topic type is created as a specialization of reftopic
(reference topic type), the new markup can be displayed using
existing reftopic processes, but searched using API-specific
terms.
When programmers create a specialized process, they can reuse
the code from a more general process by reference. This means
that the new process can be created faster than if there were no
model and requires less maintenance than if it were created from
scratch. And since the new process reuses the more general
process, it can even handle less specialized information, as well
as more specialized information. For example, if a programmer
wants to add keyword linking to API declaration sections, they
can override the behavior for those sections with a new XSLT
template, but continue to reuse the rest of the reftopic display
logic for other sections and elements.
Reuse by reference lets DITA solutions be deployed quickly,
maintained centrally, and improved cheaply.

2.4 Gives us the results our customers need
As a result, we can afford to provide customer-specific solutions
(delivering the content our customers need, sorted and
categorized according to their priorities) without compromising
portability or flexibility: meeting the needs of users today, but
not at the cost of meeting their needs tomorrow.

Architectures Principles Affecting
Topics Content Information

architecture Information types

Inheritable design
Design

Specialization
architecture Inheritable process Process

Summary: four principles embodied in two architectures
affecting content, design, and process

3. CONTENT REUSE
When information (such as concepts, tasks, and reference
topics) are assembled or aggregated into new contexts, there are
three things that can make the process easier:

• Consistently chunked information (all the units you are
assembling are the same size, or of a predictable size)

• Context-free information, that focuses on a single task,
idea, or thing, with as few external references or
dependencies as possible

• Automatic inclusion as part of a repeating process, so that
there is only one copy of the source, and when it gets
changed all the places that reuse the source pick up the
change without manual intervention

The alternative (manually scanning through rambling
documents, then cutting and pasting the applicable content into
the new document you are creating) is time-intensive, error-
prone, and non-scalable in terms of maintenance. Every time
you copy information, you create a new place it must be
maintained. In other words, reusing the information once
doubles the cost of maintaining it; reusing it twice triples it, and
so on.
In contrast, automatic inclusion does not increase the cost of
maintenance. Every time you change the original, all contexts
pick up the change. However, it puts considerable pressure on
the writer to keep the reusable content as free from context as
possible.
When you include content automatically, there are two standard
ways to pick which content to include:

• As a property of the source that marks it as a candidate for
certain kinds of inclusion

• As a reference from a context document or navigation map,
that points specifically to the content it wants to include

The advantage of property-based selection is that you don’t have
to add or maintain a specific reference to the topic from
anywhere else: the point of inclusion only has to identify the
criteria for inclusion, it doesn’t have to exhaustively list each of
the information units that meets that criteria.
The disadvantage of property-based selection is that sometimes
the properties themselves don’t provide enough information,
and you are then faced with the task of updating the properties
of every unit you hope to reuse. For example, if you had set
properties on 1000 units that identified them as applying to
either novice, experienced, or expert users, and then realize that
you need to subdivide those categories further - say into
database administrator, Java programmer, and C++ programmer
– then you are stuck with updating 1000 files to reflect the new
properties for each. For example, where a task before applied to

153

expert users, you can now clarify that it is an advanced task for
programmers but a simple novice task for database
administrators.
The advantage of context or map-based references is that you
can update the criteria for selection without affecting the units
you are selecting. So in the previous example, instead of
updating 1000 files to reflect the proliferation of properties, you
simply expand or even split the one original map (which
distinguished between three types of user) so that it makes the
necessary distinctions (for example, one map for each user role).
Adding new properties, as new needs arise, does not affect the
units being reused, and therefore does not affect others reusing
the same units.
The disadvantage of context or map-based references is that they
can be mind-numbingly literal to maintain. For example, if you
wanted to include the documentation for 1000 C++ classes in a
reference manual, it seems pointless to maintain a list of those
classes that must be updated each time a new class gets
generated, when you could simply be including based on
whether the class has public or private as its setting.
In practice, there are times when either approach is reasonable.
For example, when you want to include based on a very stable
property (such as one defined by a programming language
standard), that’s pretty safe. But if you want to include based on
something more volatile (such as audience analysis), you may be
better off maintaining an explicit list or map instead of
properties on each unit.
Theoretically, properties and maps define the same kinds of
information, and one can be transformed into the other as
needed. For example, a map can be derived from properties on a
set of units, and properties can be set based on listings in a set of
maps. For many types of properties, it may be most appropriate
to maintain the information in map form (which is the most
maintainable, and keeps the topics as free from context as
possible) and then process the map to set properties in each
topic as they are published for a particular delivery context.

3.1 The continuum of reusability
DITA allows topics to be authored together, as a nested
hierarchical structure, with relationships among different topics,
metadata, and various other features that, strictly speaking, tie
the topic to a particular context. However, the structure of a
topic works to compartmentalize the contextual features, and
preserve the reusable elements for easy access.
Topics have the following high-level structure:
<topic>
 <title>…</title>
 <prolog>…</prolog>
 <body>…</body>
 <topic>..</topic>
 <topic>…</topic>
<topic>
That is, a title, prolog, and body, followed by any number of
nested topics.
The contents of the prolog (largely, metadata and relationships),
and the content after the body (nested topics) are context: they
embed the topic in a structure, they make assumptions about the
existence of other topics, and potentially about the product,

platform, and audience to which the topic applies. All of this
matter is subject to change if the topic is reused in another
context: some topics may no longer be available or applicable,
the product and platform may have changed, and the definition
of the audience may need refining.
A context-free topic, created for maximal reuse, may only allow
this simple structure:
<topic>
 <title>…</title>
 <body>…</body>
</topic>
In other words, no prolog (with its relationships and metadata)
and no nested topics.
This topic can then be combined with information stored for a
particular context in the form of a separate document - a context
or navigation map – which provides the necessary structures and
data to populate the prolog and, if necessary, assemble topics
into larger compound documents.
For any changes that need to be made within the body of a topic,
you can set a variety of properties on any element within the
body. These properties, including audience, platform, and
product, allow more traditional filtering methods to be applied
to the content of a topic, excluding elements when their
properties flag them as inappropriate for a context.
The more you can depend on maps, and on reuse at the topic
level, the more scalable your reuse is. It is often better to add
things in (by applying maps) then to filter things out (based on
properties). Given that both maps and properties are specific to
particular contexts, you can add new contexts with maps simply
by defining new maps; but adding new contexts with properties
requires editing each of the affected topics: the separation of
content from context is compromised.
The simple topic, with only title and body and without use of the
various context attributes, represents the most reusable form of
DITA content. However, it is at one end of a continuum: if you
are authoring topics for a more constrained environment, in
which the opportunities for reuse are well-understood in
advance, it may very well be appropriate to sacrifice some of
these principles on the altar of pragmatism, and create a more
context-rich topic, adding related links, nesting structures, and
metadata as part of the topic itself, rather than separated out into
a separate context or navigation map.
The way that DITA compartmentalizes its content, with the body
holding all the reusable content of a topic, allows you to easily
revisit your reuse strategy at various points in your
documentation lifecycle. For example, it may be appropriate to
author your topics as a single document of nested topics when
you first begin your project: getting information out fast, in a
single context, may be enough of a goal for a first draft, or a
beta, or even a version 1. But in later releases or drafts, as
maintenance becomes more of an issue and your documentation
potentially begins to spin off into different versions for
variations of product, audience, platform, or other issue, you can
choose to release your topics from their authoring contexts, and
refactor them into individual topic documents that are related
only by the maps that reference them.

154

4. DESIGN REUSE
DITA allows two kinds of design reuse: aggregation (in which
the design for a compound document is assembled out of the
type modules for each of the topic types allowed) and
specialization (in which a new topic type is created with
reference to an existing topic type).

4.1 Aggregating modules
The first kind of reuse is based on the use of DTD modules,
somewhat after the pattern of XHTML and others. In order to
create a customized DTD, all you need to do is include the
modules you want, leaving out the ones you don’t want.
One of the advantages of modularized customization, as
opposed to filter-based customization (in which you pick
particular sections of the DTD to ignore), is that it allows you to
define and include new modules as needed, without editing the
base DTD file to add a new section. Indeed, modules may be
incorporated from many different sources, to provide different
sets of functional coverage. One of the inherent limitations of
both approaches, however, is that you need to define your
reusable units at a useful level. One of the reasons we did not
directly incorporate an XHTML module into DITA, for
example, was because every module it defined contained
information we didn’t want as well as information we did want:
at some point the complexity of maintaining the reference
outweighed the savings of reusing a module.
We chose to define modules at the topic level, and provide
starter DTDs for each of the main topic types: the base topic,
plus concept, task, and reference topic. Each of these DTDs can
be used to author single-topic documents, or you can use the
DITABase DTD to author mixed-type fully nested topic
structures, in other words something less like a web and more
like a book. To create your own aggregate DTD, you can simply
include the modules you want for the topics you are concerned
with, and use an entity redeclaration to define the nesting you
want to allow.

4.2 Specializing topic types
The second kind of design reuse is unique to DITA.
Specialization allows you to create a module for a new topic
type that defines only the new elements required for that type:
any reusable elements from ancestor types do not need to be
redeclared.
DITA starts off with a type hierarchy of four topic types: a
generic topic type, and three specialized topic types: concept,
task, and reftopic (for reference topics). You can add new types
based on any of these types, and also further specialize your own
types to create whole branches of information typing:

Specialized topic types consist of a series of “deltas”, the
declarations for new specialized elements that describe and
constrain your content more closely.
There are several rules to follow when you create a specialized
element:

• Make sure the places you want to use it are specialized too.
For example, if you want to define a new kind of section,
you’ll need to define a new kind of body too; and once
you’ve defined a new kind of body, you’ll need to define a
new kind of topic element as well.

• Make sure the new element maps to an existing element in
its type hierarchy. You can’t just define new elements at
random.

• Make sure the new element allows the same content, or a
subset of the same content, as its more general equivalent. I
other words, the new element can have a tighter or more
restrictive content model, but not a looser or less
constrained one.

• Make sure the new element has the same attributes as its
general equivalent, or at least the required ones.

• Make sure you define a default value for the element’s spec
attribute that gives mappings for each of its ancestor types.

These rules are very important in making sure that your new
type not only reuses design elements from general types, but
also can be used to create specialized content that is compatible
with general transforms, as explained in the next section.
Once you’ve defined the new module, you can create an
authoring DTD by including the module, along with the
modules for each of its ancestors.
Listing of an API description authoring DTD:

<!--Redefine the infotype entity to exclude other topic types-->
<!ENTITY % info-types "APIdesc">
<!--Embed topic dtd to get generic elements -->
<!ENTITY % topic_type SYSTEM "topic.dtd">
%topic_type;
<!--Embed reftopic module to get more specific elements -->
<!ENTITY % reftopic_type SYSTEM "reftopic.mod">
%reftopic_type;
<!--Embed APIdesc to get most specific elements -->
<!ENTITY % APIdesc_type SYSTEM "APIdesc.mod">
%APIdesc_type;

5. PROCESS REUSE
While it is beyond the scope of this paper to discuss in detail the
processing model for DITA content, the main points in terms of
reuse are as follows:

• specialized content (authored in specialized DTDs) can still
be processed by transforms that have not been customized
in any way: you can create a specialized DTD without
losing any access to existing infrastructure

155

• specialized transforms (when the general transforms are
insufficient) can and should reuse as much of the general
transform logic as possible, overriding only the behavior
that needs to be defined differently.

Some basic rules for defining specialized transforms apply, in
much the same way that rules apply for defining specialized
DTDs:

• Create one module per topic type, so you can cleanly
assemble modules to create transforms for compound
document types

• Create import cascades of modules to handle specialized
topic types, so you can reuse general logic as appropriate,
and also have a fallback for handling unknown topic types.

For more information on the spec attribute, and on creating
specialized transforms, see the DITA web site on
developerWorks.

6. INTERACTION OF DESIGN AND
PROCESS
The net effect of the two type hierarchies: the topic type
hierarchy, and its mirror, the transform import hierarchy, is to
implement an object-oriented inheritance hierarchy, in which the
data and behavior have been cleanly separated.
This allows any branch of the process hierarchy to handle
content defined along any branch of the transform hierarchy: the
import cascade provides transforms that will trigger at whatever
the best match is, even if the content is unknown.
For example, if a specialized process defined for publishing C++
documentation is fed some Java documentation, it will fail to
recognize the Java tags, but the reftopic logic it imports will
recognize the spec attribute mappings to reftopic, and still
manage to publish the document as a generic reference topic.
For transforms that are specific to a particular branch of the
hierarchy (for example, a transform that emitted C++ header
files from the documentation), obviously there can be no
fallback, but it can in turn provide the base for further
specialization and provide a fallback for those processes.

7. SUMMARY
DITA’s reuse architecture accommodates a continuum of
content reuse, from maximally reusable simplified topics
through book-like richly annotated nested topic structures. On
the design and process, it supports reuse of constraints and
markup in a type hierarchy, and reuse of typed content in a type-
aware transform hierarchy, adapting object-oriented inheritance
to the data- and document-centric world of XML and technical
documentation.
The result is an end-to-end architecture that lets you create
specialized document types, with the markup and consistency
appropriate to your users’ domain, without losing access to
wider realms of transforms, processes, and interchange.
This paper is not a complete description of the DITA
architecture: it focuses on the reuse aspect, especially with
regards to the reuse of content in topics and maps. For more
information on DITA, please see the resources at the end of this
paper.

8. WEB RESOURCES
Introduction to DITA:
http://www.ibm.com/developerworks/xml/library/x-dita1
Specialization in DITA:
http://www.ibm.com/developerworks/xml/library/x-dita2
Discussion forum:
http://www.ibm.com/developerworks/xml/library/x-dita4
DTDs and samples:
http://www.ibm.com/developerworks/xml/library/x-
dita1/dita00.zip

9. RELATED PAPERS
Priestley, M., Hargis, G., and Carpenter, S. (2001) DITA: An
XML-based Technical Documentation Authoring and
Publishing Architecture. Technical Communication, Technical
Communication, Volume 48, No.3, p.352-367
Schell, D.A., Priestley, M., Day, D.R., Hunt, J. Status and
directions of XML in technical documentation in IBM: DITA.
Conference proceedings, Make IT Easy 2001
http://www.ibm.com/ibm/easy/eou_ext.nsf/Publish/1819

156

