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Abstract

For the past two years a workgroup inside IBM's User Technology community has been working on creating an
XML architecture for the next generation information deliverables. In this paper we describe the current state of that
work, the status of the Darwin Information Typing Architecture, and our directions for XML. We also discuss our
guiding principles for our work on XML and our activities related to validation and proof-of-concept.

__________________________________
Introduction

One of the best indicators of XML's immense popularity as a markup language is the number of proposed XML
applications maintained at the XML Cover Pages web site
(http://xml.coverpages.org/siteIndex.html#toc-applications). At last count, this list had some 437 entries!  What else
could possibly be new under the sun?  Why not just keep extending the scope of existing DTDs to do more things
with fewer new "standards?"  

But when you consider that these proposed DTDs represent only the tip of the entire universe of ontology, perhaps
the more relevant question is whether there is a better model in the world itself to help us describe its complexity
and to deal with it with fewer tools?    We believe there is such a model.

In March of 2001, IBM released for public awareness and commentary a new architecture for authoring, producing,
and delivering technical information.  The Darwin Information Typing Architecture (DITA) deals with the
complexity of information at two levels: it goes beyond book oriented DTDs by addressing typed data at the topic
level, and it features specialization which allows derivation of new topic types (and their specialized vocabularies)
from base types. Topics of any type can be assembled into books, webs, and helpsets without rewriting, owing again
to the specialization methodology which allows new vocabularies to be processed reliably by previous tools. DITA
was developed by a team lead by Don R. Day, Michael Priestley, and Dave A. Schell of IBM. 

The popular hype surrounding XML is that it promises greater reuse, semantic specificity, and interchangeability.
Out of the hundreds of XML applications currently proposed or deployed, very few deliver on all three promises
because the promises are basically in conflict with each other. For example, in most XML applications if your
vocabulary is more specific, then your documents are less interchangeable. DITA helps by having base semantics
from which new vocabularies are progressively defined, and this same base semantic continues to support the
processing for the new vocabularies. 

DITA's progressive features deliver on the promise of XML by including semantic specificity, an interoperable
processing architecture, support for multiple relationships within the defined vocabularies, and openness to any
number of aggregating or selection mechanisms for processing or search. 

Semantic specificity based on derivation has other advantages as well.  Derivation avoids the sort of semantic
overloading that may occur in other DTDs when an unrelated existing element is used as a base for a new semantic.
With no derivation architecture, such newly defined elements may be used in contexts that have nothing to do with
the semantics of that new element. Derivation ensures that an entire context for a new vocabulary is properly



represented, and that the content models are therefore reasonable. Moreover, one can limit the number of elements
in new content models so that fewer non-applicable elements are visible. This is a tremendous authoring aid!  In
effect, the choices available for writers within a particular specialized vocabulary need only be those that are
appropriate for that context, and yet the topic is a proper subset, relationally, to a base structure upon which the
processing tools and stylesheets are based.

The following sections not only provide a brief overview of DITA, but also how it was designed and validated.

_______________________________________________
Overview of DITA

The Darwin Information Typing Architecture (DITA) is an XML-based architecture for authoring, producing, and
delivering technical  information. The DITA is an end-to-end architecture for creating and delivering modular
technical information. The architecture consists of a set of design principles for creating information-typed topic
modules, and for using that content in various ways, such as online help and product support portals on the Web. At
the heart, the DITA is an XML document type definition (DTD) that expresses many of these design principles. The
architecture, however, is the defining part of this proposal for technical information; the DTD, or any schema based
on it, is just an instantiation of the design principles of the architecture.

DITA allows for more flexible presentation of information. Technical writing is moving away from
the book and towards smaller "chunks" of information organized around single topics. A focus on
topic chunks lets writers build helpsets, webs, or even books for particular audiences, without
rewriting. By categorizing the topics by type of information (concept, task, or reference), writers can
make sure they're covering the information their customers need. DITA is designed to support these
information types. 

With DITA you can better match your data to your customers' needs. The power of XML is
having "smart" content, that lets a user search on things that matter to them. A one-size-fits-all DTD is
undifferentiated and says that the same things matter equally to all users. DITA lets authors refine
information types to describe the things that matter to a particular customer set, without breaking the
existing categories that matter to a general audience, and without breaking existing processes or tools.

With DITA how your information is processed does not change if the amount or type of data
being processed does. By creating a set of core information types for a company, you can ensure that
all your company's information follows the same guidelines and gets processed the same way. DITA
allows specialization from an existing type to create new types. As long as the new types are
specialized from a company's core set, the new types won't break the existing processes, and won't
break existing guidelines. Even if you change the processes or guidelines later, the new types pick up
the changes automatically. 

________________________________________________
History

Like many other companies, IBM has long been using and advocating information architectures for its product
information, and more recently for its Internet presence. With the arrival of the XML specification in February
1998, the time was right for a reevaluation of our SGML strategy and an assessment of XML's future part in our
documentation strategy.

IBM's User Technology organization commissioned a workgroup to do this analysis. Comprised of representatives
from Information Development sites throughout IBM and its subsidiary companies, the workgroup was given four
charges to work on:



The first issue for the workgroup was the challenge to preserve the huge investment in legacy documents
of both IBM and our customers.

The workgroup was asked to focus on preservation of legacy material to support our millions of pages of
legacy content in SGML and BookMaster documents, as well as the huge volume of content in non-SGML
formats, such as word-processing files, help authoring systems, and Notes .nsf databases. Prior to the start
of the workgroup, Don Day had demonstrated the conversion of BookMaster documents to well-formed
XML and then delivering that content to the Web through transcoding from XML to HTML. The
workgroup later applied those ideas to a DTD that represented even earlier IBM documents, this time to a
wider variety of browsers.  A team at Lotus also successfully demonstrated migrating the entire
Notes/Domino help content from a non-SGML, word processor-based publishing system to well-formed
and valid XML. In this way, we've demonstrated use of XML as an intermediate representation of legacy
data, which allows the use of more current tools for migration, data mining, etc.. The lesson learned is that
legacy documents that can be represented as XML and thereby may continue to provide valuable
information assets, the use of which is described in the third issue in this list.

The second issue for the workgroup was to focus the XML activity on the topic-based Information
Development information architecture. This architecture moves us from authoring and delivery of large
books and manuals to smaller focused articles, or topics, targeted at specific types of content, based on the
users' specific tasks and environments. Such topics provide the core information inputs for help systems
and other types of online user assistance content, as well as other deliverables and outputs.

As a parallel effort, the XML work group is focused on providing an infrastructure for our information
centers.  Information Centers are the framework support for that new generation of information which is
based on articles - information that is chunked into smaller, more semantically defined content.  For us this
is a move to a next generation of tools and tool exploitation including the ability to intelligently use
information presentation based on preference and task.  It also includes other side benefits such as better
search.... all leveraged by using XML

The third issue on which the workgroup focused was to emphasize the role of stylesheets for
transformation and rendering by providing numbers of core styles (Lotus, Tivoli, Transarc) across numbers
of widely different devices (workstations to cell phone displays). This also provides us another method to
preserve our long term investment in our legacy markup.

This was one of the earlier proof-points --- we had working prototypes of this type of transcoding to
different form-factors with different style sheets from early on in our investigation phase. We were
transforming our BookMaster and other legacy data into well-formed XML, applying new style sheets, and
rendering it on new form factors such as PDA Web browsers and various levels of HTML/CSS within the
first few months of our work effort.

The fourth issue that the workgroup focused on is an outreach concept --- working with other e-business
initiatives in IBM to coordinate our proposed DTD vocabularies with theirs and to promote mutual
education at the same time on issues related to XML and documentation. 

Over time, we have reviewed many DTDs  and we continue to do so. As a result, we've applied our
understanding of the DITA to those DTDs and fed that information back to the other DTD owners for
increased coordination and education. In addition, we've learned more about what we need to support in
DITA, such as making metadata shareable and developing more author-friendly content models.

The workgroup initially spent some time getting up to speed about  XML and W3C technologies and learning about
the various XML activities within IBM. Then they set out on a two-phase approach of discovery and application.



Phase 1, completed in January 2000, was to explore the XML technologies in the context of the publishing models
that existed at IBM, Lotus, and Tivoli, particularly IBM's ID Workbench based on the SGML DTD, IBMIDDoc.
One team converted a simple legacy DTD, the GML Starter Set (or GDOC), into an XML equivalent for use in
prototyping activities. Another team developed a tool to port IBMIDDoc source into the XGDOC format. A third
team worked on XSL and CSS stylesheets to exercise a number of publishing ideas.

Phase 2 began immediately after that to apply the best practices to a proposed new XML publishing model. Most of
the activity occurred within a team that developed a small DTD that incorporated the best practices, from which we
derived a set of guiding principles.

Among the guiding principles applied in this phase were:

rejection of porting existing SGML DTDs already in-place and in use
repudiation of developing Yet Another Large DTD
rejection of top-down analysis of current business practice (which we accepted was still solidly instantiated
in a book model)
emphasis on information typing
emphasis on topic orientation
emphasis on extensibility and interchange
reuse by reference

content
design
stylesheets and transforms

validate and test these principles by prototyping against actual product content

This activity concluded in December 2000 with a design that represented these goals of reuse and scalability.
During the next few months, workgroup members tested the materials and documented the activity in a set of
articles published on IBM's developerWorks XML Zone, "Introduction to the Darwin Information Typing
Architecture" (http://www-106.ibm.com/developerworks/xml/library/x-dita1/index.html), and the Notes/Domino
user assistance team at Lotus released "Notes Help 5.0.3 in DITAbase XML" on notes.net
(http://notes.net/notesua.nsf/find/notes503xml), as a proof-of-concept of the DITA architecture and DTDs.

_______________________________________________
Guiding principles of DITA

DITA simplifies the creation of audience-specific content, DTDs, and processes. It is based on principles of
modularity and reuse that allow not only the fast deployment of customer solutions but also the painless evolution of
those solutions as customer needs, and our understanding of them, evolves.

Principles
DITA’s basic principles are as follows: 

Topic orientation: 

DITA focuses on the topic as the smallest independently maintainable unit of reuse. This allows authors to
focus on writing topics that efficiently and completely cover a particular subject, or answer a particular
question, without dwelling on the various places the topic might end up being read.

Information typing: 

DITA focuses on information types as a delivery-independent way to describe content. Instead of creating
chapters and appendixes, authors can focus on writing concepts, tasks, and reference topics, using
structures and semantics that remain valid regardless of how the information reaches the reader.



Specialization: 

DITA allows authors to create more specialized information types, so that the structures and semantics of
the information are specific as they need to be for a specific audience

Inheritable processes

DITA-aware processes, such as publishing and translation, work automatically on more specialized types,
and can also be specialized themselves.

Embodied in architectures
These principles are embodied in two architectures:

An information architecture: 

The information architecture describes what a topic is, and what the three core information types are. This
provides a basic level of consistency across all DITA content, which allows for reuse of infrastructure and
interchange of content across the entire range of possible information types. 

A specialization architecture:

The specialization architecture describes how a specialized type of topic is derived from a more general
type of topic, and it describes how specialization-aware processes can access topics at whatever level of
specialization they require. For example, a generic print process may treat all types as just topics, and a
task indexing system may treat all task types as just tasks.

Based on reuse by reference
Both architectures are based around reuse by reference:

The information architecture, by dividing content up into topics and freeing it of delivery-specific elements, allows
content to be reused in multiple contexts without being rewritten. This means that many contexts can reuse the same
topics, without the reused topics being affected. By contrast, large documents that are conditionally processed to
produce multiple outputs quickly run into problems of scalability: with each new output, new conditions must be
added to the source, and ultimately the source becomes unmaintainable. Reuse by reference, on the other hand,
makes sure that the source stays maintainable, by moving control of the reuse into the reusing context, keeping the
source simple.

The specialization architecture, by creating a hierarchy of information types, allows reuse by reference both of
design and of process. 

When authors create a specialized type, they can reuse the design of a more general type by reference. This
means that the new type can be created faster, and requires less maintenance. And since the new types can
be processed just as if it were the more general type, content in the new type can be deployed immediately,
giving customers immediate access to the more specific content categories and structures. 

When programmers create a specialized process, they can reuse the code from a more general process by
reference. This means that the new process can be created faster, and requires less maintenance. And since
the new process reuses the more general process, it can even handle less specialized information, as well as
more specialized information.

Reuse by reference lets DITA solutions be deployed quickly, maintained centrally, and improved cheaply.

Gives us the results our customers need
As a result, we can afford to provide customer-specific solutions (delivering the content our customers need, sorted
and categorized according to their priorities) without compromising portability or flexibility: meeting the needs of
users today, but not at the cost of meeting their needs tomorrow.



_______________________________________________
Validation

So, how does this work in practice?  What happens when we use the DITA architecture and XML DTD against
actual content? A small team at Lotus has done just this, examining 7,500 topics in the Lotus Notes and Domino
help and how they might fit into DITA information types. For now we've focussed mostly on the help we provide
with the Lotus Notes client. Notes client help is task-oriented and directed at end users. The content is currently
authored and stored in a word processing system. This Notes help content uses consistent styles and adheres to strict
editorial standards. However, it's not been created with a validating SGML or XML editor, which presents some
challenges in moving it to DITA topic types and the DITA XML DTDs.

A basic assumption in converting this Notes help content to DITA information types is that all topics were authored
as either tasks or concepts. This assumption is based on rules by which the material was originally created by
trained technical writers. Based on this set of assumptions, the breakdown of the material follows a pretty simple
rule: if a source topic contains a numbered list that's not in a table, it's a task topic; all other topics are concepts. This
leaves a few loose ends, such as the question-and-answer troubleshooting topics and the A-Z glossary, but it
accommodates the vast bulk of other topics quite nicely.

Starting point: DITA "generic" topics
The actual process of applying DITA markup to this Notes help content takes place in several stages. The first stage
involves building XML that validates against the "generic" DITA topic types. These "generic" topics act as a
starting point for all topics. 

For example, here's the DITAbase markup for a simple "generic" topic:

<?xml version="1.0" encoding="UTF-8"?>
<topic id="H_CHOOSE_LOCATION">
   <title>To choose a location</title>
   <prolog>
     <relgroup role="friend" dupes="nodupes">
       <link url="H_CREATE.xml">Creating locations </link>
       <link url="H_SPECIFY.xml">To switch a User ID</link>
     </relgroup>
   </prolog>
<body>
   <ol>
     <li>Choose File - Mobile - Choose Current Location.</li>
     <li>Select a location.</li>
     <li>If necessary, click OK.</li>
   </ol>
</body>
</topic>

The structure here is pretty straightforward. A <topic> element encloses the topic, there's a title, a prolog, which
contains information about metadata and topic relationships, and a body. For the body content, DITA supports most
"standard" HTML tags, which not only makes it easier on authors and but also makes it easier to move existing
HTML-tagged content into DITA body sections.

Finally, a topic can also contain other topics, or subtopics. And, you might also notice that a topic does not contain
any heading tags. The <topic> tag itself sets the boundaries for headings, and the <title> provides the heading text. 

Specialization: Morphing a "generic" topic to a DITA "task" topic
Even though a DITA "generic" topic can hold this content, the above topic is really a task. That is, the ordered list in
the body provides a numbered series of steps for completing a specific task, in this case, choosing a mobile location.
In this case, a DITA task topic provides a more specialized information structure, with a more specific markup.

Here's what the above "generic" topic looks like when authored as a DITA task topic:



<?xml version="1.0" encoding="UTF-8"?>
<task id="H_CHOOSE_LOCATION">
   <title>To choose a location</title>
   <prolog>
     <relgroup role="friend" dupes="nodupes">
       <link url="H_CREATE.xml">Creating locations </link>
       <link url="H_SPECIFY.xml">To switch to a User ID</link>
     </relgroup>
   </prolog>
   <taskbody>
     <steps>
       <step><cmd>Choose File - Mobile....</cmd></step>
       <step><cmd>Select a location.</cmd></step>
       <step><cmd>If necessary, click OK.</cmd></step>
     </steps>
   </taskbody>
</task>

As you can see, most of the specialization in the task topic takes place in the body section. Based on our information
analysis, task topics present the step-by-step procedure for completing a task. They answer "How do I?" questions
about a specific task. Task topics always contain at least one sequence of steps and commands, and may also contain
additional supporting information, including an introductory paragraph, notes, tips, pictures, and  bulleted lists.
DITA provides for this task content in a taskbody, using the following element names:  prereq, context, steps, result,
taskxmp, and postreq. The steps element, of course, is probably most important -- it provides the numbered
procedure for the task. A Steps section contains individual step elements, which include the cmd and optional
additional information about that step. 

We've completed a DITAbase XML version of all 768 topics in the Notes 5.0.3 end-user help system, and it's
available for download in the Domino/Notes Documentation library on notes.net --  
http://notes.net/notesua.nsf/find/notes503xml.

General Patterns
Several general patterns emerge from the process of creating this DITAbase version of Notes task help. First, there's
lots of "indented" content -- the additional paragraphs, notes, or tables that might appear between steps, which in the
DITAbase version appears inside an XML <info> element. Second, all subheadings in the original source start a
new sub-topic in the DITA version. Third, in a subtopic, any content preceding the steps becomes a <context>
section. And, finally, all content following the steps becomes a <result> section. 

And, last but not least, tables. Technical documentation uses lots of tables, and the Notes help topics are no
exception. A table, by definition, lays out information according to a certain structure. In Notes client help, there's
lots of two-column tables, with headings like "Option/Description", "Click/To", and even "Name/Mood Stamp",
which depicts the graphical mood stamps you can add to an e-mail address. In the DITA markup, we decided to
represent these kinds of two-column tables as a definition list. This makes the content more accessible through
XML processing, doesn't preclude presenting it as a table to the user, but also allows us to extract and present the
information in other ways, as well. 

_______________________________________________
Proof-of-concept

The DITA team has run several activities to demonstrate the viability of DITA's design. 

The team did an analysis of existing practice within IBM on the structure and use of FAQs--Frequently Asked
Questions. The exercise revealed that some presumed information types actually represent the sharing of
information and publishing responsibilities between more than one community, as FAQs typically represent the
gathering of input from customer service centers, and the republishing of that data through product support sites
maintained by Information Development teams. As a result, DITA was provided with a structure for question and



answer pairs that can be associated with standalone topics that may be part of a larger collaborative design between
the two communities.

A separate workgroup evaluated and documented the essential information model underlying the most current use
of messages within IBM, Tivoli, and Lotus. Michael Priestley demonstrated the use of DITA specialization to
represent that data model of messages as a specialization of a reference topic.

John Hunt of Lotus demonstrated moving a large volume of Notes and Domino help content to DITA format. A key
goal of the exercise was to preserve the huge investment in that content, including the topic text itself, the index
keywords, and the ability to produce multiple outputs to HTML, printed books, Notes .nsf help, PDF, and other
formats. In a further exercise to identify additional content and combine it with the core Notes help content, John
carried out a conversion of an IBM Redbook on the Domino XML Web site into DITA format, and combined this
with an XML version of the Domino XML Toolkit reference help. By pulling together disparate information in this
way and tying it together with DITAbase XML as the common denominator, he demonstrated the ability of DITA to
handle multiple types of information.

These activities have demonstrated the viability of DITA's design, and lead to improvements throughout the
process. 

The value of analysis
In doing his migrations of various Lotus content, John provided an analysis of the cues in the legacy markup that he
used to guide his transformations. For example, he observed that:

Any topic or subtopic that contains an <ol> tag is probably a task topic. 

If a main topic contains several subtopics that are tasks, then the topic is either a Collection or Super steps
topic. 

If no tags other than <li> appear inside the <ol>, then it's a "Basic" task topic. 

<p>, <ul>, <note>, and <note caption="Tip"> tags that appear in an <ol> (these are what we sometimes call
"indented" paragraphs in the SAM files) can fit as part of the DITA task content in an <info> section.

This analysis forced us to rethink the information we had written. We can use the nuances implied by our authoring
conventions to interpret the intent of what we had actually written. This analysis exposed more ideas for the design
of our content models, it showed that we needed greater specificity to avoid making these mistakes in the future,
and it highlights a need for greater consistency within more specific infotypes - more rigorous content writing
equates to better semantic specificity. The exercise compelled us as designers (and as current or former technical
authors) to relate past guidelines and practices to the intent in the eventual DITA design. Now, we can tell writers,
"If you did so and so in the past, we've prepared a DITA structure for which you would now do this." This is still
doing task analysis as we've requested writers to do all along, but with explicit content models now for the actual
writing. This replaces a common earlier practice of providing "cookbook" examples of markup that tended to
represent the desired visual structure of various writing styles.

We now have Concept, Task, and Reference at the high level, and specialization allows the creation of more
specific vocabularies within those categories of information types. Determining the information type for a topic
begins at the point of selecting an appropriate topic container for the content at hand. We take away a set of choices
by not allowing a task within a concept, for example, but this provides better enforcement and consistency within
the information, and reduces the opportunities for mistakes. We will have to continue the process of "uneducating"
certain past practices; if you see you can use an OL (ordered list) within a concept, that doesn't mean you can
develop a task there!   In contrast to actual task markup, an OL within a concept topic has ambiguous meaning.

We wouldn't have understood this as well if we had not done the various analyses to see how even well-skilled
authors use different styles and multiple markups, to represent the same thing. By mapping our understanding of
topic types into the DITA structure, we can improve how authors create appropriate information. And in explaining



how to use the DITA structures, we will be able to leverage both the technical writer's understanding of information
types and reinforce its use through the structures in DITA.

There's more than one way to present a task, concept, or reference topic!  While DITA doesn't straight-jacket all
content into a single model for these topics, it does reduce the choices and provide for a higher level of consistency
and format within these topic types. In addition, the DITA specialization architecture provides a consistent method
for identifying more constrained information models, and applying those models to more specific DITA topic types.
For example, differences among reference topics illuminate the differences in writing an API for C++ versus an API
for Java, and DITA provides a way to accommodate those differences within a consistent overall information
architecture.

__________________________________________________
Status

We are in the phase where we are using a more experience-based approach in validating our assumptions. 

We recognize that the DITA design is a prototype; its design -- including DTDs and style sheets -- will continue to
evolve through feedback from the interested user community -- you!

Use the DITA newsgroup (ibm.software.developerworks.xml.dita) to discuss the use of the DITA DTDs and style
sheets. Through discussion in the DITA newsgroup, we'll apply the significant ideas to subsequent refreshes of the
package. The forum will be actively monitored by the DITA project's architects, Don Day and Michael Priestley,
among others.

DITA has already generated some active interest among other information specialists. Evidence from several
newsgroups suggests that people are already testing DITA principles at their own companies. The feedback and the
interchange with the public community has been invaluable for everyone involved. If you believe that DITA
principles may be of value to your company, we certainly encourage you to investigate it and apply it as
appropriate.
_________________________________________________
Future Directions

As DITA stands now, we have:

A core set of DTD modules, to allow authoring in the core topic types and to provide a base for creating
more specialized topic types
A set of guidelines and samples for creating content, transforms, stylesheets, and new topic types in the
DITA architecture

There is plenty of work left to be done:

Navigation maps, for defining how topics get collected or related for particular delivery contexts
Common specializations, to allow for interchange at more specific levels in common content areas such as
contextual help and API documentation
Content management, to provide for centralized tracking and versioning of topics in source repositories
Additional tooling support, to allow custom authoring environments to be reused with specialized content
in the same way that stylesheets and transforms can be reused
Personalization processes, to give the user more direct control over the use of specialized markup and
content

Hopefully over the next year we will see the discussion and experimentation that DITA needs to continue growing
and evolving. Our existing architecture provides a base, we are looking to a wider community to help find out what
happens next.
__________________________________________________



Summary Conclusions

IBM XML DITA leads the way in topic oriented support.

DITA enables more rigorous semantic specification of topic types based on audience and author
requirements. 

DITA goes beyond the current accepted DTDs by allowing information to be organized and delivered
via multiple means, (i.e., helpsets, manuals, etc.). 

IBM's development of DITA demonstrates our commitment to improving  technologies and keeping
the improvements open to the public.


