
Transforming Documentation from the XML Doctypes
used for the Apache Website to DITA: a Case Study

Donald M Leslie
Cambridge Advanced Technology Group, IBM Research

One Charles Park
Cambridge, MA 02142

1-617-693-9981

Donald_Leslie@lotus.com

ABSTRACT
A primary factor behind the enormous interest in XML is the
support it provides for transforming documents to meet the needs
of information-processing applications as well as human readers
working with HTML, print, and other presentation media. This
case study reviews the issues we confronted, the tools we
implemented, and the procedures we adopted to transform a
documentation set from one XML document type to another, and
from XML to HTML and Adobe PDF.
The documentation set for Xalan, the Apache XSL transformer
based largely on code donated by Lotus/IBM, is written in XML,
using document types shared by the projects on the Apache XML
website. To present Xalan reference releases to IBM project
groups, the Cambridge Advanced Technology Group has set up
build procedures to transform the Xalan XML documentation to
DITA, an extensible XML information typing architecture
currently under development in IBM. After verifying that the
DITA output conforms to its declared document type, the build
publishes the DITA documentation set as HTML and as PDF.

Categories and Subject Descriptors
I.7.4 [Document and Text Processing]: Electronic Publishing.

General Terms
Documentation, Design, Verification.

Keywords
XML, XSL, XSLT, stylesheets, formatting objects, PDF,
document transformation.

1. INTRODUCTION
In November 1999, IBM and Lotus donated two XML tools – the
Xerces XML parser [6], and Xalan XSL transformer [5] – to the
open-source Apache XML Project [2]. The Cambridge Advanced
Technology Group, where Xalan originated under the name of

LotusXSL, continues to play a major role in the development of
Xalan in the Apache open-source community. The group is also
responsible for periodic internal reference releases under the
LotusXSL rubric to IBM product groups, such as WebSphere and
Lotus Domino. Like the other members of the Apache XML
project, we use a shared set of XML document types to write the
Xalan documentation and a shared collection of stylesheets and
tools to transform the documentation from XML to HTML.
The XML source documents are stored in the Apache repository.
The HTML documents are published on the Apache XML website
and distributed with the Apache releases. For the Xalan-Java and
Xalan-C++ documentation, see http://xml.apache.org/xalan-j and
http://xml.apache.org/xalan-c.
While work has proceeded on Xalan, an IBM cross-company
workgroup including representatives from a number of IBM,
Tivoli, and Lotus user assistance teams has been in the process of
defining and implementing DITA [7], an extensible XML
infrastructure for authoring and publishing technical
documentation.
In the spring of 2001, we decided that we should use DITA to
publish our internal releases. Our reasons include the following:

• Contribute to the development of DITA, a modular, flexible,
and extensible XML infrastructure that is likely to be widely
adopted within IBM and possibly outside of IBM as well.

• Provide user documentation in a form that other IBM groups
will be prepared (as DITA is established) to work with.

• Demonstrate Xalan at work transforming from one XML
document type to another, and from XML to HTML and
XSL formatting objects (FO). 1

2. GOALS
Our fundamental goal is to transform the Xalan XML source
documents from the Apache document types in which they are
written to a DITA XML document type. In principle, this will
make it easier for IBM product groups, as they adopt DITA, to
integrate all or portions of the LotusXSL/Xalan documentation
with their online and printed documentation sets.

As useful as XML is for providing structural information, we do
not expect our audience to read the XML in either the Apache or
the DITA document types. Our Apache Xalan build procedure

1 We use FOP [3], a sister Apache XML open-source project, to transform

the formatting-objects to Adobe PDF [1].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGDOC’01, October 21-24, 2001, Santa Fe, New Mexico, USA.
Copyright 2001 ACM 1-58113-295-6/01/0010…$5.00.

157

transforms the XML sources into HTML documents. For each
Apache release, we update the HTML on the Apache XML
website [2].

For our internal releases, we also wanted to illustrate a server-side
scenario for transforming XML documents to HTML. So in
addition to publishing static HTML, we decided to set up a servlet
to dynamically transform DITA XML to HTML in response to
individual user requests for documents on our LotusXSL site.

In the Apache build, we also provide a procedure that assembles
the XML sources into a book, transforms the result into XSL
formatting objects, and uses FOP [3] to generate PDF
documentation that our users can browse online and print.

Accordingly, we decided on the following primary objectives:

• Transform the Apache XML to DITA XML.

• Transform the DITA XML to HTML.

• Set up a servlet to dynamically transform DITA XML to
HTML in response to user requests.

• Generate PDF documentation from the DITA XML.

In the course of developing tools to help meet these objectives, we
came up with a couple of additional goals:

• Publish a utility for validating XML output.

• Publish a Xalan extension element2 to coordinate the
generation of a documentation set with a table of contents,
and to streamline the piping of XML documents through a
series of transformations.

3. BUILD PROCEDURES
Given that we will continue to write the documentation in Apache
XML and provide both Apache Xalan builds and internal
LotusXSL builds on a regular basis, we knew we needed to set up
an automated build procedure for meeting our goals.
Our build tool of choice is Ant [4], an XML-based Apache open-
source project. We already use Ant to build the Xalan-Java
software and sample applications, to run tests, to build
documentation, and to prepare our distribution files.
To create an Ant build, you set up an XML <project> file with a
<target> element for each task. To meet our goals, we defined two
basic tasks.
The first task transforms Apache to DITA, validates the output,
assembles an HTML table of contents for the Xalan
documentation set, and optionally transforms DITA to HTML.
The second task merges the DITA documents generated by the
first task into a book structure, transforms the result to XSL
formatting objects, and uses FOP to generate a PDF file.

2 An extension element is a custom “instruction” element placed in a

stylesheet template. XSLT provides a syntax for instantiating extension
elements, but the implementation of a given extension element is
vendor specific, so only Xalan can execute Xalan extension elements,
which may be implemented in Java or one of several scripting
languages. See “Extensions” in Xalan [9].

Figure 1. Build tasks.

4. APACHE TO DITA
The first build task applies an XSL stylesheet to an XML
document that conforms to the Apache <book> document type. It
contains a title, copyright information, and a <document> element
for each of the XML source documents in the Xalan
documentation set.
In our standard Apache build, this file is used with a tool called
Stylebook and a collection of stylesheets to transform the XML
source documents to HTML and to place a table-of-contents in
each of the HTML output files.

Figure 2. Apache <book> document

The new Apache-to-DITA build procedure applies a stylesheet to
this <book> document. This stylesheet generates a table of
contents for the Xalan documentation set. For each source
document, it uses an XSL extension element in conjunction with
two other stylesheets to perform a transformation to DITA XML.
The extension element and these stylesheets perform the real
work.
The build then uses the Validate utility to verify that each DITA
document conforms to the DITA <topic> document type. We
implemented the extension element and the Validate utility in
Java.

158

Figure 3. Apache to DITA to HTML

4.1 Setting up a Transformation Pipeline
To transform each XML source file from Apache to DITA, we
perform two transformations. The first transformation modifies
the basic structure from a hierarchy of sections to a collection of
topics, some topics nested in other topics (see section 4.2.1 for the
details). The second transformation does all the work of
transforming individual Apache elements into the appropriate
DITA elements.
Initially, we performed two separate transformations. That is, we
wrote the output of the first transformation to a file, then used that
file as input for the second transformation. But we had no need
for the intermediate file, which is neither Apache nor DITA. So
we decided to write a Xalan extension element to directly pipe the
output of the first transformation into the second transformation
without writing this throwaway file.
We began by writing a Xalan extension element designed to
handle precisely the transformations we knew are required to
transform each Apache XML document to DITA. The extension
element obtained information for each transformation from
stylesheet parameters and from various attributes in the current
context node (the <document> element that provides the context
for each transformation) in the base stylesheet.
It was clear that if we were to alter the structure of the XML input
<book> document or the stylesheets and the input parameters they
require, we would have to reimplement the extension element as
well. In other words, our extension implement was not generic or
portable.
But we realized that we were dealing with a very common setup:

• A list of documents to be transformed.

• A stylesheet for turning that list into an HTML table of
contents.

• One or more additional stylesheets for transforming each
source document to the desired HTML result. As mentioned
above, we use two stylesheets and two transformations to
transform from Apache XML to DITA.

Accordingly, we came up with a pipeDocument extension element
supported by a much more generic implementation
The pipeDocument extension element contains attributes
identifying the source and the output, and a <stylesheet> element
for each transformation we need to perform. In turn, each
<stylesheet> element contains <param> elements for any
stylesheet parameters that need to be set.

Figure 4. pipeDocument extension element

Our extension element gets the source document from the
<document> element source attribute, the path to the output
directory from the stylesheet xml-dest parameter, and uses the
<document> element id attribute to set a stylesheet parameter for
the first transformation.
For detailed information about stylesheet syntax, including
extension elements, see the XSL Transformations specification
[12] and Kay [8] or Tidwell [10]. For more information about the
Xalan pipeDocument extension, see “Extensions Library” in
Xalan [5].

4.2 Transformation Details
The document type used for most Xalan documents is organized
in terms of sections and subsections. Each document is a top-level
section (an <s1> element) that contains a variety of content
elements (paragraphs, lists, tables, source code, and so on) and
subsections (<s2> elements). Each <s2> element in turn may
contain the same content elements and <s3> subsections. The
document declaration carries this organization down to <s4>.
Each <sn> element contains a title attribute defining the section
title.
The core DITA document type, on the other hand, is <topic>. A
<topic> contains an optional <prolog> element, a <title> element,
and a <body> element with elements containing the topic content.
A <topic> may also contain one or more nested topics. When this
occurs, the nested topics are placed after the <body> element, not
within the <body> element of the containing <topic>.

Figure 5. Apache and DITA document trees

159

Whereas an Apache <s1> document is a structured document with
up to four section levels, a DITA <topic> is a self-contained
building block that may stand alone or be combined hierarchically
and serially with other building blocks to form a document.

4.2.1 Separating a nested topic from the body of its
containing topic
The first challenge in transforming from <s1> to <topic> is to
separate each nested topic from the body of its containing topic.
To accomplish this end, we set up a stylesheet template to apply
to all <s1>, <s2>, <s3>, and <s4> elements. In this template, we
create a <topic> element with a <title> and <body>. We use the
xsl:copy-of instruction with an XPath expression to copy
everything into the body except any nested <s2>, <s3>, or <s4>
elements. The XPath expression selects all nodes that are not
named s2, s3, or s4. The stylesheet recursively applies the same
template to the remaining <s2>, <s3>, and <s4> elements.

Figure 6. Copy Xalan sections to DITA topics

Our Apache documents conform to the editorial convention (not
imposed by the <s1> doctype) that the body of each section must
precede any subsections, so the transformation performed in
Figure 6 does not alter the original information flow.

4.2.2 Establishing <topic> ids
Each DITA <topic> requires an id attribute, a unique identifier
that can be used to define links. For simplicity, Figure 6 ignores
the procedure for setting <topic> ids. The <s1> – <s4> elements
have no such attribute. Each <s1> document is its own file, so the
filename can provide an id for its <s1> element. Most of the <s2>,
<s3>, and <s4> elements are preceded by an <anchor> element
with a name attribute, so we can simply get the value of this
attribute and assign it to the id of the following <topic>. For any
<s2> – <s4> elements not associated with an <anchor> element,
we can use the XSLT generate-id() function to generate a unique
id.
In the stylesheet, we pass in a doc-id parameter with the document
file name and use an xsl:choose structure with xsl:when
statements to assign the ids.

Figure 7. Setting <topic> ids

4.2.3 Piping the output of the first stylesheet to a
second stylesheet.
The first stylesheet called by the extension element generates
correctly nested topics. Each <topic> has an id attribute, a <title>
element, a <body> element, and may contain nested topics, each
of which displays the same structure. The content of each <body>
element, however, still has the same structure as in the original
Apache XML.
The pipeDocument extension element pipes the output from the
first transformation to a second stylesheet, which transforms
individual Apache elements, such as tables and images, into their
DITA equivalents. A number of elements, such as paragraphs, and
single-level lists, are simply copied from the intermediate result
generated by the first stylesheet to the DITA output. As the
following section explains, nested lists require special treatment.

4.2.4 Handling nested lists
In the Apache s1 doctype, a list element may contain a nested list.
The nested list is a child of the or parent list, and a
sibling of the parent’s list items (elements). The DITA topic
doctype, on the other hand, requires a nested list to be a child of
one of the list items in the parent list. As you can see in Figure 8,
the difference comes down to where a list item is closed.

Figure 8. A Nested list

For any element for which the following sibling is an or
 element, copy the following sibling and its children before
closing the element.
Figure 9 contains the stylesheet templates responsible for
accomplishing the structural adjustment illustrated in Figure 8.

160

Figure 9. Rearranging nested lists

5. VALIDATION
After the transformation process from Apache XML to DITA
XML has been completed for all the source documents, the Ant
build uses a utility to validate the DITA results.
The Validate utility does the following:

• Uses the JAXP [9] interface to get a SAXParserFactory.

• Sets validation and namespace support to true.

• Instantiates a SAXParser.

• Sets up a SAX event handler to verify that each document
contains a DOCTYPE declaration and to listen for errors or
warnings.

• Parses the XML output
If there is a DOCTYPE declaration and no errors or warnings
occur during the parse, the document is valid. This procedure
works for any set of XML files containing DOCTYPE
declarations.
We wrote a general-purpose Validate utility that can be instructed
to check an individual XML file or all the XML files in a
directory, and to report the results to the screen or to a log file.
For the details, see “Samples” in Xalan [9].
In our preliminary stylesheet implementations, Validate revealed
that we were not handling nested lists as the DITA topic
document type required. When we had revised our transformation
of nested lists (see section 4.2.4), Validate verified that we were
now meeting the DITA topic requirement for nested lists.

Figure 10. Ant build Validate output

6. SERVE HTML OR XML?
As we do for Apache, we want to make the HTML documentation
available to our users on our website (a company-wide intranet
site in this case), as well as include the HTML with our
distribution files. But we also want use a servlet to transform
DITA XML to HTML in response to user requests for documents.

Why bother? A couple of motivations come to mind.
1. Reliance on server-side transformations means that you can

be sure users are getting the latest documentation based on
the current state of your XML sources. You are not required
to refresh the website each time a change occurs.

2. Given that the servlet has access to the XML with the
structured information it contains, in theory, it could do more
than perform a simple transformation to HTML. It could, for
example, respond to a more complex request by assembling
the XML from multiple source documents and/or database
tables, and then transform the result.

In light of these potential objectives, we wanted to demonstrate to
our users a simple strategy for performing transformations on the
server.

6.1 Importing the DITA Stylesheet
The DITA workgroup has established a basic stylesheet for
transforming generic DITA to HTML. From the doctype
perspective, the DITA we generate is generic, so in principle, we
can use this stylesheet. In practice, however, there are some minor
differences, mostly having to do with links. For example, if we
are serving the DITA XML with a servlet that transforms it upon
request, we need to convert the internal links to servlet calls. If we
are serving static HTML, we need to transform the “.xml” in our
internal targets to “.html”.

Figure 11. Links

Accordingly, we use a stylesheet that imports the standard DITA
stylesheet. The imported stylesheet does most of the work. All we
do in our stylesheet is provide special behavior where required. In
other words our DITA is generic (no specialization), but we
“specialize” the DITA stylesheets when we publish the Xalan
documentation for our readers.

6.2 Transforming XML to HTML with a
Servlet
We set up a servlet to respond to requests by transforming the
XML to HTML and returning the HTML.
Xalan-Java ships with a number of sample servlets, one of which
is particularly apt. The servlet request includes the XML
document to be transformed and optionally an XSL stylesheet to
perform the transformation. If the XSL stylesheet is not included
(in the servlet request or as a servlet processing instruction in the
XML document to be transformed) the servlet uses a pre-
compiled stylesheet that it has been instructed to compile and load
when the servlet is launched.
When multiple documents are to be transformed with the same
stylesheet (a common case), this arrangement improves
performance by avoiding the overhead of reprocessing the
stylesheet for each transformation. All that is required is to set up
the table of contents and each of the internal links to call the
servlet

161

with a parameter identifying the document to be transformed (see
Figure 11).

6.3 HTML Output
As you can see in Figure 12, the HTML output we generate from
DITA is somewhat different in appearance than the HTML output
generated by our Apache build.
For the Apache website, we generate HTML that conforms to the
Apache XML Project presentation standards. For our IBM
customers, we use a different stylesheet to conform to their
expectations. Stylesheets give us the freedom to generate different
presentations from the same source and similar presentations from
different sources.

Figure 12. Apache and DITA HTML

7. GENERATING PDF
The basic methodology for turning XML documents into PDF is
to use a stylesheet processor to transform the XML into an XML
tree of formatting objects, and then to use an XSL print formatter
to process the formatting objects tree and generate a PDF file.
Given that we wanted to print a collection of XML documents as
a single book, we set up a an Ant build task to do the following:
1. Assemble the XML documents into an XML book.
2. Transform the book to an XSL formatting-objects tree (an

FO file).
3. Turn the FO file into a PDF file.

Figure 13. DITA to PDF

7.1 Assembling the book
As already noted, we use a book document to specify which XML
documents are to be transformed to HTML and to put a book title,
a table of contents, and a copyright notice in each HTML output
document. This document uses the <book> document type defined
for the Apache XML projects.
The DITA workgroup has defined a <bkbook> document type for
purposes of generating printed output. It is more extensive than
the Apache <book>. The fundamental difference is that <bkbook>
includes structural elements mapping individual topics to
structural book components, such as front matter, book parts,
chapters, sections, several levels of subsections, appendixes, and
so on.
Figure 14 contains part of the LotusXSL book document. After
the front-matter material, the body (<bkobdy>) contains a number
of <bkchapter> elements, each with a reference to an XML
document.

Figure 14. LotusXSL <bkbook> document

Each XML document contains up to four levels of nested topics.
The top-level topic is a <bkchapter> topic. Second–level topics
need to be mapped to <bksection> elements, third-level topics to
<bksubsection> elements, and fourth-level topics to <bksubsect1>
elements.
We accomplish this mapping by applying a stylesheet to the
preceding <bkbook> document, which pulls in each <bkchapter>
document, inserting <bksection>, <bksubsection>, and
<bksubsect1> elements, and placing topics within those elements:
the topics are no longer nested within each other. The stylesheet
template uses nested xsl:for-each instructions to navigate through
each document, and xsl:copy-of instructions to pull in the topics.

162

The input and output documents of this transformation are both
<bkbook> documents. Whereas the input (Figure 14) is a shell,
the output (Figure 15) contains the entire book.

Figure 15. <bkbook> output tree

7.2 Transforming the book to formatting
objects
The Extensible Stylesheet Language specification [11] for
formatting objects is still a work in progress, as is the FOP
implementation, so our work in this area is still tentative in nature.
The DITA workgroup has set up a stylesheet to perform this
transformation. Our task is conceptually similar to the task of
transforming the DITA XML output to HTML: extend the DITA
standard stylesheets where necessary to override or add a
particular transformation.
As with the DITA transformation to HTML, the most important
overrides were simply to use existing topic and paragraph ids
instead of generating new ids, so that internal links work.

7.3 Using PipeDocument to package these
transformations
In our first implementation, we made two calls to the Xalan
command-line utility: the first to merge the DITA sources into the
expanded <bkbook> document, and the second to transform the
<bkbook> output tree into a tree of XSL formatting objects.
Once we had created our general-purpose pipeDocument
extension element, we could use it to perform this operation in a
single step. We simply place the extension element in an
otherwise empty stylesheet. Figure 16 displays the stylesheet we
use to transform the bkbook shell to the formatting objects tree.
The Ant build calls the Xalan transformer with this stylesheet and
the input parameters for source and target. The extension applies
the first stylesheet specified in the pipeDocument element
(printbook_assemble.xsl) to the <bkbook> document in Figure 14,
and the second stylesheet (bkbook8x11_xalan.xsl) to the output of
the first transformation (the merged book in Figure 15), outputting
the result to a formatting objects file.

Figure 16. Pipe DITA XML to FO

7.4 Generating PDF
We use Apache FOP [3] to transform the tree of formatting
objects into a PDF file.

Figure 17. PDF from DITA

Using FOP is quite straightforward. You simply download and
expand the binary release file, add a couple of JARS in the
download to the classpath, and call the FOP command-line utility.
Like the specification it implements, FOP is not complete, and the
transformation does not yet produce print of the quality you
would expect to find in a commercially printed book. But the
output is certainly usable. In addition to printing it, users can read
it online, taking advantage of its internal and external links. The
external links are to Javadoc and other HTML files on the Apache
and other internet sites.

163

8. CONCLUSION
This case study demonstrates that it is feasible to set up an
automated process to transform a collection of documents from
one XML document type to another. This same process may be
extended to also generate HTML and PDF output for readers. A
servlet may be used to transform XML to HTML on the server in
response to user requests.
In the course of carrying out this case study, we recognized a
common pattern involved in transforming a set of XML
documents to a set of HTML documents with a shared table of
contents. To simplify this process we implemented support for a
pipeDocumdent extension element that can be embedded in the
stylesheet that generates the table of contents and used to perform
the transformations required to transform each source document
to the desired output.
We used this same pipeDocument extension element in an
otherwise empty stylesheet to merge our DITA XML documents
into a book and transform the book into XSL formatting objects to
provide input for generating a PDF document.
We also created a simple Validate tool to verify that our XML
output conforms to its specified document type.
As XML usage accelerates, we believe other documentation
groups and website managers can exploit and extend the
preliminary infrastructure we have created in our endeavor to
transform the Xalan documentation set from Apache XML to
DITA XML and from DITA XML to HTML and PDF.

9. ACKNOWLEDGMENTS
Xalan, Xerces, and FOP are Copyright  1999-2001, The Apache
Software Foundation.

10. REFERENCES
[1] Adobe PDF (Portable Document Format).

http://www.adobe.com/products/acrobat/adobepdf.html
[2] Apache Software Foundation, Apache XML Project.

http://xml.apache.org/index.html.
[3] Apache Software Foundation, FOP.

http://xml.apache.org/fop/index.html
[4] Apache Software Foundation, Jakarta Ant.

http://jakarta.apache.org/ant/index.html
[5] Apache Software Foundation, Xalan Java.

http://xml.apache.org/xalan-j/index.html
[6] Apache Software Foundation, Xerces Java Parser.

http://xml.apache.org/xerces-j/index.html
[7] Day, D. R., Priestley, M., and Schell, D. A. Introduction to

the Darwin Information Typing Architecture. IBM
developerWorks, 2001, http://www-106.ibm.com/
developerworks/xml/library/x-dita1/index.html

[8] Kay, M. XSLT Programmer’s Reference. Wrox Press Ltd.,
Birmingham, UK, 2000.

[9] Sun Microsystems, Inc., Java API for XML Processing
(JAXP) 1.1 Public Review 2. http://java.sun.com/
aboutJava/communityprocess/review/jsr063/
jaxp-pd2.pdf.

[10] Tidwell, Doug, XSLT. O’Reilly & Associates, Sebastopol,
CA, 2001.

[11] W3C, Extensible Stylesheet Language (XSL) Version 1.0.
http://www.w3.org/TR/xsl/.

[12] W3C, XSL Transformations (XSLT) Version 1.0.
http://www.w3.org/TR/xslt/.

164

