
Specialization in DITA

Erik Hennum, Michael Priestley, Dave A. Schell
IBM

Introduction to DITA

IBM's XML architecture for topic - oriented information
Mostly Business as Usual - some important exceptions

Features specialization
From a base "topic" we provide "task, reference, and
concept"
We also allow others to create specializations

Features vocabulary domains
From a generic topic we provide "highlighting,
software, programming, and GUI" vocabularies that
are common

Various reuse mechanisms: content, design, code
Base DTDs and transforms available at developerWorks

Extensibility

Specialization
Information types
Domains
Code

Customization of code
Integration of design

Specialization

Benefit: You can structure your information
with greater precision where you need it
Making semantic distinctions
Adding to a hierarchy of distinctions
Mapping new, more specific elements to
existing, more abstract elements
Reusing existing elements whenever
possible
Markup separated into modules based on
information types and domains

As part of a hierarchy

Base topic:

Core types:

Next gen:

Next gen:

topic

concept referencetask

messagestroubleshooter API

C++ Java

Specializing information types

Define kinds of topics (concept, task,
reference, etc.)
Start from the top (the container for the
whole topic) and work down
Have to specialize containers to allow in new
markup
Can work all the way down to individual
keywords or phrases

Specializing task from topic

topic

title

prolog

metadata

relgroup

body

task

title

prolog

metadata

relgroup

taskbody

prereq

context

steps

xmp

result

postreq

step

cmd, (info | substeps | tutorialinfo |
taskxmp | choices)*, stepresult?

As part of a hierarchy

reference
taskconcept

topic

wiztask

Using information types

Create a shell DTD
Embed the modules for each information
type, and its ancestors, starting at the top of
the hierarchy
Control how information types nest by
redefining entities
Allow one topic per file for simplest reuse
EG: for wiztasks, would embed topic.mod,
task.mod, wiztask.mod

Specializing domains

Define a category of related elements
Part of a domain (common subject area)
For example, programming domain
(apinames) or UI domain (wintitle)
Found across information types (wintitle in
concept and reference topics)
Can still define complex structures (like
syntaxdiagram)
But can start from any level in a topic

As part of a hierarchy

Topic

Programming GUI

Wizard

wintitle

wiztitle

keyword

apiname

Using domains with information
types

Create a shell DTD
Include declarations for domain entities
Override definitions for content models
Override definitions for domains attributes
Include modules for information types
Include modules for domains

Specializing code

Only when existing general rules insufficient
For example, task steps get formatted as an
ordered list with no step-specific code
But you might want to add "fastpath" icon
when outputting wiztitles vs. wintitles
Create as modules parallel to information
types and domains
Pull together with a shell transform that
imports modules from general to specific

When code meets content

Code and design are parallel hierarchies
Unknown information types or domains get
processed as instances of the closest known
ancestor type
If your processes are specialized for your
content but another group sends you more
general content, it gets processed according
to the general rules
Sum: when the two hierarchies interact, they
find their lowest common denominator

Specialization hierarchies:
principled reuse

referencetask

task:
skeleton

XSLT

referencetaskconcept

topic

UIprogrammingsoftware UIsoftware

task:
skeleton

DTD
topic

domains

info types

Specialization hierarchies:
extensible reuse

wiztask:
skeleton

XSLT

reference
taskconcept

topic

UIprogrammingsoftware

wiztask:
skeleton

DTD

wiztask

wizards

wiztask

referencetask

UIsoftware

topic

Customization

Benefit: special formatting for your
information is easy
Adding output rules without parallel designs
Lets different groups customize output from
common content
Insulates content from local format initiatives
Incorporate customization modules using a
shell transform that imports it after
specialization code modules

Integration

Benefit: authors see only elements they use
Select subset of available designs
From the full spectrum, select the
information types and domains you need
For example, exclude highlighting if other
domains are sufficient
When others add to the hierarchies, you only
get the additions you choose to integrate
Again, using a shell DTD

Summary: Specialization

Artifacts
Specialized DTD
module
Shell DTD
(Specialized XSLT
module)
(Shell XSLT)

Costs/Benefits
Small cost
New design elements
(New code)
Migration/interchange
supported by architecture
(generalization
transform)
Reuse of most existing
design and all or most
code

Summary: Customization

Artifacts
Customized XSLT
module
Shell XSLT

Costs/Benefits
Less cost
No new design elements
Some new code
No migration/interchange
issues
Reuse of all existing
design and most code

Summary: Integration

Artifacts
Shell DTD

Costs/Benefits
Close-to-zero cost
No new design elements
No new code
No migration/interchange
issues
Reuse of all existing
design and code

Compare: New design from
scratch

Artifacts
Complete DTD
Complete XSLT
Any
migration/interchange
transforms when
required

Costs/Benefits
High cost
New design elements
New code
Migration/interchange
supported by
single-purpose
transforms; no built-in
mappings (transform may
be complex, may require
cleanup before and after)
No reuse of design or
code

Next

Get the DTDs and transforms:
www.ibm.com/developerworks/xml/library/ !
 x-dita1/xdita10.zip

Discuss them, ask questions, make
suggestions:

news.software.ibm.com/ibm.software. !
 developerworks.xml.dita

