Specialization in DITA

Erik Hennum, Michael Priestley, Dave A. Schell
IBM

Introduction to DITA

= |[BM's XML architecture for topic - oriented information
» Mostly Business as Usual - some important exceptions
= Features specialization

» From a base "topic" we provide "task, reference, and
concept”

» \We also allow others to create specializations
= Features vocabulary domains

» From a generic topic we provide "highlighting,
software, programming, and GUI" vocabularies that
are common

= Various reuse mechanisms: content, design, code
= Base DTDs and transforms available at developerWorks

Extensibility

= Specialization
» Information types
» Domains
» Code

= Customization of code
= |ntegration of design

Specialization

= Benefit: You can structure your information
with greater precision where you need it

= Making semantic distinctions
= Adding to a hierarchy of distinctions

= Mapping new, more specific elements to
existing, more abstract elements

= Reusing existing elements whenever
possible

= Markup separated into modules based on
iInformation types and domains

Base topic:

Core types:
Next gen:

Next gen:

As part of a hierarchy

topic

sl

task

concept reference

v

troubleshooter

/\

API

messages

a7 e

C++ Java

Specializing information types

= Define kinds of topics (concept, task,
reference, etc.)

= Start from the top (the container for the
whole topic) and work down

= Have to specialize containers to allow in new
markup

= Can work all the way down to individual
keywords or phrases

Specializing task from topic

I
topic
task
title :
title
prolog
prolog
metad:
metadata
relgro
relgroup
body
taskbody
prereq result
context xmp
steps postreq
step
L cmd, (info | substeps | tutorialinfo |
taskxmp | choices)*, stepresult?

As part of a hierarchy

topic

reference
con
cept task

Using information types

= Create a shell DTD

= Embed the modules for each information
type, and its ancestors, starting at the top of
the hierarchy

= Control how information types nest by
redefining entities

= Allow one topic per file for simplest reuse

= EG: for wiztasks, would embed topic.mod,
task.mod, wiztask.mod

Specializing domains

= Define a category of related elements
= Part of a domain (common subject area)

= For example, programming domain
(apinames) or Ul domain (wintitle)

= Found across information types (wintitle in
concept and reference topics)

= Can still define complex structures (like
syntaxdiagram)

= But can start from any level in a topic

As part of a hierarchy

T e]

Programming GUI
apiname wintitle

Topic

keyword

Using domains with information
types

= Create a shell DTD

= Include declarations for domain entities

= Override definitions for content models

= Qverride definitions for domains attributes
= |nclude modules for information types

= Include modules for domains

Specializing code

= Only when existing general rules insufficient

= For example, task steps get formatted as an
ordered list with no step-specific code

= But you might want to add "fastpath” icon
when outputting wiztitles vs. wintitles

= Create as modules parallel to information
types and domains

= Pull together with a shell transform that
Imports modules from general to specific

When code meets content

= Code and design are parallel hierarchies

= Unknown information types or domains get
processed as instances of the closest known
ancestor type

= |f your processes are specialized for your
content but another group sends you more
general content, it gets processed according
to the general rules

= Sum: when the two hierarchies interact, they
find their lowest common denominator

Specialization hierarchies:

principled reuse

software

task:
skeleton
DTD

task:
skeleton
XSLT

Ul

topic

domains
software programming Ul
topic
concept || task || reference

Info types

task

reference

Specialization hierarchies:
extensible reuse

-

software

software

Ul

topic

concept

programming Ul
wiztask: || wiztask:
topic skeleton || skeleton
DTD XSLT
reference
task

-

task

reference

e

Customization

= Benefit: special formatting for your
iInformation Is easy

= Adding output rules without parallel designs

= |_ets different groups customize output from
common content

= |[nsulates content from local format initiatives

= |ncorporate customization modules using a
shell transform that imports it after
specialization code modules

Integration

= Benefit: authors see only elements they use
= Select subset of available designs

= From the full spectrum, select the
iInformation types and domains you need

= For example, exclude highlighting if other
domains are sufficient

= When others add to the hierarchies, you only
get the additions you choose to integrate

= Again, using a shell DTD

Summary: Specialization

= Artifacts = Costs/Benefits
» Specialized DTD > Small cost
module » New design elements

» (New code)

»Shell DTD L
o » Migration/interchange
> (Specialized XSLT supported by architecture
module) (generalization
» (Shell XSLT) transform)

» Reuse of most existing
design and all or most
code

Summary: Customization

= Artifacts = Costs/Benefits
» Customized XSLT > Less cost
module » No new design elements
» Shell XSLT »Some new code
» No migration/interchange
Issues

» Reuse of all existing
design and most code

Summary: Integration

= Artifacts = Costs/Benefits
» Shell DTD » Close-to-zero cost
» No new design elements
» No new code

» No migration/interchange
ISsues

» Reuse of all existing
design and code

Compare: New design from

scratch
= Artifacts = Costs/Benefits
» Complete DTD > High cost
» Complete XSLT > New design elements
» New code

»Ar_1y o » Migration/interchange
migration/interchange supported by

transforms when single-purpose

required transforms; no built-in
mappings (transform may
be complex, may require
cleanup before and after)

» No reuse of design or
code

Next

= Get the DTDs and transforms:

» www.lbm.com/developerworks/xml/library/ 2>
X-dital/xditalO.zip
= Discuss them, ask questions, make
suggestions:

» news.software.lbm.com/ibm.software. =
developerworks.xml.dita

