Specialization in DITA

Erik Hennum, Michael Priestley, Dave A. Schell
IBM

Introduction to DITA

= |BM's XML architecture for topic - oriented information
» Mostly Business as Usual - some important exceptions
= Features specialization

» From a base "topic" we provide "task, reference, and
concept”

» \We also allow others to create specializations
= Features vocabulary domains
» From a generic topic we provide "highlighting,
software, programming, and GUI" vocabularies that
are common
= Various reuse mechanisms: content, design, code

= Base modules, DTDs, transforms available at
developer\Works

Extensibility

= Specialization
» Information types

» Domains
» Code

= Customization of code
= |ntegration of design

Specialization

= Making semantic distinctions
= Adding to a hierarchy of distinctions

= Mapping new, more specific elements to
existing, more abstract elements

= Reusing existing elements whenever
possible

= Markup separated into modules based on
information types and domains

Base topic:

Core types:
Next gen:

Next gen:

As part of a hierarchy

topic

P B

messages

task concept reference
subtask API
/\
e Java

Specializing information types

= Define kinds of topics (concept, task,
reference, etc.)

= Start from the top (the container for the
whole topic) and work down

= Have to specialize containers to allow in new
markup

= Can work all the way down to individual
keywords or phrases

Specializing task from topic

I
topic
task
title :
title
prolog
prolog
metadz:
metadata
relgro
relgroup
bod
Y taskbody
prereq result
context xmp
steps postreq
step
L cmd, (info | substeps | tutorialinfo |
taskxmp | choices)*, stepresult?

As part of a hierarchy

topic

Using information types

= Create a shell DTD

= Embed the modules for each information
type, and its ancestors, starting at the top of
the hierarchy

= Redefine entities to determine which
information type can nest with which

= Allow one topic per file for simplest reuse

= EG: for wiztasks, would embed topic.mod,
task.mod, wiztask.mod

Specializing domains

= Define a category of related elements
= Part of a domain (common subject area)
= Found across information types

= For example, programming domain (APIs,
syntax diagrams); Ul domain (wintitle,
uicontrol)

= Can still define complex structures (like
syntaxdiagram)

= But can start from any level in a topic

As part of a hierarchy

e |

Programming GUI
apiname wintitle

Topic

keyword

Using domains with information
types

= Create a shell DTD

= Include declarations for domain entities

= Qverride definitions for content models

= Override definitions for domains attributes
= |nclude modules for information types

= Include modules for domains

Specializing code
= Only necessary when existing general rules
insufficient

= For example, task steps get formatted as an
ordered list with no step-specific code

= But, for example, might want to add "fastpath”
icon when outputting wiztitles, vs. wintitles

= Create as modules, parallel to information
types and domains

= Pull together with a shell transform that imports
modules, starting with general and proceeding
to specific

When code meets content

= Code and design are separate but parallel
hierarchies

= |f your processes encounter unknown
information types or domains, they get
processed as instances of the closest known
ancestor type

= |[f your processes are specialized for your
content but another group sends you more
general content, it gets processed according to
the general rules

= Sum: when the two hierarchies interact, they find
their lowest common denominator

Specialization hierarchies:

principled reuse

software

task:
skeleton
XSLT

Ul

topic

domains
software | | programming Ul
task:
topic skeleton
DTD
concept || task || reference

info types

task

reference

Specialization hierarchies:
extensible reuse

-

software

software

Ul

topic

concept

programming Ul
wiztask: || wiztask:
topic skeleton || skeleton
DTD XSLT
reference
task

i

task

reference

—

Customization

= Adding new output rules without
accompanying design distinctions (not
parallel to a design hierarchy)

= |_ets different groups get customized output
from common content

= |nsulates content from locally-driven design
initiatives
= |ncorporate customization modules using a

shell transform that imports it after
specialization code modules

Integration

= Select subset of available designs

= From full spectrum of types and domains,
select the information types and domains
you need

= For example, exclude highlighting if other
domains are sufficient

= \When others add to the hierarchies, you only
get the additions you choose to integrate

= Again, using a shell DTD

Summary: Specialization

* Arifacts " CogteBenefs
g szmlallzed DTD » New design elements
moaule » (New code)
>Shell DTD » Migration/interchange
[(Specialized XSLT supported by architecture
module) (generalization trqnsform)
> (Shell XSLT) » Reuse of most existing

design and all or most code

Summary: Customization

= Artifacts = Costs/Benefits
» Customized XSLT » Less cost
module » No new design
» Shell XSLT elements
» Some new code
» No
migration/interchange
issues

» Reuse of all existing
design and most code

Summary: Integration

= Artifacts = Costs/Benefits
» Shell DTD » Close-to-zero cost

» No new design
elements

» NO nhew code

»No
migration/interchange
Issues

» Reuse of all existing
design and code

Compare: New design from

scratch
= Artifacts = Costs/Benefits

> Complete DTD ::SVC gce)z;[gn elements

» Complete XSLT > New code

> Any » Migration/interchange
migration/interchange supported by
transforms when single-purpose transforms;

. no built-in mappings

required (transform may be

complex, may require
cleanup before and after)
» No reuse of design or code

Next

= Get the DTDs and transforms:
»www.ibm.com/developerworks/xml/library/x-dita1/xdita10.zip

= Discuss them, ask questions, make suggestions:
» news.software.ibm.com/ibm.software.developerworks.xml.dita

