
Specialization and modularization in DITA

Erik Hennum
IBM

ehennum@us.ibm.com

Michael Priestley
IBM Canada

mpriestl@ca.ibm.com

Dave A. Schell
IBM

dschell@us.ibm.com

Abstract

DITA is an architecture for creating topic-oriented, information-typed content that can be
reused and single-sourced in a variety of ways. It is also an architecture for creating new
information types and describing new information domains, allowing groups to create
very specific, targeted document type definitions using a process called specialization
while at the same time reusing common output transforms and design rules.

Specialization provides a way to reconcile the needs for centralized control of major
architecture and design with the needs for localized control of group-specific and content-
specific guidelines and controls. Specialization allows multiple definitions of content and
output to co-exist, related through a hierarchy of information types and transforms. This
hierarchy lets general transforms know how to deal with new, specific content, and it lets
specialized transforms reuse logic from the general transforms. As a result, any content
can be processed by any transform, as long as both content and transform are
specialization-compliant, and part of the same hierarchy. You get the benefit of specific
solutions, but you also get the benefit of common standards and shared resources.

Background
The Darwin Information Typing Architecture (DITA) is an XML-based, end-to-end
architecture for authoring, producing, and delivering technical information. This
architecture consists of a set of design principles for creating "information-typed"
modules at a topic level and for using that content in delivery modes such as online help,
product support portals on the Web, and printed manuals.

This architecture and DTD were designed by a cross-company workgroup representing
user assistance teams from across IBM. After an initial investigation in late 1999, the
workgroup developed the architecture collaboratively during 2000 through postings to a
database and weekly teleconferences. The architecture has been placed on IBM's
developerWorks Web site as an alternative XML-based documentation system, designed
to exploit XML as its encoding format. With the delivery of significant updates in 2002,
which contain enhancements for consistency and flexibility, we consider the DITA
design to be past its prototype stage.

For more information on DITA, including the base DTDs and sample transforms, see
http://www.ibm.com/developerworks/xml/library/x-dita1/ .

At the heart of DITA, representing the generic building block of a topic-oriented
information architecture, is an XML document type definition (DTD) called "the topic
DTD." The extensible architecture, however, is the defining part of this design for
technical information; the topic DTD, or any schema based on it, is just an instantiation
of the design principles of the architecture. The consistent use of DTD and XSLT
examples in the rest of this paper are meant to show how the principles of DITA are or
can be implemented, using DTDs and XSLT, and do not mean that DITA is limited to
that implementation choice.

There are three basic ways to extend DITA. Each has a unique role, and associated costs
and benefits:

• Specialization
o Information types
o Domains
o Code

• Customization of code
• Integration of design

Specialization
When you require a difference in output that reflects a real difference in input, or you
want to make changes to your design for the sake of increased consistency or
descriptiveness (regardless of output), you can use DITA specialization to define new
information types or new domains.

Specialization allows you to define new kinds of information (new topics, new domains
of information), while reusing as much of existing design and code as possible, and
minimizing or eliminating the costs of interchange, migration, and maintenance.

There are two specialization hierarchies: one for information types (with topic at the root)
and one for domains (with elements in topic at their root). Information types define topic
structures, such as concept or task or reference, which often apply across subject areas
(for example, a user interface task and a programming task may both consist of a series of
steps). Domains define markup for a particular information domain or subject area, such
as programming, or hardware. Each of them represent an “is a” hierarchy, in object-
oriented terms, with each information type or domain being a subclass of its parent. For
example, a specialization of task is still a task; and a specialization of the user interface
domain is still part of the user interface domain.

The two hierarchies are kept separate to make it easy to combine them as needed (for
example, to give you a task that contains programming keywords). This means that, aside
from their common root in topic, a domain will never specialize elements from an
information type, and an information type will never specialize elements from a domain.

The two hierarchies are implemented as a set of module files that declare the markup and
entities required by each specialization. A DTD for authoring specialized content then

embeds the modules for the appropriate specializations, plus the modules for their
ancestors. Each of the modules, aside from the base topic.mod, is insufficient for
independent authoring, but can be combined with others.

This separation of markup into modules, as with the XHTML modularization initiative,
(http://www.w3.org/TR/xhtml-modularization/), allows easy reuse of specific parts of
the specialization hierarchy, as well as allowing easy extension of the hierarchy (since
new modules can be added without affecting existing DTDs). This makes it easy to
assemble design elements from different sources into a single integrated DTD.

Specialization involves creating new design modules, and new shell DTD files to embed
them. It may also involve creating matching code modules, with new shell XSLT
transforms to import them.

When you have semantic distinctions you need to make in your content that are not
available in the base DITA framework, or you need to prune the structure of an existing
information type to suit more restrictive guidelines, you can create specialized
information type or domain modules to incorporate into your design. If appropriate, you
can also create matching specialized code modules, to add distinctive output behavior for
your new semantic elements.

topic

title

prolog

metadata

relgroup

body

task

title

prolog

metadata

relgroup

taskbody

prereq

context

steps

xmp

result

postreq

step

cmd, (info | substeps | tutorialinfo |
taskxmp | choices)*, stepresult?

A specialization can reuse elements from higher-level designs (as task reuses title and
prolog), but each specialization module only declares the elements that are unique to it
(as task declares taskbody, prereq, context, and so on).

While specialization lets you define new elements, you must map them to pre-existing
elements in an existing information type or domain module (as taskbody maps to body,
and so on). The mapping must be valid, which means the new element is as restrictive or
more restrictive than the parent in its allowed content and attributes, and does not break
requirements set by the parent such as required attributes or content. It is encoded in a

special “class” attribute, defined in the DTD as an attribute with a default value, but not
actually coded in the content. This lets content in newly specialized information types or
using newly specialized domains be processed by pre-existing code, so you can continue
to refine your design while preserving your investment in existing infrastructure.

There are two separate ways to specialize:
• New information types, which define new kinds of topics, with specific

structures as well as specific elements
• New domains, which define new kinds of elements (for example new kinds of

paragraph, new kinds of phrase, new kinds of keywords) that can be made
available in any existing information type, as variants of the ancestor element

This gives you maximum flexibility in the way you create a specialized DTD:
• Information type specialization starts from the top (the definition of the topic)

and works down through the structure to whatever level is required (to the section
level, or even down to the phrase level, as in the contents of a task’s steps)

• Domain specialization starts from the bottom (the definition of an element) and
lets you include new variants of that element wherever the original was available

Because you can reuse existing design and code, you don’t need to define an entire DTD
from scratch, only the differences between your more descriptive semantics and the
already defined semantics in the parent information type or domain modules.

Information types
Information type specialization starts from the definition of a topic, and all other
information types ultimately inherit from that.

reference
taskconcept

topic

wiztask

Each information type’s module contains the declarations for the markup it defines. A
shell DTD can then embed the specialized module with its ancestor modules to support
authoring topics of the specialized information type.

For example, a shell DTD that would support authoring wiztasks could:
• Embed topic.mod (to get default elements from topic, such as p for paragraph)
• Embed task.mod (to get default elements from task, such as cmd for a command

in a step)
• Embed wiztask.mod (to get the specialized topic structure for the new topic type,

and any new elements declared as part of that structure)

For more information on information type specialization, see:
http://www.ibm.com/developerworks/xml/library/x-dita2/

Domains
Domain specialization also starts from the definition of a topic, although unlike
information types, domains can start specializing at any level, that is based on any
element in topic, without regard for the elements that contain it. For example, a domain
might specialize fifteen new variants of keyword, and touch no other elements.

Topic

GUI

Wizard

wintitle

wiztitle

keyword

apiname

As with information types, domains must provide mappings from their new elements to
ancestral equivalents. For example, a wiztitle element in wizards could specialize
wintitle in UI, which in turn specializes keyword in topic: giving wiztitle
mappings to both wintitle and keyword.

Each module defines a set of domain-specific elements, such as syntaxdiagram (and
its component elements) in the programming domain, or wintitle (a window title) in
the user interface domain. The elements can be quite complex, as in syntaxdiagram,
which is a specialization of fig (a figure in topic) containing eight other specialized
elements; or they can be quite simple, as with wintitle, which contains only text and
is a specialization of keyword in topic.

A shell DTD can then embed an entity file (that declares what each element is a variant
of) and a module file (to get the specialized markup), and the new domain markup
becomes available in whatever information types you are including, wherever the original
markup was allowed. In other words, once properly assembled into a DTD, the new
markup becomes available wherever its ancestors are allowed. Specializations of fig
become allowable wherever figs are allowed in the information type; specializations of
keyword, wherever keywords are allowed in the information type.

To integrate a domain with an information type, create a shell DTD that embeds the
domain entities, redeclares content models for the affected elements (for example fig
and keyword), redeclares domain attributes that list the domains in use, and embeds the
requisite information type and domain modules, along with those of their ancestors.

For example, if you wanted to include the wizard domain in the concept information type,
you would create a shell DTD that:

• Includes the declarations for the domain entities, which define the specialized
variants of each ancestor element

• Overrides the definitions for the ancestor element entities, to allow the domain
variants into existing content models

• Overrides the content of the domains attribute, so it lists the domains in use by the
information type

• Includes the modules for the information types, starting with the least specific
(topic), and ending with the most specific (in this case, concept)

• Includes the modules for the domains, again starting with the general and
proceeding to the specific

Aside from the modules in which you define the new elements in your domain, all the
other modules in the shell DTD already exist. Most of the work for creating a robust
document definition has already been done for you.

While the shell DTD is doing considerably more work than it does for information types
on their own, note that there is still no markup actually declared in the shell file: all the
markup declarations are in the information type and domain modules (.mod files), where
they can be reused without conflict by any number of other shell DTDs.

For more information on domain specialization, see:
http://www.ibm.com/developerworks/xml/library/x-dita5/

Code
You may find that the default processing for your new information types or domains is
appropriate, and you don’t need any new code. For example, the programming domain’s
codeblock element specializes pre (equivalent to the HTML pre element, meaning
preformatted); so codeblock, like pre, will get formatted with linebreaks and in
monospace font, without any extra code necessary.

However, if you want different output, you can define the new template rules in code
modules that are parallel to the information type and domain modules, so that they can be
easily included by a specialized shell XSLT transform, which imports the existing base
behavior plus the new overriding rules. Using this approach, you can realize the benefits
of the separation of content and presentation by modifying the presentation at will
through your own extensions to the base code.

For example, if you wanted to add a special “fastpath” icon to each occurrence of a
wiztitle in the output, you could create an XSLT module for the wizards domain
(say, wiz2htm.xsl) that contained a template that matches on wiztitle and outputs an
icon before the contained text. To incorporate the new rule for the wizard domain into
an HTML output transform for concepts, you could create a shell XSLT transform that:

• Imports topic2htm.xsl (default behavior, for example pre)
• Imports concept2htm.xsl (concept-specific behavior if any)
• Imports ui2htm.xsl (base behavior for UI-specific elements)
• Imports wiz2htm.xsl (the new domain rule, adding a fastpath icon to wizard titles)

Example: base design for authoring tasks
By designing in modules, and tracking the modules as parts of a specialization hierarchy,
we get maximum reuse of markup and code, and maximum maintainability within a
formal structure:

referencetask

task:
skeleton

XSLT

referencetaskconcept

topic

UIprogrammingsoftware UIsoftware

task:
skeleton

DTD
topic

domains

info types

Example: extended design for authoring wiztasks
Because the base design is already modularized, extension to the design can easily build
on the existing structure, adding modules to the hierarchy and then creating shell DTDs
that select the necessary existing modules along with the new ones. Because the new
design is also modularized, it in turn is reusable by future extensions.

referencetask

wiztask:
skeleton

XSLT

reference
taskconcept

topic

UIprogrammingsoftware UIsoftware

wiztask:
skeleton

DTD
topic

wiztask

wizards

wiztask

Specialization and generalization
When content is created with specialized DTDs, it uses new design elements, which
could create issues when sharing your content with other groups that don’t share the new
design elements. Specialization and generalization provide ways to avoid these issues,
which would otherwise create substantial barriers to interchange and reuse.

If the reusing group only needs output, they can just run their existing transforms against
your content, and get output based on whatever the lowest common denominator is
between your specialization hierarchies. For example, if you send them a wiztask, they
may process it as a task. This means that other groups can use your content without
committing to your output rules or infrastructure: design and output are decoupled, and
can be considered, and adopted, separately.

If the reusing group needs to take over the content, however, but is unwilling to adopt the
specialization, you can back your content out of the specialization and into an ancestor
design, using a process called generalization. This lets you migrate any specialized
content into a more general design, taking advantage of the design’s built-in mapping,
using a standard transform (no need for complex mappings, no need for cleanup). This
means that other groups can adopt your content without committing to your design:
content and design are decoupled, and can be considered, and adopted, separately.

Result
The result is specialized design both in terms of information type (structure) and domain
(subject), with optionally matching specialized output: the markup you need to describe
your content for search and enforce consistency of structure, and any output differences
you want for your more closely described content.

This gives you the same benefits as a new DTD developed from scratch, but without
compromising reuse or interchangeability of content, and with substantially less design
and code to create and maintain.

Note that all of these principles and strategies, while demonstrated here with DTDs, can
also be implemented with XML schemas, which in fact have some built-in support for
validating inheritance relationships that specialization can leverage.

Customization
When you just need a difference in output, you can use DITA customization to override
the default output without affecting portability or interchange, and without involving
specialization. For example, if your readers are mostly experienced users, you could
concentrate on creating many summary tables, and maximizing retrievability; or if you
needed to create a brand presence, you could customize the transforms to apply
appropriate fonts and indent style, and include some standard graphics and copyright
links.

Customization lets you get different output effects without touching your design or
content. Your content is insulated from locally-driven design initiatives, such as branding
or market-specific requirements, so that if the content gets used by a different brand, or
published for new markets, you only need to change customization modules: your base
processing model, and all your content, are reusable without editing. This also lets
different groups, with different branding requirements, share content without conflict,
since their branding requirements are factored out of the content into processes, and even
the processes are entirely shared except for brand-specific modules.

Customization involves creating new XSLT modules (that provide the new behavior
rules) and new shell XSLT files that import both the existing modules (to provide default
behavior) and the new modules (to provide overriding behavior.).

For example, to add a default image and link to every output HTML page, you would
need:

• A new customization module that defines the override templates. These may be
overrides of existing named templates in the base transforms, or just match-based
templates that will fire when they have higher priority than the base ones.

• A new shell XSLT file that imports the existing transform modules, and then
imports the custom module (so that it has higher priority than the base modules)

Result
The result is customized output, without affecting the reusability or interchangeability of
the content, and with a minimum of new code to maintain.

Integration
Because of DITA’s specialization hierarchies, which provide a set of design modules for
information types and domains, you can quickly create a DTD that integrates the subset
of information types and domains you require, using a shell DTD that embeds the
appropriate design modules and leaves the others out.

Integration allows you to select a subset of existing design. You can then use existing
default transforms that support all information types, or create a more selective transform
that applies only to the design you are using. The result is information that can be
processed with existing transforms, and authored with existing DTDs.

DITA is lightweight by design, and specialization is intended to allow you to meet
specific needs without increasing the size of the core standard. DITA integration allows
you to create an even lighter weight solution, ignoring any branches of the hierarchy that
you don’t need, even within the base, but also allowing you to selectively integrate
additions to the hierarchy, rather than accepting an all-or-nothing proposition. This gives
you a “light” version of the DTD on your terms: you get to define what “light” means,
what markup you need and what markup you don’t, without ever touching the files that
hold the markup declarations.

For example, if another group added three information types and three domains to the
hierarchies, you could choose to integrate one of the information types and two of the
domains, and ignore the rest. This allows you to include the extensions that make sense
for your group, without being affected by the extensions that don’t apply to you.

When you need a different configuration of existing DITA elements, DITA integration
provides a formal, disciplined way to recombine existing information types and domains,
without compromising portability or maintainability: since any documents created are
subsets of the full supported list of information types and domains, there is no new
markup or code to support, and all content created is within supported boundaries.

For example, if you wanted to create documents that consisted of a task topic with child
reference topics and support for software and user interface domains (but with no other
information types or domains supported, and no other nesting allowed), you could create
shells as follows:

A shell DTD that:
• Includes the declarations for the domain entities (software-domain.ent, ui-

domain.ent)
• Overrides the definitions for the ancestor element entities, to allow the domain

variants into existing content models (pre, keyword, and ph)
• Overrides the nesting entities that define what each information type can nest

(task-info-type allows reference, reference-info-type allows no-topic-nesting)
• Overrides the content of the domains attribute, so it lists the domains in use by the

information type (sw-d and ui-d)
• Includes the modules for the information types (topic.mod, task.mod,

reference.mod)
• Includes the modules for the domains (software-domain.mod, ui-domain.mod)

Note that all of the modules listed in your new shell DTD already exist. That is, you
don't have to writing any new modules for integration. You merely plug in the existing
modules.

A shell XSLT transform (optional) that:
• Imports topic2htm.xsl (the common root module for topic to HTML transforms)
• Imports task2htm.xsl and ref2htm.xsl
• Imports ui-d2htm.xsl and sw-d2htm.xsl

Result
The result is an integrated design and equivalent output, without any new DTD
declarations or transform templates (only shell DTDs and shell transforms that reuse the
available existing modules).

Specialization vs. customization vs. integration
Use specialization when you are dealing with new semantics (new, meaningful categories
of information, either in the form of new information types or new domains). The new
semantics can be encoded as part of a specialization hierarchy, that allows them to be
migrated back to more general equivalents, and processed by existing transforms.

Use customization when you need new output, with no change to the underlying
semantics (you aren’t saying anything new or meaningful about the content, only its
display).

Use integration when you need to change topic nesting relationships, or restrict the
available information types or domains.

Summary

Artifacts Costs/Benefits
Specialization Specialized DTD

module
Shell DTD
(Specialized XSLT
module)
(Shell XSLT)

Small cost
New design elements
(New code)
Migration/interchange supported by
architecture (generalization
transform)
Reuse of most existing design and
all or most code

Customization Customized XSLT
module
Shell XSLT

Less cost
No new design elements
Some new code
No migration/interchange issues
Reuse of all existing design and
most code

Integration Shell DTD Close-to-zero cost
No new design elements
No new code

No migration/interchange issues
Reuse of all existing design and
code

New design from
scratch

Complete DTD
Complete XSLT
Any
migration/interchange
transforms when
required

High cost
New design elements
New code
Migration/interchange supported by
single-purpose transforms; no built-
in mappings (transform may be
complex, may require cleanup
before and after)
No reuse of design or code

© Copyright IBM Corp, 2002. All rights reserved.

