
Open-Source Documentation:
In Search of User-Driven, Just-in-Time Writing

Erik Berglund
Linköping University
S-581 83, Linköping,

Sweden
+ 46 13 28 24 93
eribe@ida.liu.se

Michael Priestley
IBM Toronto Lab

Canada
mpriestl@ca.ibm.com

ABSTRACT
Iterative development models allow developers to respond quickly
to changing user requirements, but place increasing demands on
writers who must handle increasing amounts of change with ever-
decreasing resources. In the software development world, one
solution to this problem is open-source development: allowing the
users to set requirements and priorities by actually contributing to
the development of the software. This results in just-in-time
software improvements that are explicitly user-driven, since they
are actually developed by users.
In this article we will discuss how the open source model can be
extended to the development of documentation. In many open-
source projects, the role of writer has remained unchanged:
documentation development remains a specialized activity, owned
by a single writer or group of writers, who work as best they can
with key developers and frequently out-of-date specification
documents. However, a potentially more rewarding approach is to
open the development of the documentation to the same sort of
community involvement that gives rise to the software: using
forums and mailing lists as the tools for developing
documentation, driven by debate and dialogue among the actual
users and developers.
Just as open-source development blurs the line between user and
developer, open-source documentation will blur the line between
reader and writer. Someone who is a novice reader in one area
may be an expert author in another. Two key activities emerge for
the technical writer in such a model: as gatekeeper and moderator
for FAQs and formal documentation, and as literate expert user of
the system they are documenting.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation] User Interfaces
– Training, help, and documentation.

General Terms
Documentation, Human Factors

Keywords
Open source documentation, just-in-time, user-driven.

1. THE PROBLEM
Over the years, the software industry has accepted that changing
requirements are simply part of the software development process.
An allowance for client requirements change, even an expectation
of change, is at the foundation of most software development
methodologies. The Rational Unified Process (RUP) illustrates
this, and Extreme Programming (XP) exemplifies it. Taken to the
extreme, as it often is in open-source development, the
functionality of the product may not be determined until the day it
is completed.
Continuous requirements change makes traditional methods of
software documentation difficult. Measured from the last change,
production lead-time is effectively nil. While some projects do
incorporate documentation requirements into their production
schedule, in many cases writers simply have to make the best of
an impossible situation, and produce what documentation they
can under the circumstances.
Writers cannot simply adhere to a pre-existing plan: they have to
quickly assess the relevance of each change and assign priorities
to each affected area. Throwing more writers at the problem is a
solution with a rapidly diminishing return on investment: more
writers typically require more coordination and planning, not less,
and this compounds the risks posed by a volatile information
domain. The problem cannot be solved with more planning or
more reviewing. The writer simply has to make the most of what
resources are available, and aim to produce something useful at
the end of it.
Applying software development methods to the writing process
may sound like a plausible solution to the problem [36]. However,
the solution falls short when documentation departments lack the
resources and influence that would allow them to negotiate
changes after the manner of development departments. While
process, and especially integration of process [25], can help
writers track changes, it doesn’t help them find the resources or
time to make changes. Application of processes and integration of
processes provide only half the answer: they provide knowledge,
but not the opportunity to apply it.
So the problem, finally, is that when we have the understanding,
we have it too late; and regardless of how well we plan or how
hard we work, the best we can hope for is an incomplete manual
and help set that have a minimum of errors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGDOC'01, October 21-24, 2001, Santa Fe, New Mexico, USA.
Copyright 2001 ACM 1-58113-295-6/01/0010...$5.00.

132

2. THE SOLUTION
There are various ways to address this problem, innovations in
how we write (in small reusable units), how we process (using
various singlesourcing technologies), and how we ship to the
customer (incrementally over the web, through a knowledge base,
and so on and so forth). These solutions are useful, and make the
most of what resources are available.
But a bolder solution is to simply accept that what we are
shipping is incomplete, that documentation is in fact inherently
incomplete, and then move on to the larger problem: how can we
provide our customers with the answers to their questions?
Software documentation has been trending to the minimalist for
quite some time. As software becomes more usable, it often picks
up document-like attributes (from GUIs to embedded text to
wizards), and becomes to some extent self-documenting, lifting
some of the burden of completeness from the documentation.
There’s no need to document the obvious: when the software is
self-explanatory (would that it were more often), the
documentation can afford to be mute.
Unfortunately, as the same explanation will not serve all users, the
same piece of software may be self-explanatory for some and
completely opaque to others. This would seem to put the burden
of completeness back onto documentation: even if a feature is
obvious for one user it isn’t for all, therefore document all
features. While this conclusion is valid enough when we consider
documentation as a static, published entity (something produced
with the product for the product), the situation becomes more
complex when we think of documentation as a networked and
evolving entity, a larger world of information resources in which
static documentation provides only a starting point.
In other words, shipping incomplete documentation may be
acceptable if the information gaps can be filled in some other way,
after the shipping date, as the answers become needed. This is a
step beyond print-on-demand, to write-on-demand. Such user-
driven, just-in-time production of content would also strengthen
relevance in content production and foster communities building
on a global scale.
How would write-on-demand processes work? User-driven, just-
in-time documentation depends first on the availability of a
community of users who can request and receive documentation.
You cannot provide the answers without the ability to hear the
questions. Users may be prepared to wait for an answer, if they
know one is forthcoming. Further, a user may be prepared to
collaborate in the answer, providing parts they do know if only to
help speed up the writer’s research time. In fact, herein lies the
heart of our solution. The burden of completeness is derived from
the fact that different users require explanations of different
features: obviousness is subjective. But this same fact in a
networked world implies the opposite: for every user who is
confused by a feature, there is another user who understands it
and can explain it. The corollary of partial confusion is partial
understanding. The users themselves can fill in the holes. In fact,
this is how mailing lists and discussion forums work. The role of
the writer, in a situation like this, is to be in effect a sort of super-
user: someone who is articulate and knowledgeable and regularly
available to the community.
In software development, there is already a methodology that is
based on such processes: open source development. In recent

years, the open-source approach to software development has
resulted in notable success stories: Linux [12], Mozilla or
Netscape [13], and the Apache web server (over 50% of the
market) [1, 15] are all large, global products in fast moving
technical areas. Open-source development, in its purest form, is
an ecological process with a focus on user-driven just-in-time
production of content. The community develops what it needs
when it needs it bad enough. Software grows from the needs,
desires, and work of the community. Given the success of open-
source development as a response to these problems in software
development, it may be worth considering how the same
methodologies can be applied to software documentation.

2.1 Open-source documentation and technical
writing
In this paper we will discuss open-source documentation as a
user-driven, just-in-time documentation process that delivers the
documentation users want when they want it. In a sense, open-
source development of documentation is practiced continuously
today. Evolving content in mailing lists and FAQs are both the
result and fodder for ongoing discussions that help develop a
community’s understanding of software products. Mailing lists
and FAQs represent technical debate in user communities, which
both answer questions about products and also discuss future
development of products.
This paper addresses how technical debate can be turned into
formal support for software products. We present an open-source
documentation method focusing on debate and dialogue as the
engines of content creation. Content extraction and debate
moderation are also regarded as means for directing and
transforming the tacit knowledge of the group into the explicit
support for a technology. We will also address contemporary
technical writing techniques in relation to the vision of open-
source documentation, and discuss the changes that open-source
documentation processes may bring about for the writing
profession.

2.2 Organization
The paper is organized as follows. Section 3 analyses and
describes open source development from the experiences of open-
source software development. It also describes why open source
development results in just-in-time, user-driven production of
content. Section 4 provides a framework for open-source
documentation projects and discusses how to achieve
documentation through user contributions. Section 5 examines
writing techniques in search for open-source processes. Section 6
discusses the state of the profession on open-source
documentation projects. Finally, Section 7 summarizes the paper
and discusses whether open-source documentation would work.

3. OPEN-SOURCE DEVELOPMENT
Open-source projects have received a fair bit of attention in recent
years, with successful projects such as the Linux [12] operating
system, the Apache web server [1], the Mozilla web browser [13],
and the Perl and Python programming languages [22, 26].
According to the open-source initiative (OSI), a non-profit
corporation dedicated to managing and promoting an open-source
definition:

133

The basic idea behind open source is very simple. When
programmers can read, redistribute, and modify the
source code for a piece of software, the software evolves.
People improve it, people adapt it, people fix bugs. And
this can happen at a speed that, if one is used to the slow
pace of conventional software development, seems
astonishing.

– Open Source Initiatie web site [18]

Many open-source projects are developed as freeware but this is
not a necessity of open-source projects. Though open source has
its roots in freeware initiatives such as the GNU projects [9] of
which the Emacs editor [7] is the most famous application [33],
open source does not necessarily mean non-profit.

Teaching new users about freedom became more difficult in
1998, when a part of the community decided to stop using
the term "free software" and say "open-source software"
instead.

"Free software" and "Open Source" describe the same
category of software, more or less, but say different things
about the software, and about values. The GNU Project
continues to use the term "free software," to express the
idea that freedom, not just technology, is important.

– Stallman R. [33]

The OSI definition of open-source does not exclude sales of open-
source products, in fact it specifically mentions sales. It is the
control over the source code that is key to the open-source
certification that OSI provides [19].
The OSI certificate protects the source code's ability to move
freely though different development projects. This gives the
potential for a critical-mass effect, in which the efforts of many
globally distributed independent groups with different goals
jointly develop software that is more powerful than anything they
could have developed individually. In a sense, the software
becomes a completely independent entity, which can grow and
evolve in directions its original developers never envisioned.
According to Bruce Perens, who wrote the original draft of the
OSI definition for the Debian open-source project [3], the
definition is a bill of rights for the computer user. Certain rights
are required in software licenses for that software to be certified as
Open Source [20]. Essentially the right to:

• Make copies of the program, and distribute those copies

• Have access to the software's source code, a necessary
preliminary before you can change it

• Make improvements to the program

While this bill of rights adequately defines when software is open
source (and amenable to open-source development), it does not
really describe the nature of open source development. For
instance, the famous open-source projects such as Linux, Mozilla
and Apache have had large and organizationally independent
groups contributing to the same development. How such groups
can cooperate, and how a community with a range of involvement
from individuals to companies can organize itself, are aspects that
are not covered by the OSI definition.

Open source is often described as massive parallel development
[5, 27, 28, 30]. Furthermore, open source is often connected with
individuals working together in a highly decentralized
organization. The primary technological drivers for open source
software include the need for more robust code, faster
development cycles, higher standards of quality, reliability and
stability, and more open standards/platforms. [5] Robustness is
also one of the established benefits of open source [39, 21].
Perkins writes that it is, in fact, the decentralized organization that
helps the open-source community to consistently produce
powerful, robust, useful software solutions [21]. From a research
perspective, open-source is a new but relevant area of
investigation. The 1:a workshop on open-source-software
engineering was held at the international conference on software
engineering (ICSE) 2001, which hopefully will result in more
research on the subject [6]. One of the few in-depth analysis of
open–source can be found in Feller and Fitzgerald's framework
analysis of open source software development [5]. Furthermore,
the book Open Sources: Voices from the Open-Source Revolution
provide articles written by key figures in the early days of open
source [4].
The nature of open-source development still remains somewhat
uncharted territory but is typically (among other characteristics)
robust, public, just-in-time, user-driven, global, community-
oriented, critical-mass dependent, non-directional in its growth,
developed from the bottom up, and change-prone. We will
elaborate on two aspects of open-source development: user-driven
and just-in-time. The strength of these aspects is the focus they
naturally put on relevance and priority. What gets built is what the
users want when they want it bad enough.

3.1 User-driven
In many cases, open-source development is driven by demand for
the product in the programming community itself [37]. Users
develop the systems they need or want themselves. As such, open-
source development can be viewed as an ecological process, in
which independent users jointly grow their desired systems. In
this its purest form, open-source users are open-source
developers. This approach makes the most sense for projects that
are relevant to large groups of people, because small groups
cannot generate the hours to develop a major system. The basis
for open-source development is massive parallel development.
[27, 5] Also, open-source projects can be utterly decentralized
where no authority dictates what who shall work on and how. Still
tremendous organization and cooperation emerges. [Perkins 1999]
Of course, to grow substantially from the efforts of a user-
community an open-source project must generate a critical mass
of developers that contribute. This is what successful projects,
such as Linux and Apache, have done. Also, the critical mass of
users must be competent enough to understand and contribute on
a highly detailed level – for instance system administrators – and
as a result their needs will shine through in the software they
produces. Which explains why, in the past, opens source projects
mostly have been focused on operating and networking software,
utilities, development tools, and infrastructure components [5].
Of course, for products such as Linux the majority of users will, if
the projects is successful, eventually be users in the traditional
sense that do not add to the functionality of the code or even have
the ability or intent to contribute. However, the open
communication channels used in open-source communication

134

(mailing list and web sites) still broadcast information and
discussions to the world. Development is open also to those not
directly involved and they may participate to lobby for
functionality they need.

3.2 Just-In-Time
Open-source development can be considered just-in-time
development because the users develop what they want when they
want it bad enough. Of course, skeptics may argue that open-
source development is mostly technically driven (and support
technical desires rather than user needs) because people with
technical skill define requirements by implementing them.
However, in many open-source projects where the users are in fact
technical people (for example, Perl and Apache) these distinctions
become meaningless: technical desires are, in fact, the user needs.
Open-source projects are defined by very short release cycles [5].
According to Eric S. Raymond, one of the smart things Linus
Torvaldsson did was to create an extremely short release cycle.
Linus succeeded in getting solid feedback and responding to it in
only 24 hours, something thought utterly bizarre at the time [29].
In this sense, Linus was also sensitive to requests in a just-in-time
fashion and provided his community with rapid responses to their
interest in the Linux project. So even when users are not
implementing features themselves, the short cycle times and
community involvement that typify open-source projects still
provide just-in-time development.

4. AN OPEN-SOURCE DOCUMENTATION
FRAMEWORK
Just as open-source development requires a framework through
which a community can cooperatively develop code, open-source
documentation requires a framework that captures the relevant
qualities of open-source development (just-in-time and user-
driven development) while accommodating the special
requirements of documentation development.
The first step is simply to allow people to contribute, as Jones
pointed out in a short article on open source and digital libraries
[10]. Writing cannot be restricted to a privileged few: people
outside the organization must be allowed to contribute. This is
actually easier to consider for documentation, given that
documentation is less dangerous in its possible effects (a badly
written document won’t erase your hard-drive - at least not
directly - in the way software can).
The goal of the framework is to turn technical debate, currently
taking place in mailing lists and discussion forums, into formal
support for software products. In this section we define an open-
source framework which is in subsequent sections matched with
contemporary forums for technical debate and current technical
writing techniques.
Open-source documentation should perhaps not be seen as text
created through an open-source development model but rather as
drawing from an accumulated pool of resources, which include
both captured competence (text, multimedia) and living (persons)
competence. An open-source framework can encourage the
creation of these resources, from which a documentation build (by
analogy to code builds) can create tutorials, standard documents,
books, online reference manuals, and so forth as necessary for a
particular project or delivery context.

4.1 Premises
There are a number of premises that must be met to even start
considering open source documentation:

4.1.1 Electronic Documentation
An absolute requirement for open-source documentation is the
electronic format. Open source projects must be editable on a
global scale and it therefore becomes practically impossible to use
print. However, this does not mean that the layout should exclude
printable versions of the documentation because users will still
want to print documentation. Hard-copy versions may, of course,
be constructed from documentation builds.

4.1.2 Web-Site Driven
Since documentation source needs to be accessible to a global
community of users, web sites are the logical organization and
access mechanism. The easiest way to get started is to run your
web site on a SourceForge server (either on the international
SourceForge server at www.sourceforge.com or on your own
downloaded copy of it) [32]. This provides a good starting point
for managing your source via the web.

4.1.3 Open-source documentation License
Letting go of control requires the definition of a license over
ownership of the open-source documentation and the ability to
freely use the documentation source in documentation builds. The
documentation source must be free to become part of many
different projects. This includes allowing others to make
documentation builds from the documentation source and even
create new products from that pool. Without an open-source
documentation license, there is less incentive for diverse groups to
contribute to the effort, and little chance of achieving the
necessary critical mass of contributors. Explicit open-source
documentation licenses are also needed because the copyright
applies to work regardless of medium and without copyright
notice. For a discussion on copyright see the Stanford Copyright
and Fair Use web site [34]
Open-source documentation license do exist today, among which
GNU Free Documentation License [8] and the Open Content
License [17] are the most commonly used for open source
projects. These licenses allow distributions of verbatim copies and
derived work under certain conditions. For instance, the GNU
Free Documentation License allows distribution as long as the
distributed copy also use the same license.

We have designed this License in order to use it for
manuals for free software, because free software needs free
documentation: a free program should come with manuals
providing the same freedoms that the software does.

– GNU Free Documentation License [8]

4.1.4 Documentation Splits
Along with the open-source documentation license comes an
acceptance of the possibility of branching projects. This allows
fundamental disagreements in a community to be resolved
through splitting the community and creating a new version that is
maintained in parallel with the original.

135

4.1.5 First Prototype
The open-source documentation project must start with a small
first prototype that jump-starts the process and makes it believable
that the project will result in something valuable and worthwhile.
This first prototype, and the first documentation build, are, in
practice, the sales pitch for the project. The prototype must not be
complete but rather make it believable that a relevant result can be
produced. Subsequent documentation builds do not have to match
the vision of the first prototype: its purpose is to provide a
departure point, not an end-point for development.

4.2 On-Going Support
Once the project gets started there are a number of aspects that
need special attention to keep the project running smoothly:

4.2.1 User Control
As in all projects, the quality of the content needs to be regulated.
Control is a social issue in open source development, in which the
community regulates itself [10]. Typically the community grants
certain serious and dedicated users special rights that allow them
to review contributions and disallow illegal or inappropriate
submissions. Naturally the writing staff will be among such power
users but people outside the organization must also be allowed to
regulate content.

4.2.2 Social Structure
User control requires the construction of a social structure for the
members of the community. Assignment of power-user status can
be based on engagement, seniority and peer ranking.
Many open source systems, such as Source Forge, use peer
ranking. The Source Forge ranking system measures
teamwork/attitude, coding ability, design/architectural ability,
follow-through/reliability, and leadership/management. Social
ranking has other advantages as well. For instance, social ranking
acts as recognition of contribution and as rewards. Furthermore,
social ranking organizes users in relation to their capacity and
therefore also organizes users into resources. Social structures
also support the feeling of a community.
In a documentation project, coding could simply be replaced with
writing as a ranked competency. However, in a mixed project
(where the documentation is being developed alongside a
particular piece of software), it would be worthwhile to define
separate measurements for writing and for information
design/architecture, to allow meaningful rankings of good
developers who are poor writers and vice versa.

4.3 Goals
4.3.1 Building Documentation
The focus of the open-source documentation project should be to
build documentation of more traditional style, such as user guides
and how-to documents. The documentation source should not be
regarded as documentation in itself. There is a risk in open-source
documentation that web-based information repositories similar to
article collections replace documentation. Such repositories are
likely to spread information around and make reading difficult by
requiring the reader to perform extensive search and content
extraction.

4.3.2 Short Release Cycles
Documentation should have short release cycles to accommodate
the flow of requirements and implementations, such as questions

and answers. Short cycles are not just good service, it is a
necessity for the continuous accumulation of content. Short
release cycles is another requirement for user-driven process
because large development resources are required. Such a design
will require the constant build of documentation from the
documentation source perhaps even every 24 hours. In this sense,
letting go of control is essential because the task of gate keeping a
large documentation source within 24 hours requires manpower
and trust. A power-user social structure helps appoint trustworthy
users that can change with little or no intervention.

4.3.3 Live Communication Forums
An aspect of documentation creation that differs from code
creation is that live, people-to-people communication can become
an integral part of the process. Chats with power-users, people
who are particularly knowledgeable, can be held and recorded as
part of the actual documentation-source. Web-cams can also be
utilized to provide live feedback that can also be collected and
stored. Such live content transmissions also help build the sense
of a community.

4.3.4 Automatic Correctness Verification
In open source software projects, a compiler is often used to
verify that only syntactically correct programming is added to the
common resource pool. Code that does not pass compilation is not
accepted. Beyond compilation, verification is provided through
the massive parallel development inherent in open source.
Similarly, open source documentation projects could have a
number of automatic checks on content, including DTD validation
for XML or SGML source, HTMLTidy reports for HTML and
XHTML, spellchecks, linkchecks, and so forth.

4.3.5 Writing by Moderating
The technical writing staff responsible for the open source project
should take care of moving content around, improving language,
correcting errors, identifying gaps, and so forth rather than
concentrating solely on writing the content. This staff must also
write the first documentation prototype.

4.3.6 Discussion through Annotation
Discussion forums and mailing lists are typically organized
chronologically and by subject (“threads”). Documentation,
however, needs to be based on topics or tasks, organized into
FAQ documents. The transformation from chronological and
thread-based organization to more architected FAQs, and the
rechunking from threads to topics and tasks, is a core concern of
the documentation project.
Traditionally this has been done by hand, through either cut and
paste or more complete rewriting. A more dynamic solution might
be add metadata to the threads, allowing for more intelligent
searching of archived discussions. However, this approach only
allows for search-based exploration of relevant topics, and
requires constant updating of the metadata. A more integrated
solution would be to directly annotate the text in each message,
calling out explicitly what part of it is a query and what part is an
answer. Query lists can, naturally, be generated from the source
for users talented enough to answer them for the writing staff.
Answers that have already been provided by the community can
be assessed according to the ranked skill of the author, and edited
if necessary by posting the edited answer to the end of the thread.

136

Discussion through annotation naturally adds user comments and
discussion to a topic framework, unlike thread-based discussion,
which require transformation. In this sense, annotation speeds up
content-extraction process and thereby shortens the release cycles
for documentation builds.

4.3.7 Multiple Views
A big part of documentation is navigation and as the
documentation source grows the navigation problem grows.
Navigation is also personal or task dependent and it is therefore
difficult to generate a general but effective index. Multiple
indices, however, can exist and this may well be one of the larger
sections of an open source documentation project. By allowing
the construction of navigational links across documentation based
on user design the navigation infrastructure can evolve and grow
with time.

4.4 Technical Questions
There are a number of technical issues that need to be addressed
by the open source documentation framework:

4.4.1 Documentation Format
The web infrastructure and the openness make the technical issue
difficult. The need for a web-site driven project, the formats
usable become somewhat limited. For annotation systems (i.e.,
direct additions to the documentation source) the system must
work directly in the browser. This requirement makes XML a
highly relevant documentation format because the basic web
infrastructure supports XML. However, automatic spell correction
needs to be present as well which may make things a bit more
difficult today. For longer comments, individuals can be free to
use whatever word processor they like to construct their answers
as long as they can convert to the project format.

4.4.2 Documentation Layout and Author Reliability
The layout of a documentation system that includes questions and
answers from the user community needs to show the reliability of
content. At least, the system should clearly indicate that the source
is open for contribution from a worldwide community allowing
participation from, in principle, anyone with web access. The
annotated manual for the PHP open source project does this in
two ways: by calling the manual annotated and by displaying
annotations from users in differently styled sections of the text
[23]. Readers need to be made aware of who the writer is and
their degree of competence.

4.5 Lifecycle
Initially, a documentation prototype provides the starting point for
contributions from an open-source documentation community. As
the project progresses, more and more of the content may be
derived directly from the community, following a process of
content creation and documentation builds can be summarized by
the following lifecycle:
1. A user asks a question, either about existing content or by

requesting information. The question is added to the source
as a comment or as a new question.

2. Another user (may be a member of the writing staff) finds the
question in some build from the source, perhaps a query
listing or as part of a documentation build. The user answers
the question and the answer is added to the source.

3. Other users provide answers, confirms answers or, adds
comments and reposts to the source as an annotation.

4. Another user with editorial skills reworks the answer to and
reposts.

5. The answer is automatically picked up in the next FAQ
build, although ranked fairly low since it has only been asked
once. The build may also validate that the FAQ has been
correctly authored as a task, has no spelling errors, etc.

6. Another user with information architecture skills adds a
reference to the task to pull it into the appropriate place in
the overall task flow, and to include it in the appropriate
indexes and tables of contents for whichever delivery
contexts are appropriate.

7. Someone reads the documentation, has a problem with it,
and asks a new question.

8. Repeat until software and documentation are perfect or
obsolete, whichever comes first.

Alongside this process, documentation builds are continuously
created from the source with layout visualizing the credibility of
the different pieces. As a question-answer cycle matures the
content become more and more integrated in the documentation
by shifting style and location in the builds. Peers rate contributors
that increase the status of such users. Automatic rating systems
can be built in to the discussion format by measuring the addition
of agreement, refinement, or disagreement to answers. For highly
rated users, the technical staff investigates whether or not to grant
user more privileges to cut corners in the gate keeping process.

4.6 Summary of Framework
The open-source documentation presented in this section focus on
the creation of a user community that builds documentation by
debating topics in a documentation source. From the source,
documentation is built by extraction (automated if possible). The
layout visualizes the credibility of content in style and position.
As content mature through the community process, its visibility in
subsequent documentation build releases increase.
Compared to traditional writing, open-source documentation
focus on the user-driven, just-in-time aspects of content creation
and the natural focus they put on relevance and priority.

5. OPEN WRITING TECHNIQUES
Open-source documentation also requires writing techniques that
support the process of user-driven, just-in-time construction of
documentation through an open-source model. In this section we
discuss what current writing techniques offer in this respect.

5.1 Writing Reusable Units
Many online documentation projects currently use topic-oriented
writing and information typing as ways to produce disciplined
reusable information. Combined with task-oriented minimalism
[2], these techniques can result in highly focussed, reusable, and
user-focussed documentation. The question is how much of these
techniques can be made accessible to a wide community, and can
how consistency and accuracy be maintained, outside of the
standard edit-publish-review cycle?
While various architectures define a variety of sizes and types of
information, at minimum an information-typing architecture

137

defines the size of a topic (a single reusable “chunk” that
describes a single idea, task, or thing) and three information types:
concept, task, and reference. Multiple topics can be combined into
task flows, organized by index or table of contents, and
aggregated into books or websites [24].
Topic-oriented writing can seem quite alien to an accomplished
technical writer more familiar with books, and there is often a
significant learning curve associated with the change in writing
goals and style. However, different as they are from a manual,
they are in fact quite a natural fit for derivation from FAQs.
Different types of question conform quite naturally to information
types: how-do-I questions have tasks as answers, what-is-a or
how-does-it-work questions have concepts or reference topics as
answers. In addition, with the exception of extraordinarily long or
vague questions, most FAQs are going to be naturally chunked at
about the right size for a topic.
So is the fit between newsgroup source and topic-oriented,
reusable content as easy as the normal gathering process that gives
us FAQs? Nearly. Typing and chunking are the two main goals of
an information typing architecture, but a website or book
constructed out of topics needs coherence in its style and structure
to look more than merely accidental, and to be predictable enough
to be useful and usable.

5.2 Editors and Architects
The task of enforcing structural and stylistic guidelines can be in
part taken up by the social structure: appointed or elected editors
(users or contributors with highly rated writing and information
architecture skills) can be reviewers and approvers of candidate
topics. For example, in the case of topics harvested directly from
marked-up newsgroup posts (as described in section 4.3.5), an
editor could be required to forward the (edited, annotated) answer
back to the group before it was considered a candidate for
harvesting. Otherwise, contributors with editorial approval could
perform the harvesting themselves, and impose a certain level of
consistency as they went.
The two proposed skill measurements - writing and information
architecture - point to two separate roles: the topic-level editor,
who pays more attention to style and low-level content issues, and
the collection-level editor, who defines the task flows and tables
of contents that organize the topics into useful collections.
These two roles, and their responsibilities in a more structured
development process, have been described in detail in [25].

5.3 Enforcing Structure with Markup
Structural guidelines can also be enforced by the use of a
specialized markup language, whose DTDs or schemas prescribe
particular structures for particular kinds of information. There are
several possibilities for enforcing such structures:

5.3.1 HTML or XHTML
HTML is a very general standard, and as a result it does not
usefully constrain the information you write in it: two equally
valid topics (according to the HTML standard) can be as different
as any two pages on the web. This is still better than complete
chaos, however, and tools such as HTMLTidy make it easy to
eliminate tagging errors. XHTML is somewhat better, and has the
two advantages of being customizable (you can choose which
modules you require) and, as part of the XML universe,

addressable with XSLT and XPath, which makes it easy to
transform and reuse.

5.3.2 DocBook
DocBook is a more specific standard than HTML, and out of the
box it is focussed on book authoring. While DocBook provides
better validation than HTML or XHTML, and has a good set of
output transforms and tools, it is not particular topic-oriented.
However, parts of it are highly structured, and could be used for
specific domains (such as messages) as-is.

5.3.3 Customized DocBook
Generally speaking, if you want to use DocBook, you will need to
customize it. This is a well-documented process, with the warning
that if you want to add your own tags (not just choose a subset of
the DocBook ones) you’ll need to write your own transforms and
tools.

5.3.4 DITA
The Darwin Information Typing Architecture is a topic-oriented
information typing architecture for writing and publishing
technical documentation. Out of the box, it is oriented towards
creating information-typed topics (concepts, tasks, and reference),
and is quite restrictive in its structures (especially for tasks).
However, it is a new and still-evolving architecture, and there are
a limited number of transforms available (PDF via FO and HTML
are available outputs at the time this paper was written).

5.3.5 Specialized DITA
The good news is that you can create specialized topic types (such
as EJB API descriptions, configuration file formats, cooperative
tasks, etc.) quickly and easily. Generally speaking, the more
closely you tailor your topic’s structures and tags to your domain
(the particular kind of software you are documenting, for
example) the easier it will be to learn (because it matches what the
writers are trying to create) and the more it can enforce structural
consistency. The more tightly you scope your domain, the more
exactly you can define your content rules, and the more precisely
you can control consistency, before an editor even gets involved.

5.4 Massive Parallel Writing
Topic-oriented chunks written by users, refined by editors and
architects, and confined by markup languages can help get
contributions right from the start. Users can acquire the writing
skills to a certain degree and the ones that learn the most also get
the highest ranking and the social structure thereby help produce
quality documentation. At some point, however, technique,
editors, architects, and markup may not be enough. This is where
one of the fundamental points of open-source development kicks
in – massive parallel writing. When writers can read, redistribute,
and modify the documentation source, the documentation evolves
and become robust. People improve it, people adapt it, people fix
bugs (see Section 3). If writing technique fails, open-source
documentation will rely on the sheer size of a committed user
community.

6. CONTEMPORARY OPEN-SOURCE
DOCUMENTATION
Though genuinely open-source documentation cannot always be
found even among open-source software projects, there are some

138

documentation projects and communication media that contain
the user-driven, just-in-time production aspects we are searching
for. Discussion forums, mailing lists, online annotated manuals,
online editable manuals, and open-source documentation projects
can be considered user-driven and just-in-time, but they do not
necessarily conform to other aspects of our framework.
For instance, even when documentation uses an electronic format
and is web accessible, it is rarely accompanied by an open-source
documentation license. Documentation for open-source software
projects often remains proprietary, and resistant to external
contributions.
The Linux Documentation Project, as an example, explicitly
prohibits open use of the documentation source without written
permission:

Any translation or derivative work of Linux Installation and
Getting Started must be approved by the author in writing
before distribution. … These restrictions are here to protect
us as authors, not to restrict you as learners and educators.

– Linux Documentation Project Copying License [11]

While many open-source projects do have a more relaxed
approach to copyright and some use clearly open licenses, in
reality few members of open-source software projects participate
in the development of documentation and the writing staff is a
relatively limited group of people. The most open-source
documentation projects can be found in the online annotated and
editable manuals, for instance the PHP annotated manual [23], the
MySQL commented manual [14], and the Squeek editable manual
[35]. These systems allow users to comment on, or in the case of
Squeek, directly edit, the documentation. The licensing policy is,
however, unclear or closed in these examples, and there is no
explicit social structure to aid in assessing contributors’
credibility.
Discussion forums and mailing lists provide a high degree of user
control, flexibility, and openness to contributions. The members
of the community easily participate. User control over content is
built in to the submission structure. Release cycles can be very
short as answers to questions are posted often within hours. Splits
are not uncommon into different strands of continued discussion.
Unfortunately, discussion forums and mailing are lists have
difficulty supporting the task of building documentation.
Extraction of material into documentation is seldom performed,
making discussions concerning topics difficult to track. Search
engines do exist for such purposes, but require a common
terminology across submissions and support only active search
(not passive browsing).
To find really good examples of open-source documentation we
have to look at more general projects. A well known example
from the software world is Slashdot (www.slashdot.org), which
has been around since 1997 and where the majority of the work is
done by the people who e-mail stories to the site [31]. Slashdot
puts a strong focus on documentation development through
moderated discussion, but an explicit open-source documentation
policy is still lacking and there is little focus on building
documentation.
Even more developed open-source documentation projects can be
found outside the software world. The Nupedia [16] and
Wikipedia [38], globally written encyclopaedias, are examples of

projects that develop information using the GNU Free
Documentation License and that provide a social structure for
writers and editors. In many ways these projects can be viewed as
being open-source documentation projects.
In conclusion, many open-source documentation projects today
are not really open, even in open source software projects. What is
lacking is largely an open-source documentation license policy,
explicit social structures and documentation builds. To a certain
degree human resources are also lacking: for instance, open
source software projects have not really focused their resources on
documentation. The strongest existing examples are general in
nature and are not concerned with producing documentation for
specific software systems or development projects.

7. WOULD IT WORK
In this paper we have discussed open-source development as a
production model that results in user-driven, just-in-time content.
We have provided a framework for open-source documentation
projects that illustrates what aspects of development need to be
taken into account. Furthermore, we have examined open writing
techniques and the current state of the profession in real open-
source documentation projects.
Open-source documentation may well be an attractive method for
user-driven, just-in-time production of documentation, in
particular seeing as much of the production is performed free of
charge. However, that does not mean it will work. The fact that
most of the software needed for handling open-source
documentation projects already exists for open-source software
development is advantageous. However, documentation has its
own problems that do not exist in the software realm. For
instance, changing the documentation does not change the
functionality of the software, and incorrect content is not as easily
caught by compilers and test cases. Greater care and more review
may be required for open-source documentation compared to
open-source software.
It is also important to remember that the completeness of the
open-source documentation project may not be the ultimate goal.
Documentation should provide answers to user questions and
does not need to totally describe the system. Let’s put it another
way: the absence of description in an open-source documentation
project may in itself be a source of knowledge. If users do not
request documentation for a particular feature, it may be because
the answer is made obvious by the design of the interface, or the
feature may simply not be used (assuming that users faithfully
report their needs). In the latter case, the hole in the
documentation may soon have a matching hole in the software!
Using an open-source documentation process provides a way to
measure areas of use and kinds of interaction, and may therefore
be valuable to the development process. As much as users are
involved in the documentation process by providing discussion
content, asking questions and answering them, they are also
providing requirements for tomorrow. What users question and
provide answers for can demonstrate what parts of the software
they use.
What will become of the writing staff in an open-source
documentation project? The writing staff should be dedicated
members of the open-source projects. Given that a large enough
user community exists, the writing staff would service the writing

139

community with their expert knowledge about the system and help
developers articulate themselves. Gate-keeping the production of
content becomes a vital task. Furthermore, the writing staff should
create documentation by extracting content that passes though
mailing lists and discussion forums: FAQs, development
documentation and technical manuals. Such content extraction
would serve both the documentation and the development
process. If fewer users contributed, the writing staff would need to
increase their original content production.
Success ultimately depends on the open-source documentation
project’s ability to accumulate enough users that can and will
contribute to the process. Open-source software has shown that it
is possible to generate even large applications from the efforts of
users. Projects such as Nupedia have also shown that this fact
translates to open source documentation. However, smaller
projects may have difficulties producing enough user
contribution. On the other hand, let us not forget that users
definitely can provide questions even when they can’t provide
answers. In this sense, open-source documentation provide much
needed relevance and priority assessments to the documentation
process.

8. REFERENCES
[1] Apache (open-source web server) http://www.apache.org

[2] Carroll J. M. (Ed.) (1998) Minimalism Beyond the Nurnberg
Funnel MIT Press 1998, Cambridge, Massachusets.

[3] Debian (open-source Linux) http:// www.debian.org

[4] DiBona C., Ockman S., and Stone M. (Eds.) (1999) Open
Sources: Voices from the Open Source Revolution O’Reilly

[5] Feller J., and Fitzgerald B. (2000) A Framework Analysis of
the Open Source Software Development Paradigm In
Proceedings of the 21st International Conference on
Information Systems 2000, Brisbane pp. 10-13

[6] Feller J., Fitzgerald B., and van der Hoek, A. (2001) (W18)
1:st Workshop on Open Source Software Engineering,
position paper for the workshop In Proceedings of the 23rd
International Conference on Software Engineering, 2001 pp.
780 –781

[7] GNU Emacs (open-source extensible editor)
http://www.gnu.org/software/emacs/

[8] GNU Free Documentation License
http://www.gnu.org/copyleft/fdl.html

[9] GNU Software (original free software initiative, origin of
open-source) http://www.gnu.org

[10] Jones P. (2001) Open(sourcing) the Doors: for Contributor-
Run Digital Libraries Communications of the ACM vol. 44.
no. 5 pp. 45-46

[11] Linux Documentation Project copying license, viewed
August 2001. http://www.linuxdoc.org/LDP-
COPYRIGHT.html

[12] Linux.org (central source of Linux information)
http://www.linux.org

[13] Mozilla (open-source web browser, development project for
Netscape 6, based on the original Netscape source code)
http://www.mozilla.org

[14] MySQL annotated manual (online annotated manual)
http://www.mysql.com/doc/

[15] Netcraft Web Server Surveys, viewed June 2001
http://www.netcraft.com/survey/

[16] Nupedia (open-source encyclopedia)
http://www.nupedia.com/

[17] Open Content License http://www.opencontent.org

[18] Open Source Initiative http://www.opensource.org

[19] Open Source Initiative, definition of open-source
http://www.opensource.org/docs/definition.html

[20] Perence B. (1999) The Open Source Definition in Open
Sources: Voices from the Open Source Revolution, Eds.
DiBona C.,

[21] Perkins (1999) Culture Clash and the Road to World
Domination IEEE Software January/February 1999 pp. 80–
84

[22] Perl (open source programming language)
http://www.perl.org

[23] PHP annotated manual (online annotated manual)
http://www.php.net/manual/en/

[24] Priestley, M. (2001) DITA XML: A Reuse by Reference
Architecture for Technical Documentation Conference
Proceedings, ACM SIGDOC 2001

[25] Priestley, M., and Utt, M. H. (2000) A unified process for
software and documentation development Conference
Proceedings, IEEE/ACM IPCC/SIGDOC 2000

[26] Python (open source programming language)
http://www.python.org

[27] Raymond E. S. (1999a) The Cathedral and the Bazaar,
O’Reilly

[28] Raymond E. S. (1999b) A Brief History of Hackerdom in
Open Sources: Voices from the Open Source Revolution,
Eds. DiBona C., Ockman S., and Stone M., O’Reilly

[29] Raymond E. S. (1999c) Linux and Open-Source Success
(interview) IEEE Software January/February 1999 pp. 85–89

[30] Sanders J. (1998) Linux, Open Source, and Software’s
Future IEEE Software September/October 1998 pp 88–91

[31] Slashdot (open software e-zine) viewed August 2001
http://slashdot.org/about.shtml

[32] SourceForge (web site for multiple open source projects)
http://sourceforge.net/

[33] Stallman R (1999) The GNU Operating System and the Free
Software Movement in Open Sources: Voices from the Open
Source Revolution, Eds. DiBona C., Ockman S., and Stone
M., O’Reilly

140

[34] Stanford Copyright and Fair Use web site
http://fairuse.stanford.edu

[35] Squeek manual (online editable manual)
http://squeak.cs.uiuc.edu/documentation/index.html

[36] Utt, M.H., and Mathews, R. (1999) Developing a User
Information Architecture for Rational’s ClearCase Product
Family Documentation Set. Conference Proceedings, ACM
SIGDOC 1999, pages 86-92.

[37] Vixie P. (1999) Software Engineering in Open Sources:
Voices from the Open Source Revolution, Eds. DiBona C.,
Ockman S., and Stone M., O’Reilly

[38] Wikipedia (open-source encyclopedia)
http://www.wikipedia.com

[39] Willson (1999) Is the Open-source Community setting a Bad
Example? IEEE Software January/February 1999 pp. 23–25

9. ABOUT THE AUTHORS
Erik Berglund is a Ph.D. candidate at the Department of
Computer and Information Science at Linköping University,
Sweden. He works with reference documentation and
communication in programming and has previously published at
SIGDOC. Current topics include global sharing and community
communication.
Michael Priestley is an information developer at the IBM Toronto
Software Development Laboratory. He has written numerous
papers on subjects such as hypertext navigation, singlesourcing,
and XML publishing systems. He is currently working on XML
and XSL prototypes for help and documentation management, and
is the Specialization Architect for the Darwin Information Typing
Architecture.
This paper represents the views of the authors and not necessarily
those of their employers.

141

