

IBM Confidential

Last Modified: 10/13/2003 8:33:05 PM

David Ogle

Autonomic Computing
daveogle@us.ibm.com

Heather Kreger
Emerging Technologies

kreger@us.ibm.com

Abdi Salahshour
Autonomic Computing

abdis@us.ibm.com

Jason Cornpropst
Tivoli Event Management

jhcornpr@us.ibm.com

Eric Labadie
WSAD PD Tooling
labadie@ca.ibm.com

Mandy Chessell
Business Integration

mandy_chessell@uk.ibm.com

Bill Horn
IBM Research – Yorktown

hornwp@us.ibm.com

John Gerken
Emerging Technologies
john_gerken@us.ibm.com

Verify Version and Completeness Prior to Use

Hard copy of this document is for temporary reference only. The latest version of this document is in the
Autonomic Computing Problem Determination Offering Team Notes Database. The responsibility for
using the latest level of this document lies with the user of the document. To verify if this is the latest
version, contact the technical owner of the document.

 Canonical Situation Data Format:
The Common Base Event

ACAB.BO0301.2.0

Deleted: 9/10/2003 6:10:42 PM

IBM Confidential

Copyright 2002, 2003 by International Business Machines Corporation. All rights
reserved.
Permission to copy and display the Common Base Events specification in any medium
without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the Common Base Events specification, or portions thereof, that you
make:
 1. A link to the Common Base Events specification at this location; and
 2. The copyright notice as shown in the Common Base Events specification.
IBM (the "Author") agrees to grant you a royalty-free license, under commercially
reasonable terms and conditions, to its patents that it deems necessary to implement
the Common Base Events specification.
THE Common Base Events SPECIFICATION IS PROVIDED "AS IS," AND THE
AUTHOR MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE Common Base
Events SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD
PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.
THE AUTHOR WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
OR RELATING TO ANY USE OR DISTRIBUTION OF THE Common Base Events
SPECIFICATION.
The name and trademarks of the Author may NOT be used in any manner, including
advertising or publicity pertaining to the Common Base Events specification or its
contents without specific, written prior permission. Title to copyright in the Common
Base Events specification will at all times remain with the Author.
No other rights are granted by implication, estoppel or otherwise.

IBM Confidential

Document Control

Notes
If a hard copy is made it is valid only on the day printed.

Canonical Situation Data Format: The Common Base Event

 4

Table of Contents
Document Control... 3

Table of Contents.. 4

1.0 PURPOSE ... 7

2.0 Overview .. 7
2.1. The scope of this work .. 8
2.2. Terminology and Notation.. 9

2.2.1. Notational Convention .. 9
2.2.2. Formatted data and String Values... 9
2.2.3. Data Types... 9
2.2.4. String Length... 9
2.2.5. Case Sensitivity... 10

3.0 Extensibility... 10

4.0 Common Base Event... 10
4.1. CommonBaseEvent Description .. 10

4.1.1. observedTime .. 12
4.1.2. globalnstanceId ... 13

4.1.2.1. extensionName .. 13
4.1.2.2. version.. 13

4.1.3. affectedComponentId.. 14
4.1.4. reporterComponentId .. 14
4.1.5. situation ... 14
4.1.6. correlatorDataElements... 14

4.2. ComponentIdentification Description ... 14
4.2.1. ComponentAddressType... 17
4.2.2. componentAddress.. 17
4.2.3. For componentAddress TCPAddressType ... 17
4.2.4. For componentAddress SNAAddressType .. 18
4.2.5. For componentAddress HostAddressType... 18
4.2.6. For componentAddress DeviceAddressType... 18
4.2.7. For componentAddress GUIDAddressType .. 18
4.2.8. For componentAddress OtherAddressType ... 18
4.2.9. componentType... 18

4.3. ComponentData Description.. 19
4.3.1. application ... 20
4.3.2. executionEnvironment .. 20
4.3.3. instanceId .. 20

4.4. Situation Description.. 21
4.4.1. categoryName ... 24
4.4.2. situationType... 24

4.4.2.1. StartSituation ... 25
4.4.2.2. StopSituation.. 25
4.4.2.3. ConnectSituation.. 26
4.4.2.4. RequestSituation .. 27
4.4.2.5. ConfigureSituation... 28
4.4.2.6. AvailableSituation ... 29
4.4.2.7. ReportSituation .. 30

Deleted: 26

Canonical Situation Data Format: The Common Base Event

 5

4.4.2.8. CreateSituation .. 30
4.4.2.9. DestroySituation .. 31
4.4.2.10. FeatureSituation... 31
4.4.2.11. DependencySituation... 32
4.4.2.12. OtherSituation.. 33

4.4.3. reasoningScope ... 33
4.4.4. situationData.. 33
1.1.1 reporterSeverity .. 33
4.4.5. reporterPriority .. 34

4.5. SitautionData Description.. 34
4.5.1. localInstanceId .. 36
4.5.2. msg .. 36
4.5.3. msgDataElement ... 37
4.5.4. extendedDataElements.. 37
4.5.5. repeatCount ... 37
4.5.6. elapsedTime .. 37
4.5.7. sequenceNumber ... 38

4.6. ExtendedDataElement Description.. 38
4.6.1. name .. 40
4.6.2. type .. 40
4.6.3. Values.. 40
4.6.4. hexValue.. 40
4.6.5. children.. 41
4.6.6. anyData.. 41

4.7. MsgDataElement Description .. 41
4.7.1. msgId ... 43
4.7.2. msgIdType... 43
4.7.3. msgLocale ... 44
4.7.4. msgCatalogTokens.. 44
4.7.5. msgCatalogId .. 44
4.7.6. msgCatalog.. 44
4.7.7. msgCatalogType ... 44

4.8. CorrelatorDataElement Description.. 45
4.8.1. type .. 46
4.8.2. name .. 46
4.8.3. contextValue.. 46
4.8.4. contextId.. 46
4.8.5. processId.. 46
4.8.6. threadId.. 46

5.0 CommonBaseEvent XML schema.. 48

6.0 CommonBaseEvent Class Hierarchy ... 64

7.0 Appendix.. 66

A. Component Type Namespace.. 66
A.1 Overall namespace .. 66
B.1 The Operating System Hosting Environment... 66
C.1 The Web_Application_Server Hosting Environment .. 67
D.1 The Relational_Database Hosting Environment .. 69

Canonical Situation Data Format: The Common Base Event

 6

E.1 List of Component Type Values by Namespace ... 70
B. References ... 72

Canonical Situation Data Format: The Common Base Event

 7

1.0 PURPOSE

This document defines a common base event (CBE) that defines the structure of an event in a
consistent and a common format. The purpose of the CBE is to facilitate effective
intercommunication among disparate components that support logging, management, problem
determination, autonomic computing and e-business functions in an enterprise. This document
specifies a baseline that encapsulates properties common to a wide variety of events, including
business, management, tracing and logging type events. The format of the event is first rendered in
UML allowing the reader to better understand the structure of the CBE. In an appendix, the CBE is
expressed as an XML document using UTF-8 or UTF-16 encoding.

This document is prescriptive about the format and content of the data that is passed or retrieved from
a component. However, it is not prescriptive about the ways in which how individual applications are
to store their data locally. Therefore, the application requirement is only to be able to generate or
render events in this format, not necessarily to store them in this format.

The goal of this effort is to ensure the accuracy, improve the detail, and standardize the format of
events to assist in designing robust, manageable and deterministic systems. Quality event data leads to
accurate, deterministic and proper management of the enterprise. Poor fidelity can lead to misguided,
potentially harmful or fatal results. The results of this effort is a specification for the “Common Base
Event” definition that serves as a new standard for events among enterprise management and business
applications.

2.0 Overview
A small event can change things far beyond the seeming initial circumstance. Nowhere is this truer
than in today’s complex world of e-business where multitudes of interconnected systems must work
together to perform many of the simple housekeeping activities that are necessary to keep a computing
system healthy. Clearly, in this world, small incidents can have wide-reaching implications and few
things are as small, yet pervasive, in a computing infrastructure as an event. The event, which
encapsulates data sent as the result of an occurrence, or ‘situation’, represents the very foundation on
which these complex systems communicate. Events passed between and among applications in
complex information technology systems represent the very “nervous system” that allows these
various facets of the system to interoperate, communicate and coordinate their activities. Fundamental
aspects of enterprise management and e-business communication, such as performance monitoring,
security and reliability management, as well as fundamental portions of e-business communications,
such as order tracking, are grounded in the viability and fidelity of these events. Quality event data
leads to accurate, deterministic and proper management of the enterprise. Poor fidelity can lead to
misguided, potentially harmful or fatal results. Even simple things such as the formatting of the date
and time specified within an event can render the remaining data in the event useless if the format used
by the sender is not understood by the receiver. Clearly, efforts to ensure the accuracy, improve the
detail and standardize the format of these fundamental enterprise building blocks is an imperative
towards designing robust, manageable and deterministic systems. Hence, the “Common Base Event”
is defined as a new standard for events used by enterprise management and business applications.

The CBE described here lends itself easily to several types of events, in particular: logging, tracing,
management, and business events. In all of these cases, there is a significant need for the data
elements and the format of those elements to be consistent, because all of these events need to be

Canonical Situation Data Format: The Common Base Event

 8

correlated with each other. Using log files or events published to subscribers, most IBM and non-IBM
products generate data whose interpretation requires the availability of contextual information. Yet
this context is frequently maintained only in the minds of developers and analysts who are intimately
familiar with the application that generates the event. This lack of context can lead to expensive, hard
to create implementations when applications that are responsible for handling the event attempt to
interpret it, or when the event is used for system management or problem determination purposes.
Consider the basic problem of parsing time stamps. Format and granularity (for example, are the units
milliseconds or microseconds?) present needless obfuscation for the application that receives the time-
stamped event. A more general problem is the lack of consistency in the information that is presented.
For example:

• Which component experienced the situation?
• When did the situation occur?
• Are the component that experienced the situation and the component that is reporting the

situation on the same physical machines?
• What is the identifier for the component that experienced the situation?

Obviously, the current lack of standardization creates considerable difficulty for automated situation
handling. Complexity increases further when the problem occurs in a solution that is composed of
multiple components. Without a standard, data stored in logs or published as events are of little value
to autonomic management or business systems that rely on the completeness and accuracy of data to
determine an appropriate course of action to take in response to the event. To alleviate this problem,
the Common Base Event definition, besides providing definitions and requirements for the normal
meta-data, ensures completeness of the data by providing properties to publish the following
information:

1. The identification of the component that is reporting the situation
2. The identification of the component that is affected by the situation (which may be the same as

the component that is reporting the situation)
3. A common description of the situation that occurred
4. The content that can be used to correlate situations.

All properties defined in this model, except the meta-data, are hereafter referred to as the 4-tuple.

2.1. The scope of this work

The goal of this work is to define the fundamental properties that must be reported when a situation
occurs. This data will be used by management applications to evaluate what is happening in the
system. There are some fields defined in this document that represent the reality that in order for the
CBE to be useful today, some legacy data that is used by existing management functions must be
made available. We have attempted to call out specifically which of the data elements in this
specification are here for legacy or compatibility purposes.

Canonical Situation Data Format: The Common Base Event

 9

In this document, the format of the CBE is first described in UML so it is easier for the reader to
understand the overall structure. The CBE format and content is then rendered as an XML schema for
concrete implementations. This document’s scope is limited to the format and content of the data; how
the data is sent and received and how an application processes the data is outside the scope of this
document.

The following sections specify in more detail the 4-tuple described earlier.

2.2. Terminology and Notation

There are several conventions used in this model. They are:

2.2.1. Notational Convention

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,”
“SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” are to be
interpreted as described in RFC-21191.

2.2.2. Formatted data and String Values

Formatted data is always in human-readable form. All formatted data and string values MUST
be encoded as UTF-8 or UTF-16 strings.

2.2.3. Data Types
The Common Base Event only supports the following subset of XML schema data types and
the array variation of these types. Description of these data types can be found in the XML
Schema specification2. The data types are XML schema signed data types.

• byte
• short
• int
• long
• float
• double
• string
• dateTime
• hexBinary
• boolean

2.2.4. String Length

1 RFC 2119, Keywords for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt
2 W3C XML Schema Part 2: Datatypes, W3C Recommendation 02 May 2001, http://www.w3.org/TR/2001/REC-xmlschema-
2-20010502/

Canonical Situation Data Format: The Common Base Event

 10

The maximum string length MUST NOT exceed 1024 characters. If a longer string is needed
then a hexBinary type MAY be used.

Based on empirical data concerning known consumers and constraints placed on the processing
and storage of events, field lengths have been specified to ensure the broadest possible
acceptance and fidelity. However, it is possible that at times a sender may exceed these length
restrictions. In this case, it is incumbent upon the consumer of an event to take appropriate
actions to either accept the event as-is, massage it to conform to the specification, or discard as
invalid. However, in general, preservation of data – even data that is out of conformance with
this event specification – is preferable to a total loss of the event. Therefore, we recommend
that all efforts be made to preserve as much of the event data as possible.

2.2.5. Case Sensitivity
All names and stings specified in this document are case sensitive.

3.0 Extensibility

The Common Base Event data model described here is built with some level of extensibility to lend
itself easily to the needs of a variety of types of events generated by different IT and business
products. In particular, the data elements and the format of those elements need to be consistent, as all
of these events need to be correlated with each other.

If there is a need for product specific data, it is RECOMMENDED that the ExtendedDataElement
(described later on page 38) be used to contain that data. This property allows for user-supplied
extensions for any attributes not defined in the Common Base Event.

The event consumers or management tools that support the Common Base Event schema SHOULD
store and forward unrecognized and unsupported portion of the extended schema. However, there is
no implied guarantee that the extended elements are saved and forwarded by the consumer of the event
that does not recognize the extension.

Multiple versions of the XML Schema are supported by appending a version number to the XML
schema file name. The initial (current) XML file name is therefore, commonbaseevent1_0.xsd. Also,
the CommonBaseEvent schema provides a “version” token in the schema declaration
(CommonBaseEvent XML Schema on page 48)

4.0 Common Base Event

4.1. CommonBaseEvent Description
The common base event, as mentioned above, defines the 4-tuple of data that must be collected when a
situation occurs. The UML below describes the data for the 4-tuple. Table 1 is a summary of the
CommonBaseEvent properties; that is the 4-tuple that is collected for a situation.. A detailed

Deleted: 36

Deleted: 45

Canonical Situation Data Format: The Common Base Event

 11

description of the CommonBaseEvent follows the summary table. The table consists of the meta-data
associated with the situation, followed by the 4-tuple.

Situation

repor ter Pr ior ity : shor t
repor ter Sever ity : short
categoryName : Str ing

ComponentIdentification

componentAddr essType : Str ing

CorrelatorDataElement

contextId : String
ty pe : String
name : String
contextValue : String
processId : String
threadId : String

CommonBaseEvent

observedTime : Str ing
globalInstanceId : Str ing
extensionName : Str ing
version : Str ing = commonbaseevent2_0
other Data : Str ing[]

1

1

+situation

1

1

1

1+affectedComponentId

1

1

0..1

1
+reporter ComponentId

0..1

1

0..n

1

0..n
+cor relatorDataElemenets

1

Property Name Type Description
observedTime xsd:dateTime This is meta-data. The date-time

when the event was issued. The
value MUST be as defined by the
XML Schema dateTime data type.
The value of the observedTime
MUST provide granularity as
precisely as the generating platform
allows.
This is a REQUIRED property.

globalInstanceId

xsd:ID This is meta-data. This is the primary
identifier for the event. This property
MUST be globally unique and MAY
be used as the primary key for the
event. This property is provided for
management functions that require
events to have an indentifier.
Once this value is set it MUST NOT
be changed. The RECOMMENDED
value is either a 128 bit or 256 bit
Globally Unique Id and MUST start
with an alphabetic character (i.e., A-
Z) This is an OPTIONAL property.

extensionName xsd:Name

This is meta-data This property is
provided for management functions
that require events to be named. This

Canonical Situation Data Format: The Common Base Event

 12

property is used when a component
wants to group a set of events within
a situation category.
The maximum string length for
extensionName MUST NOT exceed
64 characters. This is an OPTIONAL
property.

version xsd:string A string identifying the version of
this event.
This is an OPTIONAL property.
The maximum string length for
version MUST NOT exceed 16
charcters.

affectedComponentId cbe:ComponentIdentification Part of the 4-tuple. Identification of
the component that is “affected” or is
“impacted” by the event or situation.
This is a REQUIRED property for
the component that is affected by the
situation.

reporterComponentId cbe:ComponentIdentification Identification of the component that
is the “reporter” of the event or the
situation.
This is a REQUIRED property if the
reporting component is different than
the source component. Otherwise
this field MUST NOT be present.

situation

cbe:Situation

This field provides critical data about
the event, including the situation
category, which will be used by
management functions.
This is a REQUIRED property.

correlatorDataElements

cbe:CorrelatorDataElement[] An array of contexts that this event is
referencing. See the
CorrelatorDataElement definition
(described on page 45) for details.
This is an OPTIONAL property.

otherData xsd:any
Table 1: CommonBaseEvent

Detailed description of the CommonBaseEvent 4-tuple is described in the following sections:

4.1.1. observedTime

Deleted: 42

Canonical Situation Data Format: The Common Base Event

 13

The date and time that the event was observed and created that MUST be specified as defined by the
XML Schema dateTime data type3. The value of the creationTime MUST provide granularity as
precisely as the generating platform allows.

This is a REQUIRED property that is not mutable (that is, its value MUST NOT be changed for the
lifetime of the event) and MUST be provided by the component that reports the event.
4.1.2. globalnstanceId
The purpose of the globalInstanceID is to uniquely identify an instance of an event. This field is
provided for management functions that require an event to have an instance ID. This field will be
filled in either by a component reporting the situation or the consumer of the event. The
globalInstanceId is a complex data type that represents the primary identifier for the event. The
property globally and uniquely identifies the event and MAY be used as the primary key for the event.
The value MUST be a Globally Unique Id (GUID) that is at least 128 bits in length but not greater
than 256 bits and MUST start with an alphabetic character (i.e., A-Z). The GUID generation
algorithm MUST ensure the uniqueness of this value.

There are several ways to generate a GUID. One standard for constructing a GUID is defined in the
Internet draft draft-leach-uuids-guids-01. This value is computed using cryptographic quality
random information. This Internet draft does not generate a GUID that starts with an alphabetic
character; to use it you MUST append it with a single character.

This is an OPTIONAL property, however, when it is specified it is not mutable, that is, once it is set, it
MUST NOT be changed for the lifetime of the event. The globalInstanceId MAY be provided either
by the component that issues the event or by the consumer of the event.

4.1.2.1. extensionName
This field is used for management functions that require events to be named. The extensionName
property allows components to group events within a situation category. For example, for the situation
category of “AVAILABLE”, a component might have need to identify a set of those AVAILABLE
situations as representing the event “EIRGP_Neighbor_down”.

This is an OPTIONAL property, which is not mutable and may only be provided by the component
that reports the event.

4.1.2.2. version
The version attribute is of type string and is used to identify the version of a given event such that it
can be recognized and managed appropriately by consumers of the event. In future versions of CBE,
this field can be used to assist receivers with parsing and migration of “old” CBEs by providing a
marker for backward compatibility processing procedures.

This is an OPTIONAL property that is mutable in the case where a migration procedure has upgraded
a CBE to a newer version. The version may be provided either by the component issuing the event or
by the consumer of the event.

3 W3C XML Schema Part 2: Datatypes, W3C Recommendation 02 May 2001,
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

Canonical Situation Data Format: The Common Base Event

 14

4.1.3. affectedComponentId
This is part of the 4-tuple. The affectedComponentId is the identification of the component that was
affected by or was impacted by the event or situation. The data type for this property is a complex
type as described by the ComponentIdentification type that provides the required data to uniquely
identify a component.

This property is REQUIRED and once it is set it MUST NOT be changed. The producer of the event
MUST provide the affectedComponentId. If the reporter and the affected components are the same,
then the reporterComponentId MUST NOT be present.

4.1.4. reporterComponentId
This is part of the 4-tuple. The reporterComponentId is the identification of the component that
reported the event or situation on behalf of the affected component. The data type for this property is
a complex type as described by the ComponentIdentification type that provides the required data to
uniquely identifying a component.

It is a REQUIRED property if the reporting component is different than the source component.
Otherwise, this field MUST NOT be present. This property is not mutable, that is, once it is set, it
MUST NOT be changed.

4.1.5. situation
This is part of the 4-tuple. The situation is the data that describes the situation or event reported by the
event. The situation information includes a required set of properties or attributes that are common
across products groups and platforms, yet architected and flexible to allow for adoption to product-
specific requirements.

The data type for this property is a complex type as described by the SituationType type.

This is a REQUIRED property.

4.1.6. correlatorDataElements
This is part of the 4-tuple. This property holds the contextual data that is used to correlate events or
situations. The actual value supplied in this field is defined by the component that fills in the value.
The correlatorDataElements is an array of contexts of type CorrelatorDataElement (described on page
45).

This is an OPTIONAL property and is not mutable that is, once it is set it MUST NOT be changed. It
MAY be provided by the component that issues the event or MAY be assigned by the consumer of the
event.

4.2. ComponentIdentification Description

Deleted: 42

Canonical Situation Data Format: The Common Base Event

 15

This section describes the pieces of data that are associated with a component. In the 4-tuple the
components that are identified are the component that reports the situation (the reporter component),
and the component that experiences the situation (the affected component). In some cases, the reporter
and affected components may be the same. The component identification field defines a collection of
attributes that are required to uniquely identify a component.

In the future, all components will be identified using the same identification mechanism, such as a
GUID. In the near term, since components are already identified using differing techniques, the CBE
structure must accommodate for, identify, and structure the differing identification techniques. As an
example of the differing techniques used to identify components consider two sample components: an
Ethernet adapter in a router and an SNA application. The Ethernet adapter is identified by a TCPIP
address, whereas an SNA component will be identified using an LU name and a TP name. In both
cases, the components are identified using a set of well-known fields: IP address and LU/TP name.
This example demonstrates that the fields used to identify a component are ‘type’ sensitive. The CBE
structure used for component identification reflects this ‘type’ sensitivity.

Table 2 is a summary of the properties for the ComponentIdentification type. A detailed description of
the ComponentIdentification properties follows the summary table.

Canonical Situation Data Format: The Common Base Event

 16

TCPAddressType

ipAddr ess : Str ing
por t : Str ing

SNAAddressType

luName : Str ing
tp : shor t

HostAddr essType

hostName : Str ing

ComponentData

InstanceId : Str ing
application : Str ing
executionEnvir onment : Str ing ComponentType

name : Str ing
ComponentAddress

ComponentIdentification

componentAddr essType : Str ing

0..1
1

0..1

+componentData

1

1

1

1
+componentType

1

1

1

+componentAddr ess

1

1

GUIDAddressType

guid : Str ing

DeviceAddressType

deviceId : Str ing

OtherAddressType

anyData : Str ing[]

Property Name Type Description
componentAddressType cbe:ComponentAddressType Specifies the type of the

componentAddress field. This field
defines what the expected values are
for the componentAddress field. It is a
REQUIRED property.

componentAddress

cbe:ComponentAddress

This field is defined by the
componentAddressType field. It
contains the specific required fields
used to identify the component of type
‘componentAddressType’. This is a
REQUIRED property.

componentType cbe:ComponentType The componentAddressType is a well-
defined name that is used to

Canonical Situation Data Format: The Common Base Event

 17

characterize all instances of a given
kind of component.

componentData cbe:ComponetData componentData is a collection of
properties that further assist
identifying the source or reporter
componets of a situation. For detatils
refer to the CompontData type. This is
an OPTIONAL property, used mainly
to carry data that will be used by
existing management functions.

Table 2: Component Identification

A detailed description of the ComponentIdentification type is described in the following sections:

4.2.1. ComponentAddressType

This field defines the type of information that will be found in the componentAddress field. As
mentioned above, in the ideal world, there would be one value for componentAddressType, something
like typeGUID, and the value for the componentAddress field would be a GUID. In the near-term,
there will be a set of well-defined componentAddressType values that allow components to be
identified using well known values.

Some well-known componentAddressType values are: (this list should grow based on input from the
standards body)

• TCPAddressTypev4
• TCPAddressTypev6
• SNAAddressType
• HostAddressType
• DeviceAddressType
• GUIDAddressType

This property is REQUIRED and not mutable; that is, once it is set it MUST NOT be changed.

4.2.2. componentAddress

The componentAddress specifies the component address specific data of the event that was reported.
The categorization of component address facilitates the identification of the source of event.

The data type for this property is a complex type. The componentAddress are defined below.

This property is REQUIRED and it is not mutable that is, once it is set it MUST NOT be changed.

4.2.3. For componentAddress TCPAddressType

Canonical Situation Data Format: The Common Base Event

 18

For TCPComponentAddressType the component will be identified using the IP address. This
componentAddress is identified by the following two required properties:

• IPAddress (IPV 4 or IPV6), for example 9.27.40.112
• PortNumber, for example 5022

4.2.4. For componentAddress SNAAddressType
For the SNAComponentAddressType the component is identified using the LU name. This
componentAddress is identified by the following two required properties:

• luName , for example xxxxx.
• tp, for example xxxx.

4.2.5. For componentAddress HostAddressType
For the HostComponentAddressType the component is identified using the hostname. This
componentAddress is identified by the following required property:

• hostname, for example server1.

4.2.6. For componentAddress DeviceAddressType
For the DeviceComponentAddressType the component is identified using the serial number for the
device. This componentAddress is identified by the following required property:

• serialnumber, for example X1234ABC72

4.2.7. For componentAddress GUIDAddressType
For the GUIDComponentAddressType the component is identified using a GUID generated by the
system. This componentAddress is identified by the following required property:

• GUID, for example A123400AA00389B71

4.2.8. For componentAddress OtherAddressType
For the GUIDComponentAddressType the component is identified using a GUID generated by the
system. This componentAddress is identified by the following required property:

• GUID, for example A123400AA00389B71

4.2.9. componentType
Besides having a componentAddress and a componentAddressType, every component has an
associated type. A componentType is defined as an XML Name that contains a name space qualified
name, for example:

 http:// www.ibm.com/namespaces/autonomic/WebAppServer_componentTypes

Canonical Situation Data Format: The Common Base Event

 19

The componentType namespace is divided into several name spaces to facilitate delegation to various
product groups. The default namespace for component types is described in Appendix Component
Type Namespace. Namespaces other than the default namespace will be allowed for component type
extensibility.

This property is REQUIRED and it is not mutable that is, once it is set it MUST NOT be changed. The
maximum string length for componentAddressType MUST NOT exceed 512 characters.

4.3. ComponentData Description
The ComponentData property is a collection of properties that may further assist identifying the
affected or reporter components of a situation. Most of the data carried in this field is data that is used
by existing management functions, and is carried here for compatibility purposes.

Table 3 is a summary of the properties for the ComponentData type. A detailed description of the
ComponentData follows the summary table.

CorrelatorDataElement

contextId : String
ty pe : String
name : String
contextValue : String
processId : String
threadId : String

Property Name Type Description
application xsd:string For some legacy systems, the component is

associated with an application name. This
application name is usually something like
“myWebApp” or “flowersByWebsphere:.
The application version information MAY be
appended to the end of the component
separated by a # character (e.g.,
maWebApp#4.5.1).
This is an OPTIONAL property. The
maximum string length for application MUST
NOT exceed 256 characters.

executionEnvironment xsd:string This property identifies the immediate
environment that an application is running in.
For example, a WebSphere Application
Server name: cell:node:server.
The executionEnvironment version
information may be appended to the end of
the component separated by a # character.
This is an OPTIONAL property. The

Canonical Situation Data Format: The Common Base Event

 20

maximum string length for
executionEnvironment MUST NOT exceed
256 characters.

instanceId xsd:string

Specifies a handle or identifier for the
instance of the component that is specified by
the component property (e.g., Grid Service
Handle(GSH)4 or EJBHandle).
This is an OPTIONAL property. The
maximum string length for instanceId MUST
NOT exceed 128 characters.

Table 3: Component Identification

4.3.1. application
In many legacy systems, the component is associated with an application name, such as
“myWebApp”. The application property specifies this user-identified name of a component. The
application version information MAY be appended to the end of the component separated by a #
character (e.g., myApp#3.2). It is RECOMMENDED to prepend the vendor name to the application
name.

This is an OPTIONAL property and it is not mutable; that is, once it is set it MUST NOT be changed.
The maximum string length for the application name MUST NOT exceed 256 characters.
4.3.2. executionEnvironment
The executionEnvironment property identifies the immediate environment that an application is
running in. For example, a WebSphere Application Server name: cell:node:server.

The executionEnvironment version information MAY be appended to the end of the component
separated by a # character (e.g., thiscell:thisnode:thisserver#5.3.2). The maximum string
length for executionEnvironment MUST NOT exceed 256 characters.

This is an OPTIONAL property and it is not mutable; that is, once it is set it MUST NOT be changed
for the lifetime of the event.
4.3.3. instanceId
The instanceId specifies a handle or identifier for the instance of the component that is specified by the
component property i.e., Grid Service Handle(GSH)5, EJBHandle and so on.

This property is OPTIONAL and is not mutable; that is, once it is set it MUST NOT be changed. The
maximum string length for instanceId MUST NOT exceed 128 characters.

4 See Grid Services Specification Draft 4, Global Grid Forum, http://www.gridforum.org/ogsi.wg
5 See Grid Services Specification Draft 4, Global Grid Forum, http://www.gridforum.org/ogsi.wg

Canonical Situation Data Format: The Common Base Event

 21

4.4. Situation Description

The situation part of the 4-tuple is a collection of data that a component reports for external
consumption either by a general management application or by a product-specific manager. A
situation represents the categorization of a state change into at least one pre-defined category. The
collection specified here are required set of properties or attributes that are common across products
groups and platforms, yet architected and flexible to allow for adoption to product-specific
requirements.

Table 4 is a summary of the properties for the SituationType. A detailed description of the
SituationType properties follows the summary table.

StopSituation

successDisposition : Str ing
situationQualifier : Str ing

ConnectSituation

successDisposition : Str ing
situationDisposition : Str ing

AvailabilitySituation

operationDisposition : Str ing
processingDisposition : Str ing
availabilityDisposition : Str ing

RequestSituation

successDisposition : Str ing
situationQualifier : Str ing

Repor tSituation

repor tCategory : Str ing

FeatureSituation

featureDisposition

DependencySituation

dependencyDisposition

Configur eSituation

successDisposition : Str ing

CreateSituation

successDisposition : Str ing

Destr oySituation

successDisposition

Star tSituation

successDisposition : Str ing
situationQualifier : Str ing

ExtendedDataElement

name : Str ing
type : Str ing
values : Str ing[]
hexValue : byte[]
anyData : Str ing[]

0..n

1
+childr en

0..n

1

MsgDataElement

msgId : Str ing
msgIdType : Str ing
msgCatalogId : Str ing
msgCatalogTokens : Str ing[]
msgCatalog : Str ing
msgLocale : Str ing
msgCatalogType : Str ing

SituationData

localInstanceId : Str ing
msg : Str ing
repeatCount : shor t
elapsedTime : shor t
sequenceNumber : long

0..n1

+extendedDataElements

0..n1

0..1

1

+msgDataElement
0..1

1

SituationType
reasoningScope : Str ing

Situation

repor ter Pr ior ity : shor t
repor ter Sever ity : shor t
categoryName : Str ing

1

1

+situationData
1

1

1

1

+situationType
1

1

OtherSituation
anyData : String[]

Canonical Situation Data Format: The Common Base Event

 22

Property Name Type Description
situationType

cbe:SituationType

The situationType specifies the type of the
situation that caused the event to be
reported. See SituationType definition for
details.
This is a REQUIRED property.

reasoningScope cbe:ReasoningScopeType This property specifies the scope of the
impact of the situation reported.
The initial set of values is described
following this table.
This is a REQUIRED property.

situationData cbe:SituationData This property allows specifying any
situation specific data that can assist to
further qualifying the situation. This
property is provided to accommodate
legacy systems that require additional data.
See SituationData definition for details.

This is an OPTIONAL property.

reporterSeverity xsd:string

The perceived severity of the status the
event is describing with respect to the
application that reports the event. This
field is provided for management functions
that require an event to have a severity.
The predefined severity levels, in order of
increasing severity, are as follows:

• 0 Unknown
• 10 Information MUST be used

for cases when the event contains
only general information and is not
reporting an error.

• 20 Harmless MUST be used for
cases in which the error event has
no effect on the normal operation
of the resource.

• 30 Warning MUST be used when
it is appropriate to let the user
decide if an action is needed in
response to the event.

• 40 Minor MUST be used to
indicate that action is needed, but
the situation is not serious at this
time.

• 50 Critical MUST be used to

Canonical Situation Data Format: The Common Base Event

 23

indicate that an immediate action is
needed and the scope is broad
(perhaps an imminent outage to a
critical resource will result).

• 60 Fatal MUST be used to
indicate that an error occurred, but
it is too late to take remedial
action.

The associated values are 0 to 70. The
reserved values start at 0 for Unknown and
increase by increments of 10 to 60 for
Fatal. Other severities MAY be added but
MUST NOT exceed 70.
This is an OPTIONAL property.

reporterPriority xsd:string

This property defines the importance of
the event. This field is provided for
management functions that require an
event to have a priority. The predefined
priorities are:

• 10 Low
• 50 Medium
• 70 High

The values are 0 to 100. The reserved
value for Low is 10, for Medium is 50, and
for High is 70. Other priorities MAY be
added but MUST NOT exceed 100.
This is an OPTIONAL property.

categoryName cbe:CategoryNameType This property categorizes the type of the
situation that caused the event to be
reported. The current initial values are:

• StartSituation
• StopSituation
• ConnectSituation
• RequestSituation
• ConfigureSituation
• FeatureSituation
• CreateSituation
• DestroySituation
• ReportSituation
• AvailableSituation
• DependencySituation
• OtherSituation

This is a REQUIRED property and once it

Canonical Situation Data Format: The Common Base Event

 24

is set it MUST NOT change.

Table 4: Situation

Detailed description of Situation is described in the following sections:

4.4.1. categoryName
This property categorizes the type of the situation that caused the event to be reported. The current
initial values are:

• StartSituation
• StopSituation
• ConnectSituation
• RequestSituation
• ConfigureSituation
• FeatureSituation
• CreateSituation
• DestroySituation
• ReportSituation
• AvailableSituation
• DependencySituation
• OtherSituation

This is a REQUIRED property and once it is set it MUST NOT change.

4.4.2. situationType
The situationType specifies the type or category of the situation that caused the event to be reported.
The categorization of situations facilitates the building of tools that focus on implementing the
analysis and planning functions rather than on product-specific data formats.
The data type for this property is a complex type. The situation types or categories are defined below.

The simplest way to understand the usefulness of categorization is by providing a use case. For
example, assume that a problem has been detected with component ‘A’. The first step in the root cause
analysis might be to check to see if ‘x’ was actually started, since it is known that ‘A’ has a
dependency on ‘x’. One approach to determine if ‘x’ is running is to check the log file for ‘x’ to see if
it has started. The problem from a programmatic perspective is that there is not standard way to check
the log files to see if ‘x’ has started. ‘x’ might log “Component ‘x’ started” or it might say, “Change
server state from starting to running”. The reality is that both of these messages provide the same
information, but they provide it using different terminology, making it difficult for a program to use.
Simple checks like this would be much easier if all components reported, for example, that they
“started”. Writing code to check dependencies would be much easier and would be, largely,
component independent. For example, if product ‘A’ had dependencies on ‘x’ and ‘y’, the code to
check the status of ‘x’ and the code to check the status of ‘y’ would be the same, in both cases, it
would look for a ‘started’ message.

Canonical Situation Data Format: The Common Base Event

 25

This is a REQUIRED property, that once it set it is not mutable, that is it MUST NOT be change.

The following sections outline the well-known and acceptable values for the situationType property.

4.4.2.1. StartSituation
The StartSituation deals with the start up process for a component. Messages that indicate that a
component has begun the startup process, that it has finished the startup process, or that it has aborted
the startup process all fall into this category. Existing messages include words like starting, started,
initializing, and initialized, for example:

DIA3206I The TCP/IP protocol support was started successfully.
DIA3000I "%1S" protocol support was successfully started.
DIA3001E "%1S" protocol support was not successfully started.
WSVR0037I: Starting EJB jar: {0}

The StartSituation includes the following properties:

Property Name Type Description

successDisposition

cbe:SuccessDispositionType This property specifies the success
disposition of an operation of a situation
that caused the situation to be reported.
The successDisposition is of type
SuccessDispositionType with the
following set of values:

• SUCCESSFUL
• UNSUCESSFUL

This is a REQUIRED property and once
it is set it MUST NOT change.

situationQualifier cbe:StartSituationQaulifierType This property specifies the situation
qualifiers that are representation of the
parameters necessary to describe the
situation.
The situationQualifier is of type
StartSituationQaulifierType with the
following set of values:

• START INITIATED
• RESTART INITIATED
• START COMPLETED

This is a REQUIRED property and once
it is set it MUST NOT change.

4.4.2.2. StopSituation

Canonical Situation Data Format: The Common Base Event

 26

The StopSituation deals with the shutdown process for a component. Message that indicate that a
component has begun to stop, that it has stopped, or that the stopping process has failed all fall into
this category. Existing messages include words like stop, stopping, stopped, completed, and exiting,
for example:

WSVR0220I: Application stopped: {0}
WSVR0102E: An error occurred stopping, {0}
MSGS0657I: Stopping the MQJD JMS Provider

The StopSituation includes the following properties:

Property Name Type Description
successDisposition

cbe:SuccessDispositionType This property specifies the success
disposition of an operation of a situation
that caused the situation to be reported.
The successDisposition is of type
SuccessDispositionType with the
following set of values:

• SUCCESSFUL
• UNSUCESSFUL

This is a REQUIRED property and once
it is set it MUST NOT change.

situationQualifier cbe:StopSituationQaulifierType This property specifies the situation
qualifiers that are representation of the
parameters necessary to describe the
situation.
The situationQualifier is of type
StopSituationQaulifierType with the
following set of values:

• STOP INITIATED
• ABORT INITIATED
• PAUSE INITIATED
• STOP COMPLETED

This is a REQUIRED property and once
it is set it MUST NOT change.

4.4.2.3. ConnectSituation
The ConnectSituation deals with the situations that identify aspects about a connection to another
component. Messages that say a connection failed, that a connection was created, or that a connection
was ended all fall into this category. Existing messages include words like connection reset,
connection failed, and failed to get a connection, for example:

Canonical Situation Data Format: The Common Base Event

 27

DBMN0015W: Failure while creating connection {0}
DBMN0033W: connection close failure {0}
DBMN0023W: Failed to close a connection {0}

The ConnetSituation includes the following properties:

Property Name Type Description
successDisposition

cbe:SuccessDispositionType This property specifies the success
disposition of an operation of a situation
that caused the situation to be reported.
The successDisposition is of type
SuccessDispositionType with the
following set of values:

• SUCCESSFUL
• UNSUCESSFUL

This is a REQUIRED property and once it
is set it MUST NOT change.

situationDisposition cbe:ConnectSituationDispositi
onType

This property specifies the situation
disposition that is representation of the
parameters necessary to describe the
situation.
The situationQualifier is of type
ConnectSituationDispositionType with the
following set of values:

• INUSE
• FREED
• CLOSED
• AVAILABLE

This is a REQUIRED property and once it
is set it MUST NOT change.

4.4.2.4. RequestSituation
The RequestSituation deals with the sitautions that a component uses to identify the completion status
of a request. Typically, these requests are complex management tasks or transactions that a component
undertakes on behalf of a requestor and not the mainline simple requests or transactions. Existing
messages include words like configuration synchronization started, and backup procedure complete,
for example:

ADMS0003I: Configuration synchronization completed

The RequestSituation includes the following properties:

Canonical Situation Data Format: The Common Base Event

 28

Property Name Type Description
successDisposition

cbe:SuccessDispositionType This property specifies the success
disposition of an operation of a situation
that caused the situation to be reported.
The successDisposition is of type
SuccessDispositionType with the
following set of values:

• SUCCESSFUL
• UNSUCESSFUL

This is a REQUIRED property and once it
is set it MUST NOT change.

situationQualifier cbe:RequestSituationQualifier
Type

This property specifies the request
qualifiers that are representation of the
parameters necessary to describe the
situation.
The situationQualifier is of type
RequestSituationQualifierType with the
following set of values:

• REEQUEST INITIATED
• REEQUEST COMPLETED

This is a REQUIRED property and once it
is set it MUST NOT change.

4.4.2.5. ConfigureSituation
The ConfigureSituation deals with the components identifying their configuration. Any changes that a
component makes to its configuration should be logged using this category. Additionally, messages
that describe current configuration state fall into this category. Existing message include words like
port number is, address is, and process id, for example:

ADFS0134I: File transfer is configured with host="9.27.11.13", port="9090",
securityEnabled="false".

The ConfigureSituation includes the following properties:

Property Name Type Description
successDisposition

cbe:SuccessDispositionType This property specifies the success
disposition of an operation of a situation
that caused the situation to be reported.
The successDisposition is of type
SuccessDispositionType with the
following set of values:

Canonical Situation Data Format: The Common Base Event

 29

• SUCCESSFUL
• UNSUCESSFUL

This is a REQUIRED property and once it
is set it MUST NOT change.

4.4.2.6. AvailableSituation
The AvailableSituation deals with the situations reported from the component, regarding its
operational state and availability. This situation provides a context for operations that can be
performed on the component by distinguishing if a product is installed, operational and ready to
process functional requests, or operational and ready/not ready to process management requests.
Existing message include words like those that now ready to take requests, online, and offline, for
example:

ADMC0013I: SOAP connector available at port 8880
ADMC0026I: RMI Connector available at port 2809

The ConfigureSituation includes the following properties:

Property Name Type Description
operationDisposition cbe: OperationDispositionType This property specifies the operation

state of the component reported by the
situation. The operationalDisposition is
of type OperationDispositionType with
the following set of values:

• STARTABLE
• NONSTARTABLE

This is an REQUIRED property and
once it is set it MUST NOT change.

availablityDisposition cbe:AvailabilityDispositionType This property specifies the availability
disposition of an entity or component
that caused the situation to be reported.
The availableDisposition is of type
AvailabilityDispositionType with the
following set of values:

• AVAILABLE
• NOT AVAILABLE

This is a REQUIRED property and once
it is set it MUST NOT change.

processingDisposition cbe:ProcessingDispositionType This property specifies the processing
disposition of a component opertation
that caused the situation to be reported.

Canonical Situation Data Format: The Common Base Event

 30

The processingDisposition is of type
ProcessingDispositionType with the
following set of values:

• FUNCTION_PROCESS
• FUNCTION_BLOCK
• MGMTTASK_PROCESS
• MGMTTASK_BLOCKED

This is a REQUIRED property and once
it is set it MUST NOT change.

4.4.2.7. ReportSituation
The ReportSituation deals with the situations reported from the component, such as heartbeat or
performance information. Data such as current CPU utilization, current memory heap size, etc. would
fall into this category. Existing messages include words like utilization value is, buffer size is, and
number of threads is, for example:

IEE890I WTO Buffers in console backup storage = 1024

The ReportSituation includes the following properties:

Property Name Type Description
reportCategory cbe:ReportCategoryType This property specifies the category of the

reported situation. The reportCategory is
of type ReportCategoryType with the
following set of values:

• PERFORMANCE
• SECURITY
• HEARTBEAT
• STATUS

This is an REQUIRED property and once
it is set it MUST NOT change.

4.4.2.8. CreateSituation
The CreateSituation deals with the situations documenting when a component creates an entity.
Messages telling that a document was created, or a file was created, or an EJB was created all fall into
this category. Existing message include words like was created, about to create, and now exists, for
example:

ADMR0009I: Document cells/flatfootNetwork/applications/Dynamic Cache Monitor.ear/Dynamic
Cache Monitor.ear was created

Canonical Situation Data Format: The Common Base Event

 31

The CreateSituation includes the following properties:

Property Name Type Description
successDisposition

cbe:SuccessDispositionType This property specifies the success
disposition of an operation of a situation
that caused the situation to be reported.
The successDisposition is of type
SuccessDispositionType with the
following set of values:

• SUCCESSFUL
• UNSUCESSFUL

This is a REQUIRED property and once it
is set it MUST NOT change.

4.4.2.9. DestroySituation
The DestroySituation deals with the situations documenting when an entity or component was
removed or destroyed. Messages telling that a document was destroyed or a file was deleted all fall
into this category. Existing message include words like was created, about to create, and now exists,
for example:

CONM6007I: The connection pool was destroyed for data source (UDDI.Datasource.techs8.server1).

The FeatureSituation includes the following properties:

Property Name Type Description
successDisposition

cbe:SuccessDispositionType This property specifies the success
disposition of an operation of a situation
that caused the situation to be reported.
The successDisposition is of type
SuccessDispositionType with the
following set of values:

• SUCCESSFUL
• UNSUCESSFUL

This is a REQUIRED property and once it
is set it MUST NOT change.

4.4.2.10. FeatureSituation
The FeatureSituation deals with the situations that announce that a feature of a component is now
ready (or not ready) for service requests. Situations that indicate things like services being available
and services or features being unavailable fall into this category. Existing situations include words like
now available, currently available, and transport is listening on port 123, for example:

Canonical Situation Data Format: The Common Base Event

 32

SRVE0171I: Transport HTTPS is listening on port 9443
MSGS0601I: WebSphere Embedded Messaging has not been installed

The FeatureSituation includes the following properties:

Property Name Type Description
featureDisposition cbe:FeatureDispositionType This property specifies the availability

disposition of a feature of a component
that caused the situation to be reported.
The featureDisposition is of type
FeatureDispositionType with the following
set of values:

• AVAILABLE
• NOT AVAILABLE

This is a REQUIRED property and once it
is set it MUST NOT change.

4.4.2.11. DependencySituation
The DependencySituation deals with the situations that components produce to say that they cannot
find some component or feature that they need. This category includes messages about not finding the
‘version’ of the component that was expected. Messages that say a resource was not found, or that an
application or subsystem that was unavailable, also fall into this category. Existing messages include
words like could not find, and no such component, for example:

WSVR0017E: Error encountered binding the J2EE resource, Pet Store JMS Queue Connection
Factory, as jms/queue/QueueConnectionFactory from resources.xml no resource binder found

The DependencySituation includes the following properties:

Property Name Type Description
dependencyDisposition cbe:DependencyDispositionType This property specifies the

dependency disposition of a feature
of a component that caused the
situation to be reported.
The featureDisposition is of type
DependencyDispositionType with
the following set of values:

• MET
• NOT MET

This is a REQUIRED property and
once it is set it MUST NOT change.

Canonical Situation Data Format: The Common Base Event

 33

4.4.2.12. OtherSituation
The OtherSituation category is to provide support for the situation that is product specific requirement
other than the existing categories.

4.4.3. reasoningScope
This property specifies the scope of the situation. The reasoningScope defines whether this situation
has an internal only impact or has a potential external impact. The reasoningScope is of type
ReasoningScopeType and has the following initial set of values.

• INTERNAL
• EXTERNAL

This is a REQUIRED property and once it is set it is not mutable.

4.4.4. situationData
This property allows specifying any situation specific data that can assist to further qualifying the
situation. This property is provided for legacy management functions that need additional data. See
SituationData definition. for details.

This is an OPTIONAL property.

1.1.1 reporterSeverity
The reporterSeverity indicates the event status severity level with respect to the component that reports
the event. This property is provided for compatibility with management functions that require events
to have a severity. These values are usually provide by a component’s domain expert. The meanings of
the values that this property may contain MAY be described by an enumeration of common values or
qualifiers that indicate the severity level of the event. For example, information, warning, or a set of
integers that map to the intended severity levels are all valid values. This document does not imply
any specific implementation, but instead suggests the following values based on prior art with the
understanding that users of this field MAY add additional implementation-specific values. This field is
intended to define the seriousness of the kind of situation that was encountered so that administrators
can focus on the most severe problems.

The predefined reporterSeverity levels, in order of increasing severity, are as follows:

• 0 Unknown
• 10 Information: MUST be used when the event contains only general information and is not

reporting an error.
• 20 Harmless: SMUST be used for cases in which the error has no effect on the normal

operation of the resource.
• 30 Warning: MUST be used when it is appropriate to let the user decide if an action is needed

in response to the event.
• 40 Minor: MUST be used to indicate that action is needed, but the situation is not serious at

this time.

Canonical Situation Data Format: The Common Base Event

 34

• 50 Critical: MUST be used to indicate that an immediate action is needed and the scope is
broad (perhaps an imminent outage to a critical resource will result).

• 60 Fatal: MUST be used to indicate that an error occurred, but it is too late to take remedial
action.

The values are 0 to 70. The reserved values start at 0 for Unknown and increase by increments of 10 to
60 for Fatal. Other severity values MAY be added but MUST NOT exceed 70. If no value is
specified, then this event is interpreted as having no severity.

This is an OPTIONAL property and it is not mutable once it is set. There is no default value for
severity.

4.4.5. reporterPriority
The reporterPriority defines the importance of the event and the relative order in which the event
records SHOULD be processed. This field is provided for compatibility with management functions
that require events to have a priority. The predefined priorities are as follows:

• 10 Low – for an event that does not need to be processed immediately.
• 50 Medium - for an event of average importance.
• 70 High - for an important event that requires immediate attention.

The values are 0 to 100. The reserved value for Low is 10, for Medium is 50, and for High is 70.
Other priorities MAY be added but MUST NOT exceed 100.

If no value is specified, then this event is interpreted as having no priority.

The reporterPriority property is independent of severity, because priority is intended to be used
primarily by event consumers, whereas severity indicates the state of the situation as perceived by the
affected component. For example, an event with reporterPriority HIGH and severity MINOR should
be processed before an event with reporterPriority LOW and severity CRITICAL.

This is an OPTIONAL property and it is mutable. There is no default value for the reporterPriority.

4.5. SitautionData Description
The SituationData allows describing a collection of data that a component reports for external
consumption either by a general management application or by a product-specific manager. This
property is provided to allow compatibility with existing management functions

Table 5 is a summary of the properties for the SituationData. A detailed description of the
SitauationDat properties follows the summary table.

Canonical Situation Data Format: The Common Base Event

 35

ExtendedDataElement

name : Str ing
type : Str ing
values : Str ing[]
hexValue : byte[]
anyData : Str ing[]

0..n

1

+childr en

0..n

1

MsgDataElement

msgId : Str ing
msgIdType : Str ing
msgCatalogId : Str ing
msgCatalogTokens : Str ing[]
msgCatalog : Str ing
msgLocale : Str ing
msgCatalogType : Str ing

SituationData

localInstanceId : Str ing
msg : Str ing
repeatCount : shor t
elapsedTime : shor t
sequenceNumber : long

0..n1

+extendedDataElements

0..n1

0..1

1

+msgDataElement
0..1

1

Property Name Type Description
localInstanceId

xsd:string

A source supplied event identifier. There is
no guarantee that this value is globally
unique.
This is an OPTIONAL property. The
maximum string length for localInstanceId
MUST NOT exceed 128 characters.

msg xsd:string

The text accompanying the event. This is
typically the resolved message string in
human readable format rendered for a
specific locale.
This is and OPTIONAL property. The
maximum string length for msg MUST NOT
exceed 1024 characters.

msgDataElement cbe:MsgDataElement Identification of the message that this event
holds. See the MsgDataElement definition.
This is an OPTIONAL property.

extendedDataElements

cbe:ExtendedDataElement[] An array of product specific extensions that
allows any other attributes not defined by
the CommonBaseEvent. Information placed
here is assumed to be product specific data;
its interpretation is not specified.
This is an OPTIONAL property.

repeatCount

xsd:short

The number of occurrences of an identical
event within a specific time interval.
This is an OPTIONAL property with no

Canonical Situation Data Format: The Common Base Event

 36

 default. A value of 0 or no value is
indicative of no repeat of the event was
detected.

elapsedTime xsd:long

This is the time interval or the elapsed time
during which the number of identical events
occurred (as specified by the repeatCount
property). This property is expressed in
microseconds. If no value (or zero) is
specified for repeatCount, then this is an
OPTIONAL property with no default value.
However, if repeatCount is specified (has a
non-zero value), then elapsedTime is
REQUIRED.

sequenceNumber

xsd:long

A source-defined number that allows
multiple messages to be sent and processed
in logical order that is different than the
order in which they arrived at the consumer
location (e.g., an event server or
management tools). The sequence number
helps consumers to sort arrived messages
that may arrive out-of-order. This is with
respect to the creation time and to the
particular reporter of the messages.
This is an OPTIONAL property with no
default value.

Table 5: SituationData

Detailed description of SituationData is described in the following sections:
4.5.1. localInstanceId
The localInstanceId is of type string and is used to locally identify instances of an event. There is no
implied guarantee that this value is globally unique but unique within the execution process that
generates the event. However, once it is set it MUST remain constant for the lifetime of the event.
The value content of the localInstanceId MAY be a multi-part value, such a timestamp, location,
offset, or message ID and MAY use other application-defined techniques to ensure the uniqueness of
the ID values. For example, the identifier value might be set to the string concatenation of the local
host IP address, the absolute path of the access.log file, the local fully qualified host name, a time
stamp, and the sequenceNumber. The resulting identifier might look like as follows:

9.27.11.27mycomputer.toronto.ibm.com2002100902534.002000-240

This property is not a key. This is an OPTIONAL property that is not mutable, that is, once it is set it
MUST NOT be changed. It MAY be provided by the component that issues the event or MAY be
assigned by the consumer of the event. The maximum string length for the localInstanceId MUST
NOT exceed 128 characters.
4.5.2. msg

Canonical Situation Data Format: The Common Base Event

 37

The msg property is the text that accompanies the event. This is typically the resolved message string
in human readable format rendered for a specific locale.

The locale of the msg property is specified by the msgLocale property of the MsgDataElement type.
There is no default value for the msgLocale

This property is OPTIONAL but RECOMMENDED to have a value if the msgCatalogId and
msgCatalog properties of the MsgDataElement do not specify any values.

4.5.3. msgDataElement
The msgDataElement is a property that refers to a MsgDataElement. This property holds data that is
used to specify all the related information associated with the message that this event holds.

This is an OPTIONAL property and non-mutable. It is provided by the component issuing the event.

4.5.4. extendedDataElements
The extendedDataElements property is a sequence of name elements of type ExtendedDataElement
(described on page 38). It offers extensibility by providing a way to specify any other attributes not
defined by the CommonBaseEvent data model. Information placed here is assumed to be product
specific data.

This property is user-supplied; its named elements can be filtered, searched or referenced by the
correlation rules.

This is an OPTIONAL property that is mutable,that is, after it is set it MAY be changed. The value
for this property MAY be provided by the component that issues the event or the event consumer
MAY assign it.

4.5.5. repeatCount
The repeatCount specifies the number of occurrences of identical events within a specified time
interval. The time interval is specified by the elapsedTime property described next. The definition of
”identical events” is application-specific and therefore is not defined by this specification. This field is
provided for compatibility with management functions that require a repeatCount.

This property is OPTIONAL and mutable. The repeatCount MAY be set by the component that issues
the event or the event consumer. There is no default value. A value of 0 or no value indicates no
repeated occurrences of the event.
4.5.6. elapsedTime
The elapsedTime is the time interval during which some number of identical events occurred. The
number of occurrences is specified by the value of the repeatCount . The elapsedTime value indicates
the duration of time within which the repeated events were observed. This property is provided for
compatibility with management functions that require repeatCount and elapsedTime.

The value of this property MUST be expressed in microseconds granularity.

Deleted: 36

Canonical Situation Data Format: The Common Base Event

 38

This property is OPTIONAL and mutable. However, if the repeatCount is specified then an elapsed
time MUST be present. The elapsedTime MUST be set by the same component that sets the
repeatCount. There is no default value for elapsedTime.
4.5.7. sequenceNumber
The sequenceNumber is a source-defined number that allows multiple messages to be sent and
processed in a logical order that may be different than the order in which they arrived at the
consumer’s location (for example, with event servers or management tools). The sequence number
helps consumers to sort messages when they arrive. This is with respect to time and to the particular
provider of the event. This is provided for compatibility with components that generate multiple
related events and currently allow for those events to be sequenced.
This property is OPTIONAL and it is not mutable once it is set. There is no default value.

4.6. ExtendedDataElement Description

The ExtendedDataElement allows for application-supplied name-type-value collections to be specified
for extensibility purposes. This is the mechanism by which other attributes not specified in the
CommonBaseEvent data model can be added. Collections specified here are assumed to be product
specific data. This field is provided both for extensibility and for compatibility with existing
management functions.

Table 6 is a summary of the properties for the ExtendedDataElement type. A detailed description
of the ExtendedDataElement properties follows the summary table

The named properties can be filtered, searched or referenced by the correlation rules. The nameis user
defined, however, the nonexclusive reserved keywords are as follows:

 RawData - This keyword is indicative of “as is” data that is meaningful only to the producer of
that data (typically proprietary data). It MAY be in any form, including binary. It is intended to
allow the data to be retrieved verbatim and to support tools that understand the format of the
context.

 RootHeader – This keyword is intended to identify the root ExtendedDataElement for a
hierarchy of ExtendedDataElement‘s that are defined by dataRefs.

+children

0..n

1

ExtendedDataElement

name : Str ing
type : Str ing
values : Str ing[]
hexValue : byte[]
anyData : Str ing[]

Property Name Type Description
name xsd:Name The name of the extended data element. This name

Canonical Situation Data Format: The Common Base Event

 39

 MUST be unique with respect to all other fields at
the same level of extendedDataElement hierarchy,
however, there may exist a child with the same name
at different level or hierarchy.
This is a REQUIRED property.

type xsd:Name

The data type of the values specified in the
values property.

Valid types are as follows:

• byte, short, int, long, float, double
• string
• dateTime
• byteArray, shortArray, intArray,

longArray, floatArray, doubleArray
• stringArray
• dateTimeArray, durationArray
• hexBinary
• boolean, booleanArray
• any

These are the only valid data types for the
ExtendedDataElement type.

The default value is string.

values

xsd:string[]

The array of values for this extended data element,
represented as a string of the specified type,
excluding the hexBinary. hexBinary values MUST
be defined using the hexValue property.
This is an OPTIONAL property.

hexValue xsd:hexBinary The hexValue is an array of characters that holds the
data for any other data type or complexType not in
the supported types described above.
The hexValue and the values properties are mutually
exclusive. Only one of these properties SHALL be
defined. This is an OPTIONAL property.

children cbe:ExtendedData
Element

Contains other extendedDataElement(s) to specify a
structured list of extendedDataElements. This list
allows a reporter to create a hierarchy of
extendedDataElements for a specific
CommonBaseEvent.
This is an OPTIONAL property.

anyData xsd:any Any data type value required by product specific
requirements.

Table 6: ExtendedDataElement

Canonical Situation Data Format: The Common Base Event

 40

The detailed description of the ExtendedDataElement is described in the following sections:

4.6.1. name
The name property specifies the name of the ExtendedDataElement (including RawData, msgLocale,
and EventStatus). This name MUST be unique with respect to all other properties at the same level of
extendedDataElement hierarchy, however, there may exist a child with the same name at different
level.

This property REQUIRED and it is not mutable.

4.6.2. type
The data type for the values property described next.

Valid types are as follows:

• byte, short, int, long, float, double
• string
• dateTime
• boolean
• byteArray, shortArray, intArray, longArray, floatArray, doubleArray
• stringArray
• dateTimeArray
• booleanArray
• hexBinary
• any

These data types are the only valid types for the ExtendedDataElement type.

The default value is string.

This property is REQUIRED and is not mutable.

4.6.3. Values
An array of values for this extended data element of the type defined by the type property just
described.

This property is OPTIONAL and it is mutable. It MUST NOT be specified if the hexValueproperty is
specified.

Note: The hexValue, values, anyData properties are mutually exclusive. Only one of these three
properties SHALL be defined.

4.6.4. hexValue
The hexValue property is an array of characters that holds the data of type hexBinary for all other
data types or complexTypes not in the supported list of types defined above.

Canonical Situation Data Format: The Common Base Event

 41

This property is OPTIONAL and it is not mutable. It MUST NOT be specified if the “values”
property is specified.

Note: The hexValue, values, anyData properties are mutually exclusive. Only one of these three
properties SHALL be defined.

4.6.5. children
The children property refers to other ExtendedDataElement(s) to specify a structured list of
ExtendedDataElement’s. This list allows for the creation of a hierarchy of related
ExtendedDataElement’s corresponding to a specific group of CommonBaseEvents. Accordingly, this
is an efficient and quick way to get access to the list of related ExtendedDataElement’s without having
to look through and examine all the ExtendedDataElement’s.

This property is OPTIONAL and it is mutable.

4.6.6. anyData

The anyData property provide support for the other product specific element. The anyData MUST be
specified when the type property is set to “any”.

This property is OPTIONAL and it is not mutable. It MUST NOT be specified if the “values”
property is specified.

Note: The hexValue, values, anyData properties are mutually exclusive. Only one of these three
properties SHALL be defined.

4.7. MsgDataElement Description

This MsgDataElement represents the data that is used to specify all of the related information that is
associated with the message that this event holds. This field is provided for compatibility with existing
management functions.

Table 7 provides a summary of the data properties representing a message in the common base event.
A detailed description of this MsgDataElement follows the summary table.

MsgDataElement

msgId : Str ing
msgIdType : Str ing
msgCatalogId : Str ing
msgCatalogTokens : Str ing[]
msgCatalog : Str ing
msgLocale : Str ing
msgCatalogType : Str ing

Canonical Situation Data Format: The Common Base Event

 42

Property Name Type Description

msgId

xsd:string

Specifies the message identifier of the event. This
identifier SHOULD be a unique value string of
alphanumeric or numeric characters. It can be as
simple as a string of numeric characters that
identify a message in a message catalog or a
multi-part string of alphanumeric characters (e.g.,
DBT1234E).
This is an OPTIONAL property. The maximum
string length for msgId MUST NOT exceed 256
characters.

msgIdType

xsd:Name

Specifies the meaning and format of the msgId. If
the msgId conforms to or represents a standard or
a well-known convention, it is named by this
property. Examples are: IBM3.4, IBM4.4,
IBM3.1.4, IBM3.4.1, IBM4.4.1, and IBM3.1.4.1.

The nonexclusive reserved keywords include:

• IBM* (* is as described above)
• JMX
• DottedName
• Unknown

This is an OPTIONAL property. The maximum
string length for msgIdType MUST NOT exceed
32 characters.

msgCatalogId

xsd:Name

The index or the identifier for a message that is
used for resolving the message text from a
message catalog.
This is an OPTIONAL property.

msgCatalogTokens

string[] An array of strings used as substitution values for
resolving an internationalized message into
formatted text. The order of the substitution
values is implied by the implicit order of the
array elements.
If there are no substitution values, then
msgCatalogTokens does not need to be
specified.
This is an OPTIONAL property. The maximum
string length for msgCatalogTokens property
MUST NOT exceed 256 characters per token.

msgCatalog

xsd:string

The qualified name of the message catalog that
contains the translated message specified by the
msgCatalogId.
This is an OPTIONAL property. The maximum
string length of the msgCatalog MUST NOT

Canonical Situation Data Format: The Common Base Event

 43

exceed 128 characters.
msgCatalogType xsd:Name The msgCatalogType property specifies the

meaning and format of the msgCatalog. The
current nonexclusive list of reserved keywords
includes:

• Java
• XPG

This property is OPTIONAL and it is not mutable
once it is set . The maximum string length for the
msgCatalogType property MUST NOT exceed
32 characters.

msgLocale xsd:language

The locale for which this msg property is
rendered. Its value is a locale code that conforms
to IETF RFC 1766.
This is an OPTIONAL property.

Table 7: MsgDataElement

The detailed description of the MsgDataElement is described in the following sections:

4.7.1. msgId
The msgId property specifies the message identifier for the event. This identifier SHOULD be a
unique value string of alphanumeric or numeric characters. It can be as simple as string of numeric
characters identifying a message in a message catalog or a multi-part string of alphanumeric characters
(e.g., DBT1234E). The format for msgId is specified by the msgIdType property as described in the
next section.

This is an OPTIONAL property, which is not mutable; that is, once it is set MJUST NOT be changed.
It SHOULD be provided by the component that issues the event. The maximum string length for the
msgId property MUST NOT exceed 256 characters.

4.7.2. msgIdType
The msgIdType property specifies the meaning and format of the msgId. If the ID conforms to or
represents a standard or a well-known convention, it is named by this property. For example IBM3.4.1
specifies a message ID of a 3 part, 8-character string identifier, consisting of 3 alphabetic characters
representing a component, followed by 4 numeric characters, and suffixed with one alphabetic
character (e.g., DBT2359I). Other similar reserved keywords are IBM3.4, IBM4.4, IBM3.1.4,
IBM3.4.1, IBM4.4.1, and IBM3.1.4.1.

The current nonexclusive list of reserved keywords includes:

IBM* (* is as described above)
JMX
DottedName
Unknown

Canonical Situation Data Format: The Common Base Event

 44

This is an OPTIONAL property that is not mutable; that is, once it is set it MUST NOT be changed. It
SHOULD be provided by the component that issues the event. It must be provided if msgId property
is specified. The maximum string length for the msgIdType property MUST NOT exceed 32
characters.

4.7.3. msgLocale
The msgLocale property specifies the locale for which the msg is rendered. Its value is a locale code
that conforms to the IETF RFC 1766 specifications. For example, en-US is the value for United State
English.

This property is OPTIONAL and it is not mutable; that is , once it is set it MUST NOT be changed. If
msgLocale is not specified then it is up to the consumer of the event to decide the locale.

The maximum string length per msgLocale MUST NOT exceed 5 characters.

4.7.4. msgCatalogTokens
The msgCatalogTokens property consists of an array of string values that holds substitution data used
to resolve an internationalized message into a fully formatted text. The order of the values is implied
by the implicit order of the array elements. The Locale of the tokens SHOULD be the same as the
locale of the message text, defined by msgLocale.

This property is OPTIONAL and it is not mutable; that is, once it is set MUST NOT be changed. If
there are no substitution values, then this property does not need to be specified. The maximum string
length of the msgCatalogTokens property MUST NOT exceed 256 characters per token.

4.7.5. msgCatalogId
The msgCatalogId property is the index or the identifier for a message that is used to resolve the
message text from a message catalog.

This property is OPTIONAL and it is not mutable; that is, once it is set it MUST NOT be changed.

4.7.6. msgCatalog
The msgCatalog property is the qualified name of the message catalog that contains the translated
message specified by msgCatalogId.

This property is OPTIONAL and it is not mutable; that is, once it is set it MUST NOT be changed.
The maximum string length for the msgCatalog property MUST NOT exceed 128 characters.

4.7.7. msgCatalogType
The msgCatalogType property specifies the meaning and format of the msgCatalog. The current
nonexclusive list of reserved keywords includes:

• Java
• XPG

Canonical Situation Data Format: The Common Base Event

 45

This property is OPTIONAL and it is not mutable once it is set and MUST be provided if msgCatalog
property is defined. The maximum string length for the msgCatalogType property MUST NOT
exceed 32 characters.

4.8. CorrelatorDataElement Description

The correlatortDataElement type defines the context(s) that this event references. This complex type
holds data that is used to assist with problem diagnostics by correlating messages or events generated
during execution of a unit of work.

Table 8 provides a summary of the data properties representing a context in the CBE. A detailed
description of this CorrelatorDataElement follows the summary table.

CorrelatorDataElement

contextId : String
ty pe : String
name : String
contextValue : String
processId : String
threadId : String

Property Name Type Description
type

xsd:Name

The data type of the contextValue property.
This is a REQUIRED property.

name xsd:Name Name of the application that created this context data
element.
This is a REQUIRED property.

contextValue

xsd:string

The value of the context with respect to the
implementation of the context.
This is REQUIRED unless contextId specifies a value.

contextId xsd:IDREF This property is the reference to the element that contains
the context.
This is REQUIRED unless contextValue specifies a
value.

processId xsd:string

This property identifies the process ID of the running
component or subcomponent that generated the event.
This is an OPTIONAL property with no default value.
The maximum string length for processId MUST NOT
exceed 64 characters.

threadId xsd:string

This property identifies the thread ID of the component
or subcomponent that generated the event. This value
changes with every new thread spawned by the process
identified by processId.

Canonical Situation Data Format: The Common Base Event

 46

This is an OPTIONAL property with no default value.
The maximum string length for threadId MUST NOT
exceed 64 characters.

Table 8: CorrelatorDataElement

A detailed description of the CorrelatorDataElement is described in the following sections:

4.8.1. type
This is the data type of the context. This type should allow the consumer of the event to recognize the
format of the context value. The type is application-specifics (e.g., PD_LogRecordCorrelator).

This property is REQUIRED and is not mutable

4.8.2. name
This is the name of the application that created this context data element (e.g., Correlation engine).

This property is REQUIRED and not mutable.

4.8.3. contextValue
This is the value of the context with respect to the implementation of the context.

This property is REQUIRED unless contextId specifies a value and it is not mutable. It SHOULD
NOT be specified if the contextId property is specified.

4.8.4. contextId
This property is the reference to the element that contains a product/user specific context.

This property is not REQUIRED unless contextValue specifies a value and it is not mutable. It MUST
NOT be specified if the contextValue property is specified.

Note: The contextValue and the contextId are mutually exclusive. Only one of these two properties
SHALL be defined. However, if contextValue is set, then contextId is ignored.

4.8.5. processId
The processId is a string type that identifies the process ID of the “running” component or
subcomponent that generated the event. The value is platform-specific.

This is an OPTIONAL property that is not mutable; that is, once it is set it MUST NOT be changed.
The maximum string length for processId MUST NOT exceed 64 characters.

4.8.6. threadId
The threadId property is of type string and identifies the thread ID of the component or subcomponent
indicated by the process ID that generated the event. A running process may spawn one or more

Canonical Situation Data Format: The Common Base Event

 47

threads to execute its functions. Therefore, the thread ID will change accordingly. The value is
platform-specific.

This is an OPTIONAL property that is not mutable; that is., once it is set it MUST NOT be changed.
The maximum string length for threadId MUST NOT exceed 64 characters.

Canonical Situation Data Format: The Common Base Event

 48

5.0 CommonBaseEvent XML schema

The following XML Schema is a document that describes the element and the attribute declarations for
the Common Base Event (CBE) data model. This schema MUST be used to verify that the event
XML document is valid according to the defined set of rules.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:cbe="http://www.ibm.com/AC/commonbaseevent2_0"
targetNamespace="http://www.ibm.com/AC/commonbaseevent2_0" version="2.0">
 <xsd:complexType name="CommonBaseEvent">
 <xsd:sequence>

<xsd:element name="affectedComponentId" type="cbe:ComponentIdentification" minOccurs="1"
maxOccurs="1" />
<xsd:element name="reporterComponentId" type="cbe:ComponentIdentification" minOccurs="0"
maxOccurs="1" />
<xsd:element name="correlatorDataElements" type="cbe:CorrelatorDataElement" minOccurs="0"
maxOccurs="unbounded" />

 <xsd:element name="situation" type="cbe:Situation" minOccurs="1" maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>

 <xsd:attribute name="globalInstanceId" use="optional">
 <xsd:simpleType>
 <xsd:restriction base="xsd:ID">
 <xsd:minLength value="32"></xsd:minLength>
 <xsd:maxLength value="64"></xsd:maxLength>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="observerTime" type="xsd:dateTime" use="required" />
 <xsd:attribute name="extensionName" use="optional">
 <xsd:simpleType>
 <xsd:restriction base="xsd:Name">
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="version" type="xsd:string" use="optional" />
 </xsd:complexType>
 <xsd:element name="CommonBaseEvent" type="cbe:CommonBaseEvent" />

 <xsd:complexType name="Situation">
 <xsd:sequence>
 <xsd:element name="situationData" type="cbe:SituationData" minOccurs="1" maxOccurs="1" />
 <xsd:element name="situationType" type="cbe:SituationType" minOccurs="1" maxOccurs="1" />

 </xsd:sequence>
 <xsd:attribute name="reporterSeverity" type="cbe:SeverityType" use="optional" />
 <xsd:attribute name="reporterPriority" use="optional" type="cbe:PriorityType" />
 <xsd:attribute name="categoryName" type="cbe:CategoryNameType" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="SituationData">
 <xsd:sequence>

<xsd:element name="extendedDataElements" type="cbe:ExtendedDataElementType" minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="msgDataElement" type="cbe:MsgDataElementType" minOccurs="0"
maxOccurs="1" />

 </xsd:sequence>
 <xsd:attribute name="localInstanceId" use="optional">

Canonical Situation Data Format: The Common Base Event

 49

 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="128" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>

 <xsd:attribute name="msg" use="optional">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="1024" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>

 <xsd:attribute name="sequenceNumber" use="optional">
 <xsd:simpleType>
 <xsd:restriction base="xsd:long">
 <xsd:minInclusive value="0" />
 <xsd:maxInclusive value="9223372036854775807" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>

 <xsd:attribute name="repeatCount" use="optional">
 <xsd:simpleType>
 <xsd:restriction base="xsd:short">
 <xsd:minInclusive value="0" />
 <xsd:maxInclusive value="32767" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>

 <xsd:attribute name="elapsedTime" use="optional">
 <xsd:simpleType>
 <xsd:restriction base="xsd:long">
 <xsd:minInclusive value="0" />
 <xsd:maxInclusive value="9223372036854775807" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>

 <xsd:complexType name="SituationType" abstract="true">
 <xsd:attribute name="reasoningScope" type="cbe:ReasoningScopeType" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="StartSituation" abstract="false">
 <xsd:complexContent>
 <xsd:extension base="cbe:SituationType">
 <xsd:sequence>

<xsd:element name="successDisposition" type="cbe:SuccessDispositionType"
minOccurs="1" maxOccurs="1" />
<xsd:element name="situationQualifier" type="cbe:StartSituationQualifierType" minOccurs="1"
maxOccurs="1" />

 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="StopSituation" abstract="false">
 <xsd:complexContent>

Canonical Situation Data Format: The Common Base Event

 50

 <xsd:extension base="cbe:SituationType">
 <xsd:sequence>

<xsd:element name="successDisposition" type="cbe:SuccessDispositionType"
minOccurs="1" maxOccurs="1" />
<xsd:element name="situationQualifier" type="cbe:StopSituationQualifierType"
minOccurs="1" maxOccurs="1" />

 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="ConnectSituation" abstract="false">
 <xsd:complexContent>
 <xsd:extension base="cbe:SituationType">
 <xsd:sequence>

<xsd:element name="successDisposition" type="cbe:SuccessDispositionType"
minOccurs="1" maxOccurs="1" />
<xsd:element name="situationDisposition"
type="cbe:ConnectSituationDispositionType" minOccurs="1" maxOccurs="1" />

 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="ReportSituation" abstract="false">
 <xsd:complexContent>
 <xsd:extension base="cbe:SituationType">
 <xsd:sequence>

<xsd:element name="reportCategory" type="cbe:ReportCategoryType"
minOccurs="1" maxOccurs="1" />

 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="FeatureSituation" abstract="false">
 <xsd:complexContent>
 <xsd:extension base="cbe:SituationType">
 <xsd:sequence>

<xsd:element name="featureDisposition" type="cbe:FeatureDispositionType"
minOccurs="1" maxOccurs="1" />

 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="DependencySituation" abstract="false">
 <xsd:complexContent>
 <xsd:extension base="cbe:SituationType">
 <xsd:sequence>

<xsd:element name="dependencyDisposition"
type="cbe:DependencyDispositionType" minOccurs="1" maxOccurs="1" />

 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="ConfigureSituation" abstract="false">
 <xsd:complexContent>
 <xsd:extension base="cbe:SituationType">
 <xsd:sequence>

Canonical Situation Data Format: The Common Base Event

 51

<xsd:element name="successDisposition" type="cbe:SuccessDispositionType"
minOccurs="1" maxOccurs="1" />

 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="CreateSituation" abstract="false">
 <xsd:complexContent>
 <xsd:extension base="cbe:SituationType">
 <xsd:sequence>

<xsd:element name="successDisposition" type="cbe:SuccessDispositionType"
minOccurs="1" maxOccurs="1" />

 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="DestroySituation" abstract="false">
 <xsd:complexContent>
 <xsd:extension base="cbe:SituationType">
 <xsd:sequence>

<xsd:element name="successDisposition" type="cbe:SuccessDispositionType"
minOccurs="1" maxOccurs="1" />

 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="AvailableSituation" abstract="false">
 <xsd:complexContent>
 <xsd:extension base="cbe:SituationType">
 <xsd:sequence>

<xsd:element name="operationDisposition" type="cbe:OperationDispositionType"
minOccurs="1" maxOccurs="1" />
<xsd:element name="processingDisposition" type="cbe:ProcessingDispositionType"
minOccurs="1" maxOccurs="1" />
<xsd:element name="availabilityDisposition" type="cbe:AvailabilityDispositionType"
minOccurs="1" maxOccurs="1" />

 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="RequestSituation" abstract="false">
 <xsd:complexContent>
 <xsd:extension base="cbe:SituationType">
 <xsd:sequence>

<xsd:element name="successDisposition" type="cbe:SuccessDispositionType"
minOccurs="1" maxOccurs="1" />
<xsd:element name="situationQualifier" type="cbe:RequestSituationQualifierType"
minOccurs="1" maxOccurs="1" />

 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="OtherSituation" abstract="false">
 <xsd:complexContent>
 <xsd:extension base="cbe:SituationType">
 <xsd:sequence>
 <xsd:any namespace="##any" minOccurs="1" maxOccurs="unbounded" />

Canonical Situation Data Format: The Common Base Event

 52

 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="ComponentIdentification">
 <xsd:sequence>

<xsd:element name="componentData" type="cbe:ComponentData" minOccurs="0"
maxOccurs="1" />
<xsd:element name="componentType" type="cbe:ComponentType" minOccurs="1"
maxOccurs="1" />
<xsd:element name="componentAddress" type="cbe:ComponentAddress"
minOccurs="1" maxOccurs="1" />

 </xsd:sequence>
 <xsd:attribute name="componentAddressType" type="cbe:ComponentAddressType" use="required" />

 </xsd:complexType>

 <xsd:complexType name="ComponentAddress" abstract="true">
 </xsd:complexType>

 <xsd:complexType name="ComponentType">
 <xsd:attribute name="name" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="512" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>

 <xsd:complexType name="TCPAddressType" abstract="false">
 <xsd:complexContent>
 <xsd:extension base="cbe:ComponentAddress">
 <xsd:sequence>
 <xsd:element name="ipAddress" minOccurs="1" maxOccurs="1" >
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="23" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="port" minOccurs="1" maxOccurs="1" >

 <xsd:simpleType>
 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="SNAAddressType" abstract="false">
 <xsd:complexContent>
 <xsd:extension base="cbe:ComponentAddress">
 <xsd:sequence>
 <xsd:element name="luName" minOccurs="1" maxOccurs="1" >
 <xsd:simpleType>

Canonical Situation Data Format: The Common Base Event

 53

 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="tp" minOccurs="1" maxOccurs="1" >

 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="HostAddressType" abstract="false">
 <xsd:complexContent>
 <xsd:extension base="cbe:ComponentAddress">
 <xsd:sequence>
 <xsd:element name="hostname" minOccurs="1" maxOccurs="1" >
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="512" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="GUIDAddressType" abstract="false">
 <xsd:complexContent>
 <xsd:extension base="cbe:ComponentAddress">
 <xsd:sequence>
 <xsd:element name="guid" minOccurs="1" maxOccurs="1" >
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="32" />
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="DeviceAddressType" abstract="false">
 <xsd:complexContent>
 <xsd:extension base="cbe:ComponentAddress">
 <xsd:sequence>
 <xsd:element name="deviceId" minOccurs="1" maxOccurs="1" >
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="128" />
 </xsd:restriction>
 </xsd:simpleType>

Canonical Situation Data Format: The Common Base Event

 54

 </xsd:element>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="OtherAddressType" abstract="false">
 <xsd:complexContent>
 <xsd:extension base="cbe:ComponentAddress">
 <xsd:sequence>
 <xsd:any namespace="##any" minOccurs="0" maxOccurs="unbounded" />

 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="ComponentData">
 <xsd:attribute name="instanceId" use="optional">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="128" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="application" use="optional">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="256" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="executionEnvironment" use="optional">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="256" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>

 <xsd:complexType name="MsgDataElementType">
 <xsd:sequence>
 <xsd:element name="msgCatalogTokens" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="value" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="256" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <xsd:group ref="cbe:msgIdGroup" minOccurs="0" maxOccurs="1" />
 <xsd:group ref="cbe:msgCatalogGroup" minOccurs="0" maxOccurs="1" />
 </xsd:sequence>
 <xsd:attribute name="msgLocale" use="optional">
 <xsd:simpleType>
 <xsd:restriction base="xsd:language">
 <xsd:maxLength value="11"></xsd:maxLength>

Canonical Situation Data Format: The Common Base Event

 55

 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>

 <xsd:group name="msgCatalogGroup">
 <xsd:sequence>
 <xsd:element name="msgCatalogId" minOccurs="1" maxOccurs="1">
 <xsd:simpleType>
 <xsd:restriction base="xsd:Name">
 <xsd:maxLength value="128" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>

<xsd:element name="msgCatalogType" minOccurs="1" maxOccurs="1"
type="cbe:MsgCatalogTypeType" />

 <xsd:element name="msgCatalog" minOccurs="1" maxOccurs="1">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="128" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:group>

 <xsd:group name="msgIdGroup">
 <xsd:sequence>
 <xsd:element name="msgId" minOccurs="1" maxOccurs="1">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="256" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="msgIdType" minOccurs="1" maxOccurs="1" type="cbe:MsgIdTypeType" />
 </xsd:sequence>
 </xsd:group>

 <xsd:simpleType name="ComponentAddressType">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:Name">
 <xsd:maxLength value="32" />
 <xsd:enumeration value="TCPAddressTypeV4" />
 <xsd:enumeration value="TCPAddressTypeV6" />
 <xsd:enumeration value="SNAAddressType" />
 <xsd:enumeration value="HostAddressType" />
 <xsd:enumeration value="FQHostAddressType" />
 <xsd:enumeration value="DeviceAddressType" />

 <xsd:enumeration value="GUIDAddressType" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:Name">
 <xsd:maxLength value="32" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

Canonical Situation Data Format: The Common Base Event

 56

 <xsd:simpleType name="MsgIdTypeType">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:Name">
 <xsd:maxLength value="32" />
 <xsd:enumeration value="IBM3.4" />
 <xsd:enumeration value="IBM4.4" />
 <xsd:enumeration value="IBM3.1.4" />
 <xsd:enumeration value="IBM3.4.1" />
 <xsd:enumeration value="IBM4.4.1" />
 <xsd:enumeration value="IBM3.1.4.1" />
 <xsd:enumeration value="JMX" />
 <xsd:enumeration value="DottedName" />
 <xsd:enumeration value="Unknown" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:Name">
 <xsd:maxLength value="32" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

 <xsd:simpleType name="MsgCatalogTypeType">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:Name">
 <xsd:maxLength value="32" />
 <xsd:enumeration value="JAVA" />
 <xsd:enumeration value="XPG" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:Name">
 <xsd:maxLength value="32" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

 <xsd:simpleType name="SeverityType">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:short">
 <xsd:enumeration value="0" /><!-- Unknown -->
 <xsd:enumeration value="10" /><!-- Information -->
 <xsd:enumeration value="20" /><!-- Harmless -->
 <xsd:enumeration value="30" /><!-- Warning -->
 <xsd:enumeration value="40" /><!-- Minor -->
 <xsd:enumeration value="50" /><!-- Critical -->
 <xsd:enumeration value="60" /><!-- Fatal -->
 <xsd:minInclusive value="0" />
 <xsd:maxInclusive value="70" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:short">
 <xsd:minInclusive value="0" />
 <xsd:maxInclusive value="70" />
 </xsd:restriction>

Canonical Situation Data Format: The Common Base Event

 57

 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

 <xsd:simpleType name="PriorityType">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:short">
 <xsd:enumeration value="10" /><!-- Low -->
 <xsd:enumeration value="50" /><!-- Medium -->
 <xsd:enumeration value="70" /><!-- High -->
 <xsd:minInclusive value="0" />
 <xsd:maxInclusive value="100" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:short">
 <xsd:minInclusive value="0" />
 <xsd:maxInclusive value="100" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

 <xsd:complexType name="ExtendedDataElementType">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="values">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="1024"></xsd:maxLength>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="hexValue" type="xsd:hexBinary" />

 <xsd:any namespace="##any" minOccurs="0" maxOccurs="unbounded" />
 </xsd:choice>

<xsd:element maxOccurs="unbounded" minOccurs="0" name="children"
type="cbe:ExtendedDataElementType" />

 </xsd:sequence>

 <xsd:attribute name="name" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:Name">
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="type" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="64"></xsd:maxLength>
 <xsd:enumeration alue="noValue"></xsd:enumeration>
 <xsd:enumeration value="byte"></xsd:enumeration>
 <xsd:enumeration value="short"></xsd:enumeration>
 <xsd:enumeration value="int"></xsd:enumeration>
 <xsd:enumeration value="long"></xsd:enumeration>
 <xsd:enumeration value="float"></xsd:enumeration>
 <xsd:enumeration value="double"></xsd:enumeration>

Canonical Situation Data Format: The Common Base Event

 58

 <xsd:enumeration value="string"></xsd:enumeration>
 <xsd:enumerationvalue="dateTime"></xsd:enumeration>
 <xsd:enumeration value="boolean"></xsd:enumeration>

 <xsd:enumerationvalue="byteArray"></xsd:enumeration>

<xsd:enumeration
value="shortArray"></xsd:enumeration>
<xsd:enumeration
value="intArray"></xsd:enumeration>
<xsd:enumeration
value="longArray"></xsd:enumeration>
<xsd:enumeration
value="floatArray"></xsd:enumeration>
<xsd:enumeration
value="doubleArray"></xsd:enumeration>
<xsd:enumeration
value="stringArray"></xsd:enumeration>
<xsd:enumeration
value="dateTimeArray"></xsd:enumeration>
<xsd:enumeration
value="booleanArray"></xsd:enumeration>
<xsd:enumeration
value="hexBinary"></xsd:enumeration>

 <xsd:enumeration value="any"></xsd:enumeration>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>

 <xsd:complexType name="CorrelatorDataElement">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element maxOccurs="1" minOccurs="1" name="contextValue">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="1024"></xsd:maxLength>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="1" name="contextId" type="xsd:NMTOKEN" />
 </xsd:choice>

<xsd:element maxOccurs="unbounded" minOccurs="0" name="children"
type="cbe:CorrelatorDataElement" />

 </xsd:sequence>

 <xsd:attribute name="name" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:Name">
 <xsd:maxLength value="64"></xsd:maxLength>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>

 <xsd:attribute name="type" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:Name">
 <xsd:maxLength value="64"></xsd:maxLength>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>

 <xsd:attribute name="processId" use="optional">

Canonical Situation Data Format: The Common Base Event

 59

 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="threadId" use="optional">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>

 <xsd:simpleType name="CategoryNameType">
 <xsd:restriction base="xsd:Name">
 <xsd:enumeration value="StartSituation" />
 <xsd:enumeration value="StopSituation" />
 <xsd:enumeration value="FeatureSituation" />
 <xsd:enumeration value="DependencySituation" />
 <xsd:enumeration value="RequestSituation" />
 <xsd:enumeration value="ConfigureSituation" />
 <xsd:enumeration value="ConnectSituation" />
 <xsd:enumeration value="CreateSituation" />
 <xsd:enumeration value="DestroySituation" />
 <xsd:enumeration value="ReportSituation" />
 <xsd:enumeration value="AvailableSituation" />
 <xsd:enumeration value="OtherSituation" />

 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="SuccessDispositionType">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:Name">
 <xsd:enumeration value="SUCCESSFUL" />
 <xsd:enumeration value="UNSUCCESSFUL" />
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:Name">
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

 <xsd:simpleType name="StartSituationQualifierType">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="START INITIATED" />
 <xsd:enumeration value="RESTART INITIATED" />
 <xsd:enumeration value="START COMPLETED" />
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>

Canonical Situation Data Format: The Common Base Event

 60

 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>
 <xsd:simpleType name="StopSituationQualifierType">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="STOP INITIATED" />
 <xsd:enumeration value="ABORT INITIATED" />
 <xsd:enumeration value="PAUSE INITIATED" />
 <xsd:enumeration value="STOP COMPLETED" />
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>
 <xsd:simpleType name="ConnectSituationDispositionType">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="IN USE" />
 <xsd:enumeration value="FREED" />
 <xsd:enumeration value="CLOSED" />
 <xsd:enumeration value="AVAILABLE" />
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

 <xsd:simpleType name="ReportCategoryType">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="PERFORMANCE" />
 <xsd:enumeration value="SECURITY" />
 <xsd:enumeration value="HEART BEAT" />
 <xsd:enumeration value="STATUS" />
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

Canonical Situation Data Format: The Common Base Event

 61

 <xsd:simpleType name="FeatureDispositionType">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="AVAILABLE" />
 <xsd:enumeration value="NOT AVAILABLE" />
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

 <xsd:simpleType name="DependencyDispositionType">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="MET" />
 <xsd:enumeration value="NOT MET" />
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

 <xsd:simpleType name="ConfigureDispositionType">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="SUCCESSFUL" />
 <xsd:enumeration value="UNSUCCESSFUL" />
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

 <xsd:simpleType name="CreateDispositionType">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="SUCCESSFUL" />
 <xsd:enumeration value="UNSUCCESSFUL" />
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">

Canonical Situation Data Format: The Common Base Event

 62

 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

 <xsd:simpleType name="DestroyDispositionType">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="SUCCESSFUL" />
 <xsd:enumeration value="UNSUCCESSFUL" />
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

 <xsd:simpleType name="AvailabilityDispositionType">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="STARTABLE" />
 <xsd:enumeration value="NONSTARTABLE" />
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

 <xsd:simpleType name="ProcessingDispositionType">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="FUNCTION_PROCESSED" />
 <xsd:enumeration value="FUNCTION_BLOCKED" />
 <xsd:enumeration value="MGMT_TASK_PROCESSED" />
 <xsd:enumeration value="MGMT_TASK_BLOCKED" />
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

 <xsd:simpleType name="RequestSituationQualifierType">
 <xsd:union>
 <xsd:simpleType>

Canonical Situation Data Format: The Common Base Event

 63

 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="REQUEST INITIATED" />
 <xsd:enumeration value="REQUEST COMPLETED" />
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

 <xsd:simpleType name="OperationDispositionType">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:Name">
 <xsd:enumeration value="STARTABLE" />
 <xsd:enumeration value="NONSTARTABLE" />
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:Name">
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

 <xsd:simpleType name="ReasoningScopeType">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:Name">
 <xsd:enumeration value="External" />
 <xsd:enumeration value="Internal" />
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:Name">
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

 <xsd:complexType name="CommonBaseEvents">
 <xsd:sequence>
 <xsd:element ref="cbe:CommonBaseEvent" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="CommonBaseEvents" type="cbe:CommonBaseEvents" />

</xsd:schema>

Canonical Situation Data Format: The Common Base Event

 64

6.0 CommonBaseEvent Class Hierarchy

The following figure depicts the CommonBaseEvent schema using UML (Unified Modeling
Language™) notation. We have used this graphical language to simplify the visualization of the
Common Base Event schema. For detailed descriptions of the CommonBaseEvent and its properties,
please refer to the CommonBaseEvent Description Section (described on page 10).

StopSituation

successDisposition : Str ing
situationQualifier : Str ing

ConnectSituation

successDisposition : Str ing
situationDisposition : Str ing

AvailabilitySituation

operationDisposition : Str ing
processingDisposition : Str ing
availabilityDisposition : Str ing

RequestSituation

successDisposition : Str ing
situationQualifier : Str ing

Repor tSituation

repor tCategory : Str ing

FeatureSituation

featureDisposition

DependencySituation

dependencyDisposition

Configur eSituation

successDisposition : Str ing

CreateSituation

successDisposition : Str ing

TCPAddressType

ipAddr ess : Str ing
por t : Str ing

SNAAddr essType

luName : Str ing
tp : shor t

HostAddressType

hostName : Str ing

Destr oySituation

successDisposition

Star tSituation

successDisposition : Str ing
situationQualifier : Str ing

ExtendedDataElement

name : Str ing
type : Str ing
values : Str ing[]
hexValue : byte[]
anyData : Str ing[]

0..n

1

+childr en

0..n

1

MsgDataElement

msgId : Str ing
msgIdType : Str ing
msgCatalogId : Str ing
msgCatalogTokens : Str ing[]
msgCatalog : Str ing
msgLocale : Str ing
msgCatalogType : Str ing

SituationData

localInstanceId : Str ing
msg : Str ing
repeatCount : shor t
elapsedTime : shor t
sequenceNumber : long

0..n1

+extendedDataElements

0..n1

0..1

1

+msgDataElement
0..1

1

SituationType

reasoningScope : Str ing

ComponentData

InstanceId : Str ing
application : Str ing
executionEnvironment : Str ing ComponentType

name : Str ing
ComponentAddress

Situation

repor ter Pr ior ity : shor t
repor ter Sever ity : shor t
categoryName : Str ing

1

1

+situationData
1

1

1

1

+situationType
1

1

ComponentIdentification

componentAddressType : Str ing

0..1
1

0..1

+componentData

1

1

1

1
+componentType

1

1

1

+componentAddress

1

1

CorrelatorDataElement
contextId : String
ty pe : String
name : String
contextValue : String
processId : String
threadId : String

CommonBaseEvent

observedTime : Str ing
globalInstanceId : Str ing
extensionName : Str ing
version : Str ing = commonbaseevent2_0
other Data : Str ing[]

1

1
+situation

1

1

1

1 +affectedComponentId

1

1

0..1

1 +repor ter ComponentId

0..1

1

0..n1 0..n

+cor relatorDataElemenets

1

GUIDAddressType

guid : Str ing

DeviceAddressType

deviceId : Str ing

OtherAddr essType

anyData : Str ing[]OtherSituation
anyData : String[]

Canonical Situation Data Format: The Common Base Event

 65

Legend:
Rectangle Box: Represents a class, which is a group of methods and properties that have similar attributes and behavior.
Class name is specified on top part of the box followed by the attributes and their type. Operations are typically shown in
the bottom portion of the box but are not specified here.
Straight line: Indicates an association or relationship between classes. The direction is indicated by an arrow head (“>”).
Solid Diamond: Depicts a composite aggregation (by-value) or “has” relationship. The diamond is placed on the target end
of the aggregation next to the target class, indicating that a class is embedded within another class. Cardinality, the number
of objects, is indicated by numbers on either end of the association line.
Hollow Diamond: Depicts an aggregate association relationship (by-reference) between two classes to show that each instance of one
class has a pointer or reference within it to an instance of another class. The hollow diamond is placed on the target end of the aggregation
next to the target class.

Canonical Situation Data Format: The Common Base Event

 66

7.0 Appendix

A. Component Type Namespace

A component type is a well-defined name (syntax and semantics) that is used to characterize all
instances of a given kind of component. This appendix provides enumeration of standardized values
for component types that will be used by IBM products. The component type namespace is divided
into several name spaces to facilitate delegation to various product groups. However, it is expected
that the initial list of component types are globally unique to facilitate their use without a qualifier.

A.1 Overall namespace
http:// www.ibm.com/namespaces/autonomic/common_componentTypes

Delegated namespaces:

WebAppServer Components
http:// www.ibm.com/namespaces/autonomic/WebAppServer_componentTypes

DataManagement Components
http:// www.ibm.com/namespaces/autonomic/DM_componentTypes

Lotus Components
http:// www.ibm.com/namespaces/autonomic/Lotus_componentTypes

Tivoli Components
http:// www.ibm.com/namespaces/autonomic/Tivoli_componentTypes

OperatingSystem components
http:// www.ibm.com/namespaces/autonomic/OS_componentTypes

B.1 The Operating System Hosting Environment

Namespace:

http:// www.ibm.com/namespaces/autonomic/OS_componentTypes

Hosting Environment:

Operating_System

Hosting Environment that hosts this Hosting Environment:

Operating_System_Container

Component Type Enumeration Rule for this Hosting Environment:

Canonical Situation Data Format: The Common Base Event

 67

<Operating System Product Name>_<Optional OS Family>_<Optional OS Role>
where,
 OS_Role can be Server, Workstation, AdvancedServer,Home,Professional

Component Types for this Hosting Environment based on Enumeration Rule:

• RedHatLinux • MicrosoftWindows_98 • MicrosoftWindows_NT_Server
• SuSELinux • MicrosoftWindows_ME • MicrosoftWindows_XP_Professional
• UnitedLinux • MicrosoftWindows_NT_Workstation • MicrosoftWindows_2003_Server
• SunSolaris • MicrosoftWindows_NT_Server • MicrosoftWindows_2003_AdvancedServer
• IBMAIX • MicrosoftWindows_2000_Workstation •
• HPUX • MicrosoftWindows_2000_Server •
• NovellNetware • MicrosoftWindows_2000_AdvancedServer •
• IBMMVS • MicrosoftWindows_XP_Home •
• IBMOS400 • •

Component Types hosted in this Hosting Environment:

Components of this Hosting Environment Components Hosted by this Hosting
Environment

• Language_Runtime • Relational_Database
• Device_Driver • Web_Application_Server
• Software • Messaging
• Process
• Thread
• TCPIP_port
•

Catgegorization (Grouping) Component Types:

• Windows • Operating_System
• Windows-Win32 • MicrosoftWindows_NT
• UNIX • MicrosoftWindows_2000
• POSIX • MicrosoftWindows_XP
• Linux • MicrosoftWindows_2003

C.1 The Web_Application_Server Hosting Environment

Namespace:

http:// www.ibm.com/namespaces/autonomic/WebAppServer_componentTypes

Hosting Environment:

Web_Application_Server

Canonical Situation Data Format: The Common Base Event

 68

Hosting Environment that hosts this Hosting Environment:

Operating_System

Component Type Enumeration Rule for this Hosting Environment:

<Web Application Server Product Name>

Component Types for this Hosting Environment based on Enumeration Rule:

• WebSphereApplicationServer • OracleWebApplicationServer
• WebLogicApplicationServer • SunONEWebApplicationServer
 • TomCatWebApplicationServer
 • JBossWebApplicationServer

Component Types hosted in this Hosting Environment:

Components of this Hosting Environment Components Hosted by this Hosting
Environment

• EAR_File • Portal_Server
• WAR_File • Workflow_Engine
• J2EE_Application • Commerce_Server
• Web_Module • WebAppServer_Deployment_Manager
• EJB_Module • WebAppServer_JMS_Server
• Transport • WebAppServer_Node
• Resource_Provider • WebAppServer_Web_Container
• Virtual_Host • WebAppServer_EJB_Container
• Alias_Name
• WebAppServer_Mail_Provider
• WebAppServer_URL_Provider
• WebAppServer_JDBC_Provider
• WebAppServer_JMS_Provider
• WebAppServer_Resource_Adapter
• WebAppServer_DataSource
• WebAppServer_Authentication_Mechanism
• WebAppServer_User_Registry
• Web_Application

Catgegorization (Grouping) Component Types:

• WebApplicationServer_Cluster • WebApplicationServer
• J2EE_Application_Server

Canonical Situation Data Format: The Common Base Event

 69

• WebSphere_Cell

D.1 The Relational_Database Hosting Environment

Namespace:

http:// www.ibm.com/namespaces/autonomic/DM_componentTypes

Hosting Environment:

Relational_Database

Hosting Environment that hosts this Hosting Environment:

Operating_System

Component Type Enumeration Rule for this Hosting Environment:

<Relational Database Product Name>_<Optional Relational Database
Family>_<Optional Relational Database Role>

where,
Family is Enterprise, Workgroup, Personal, Express (DB2)

 DynamicServer, OnlineExtendedEdition, SE (Informix)
Role is Client,Server

Component Types for this Hosting Environment based on Enumeration Rule:

• IBMDB2UDB • Sybase
• Informix • Oracle
 • MicrosoftSQL
 • LDAP(??)

Component Types hosted in this Hosting Environment:

Component Types that do NOT explicitly
provide a Hosting Environment

Components Hosted by this Hosting
Environment

• RelationalDatabase_Application • RelationalDatabase_Node
• RelationalDatabase_Connection • RelationalDatabase_APPC_Node
• RelationalDatabase_Instance • RelationalDatabase_APPCLU_node
• RelationalDatabase_Table • RelationalDatabase_APPN_Node
• RelationalDatabase_Tablespace • RelationalDatabase_NETBIOS_Node
• RelationalDatabase_Tablespace_Container • RelationalDatabase_TCPIP_Node

 • RelationalDatabase_LDAP_Node
 • RelationalDatabase_Local_Node

Canonical Situation Data Format: The Common Base Event

 70

Catgegorization (Grouping) Component Types:

• RelationalDatabase-NodeGroup

E.1 List of Component Type Values by Namespace

Web Application Server Component Types

(http://www.ibm.com/namespaces/autonomic/WebAppServer_componentTypes)

• WebSphereApplicationServer • OracleWebApplicationServer
• WebLogicApplicationServer • SunONEWebApplicationServer

 • TomCatWebApplicationServer
• • JBossWebApplicationServer

• EAR_File • Portal_Server
• WAR_File • Workflow_Engine
• J2EE_Application • Commerce_Server
• Web_Module • WebAppServer_Deployment_Manager
• EJB_Module • WebAppServer_JMS_Server
• Transport • WebAppServer_Node
• Resource_Provider • WebAppServer_Web_Container
• Virtual_Host • WebAppServer_EJB_Container
• Alias_Name
• WebAppServer_Mail_Provider
• WebAppServer_URL_Provider
• WebAppServer_JDBC_Provider
• WebAppServer_JMS_Provider
• WebAppServer_Resource_Adapter
• WebAppServer_DataSource
• WebAppServer_Authentication_Mechanism
• WebAppServer_User_Registry
• Web_Application

• WebApplicationServer_Cluster • WebApplicationServer
• J2EE_Application_Server
• WebSphere_Cell

DataManagement Component Types

(http:// www.ibm.com/namespaces/autonomic/DM_componentTypes)

• IBMDB2UDB • Sybase
• • Oracle
• • MicrosoftSQL

Canonical Situation Data Format: The Common Base Event

 71

• • LDAP
•
• Informix_DynamicServer
• Informix_OnlineExtendedEdition
• Informix_SE

• RelationalDatabase_Application • RelationalDatabase_Node
• RelationalDatabase_Connection • RelationalDatabase_APPC_Node
• RelationalDatabase_Instance • RelationalDatabase_APPCLU_node
• RelationalDatabase_Table • RelationalDatabase_APPN_Node
• RelationalDatabase_Tablespace • RelationalDatabase_NETBIOS_Node
• RelationalDatabase_Tablespace_Container • RelationalDatabase_TCPIP_Node
 • RelationalDatabase_LDAP_Node
 • RelationalDatabase_Local_Node

• RelationalDatabase-NodeGroup

OperatingSystem Component Types
 (http://www.ibm.com/namespaces/autonomic/OS_componentTypes)

• RedHatLinux • MicrosoftWindows_98 • MicrosoftWindows_NT_Server
• SuSELinux • MicrosoftWindows_ME • MicrosoftWindows_XP_Professional
• UnitedLinux • MicrosoftWindows_NT_Workstation • MicrosoftWindows_2003_Server
• SunSolaris • MicrosoftWindows_NT_Server • MicrosoftWindows_2003_AdvancedServer
• IBMAIX • MicrosoftWindows_2000_Workstation
• HPUX • MicrosoftWindows_2000_Server
• NovellNetware • MicrosoftWindows_2000_AdvancedServer
• IBMMVS • MicrosoftWindows_XP_Home
• IBMOS400

• Language_Runtime • Relational_Database

• Device_Driver • Web_Application_Server

• Software • Messaging

• Process

• Thread

• TCPIP_port

• Windows • Operating_System

• Windows-Win32 • MicrosoftWindows_NT

• UNIX • MicrosoftWindows_2000

• POSIX • MicrosoftWindows_XP

• Linux • MicrosoftWindows_2003

Canonical Situation Data Format: The Common Base Event

 72

B. References

[RFC2119] Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt

[XML Schema] W3C XML Schema Part 2: Datatypes, W3C Recommendation 02, May 2001,
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

XML Schema Part 0: Primer

[GUID] Leach and Salz, Internet Engineering Task Force, UUIDs and GUIDs, Internet draft
draft-leach-uuids-guids-01.txt, http://www.opengroup.org/dce/info/draft-leach-uuids-
guids-01.txt

[GSH] Global Grid Forum, Grid Services Specification Draft 4, http://www.gridforum.org/ogsi.wg

DMTF - Standards - Common Information Model (CIM) Specification Version 2.2
COMMON INFORMATION MODEL (CIM) INDICATIONS (FINAL DRAFT)

