

last modified: September 6, 2002, ref: WSOS 2.0 beta 1

Collaxa WSOS 2.0: An Introduction

Abstract
This white paper describes how the Collaxa Web Service Orchestration
Server and BPEL Scenario™ can integrate web services into collaborative
business processes and long-running business transactions.

Audience
Java developers and architects, consultants and IT managers

Table of Contents

THE 2-MINUTE OVERVIEW 2

WHAT IS WEB SERVICE ORCHESTRATION? 3
Web Services, Standards for Interoperability 3
Making Web Services Work Together 3
Defining Orchestration 5

THE COLLAXA WEB SERVICE ORCHESTRATION SERVER 7
BPEL Scenario 8
Web Service Orchestration Server 9
Web Service Orchestration Console 10

EXAMPLE: A LOAN PROCUREMENT BPEL SCENARIO 11
Initiating a BPEL Scenario 12
Asynchronous Web Service Interactions 13
Flow Coordination 17
User Interactions/Portal Integration 19
Exceptions and Timeouts 20
Business Transactions 21

NEXT STEPS: KICK THE TIRES 23

Collaxa

Orchestrating Web Services

[Page 2]

Collaxa

The 2-Minute Overview

Collaxa Web Service Orchestration Server
Collaxa offers a complete and standard-based solution to orchestrating web services
into long-running transactions and collaborative business processes.

The BPEL Scenario™ is an
innovative and flexible
orchestration abstraction that
enables developers to
capture the flow, interaction
logic and business rules that
tie a set of services into an
end-to-end business process.

The Orchestration Server
encapsulates the facilities
needed to execute BPEL
Scenarios and guarantee the
integrity of the long-running
business transaction or
collaborative business

process.

The Orchestration Console provides administration, debugging capabilities and
activity monitoring to help enterprises manage distributed business processes.

Standards and interoperability
The Collaxa WSOS is based, soup-to-nuts, on open standards (XML, SOAP, WSDL,
BPEL4WS, BTP, WS-Coordination and WS-Transaction) and interoperates with
Microsoft .Net, IBM WebSphere and BEA Workshop services.

Key Features

• Asynchronous Conversation (callback, correlation, state management)

• Flow Coordination (parallel and dynamic branching, sophisticated join patterns)

• Business Transaction Management (WS-Coordination, WS-Transaction)

• Hierarchical Exception Management

• XML Web Services (SOAP over HTTP, JMS, SMTP).

• User Interactions (manual tasks, portal integration, email notification, LDAP
integration)

• Bi-directional Java-to-XML Mapping (based on XML Schema)

• Asynchronous Flow Debugger

• Audit Trails

• Business Activity Monitoring

• Management Console and API

• Side-by-side Versioning

• Clustering

Orchestrating Web Services

[Page 3]

Collaxa

What is Web Service Orchestration?

WEB SERVICES, STANDARDS FOR INTEROPERABILITY

As we use it here, the term "Web Services" refers to a set of open standards (XML,
SOAP, WSDL, etc.) that increase interoperability and simplify integration across
heterogeneous systems throughout the extended enterprise (See Figure 1).

Figure 1 - Web Services: Industry Standards for Interoperability

The same way standards like HTTP and HTML revolutionized the way people access
content and applications, Web Services have the potential to transform networked,
heterogeneous systems into a true distributed computing platform and allow systems
and people to cooperate simply and reliably.

MAKING WEB SERVICES WORK TOGETHER

Making Web Services work is a 2-step process: first you publish them and then you
orchestrate them. Publishing means taking a piece of functionality that already exists
within a system like a mainframe, a Java application, an ERP system or a .Net
component and making it available over the network so that it can be easily
integrated into other applications. Orchestration means composing multiple services
into a long-lived, multi-step business transaction.

Orchestrating Web Services

[Page 4]

Collaxa

Let’s take the example of a Loan Procurement application:

Figure 2 - Composite Loan Procurement Application

Once all the building blocks (Credit Rating, Customer Information Systems, Loan
Processors, etc.) are published as JMS or XML Web Services, developers work with
business analysts to integrate them into a long-lived, multi-step loan procurement
process. The requirements that need to be implemented as part of the fabric that
ties together those building blocks can be broken down into 4 categories:
Asynchronous Interactions, Flow Coordination, Business Transaction Management
and Activity Monitoring.

Requirement #1: Stateful and Asynchronous Interactions

g Each building block has its own processing performance: The portal might be able
to handle 100 concurrent accesses whereas the credit rating system which is
based on older technology can only handle 20.

g Each building block has its own lifecycle and maintenance requirements:
UnitedLoan is offline for maintenance 3 hours per month.

g Some services require manual intervention for knowledge contribution, approval
or exception management: StarLoan might require a loan advisor to manually
approve some class of loan requests.

Given that context, connecting those building blocks synchronously would result in a
very brittle application. Asynchronous, message-driven interactions can overcome
those limitations: services talk to each other using messages that get queued and
can be processed asynchronously, thereby increasing reliability and throughput 1.

1 Compare the number of emails you can handle per day with the number of phone conversations you can

have.

Orchestrating Web Services

[Page 5]

Collaxa

However, asynchrony puts the burden on developers to handle callbacks, message
correlation, conversational state, expiration, etc… It also fragments the application’s
business logic into small, difficult-to-read, difficult-to-reuse and difficult-to-manage
code fragments. These are not trivial requirements given that most current
applications are built using procedural programming techniques.

Requirement#2: Flow Coordination
Given that it might take a day for the loan processor to process a loan application
and return an offer, the application has to interact with both processors in parallel.
How do you branch your application to make sure that the loan applications are
submitted to both loan providers in parallel? How do you handle sophisticated join
patterns such as: canceling all pending requests/branches when the user approves
one of the offers.

Requirement #3: Business Transaction Management
Some business rules require “atomic” semantics across loosely-coupled services. In
addition, exceptions must be handled gracefully which can be one of the most
challenging aspects of orchestration logic:

g Building block services can throw faults: “The submitted SSN is invalid”.

g Building block services can timeout: A credit rating was supposed to be issued
within 30 minutes but has not been received!.

g A travel reservation use case provides a good example of transaction semantics:
“Book the flight on United if and only if we can also book a room and a car”.

Managing business transactions and exceptions in a loosely-coupled and
asynchronous environment increases significantly the size, complexity and variability
of the orchestration fabric.

Requirement #4: Business Activity Monitoring
Implementing the fabric that coordinates service interactions is only half the
problem. Given the heterogeneous and distributed nature of the application,
administration and monitoring are as important, if not more important, when it
comes time to deploy the composite application in production. This raises such
questions as:

g How do administrators manage/cancel transactions?

g What is the status and history of a specific transaction?

g How do you add a new loan processing partner?

g How do you implement side-by-side versioning?

g How do you create a dashboard that allows business users to monitor the number
of transactions initiated each week, the average offer and response time from
each loan processor, etc…

DEFINING ORCHESTRATION

The orchestration requirements (asynchronous interactions, flow coordination,
business transaction management and activity monitoring) are common to all
applications that need to coordinate multiple synchronous and asynchronous web
services into a multi-step business transaction. Implementing them in custom code
as part of each service-oriented application is complex and difficult to maintain.

Orchestrating Web Services

[Page 6]

Collaxa

A new set of Web Services standards (BPEL4WS, WS-Transaction and WS-
Coordination) and a new category of software infrastructure called the Web Service
Orchestration Server are emerging to reduce the cost and complexity associated with
delivering and managing these types of distributed, process-centric , service-oriented
applications.

Orchestrating Web Services

[Page 7]

Collaxa

The Collaxa Web Service Orchestration Server

The Collaxa Web Service Orchestration Server helps enterprises reduce the cost and
complexity of orchestrating web services into long-running business transactions and
collaborative business processes. It is based on interoperability standards (such as
XML, SOAP, WSDL, BPEL4WS, WS-Coordination, WS-Transaction and JMS) and works
with your existing IT infrastructure including portals, application servers and
messaging infrastructure.

Figure 3 - Collaxa Web Service Orchestration Server

The Collaxa Web Service Orchestration Server is a 3-part solution:

• The BPEL Scenario is an innovative and flexible orchestration abstraction that
captures the flow, interaction logic and business rules that tie a set of services
into an end-to-end business process.

• The Orchestration Server encapsulates the facilities needed to deploy BPEL
Scenarios and execute long-running business transactions or collaborative
business processes.

• The Orchestration Console provides administration, testing and debugging
capabilities and activity monitoring to help enterprises manage distributed
business processes.

Orchestrating Web Services

[Page 8]

Collaxa

BPEL SCENARIO

Figure 4 - BPEL Scenario, a Unifying Abstraction

The BPEL Scenario has been designed to combine the semantics and standards of
BPEL4WS, the discovery and reporting capabilities of a visual model and the
flexibility and power of Java into a unifying, developer-friendly orchestration
abstraction.

Figure 5 - Collaxa BPEL Scenario Designer, Business Analyst’s View

The BPEL Scenario Designer is a visual tool that allows business analysts to capture
and document the requirements of a BPEL Scenario. Built-in wizards guide users
through the definition of the different parts of a scenario: partners, containers, flows,
compensation rules and exception handlers. The visual model is also leveraged at
run-time for audit trailing and reporting.

Orchestrating Web Services

[Page 9]

Collaxa

Figure 6 - BPEL Scenario, Developer's View

If necessary, Java Programmers use the developer’s view of the BPEL Scenario,
which is a Java-based, JSP-like abstraction, to complete the implementation.

The BPEL Scenario is then deployed to the Web Service Orchestration Server where
it can be invoked through its XML Web Service, JMS or Java interfaces.

WEB SERVICE ORCHESTRATION SERVER

Figure 7 - Internals of the Orchestration Server

Orchestrating Web Services

[Page 10]

Collaxa

The Web Service Orchestration Server provides the run-time facilities need to
deploy, execute and manage BPEL Scenarios:

• The scenario manager detects when a running scenario is waiting for an
asynchronous callback, bookmarks its state and passivates it in a database.
When the callback is received, the scenario is reactivated and its execution
resumed. This looks to the developer as if the scenario was running in a
persistent and fault-tolerant thread.

• The flow coordinator manages static and dynamic branching and sophisticated
join-patterns. Branches can be arbitrarily nested.

• The conversation manager handles asynchronous interactions including
message correlation and state management.

• The delivery service manages reliable message exchanges between the
orchestration server and web service participants. It supports both HTTP and
JMS. The delivery service manages all callbacks (aka asynchronous notifications).

• The transaction manager coordinates the transactional semantics of each BPEL
Scenario. A BPEL Scenario can be both a transaction coordinator and transaction
participant.

• The console provides visibility into the execution of scenario instances and the
orchestration server.

The complexity of these modules and facilities is hidden behind the simplicity of
the BPEL Scenario.

WEB SERVICE ORCHESTRATION CONSOLE

Figure 8 - Orchestration Console, Audit Trails and Debugging

Once deployed, BPEL Scenarios automatically benefit from the testing, administration
and monitoring tools provided by the orchestration server. Each tool provides a
different view into the execution of a scenario:

• The debugger allows the developer to select a running scenario, view its call
stack and inspect its variables and XML documents.

• The audit trail provides the history of a scenario.

• The conversation log is a swimline view of the messages sent and received by
the scenario.

• The transaction log shows the list of transactions and participants associated
with each scenario and their state.

Orchestrating Web Services

[Page 11]

Collaxa

Example: A Loan Procurement BPEL Scenario

In this example, we will review how the Collaxa Web Service Orchestration Server
and the BPEL Scenario can be used to integrate various web services, JMS queues
and user interactions into a long-running Loan Procurement process.

Figure 9 – LoanProcurement BPEL Scenario™ (Developer View)

Like JSPs, BPEL Scenarios are based on Java and increase the level of congruence
between a problem domain and the solution domain: a JSP is a programming
abstraction of a dynamic web page; a BPEL Scenario is a programming abstraction of
a long-running business transaction or a collaborative business process. In both
cases, “what you think is what you code”.

Let’s use the LoanProcurement described in Figure 9 to highlight some of the
features of the BPEL Scenario:

Orchestrating Web Services

[Page 12]

Collaxa

1. Web Service Invocation (XML Schema, SOAP, WSDL)
The ScenarioBean abstraction hides the complexity of invoking web servic es:
 mAmericanL.initiateProcess(loanApp);
Both XML documents described by XML Schema as well as Web Services described
by WSDL are wrapped and exposed as Java objects, hiding Java to XML mapping,
low level DOM manipulation and SOAP marshalling.

2. Asynchronous Interactions
Waiting for callback notification is managed and hidden inside the orchestration
server. More specifically when invoking the delivery service
 offer = (ILoanOffer) deliverService.receiveMessage(c);
the server detects that the scenario is waiting for a callback notification, pauses
the execution of the scenario and waits until the offer is received by the delivery
service. This operation could last 10 seconds or 10 days.

3. Flow Coordination
In this example, we use the /** @bpel:flow */ and /** @bpel:join */
BPEL orchestration tags to specify that the AmericanLoan and UnitedLoan services
are to be invoked in parallel. This is especially important as both loan processors
process the loan application asynchronously - parallel branching shortens the time
the customer has to wait before seeing both offers.

4. User Interaction/Portal Integration
The task concept and built-in worklist service represent interactions with end-
users through any UI; such as a custom web front-end, a portal or email interface.
When waiting for the customer to review each offer:
 waitForTask(reviewTask);
the orchestration server detects that the scenario is waiting for an asynchronous
operation to complete. It pauses the execution of the scenario and passivates it
until the task is completed. Tasks create breakpoints that interrupt the flow of the
scenario and allow users to intervene, providing information, making decisions or
managing exceptions.

5. Business Transactions (ws-coordination, ws-transaction)
The BPEL Scenario lets developers assign transactional semantics to each
operation. The resulting business transactions are coordinated and managed by
the orchestration server using ws-coordination and ws-transaction.

6. Visual Annotation, Audit Trail and Reporting
JavaDoc annotation comments /**bpel-notation:…*/ capture meta information
regarding the automated business process. This meta information is used to
generate visual representations of scenarios, audit trails and business reports.

7. Publishing Asynchronous and Complex Web Services
When deployed, a BPEL Scenario is automatically published as a Web Service and
a WSDL file is generated.

INITIATING A BPEL SCENARIO

Before jumping into the details of what the developer view of a BPEL Scenario looks
like, let’s review how BPEL Scenarios are exposed to the outside world and how they
are initiated.

BPEL Scenarios are deployed to an orchestration server where they can be initiated
in one of four ways:

Orchestrating Web Services

[Page 13]

Collaxa

1. The business delegate2 interface of the BPEL Scenario is used by Java components
such as JSPs and Servlets.

2. The Web Service interface of the BPEL Scenario is used by SOAP clients. When
deployed, a BPEL Scenario is automatically published as a Web Service and a
WSDL file is generated. Therefore, BPEL Scenarios can be easily invoked by other
BPEL Scenarios but also by a Visual Basic application, an Excel spreadsheet or
another J2EE application.

3. The JMS interface of a BPEL Scenario can be used to initiate scenario processing
based on receipt of a message to a JMS queue in a manner similar to the way
Message Driven Beans work. For more information, see the JMS chapter in the
WSOS Developer Guide.

4. The HTML Orchestration Console 3 is used by developers to interactively unit test
and debug BPEL Scenarios.

In our loan procurement example, when a customer submits a loan application
through the portal, a JSP is invoked which uses the business delegate interface of
the LoanProcurement BPEL Scenario to initiate a new instance.

Figure 10 – Initiating a BPEL Scenario instance from a Portal JSP

Because the loan procurement scenario performs asynchronously, the business
delegate returns a handle to the initiated transaction to the calling JSP: “we are
working on your request, here is the reference id”. This handle can be used to obtain
information on the transaction in progress, for example to check its completion
status or cancel it. For more details, regarding the source code of the JSP that
initiates the scenario, please refer to the Collaxa WSOS developer guide.

ASYNCHRONOUS WEB SERVICE INTERACTIONS

XML-to-Java and Java-to-XML Mapping
XML documents play a very important role in orchestration. They are used both to
store the context of the long-lived multi-step business transaction as well as to
exchange information among the various orchestrated services.

2 Please refer to the “Core J2EE Patterns: Best Practices and Design Strategies” ISBN-0130648841 for

more information on the Business Delegate design pattern
3 Please refer to the WSOS documentation for more information on the orchestration console.

Orchestrating Web Services

[Page 14]

Collaxa

In the loan procurement scenario, for example, the submitted loan application and
collected loan offers are XML documents defined using XML Schema. Marshalling,
manipulating and persisting XML documents is not a trivial task, but is handled
automatically by the orchestration server.

Figure 11 - schemac: XML to Java Mapping Utility

The Collaxa Web Service Orchestration Server provides a facility that wraps XML
documents into Business Documents, called schemac. A Business Document is a Java
object whose interface reflects the structure defined by an XML Schema. The
Orchestration Server provides container-managed marshalling and persistence for
business documents, shielding developers from low-level DOM manipulation and
complex persistence tasks. The Collaxa Business Document facility supports simple
types, complex types, nested complex types, inherited types and arrays.

Interacting with Asynchronous Web Services
BPEL Scenarios dramatically simplify the invocation and integration of both
synchronous and asynchronous web services.

In the loan procurement application, the operations performed on the credit rating
and the 2 loan processors are asynchronous. For example, it could take several days
between the time a loan processor receives a loan application and the time it
generates and returns an offer.

Figure 12 – Interacting with an Asynchronous Web Service

Orchestrating Web Services

[Page 15]

Collaxa

Handling asynchrony, and its associated callback mechanism, using traditional coding
techniques is complex: developers need to define a database schema to persist the
state and context of each transaction and conversation, set up listeners, map each
response back to the transaction and determine the next set of actions to be
performed based on the response and context. This can be very complex to manage,
implement and monitor as the number of end points and conversations increase.

BPEL Scenarios and the delivery service module of the Collaxa Orchestration Server
have been designed to manage and hide the complexity of asynchronous
interactions. deliveryService.receiveMessage(…) allows developers to specify
within the scenario code that they are waiting for an asynchronous
callback/notification4 from a remote web service . The orchestration server detects
the dependency on an asynchronous callback, pauses the execution scenario,
bookmarks its state and passivates it in a database until the callback/notification is
actually received. When the notification is received, the scenario is reactivated and
execution resumes from the bookmarked state.

The first step in invoking a web service as part of a BPEL scenario is to use the wsdlc
command line tool to compile the WSDL description of that service into a Web
Service connector. The connector is a Java class representation of the remote service
and hides the complexity related to SOAP marshalling.

Figure 13 - Generating a Web Service Connector5

Note 1: No Java class or interface is generated for the callback interface. The
callback interface is automatically implemented by the delivery service and is
transparent to the developer. The messages received through the callback interface
are accessible through deliveryService.receiveMessage(…) call.

Note 2: When invoking the one-way initiateProcess operation, the orchestration
server initiates a new conversation, passes the conversation id to the invoked service
as part of the SOAP header6 and returns it to the scenario. The conversation id is
used to correlate callback messages.

The generated ILoanProvider connector can then be referenced and invoked as part
of the BPEL Scenario implementation.

4 It might take arbitrarily long to get the actual notification - anywhere from seconds to days.
5 Please refer to the BPEL4WS spec for information related to ServiceLinks
6 See the ws-conversation spec for information about the structure of the SOAP header.

Orchestrating Web Services

[Page 16]

Collaxa

Shown below is a source code fragment illustrating how a loan procurement scenario
could invoke asynchronous loan provider services with a BPEL Scenario:

public class LoanProcurement extends Scenario
{
 /** @ws-conversation:mode async */
 public IPolicy process(ILoanApplication loanApp)
 {
 // ###
 // Step #1: Initiate Asynchronous Loan Processor
 // ###

 // 1.1. Create a reference to the unitedLoan Web Service provider
 // note: web service locations are defined in the Scenario
 // deployment descriptor so that they can be easily updated.
 // Please refer to Developer Guide for more information.
 ILoanProvider unitedLoan =
 (ILoanProvider) lookup(“web-service:/unitedLoan”);

 // 1.2. Ask UnitedLoan to initiate processing the loan application.
 // note: convId is the conversation id of this asynchronous
 // operation. The conversation id is used for waiting for
 // the notification or polling for the result.
 String convId = unitedLoan.initiateProcess(loanApp);

 // ##
 // Step #2: Receive Notification from Loan Processor
 // ##

 // 2.1 Create a reference to the delivery service that will receive
 // the callback notification from the asynchronous loan processor.
 IDeliveryService deliveryService =
 (IDeliveryService) lookup(“delivery-service”);

 // 2.2. Wait until the delivery services receives the asynchronous
 // callback from the loan provider. It might take anywhere between
 // a few minutes to a few hours for the loan provider to process
 // the application and perform the callback.
 // note: The execution of the scenario will pause until the
 // callback notification is received.
 ILoanOffer offer =
 (ILoanOffer) deliveryService.receiveMessage(convId);

 // ###
 // Step #3: Add XML representation of loan offer to the
 // audit trail of this business transaction.
 // ###
 addAuditTrailEntry(“Offer Received” , “UnitedLoan’s offer” ,
 offer.toString()
);
 // Rest of the logic need to enroll customer and generate policy
 …
 return policy;
 }
}

Orchestrating Web Services

[Page 17]

Collaxa

What happens behind the scenes?
Developers have several common questions when they are first exposed to the BPEL
Scenario abstraction: How is the call
(ILoanOffer) deliveryService.receiveMessage(convId) implemented?
Is there a physical thread waiting for the offer to get generated? What happens if it
takes 5 days before the response comes back? What happens if the server crashes
while waiting of the callback notification?

These are all important questions but the second, regarding the existence of a
physical thread, really gets to the heart of the matter. And the answer is: no, there
are no physical threads blocking and waiting for asynchronous callbacks. When the
BPEL Scenario invokes the delivery service and asks for the receipt of a message -
deliveryService.receiveMessage(convId),
the orchestration server detects that the operation is a callback notification and if the
message has not already been delivered, the state of the Scenario is bookmarked
and it is passivated in a database. When the delivery service receives the callback
notification from the loan processor, the Scenario is reactivated and its execution is
resumed. This behavior means that an arbitrary amount of time can pass before a
response to an asynchronous request is received and the system is fully fault-
tolerant.

FLOW COORDINATION

Figure 14 - Parallelism and join patterns

In the loan procurement scenario, we need to invoke 2 loan processors which are
implemented as asynchronous web services. Each might take up to 5 days to process
the application and generate an offer. In order to streamline the overall process, we
need to be able to invoke those services in parallel.

The /** @bpel:flow */…/** @bpel:sequence*/…/** @bpel:join */
orchestration tags allow the developer to define parallel execution branches and
sophisticated join patterns.

Shown below is a source code fragment from the loan procurement scenario which
illustrates the use of the @bpel:flow orchestration tag.

Orchestrating Web Services

[Page 18]

Collaxa

Source Code Fragment

public class LoanProcurement extends Scenario
{
 /** @ws-conversation:mode async */
 public ILoanPolicy process(ILoanApplication loanApp)
 {
 // …
 boolean offerSelected = false;
 ILoanOffer offers = new ILoanOffer[2];

 // Ask UnitedLoan and American Loan to process the loan
 // application in parallel.
 /** @bpel:flow */
 {
 /** @bpel:sequence United */
 {
 // Initialize unitedLoan
 …
 // Ask UnitedLoan to process application.
 String convId = unitedLoan.initiateProcess(loanApp);

 // Wait until it delivery service receives the callback
 // notification.
 offers[0] =
 (ILoanOffer) deliveryService.receiveMessage(convId);

 // Ask customer to review offer
 offerSelected = reviewOffer(offers [0]);
 }

 /** @bpel:sequence American */
 {
 // Initialize American Loan
 …
 // Ask American Loan to process application.
 String convId = americanLoan.initiateProcess(loanApp);

 // Could take up to 5 days to return (async).
 offers[1] =
 (ILoanOffer) deliveryService.receiveMessage(convId);

 // Ask customer to review offer
 offerSelected = reviewOffer(offers [1]);
 }
 }
 /** @bpel:join offerSelected == true */
 {
 // logic that is executed when the first offer is
 // selected.
 }
 //…
 }
}

At run-time, when the /** @bpel:flow */ tag is reached, the orchestration server
executes both branches in parallel. As soon as the /** @bpel:join */ condition is

Orchestrating Web Services

[Page 19]

Collaxa

reached, remaining active branches are cancelled and the orchestration server
resumes execution at the beginning of the /** @bpel:join */ block.

Note: There are cases when developers do not know the number of branches until
run-time. For example, we might want to create a scenario where loan application
are submitted to all loan processors defined in a database. In that case, at
design/implementation time, developers do not know the number of loan processors
that need to be invoked. The /** @bpel:flowN */ orchestration tag is defined to
allow developers to handle that use case through the dynamic branching capabilities
of the orchestration server.

USER INTERACTIONS/PORTAL INTEGRATION

Interactions with end users are an important part of the activities orchestrated by
BPEL Scenarios, for example: manual approvals, knowledge contribution and
exception management.

Shown below is the source code from the loan procurement scenario for having the
customer [manually] review a loan offer which has been received.

Source Code Fragment

public class LoanProcurement extends Scenario
{
 /** @ws-conversation:mode async */
 private boolean reviewOffer(ILoanOffer offer)
 {
 // ###
 // Step #1: Initialize Task
 // ###
 ITask reviewTask = TaskFactory.create();
 reviewTask.addPerformer(mCustomerEmail);
 reviewTask.setProperty(“loanOffer”, offer);

 // ###
 // Step #2: Wait for task to complete
 // ###
 waitForTask(reviewTask);

 // The next statement is only executed when the task is completed
 // by the customer. The offer business document contains the flag
 // that defines if the customer has selected the offer.
 return offer.isSelected();
}

In the loan procurement example, the scenario needs to engage the customer to
have him or her approve and select the generated offers. BPEL Scenarios have built-
in support for user interactions through the notion of tasks and a built-in worklist
service. Tasks create breakpoints in the scenario for users to participate. Business
documents and other Java objects can be associated with the task as properties to
facilitate data interchange between the BPEL Scenario and the external application
that manages the interaction with the user. That application can be a portal, a
custom JSP or a form embedded in an email – in fact, any user interface is
supported.

Orchestrating Web Services

[Page 20]

Collaxa

Interactions with end users are asynchronous by nature: while waiting for a task to
complete, the orchestration server will pause the execution of the scenario and
passivate that instance of the scenario (in the database). Upon completion of the
task, its properties will be updated and the execution of the scenario will resume.
This functionality makes people and manual tasks just another asynchronous service
to the BPEL Scenario developer.

Worklist Service
Java Server Pages or Portal applications can use the Task API of the orchestration
server to query the list of tasks, load properties, update them and complete the task.
Please refer to the Developer Guide for more information.

Escalations
Expiration dates and escalation patterns can also be implemented using BPEL
Scenario events. Please refer to the Developer Guide for more information.

Roles
LDAP directory support is available for the BPEL Scenario to provide flexible and
sophisticated user authentication and role resolution support. Please refer to the
CXDN Knowledge Base for examples.

EXCEPTIONS AND TIMEOUTS

Exceptions and timeouts are an integral part of orchestration logic and need to be
managed appropriately. In BPEL Scenarios, exceptions are handled using the Java
try…catch mechanism while timeouts are handled with expiration events (see the
Developer Guide for more information regarding orchestration events).

Figure 15 - Handling Exceptions

As part of the loan procurement application, we need to implement the application’s
orchestration logic so that if an exception is thrown while the customer profile is
being looked up or the credit rating is being generated, a customer support rep is
notified and he or she is assigned a task to manually complete the application. This
behavior is implemented with the Java try…catch exception management and BPEL
Scenario’s support for user interactions (aka tasks), as shown in the source code
below.

Orchestrating Web Services

[Page 21]

Collaxa

Source Code Fragment

public class LoanProcurement extends Scenario
{
 /** @ws-conversation:mode async */
 public IPolicy process(ILoanApplication loanApp)
 {
 // …
 try
 {
 // Load Customer Profile – Can throw exceptions
 loadCustomerProfile(loanApp);

 // Assign Rating – Can throw exceptions
 assignRating(loanApp);
 }
 catch(InvalidCustomerException ice)
 {
 // Business logic responsible for handling exceptions.
 // That logic can change the data and re-invoke the partner
 // or create a task and ask a user to manually resolve the
 // exception.
 …
 }

 //…
 }
}

BUSINESS TRANSACTIONS

In some use cases, exception handling is not enough. Let’s imagine that you are
implementing a TripPlanner Scenario in which you are booking a flight reservation
and a hotel reservation. You need to make sure that both the operations are either
confirmed or cancelled together. In addition, cancellation cannot be implemented
with a rollback mechanism because the services may be provided by an external
system or company. Transaction management standards such as WS-Coordination,
WS-Transaction and BTP are emerging to address these requirements.

The BPEL Scenarios let developers assign transactional semantics to each operation:
/** @ws-transaction:requires-new */

The orchestration server will initiate a new business transaction when the scenario is
initiated and the bookTrip method invoked. The transaction context will be
automatically propagated to all web services invoked as part of the scenario, using
WS-Coordination and WS-Transaction. When the scenario completes, all transaction
are completed. If an exception is thrown and not handled by the scenario, the
orchestration server will automatically cancel/compensate each participant.

Shown below is a code example implementing a TripPlanner scenario.

Orchestrating Web Services

[Page 22]

Collaxa

public class TripPlanner extends Scenario
{
 /**
 * @ws-conversation:mode async
 * @ws-transaction:attribute requires-new
 */
 public ITripReceipt bookTrip(ITripInfo info)
 {
 // Declare and initialize some variables: mAvis, mUnited, mDelivery
 …
 /** @bpel:flow */
 {
 /** @bpel:sequence BookFlight*/
 {
 // Ask United to book the flight based on the
 // specified information
 String unitedConv = mUnited.bookFlight(info);

 // Wait until united callsback with the ticket
 // confirmation.
 eTicket =
 (ITicket) mDelivery.receiveMessage(unitedConv);

 }
 /** @bpel:sequence BookCar*/
 {
 // Ask Avis to reserve a Car
 String avisConv = mUnited.bookCar(info);

 // Wait until avis callsback with the car reservation
 // information.
 carReza =
 (ICarReservation) mDelivery.receiveMessage(avisConv);
 }
 }
 // Generate and return receipt
 ITripReceipt receipt = TripReceiptFactory.create();
 receipt.setETicket(eTicket);
 receipt.setCarReservation(carReza);
 return receipt;
 }
}

@ws-transaction:attribute
required Leverage the caller’s transaction context if specified or create

a new transaction context if caller is not part of a transaction.
requires-new Create independent transaction context.
mandatory Throw an exception if caller is not providing a transaction

context.
none Do not create a transaction context when interacting with web

services.

For more information and examples, please refer to the Business Transaction chapter
of the Collaxa Developer Guide.

Orchestrating Web Services

[Page 23]

Collaxa

Next Steps: Kick The Tires

The Collaxa Developer Network (CXDN) offers everything you need to start
composing, deploying and testing your first BPEL Scenario, including:

• A complete Developer Guide and Tutorial

• Full executable source code for the examples shown in this paper

• Free evaluation version of the Collaxa WSOS

• Sample BPEL Scenarios

• Free online support

• Training and webinar events

g http://www.collaxa.com/developer.welcome.html

For other information regarding the Collaxa Web Service Orchestration Server or to
get evaluation support for a specific project, please email us at sdave@collaxa.com.

Thank you for evaluating Collaxa.

