“High Performance Websites: ADO versus MSXML”

Timothy M. Chester, PhD, MCSD
Senior Systems Analyst & Project Manager

Computing & Information Services, Texas A&M University

Summary:

Tools Required:

Further Reading:

Other Resources:

Skill Level:

This article is about comparing the ASP/ADO and XML/XSL
programming models. The emphasis is not on technique
(although sample code is provided) but on performance. This
article asks the question, “MSXML is really cool, but how does it
perform when compared to the ASP/ADO model | am already
familiar with?” Like most web related issues, both methods
have tradeoffs. I'll build two versions of a simple website, one
using ASP and ADO to generate the user interface (Ul), the
other using MSXML. Then I will conduct benchmarks and
compare the performance of both models. In some scenarios,
ASP/ADO was found to perform better than MSXML. However,
in other situations MSXML provided a ten-fold increase in
performance.

Microsoft Visual Studio 6.0, Service Pack 4 (VB, Vbscript)
Microsoft Data Access Components (MDAC) 2.5, Service Pack 1
Microsoft XML Parser (MSXML) 3.0

Microsoft Web Application Stress Tool

“25+ ASP Tips to Improve Performance and Style”
MSDN Online, April 2000
“Architectural Decisions for Dynamic Web Applications”
MSDN Online, November 2000
“Performance Testing with the Web Application Stress Tool”
MSDN Online, January 22, 2001
“Web Developer: MSXML 3.0 Gains Power”
VBPJ, October, 2000
“Beyond ASP: XML and XSL-based Solutions Simplify your
Data Presentation Layer”
MSDN Magazine, November 2000
“Inside MSXML Performance
MSDN Online, February 21, 2000
“Inside MSXML3 Performance”
MSDN Online, March 20, 2000

Microsoft Developer Network
http://msdn.microsoft.com|

http://msdn.microsoft.com/xml/|
http://homer.rte.microsoft.com|
http://www.microsoft.com/data]

Source Code and this white paper
http://enroll-project.tamu.edu/|

Intermediate

http://msdn.microsoft.com/
http://msdn.microsoft.com/xml/
http://homer.rte.microsoft.com/
http://www.microsoft.com/data
http://enroll-project.tamu.edu/

“High Performance Websites: ADO versus MSXML”
Timothy M. Chester, PhD., MCSD

The Internet has evolved from simple static websites to web-based computing
systems that support thousands of users. This evolutionary process experienced
tremendous growth with the introduction of Microsoft’'s Active Server Pages (ASP),
an easy-to-use and robust scripting platform. ASP makes it easy to produce
dynamic, data driven webpages.

The next big step came with ActiveX Data Objects (ADO) and the Component
Object Model (COM). These tools allow developers to access multiple datasources
easily and efficiently and best of all, in a way that is easy to maintain. Together,
ASP and ADO provide the basic infrastructure for separating data from business and
presentation logic, following the now infamous “n-Tier architecture”.

With the introduction of XML and XSL, websites are now taking another
gigantic leap forward. In this article, | will compare the latest evolutionary leaps
with an eye toward website performance by building two versions of a simple website
- one using ASP and ADO to generate the user interface (Ul) and the other using
Microsoft’s MSXML parser to transform XML/XSL documents. | will then conduct
benchmarks and compare the throughput (transactions per second) of both models.
Like most web related issues, both methods have tradeoffs. In some scenarios
ASP/ADO performs better than MSXML. In other situations, however, MSXML
provides an incredible performance advantage.

n-Tier Architecture: A Quick Review

Client applications typically manage data. To do that effectively, business
rules are established that govern the ways information is created, managed, and
accessed. The presentation layer allows access to data in conjunction with these
rules. When program code is grouped into these three distinct building blocks (data,
rules, presentation), it said to follow a logical “n-Tier architecture.” There is a simple
reason for doing this: it allows the reuse of code objects throughout the software
application, thereby reducing the amount of code being written.

One common mistake that is made results from confusing a logical n-Tier
architecture with a physical n-Tier architecture. Physical n-Tier implementations
usually involve web-based software where most code runs on the server, and little (if
any) runs on the client. It is important to understand that one can write a Visual
Basic .exe application that separates these layers (thereby taking advantage of code
reuse) even if the software runs entirely on the client. However, there is a
downside: the software is more difficult to maintain. When changes need to be
made, they must be distributed across all clients. Web-based computer systems
follow a physical n-Tier implementation. When changes are necessary, they occur on
the server as opposed to the client, thus, maintenance costs are reduced.

While ASP and ADO make it very easy to isolate the data layer into a separate
COM object, the separation between business and presentation logic is less intuitive.
In fact, ASP does not provide an efficient way to force this separation. So most
developers usually follow a similar process. A disconnected recordset is created
using ADO and then an ASP page loops through this recordset to render some HTML
(see code in Figure 1). This can be referred to as the “ASP/ADO model”. While
simple to create, such pages provide little or no separation between the business and
presentation layers.

(Figure 1 Goes Here)

Chester, “High Performance Websites: ADO versus MSXML”
Page 2 of 15

While the ASP/ADO model works, it is not easy to extend to different types of clients,
browsers, and platforms (i.e., not extensible).

XML and XSL compensate for this shortcoming. MSXML is a tool for merging
XML data with an XSL style sheet. With MSXML, true separation between data,
business, and presentation logic is achievable (see code in Figure 2).

(Figure 2 Goes Here)
This programming model results in much cleaner code:

* Create two instances of the MSXML parser.

 Load one with XML data and the other with an XSL stylesheet.
e Transform the first object with the second.

* Write out the results using the response.write statement.

ASP continues to play a vital role under this new model. However, instead of being
the primary method for generating Ul, ASP becomes the glue that binds data and
presentation in a reusable way (i.e. the business layer). This type of coding can be
referred to as the “XML/XSL model”. The chief advantage of this approach is the
ability to easily generate a different user interface (Ul) for different devices: web
browsers, cell phones, handheld organizers, etc. When data needs to be presented
differently, all that has to be produced is a new XSL style sheet. Figure 3 graphically
illustrates the differences between the ASP/ADO and XML/XSL models described thus
far.

(Figure 3 Goes Here)

Both the ASP/ADO and XML/XSL examples I've provided rely on a separate
COM object (written in Visual Basic) to access data. The ASP/ADO data object
returns data in a disconnected ADO recordset. The XML/XSL model uses the ADO
Stream object to persist data in XML that is then returned as a string. Figures 4 and
5 show sample code using both approaches.

(Figure 4 Goes Here)
(Figure 5 Goes Here)

The example in Figure 4 creates an ADO Recordset object based on a SQL statement
that is passed as an input parameter. Once the recordset object is opened it is
disconnected from the database connection and then returned. The example in
Figure 5 uses the ADO stream object to persist the recordset to XML format. Now,
all that remains is to write the stream’s contents to the return object. Both these
COM functions can be called in your ASP code (See Figures 1 and 2).

There are other possible approaches (see the Further Readings section for
more detail). While the ASP/ADO and XML/XSL models could be implemented using
pure ASP, this solution will be more difficult to maintain, your options for code reuse
will be limited, and the performance of your website reduced.

PERFORMANCE TESTING PRIMER

Performance testing is one of the most crucial aspects of deploying a web
based application, but is often overlooked. Performance is typically measured in

Chester, “High Performance Websites: ADO versus MSXML”
Page 3 of 15

throughput, the number of requests that can be processed in one second. There are
a couple options for testing a website’s performance. One option is to coordinate
with hundreds of users who could browse the website at a designated point in time.
An easier option is to use a performance-testing tool that simulates this load using a
much smaller number of client machines. For these purposes, | am going to use the
Microsoft’s feature-rich (and free!) Web Application Stress (WAS) tool.

To use WAS, install it on several workstations, with one of these serving as
your test controller. The controller’s task is to coordinate a performance test with
the other clients. After installing the software, create a script that walks through a
website, just like an average user. When this script is completed, set the
performance test parameters - the stress level, the length of the test, and the types
of performance counters that should be tracked. When you begin the test, your WAS
controller machine coordinates the test with the other clients. It will then collect the
necessary performance data to prepare a detailed report (see “Further Readings” for
more information).

Throughput is one of a handful of important indicators of a website’s
performance. A report generated by WAS will provide the total throughput and also
the average Time Till Last Byte (TTLB) for each web page tested. This is the average
time required to load a page. When designated, the report will also contain counters
from the Windows Performance Monitor. The ASP performance object exposes
several important counters.

* ASP requests per second measures throughput, but does not include
static content such as images or static HTML pages. It will fluctuate
depending on the complexity of the ASP code.

e ASP request wait time is the amount of time (in
milliseconds) the most recent request waited in the
processor queue prior to being processed.

* ASP request execution time is the number of milliseconds
the request actually took to execute.

Together, these last two counters measure the time necessary took for a server to
respond to an ASP page request. When subtracted from the TTLB, the remainder is
a good estimate of the network time required for the response to travel from the
server.

The benchmarks provided in this article are not official. They are designed to
illustrate the relative performance of both coding models. The sample code
illustrates the most common approach to implementing these technologies. There
are other ways. The list of suggested readings cover more advanced coding and
server tweaks that can be used to gain additional improvements.

THE SAMPLE WEBSITE

From the earlier discussion it should be obvious that the XML/XSL model
provides increased flexibility. It has all the advantages of n-Tier architectures:
reusability, maintainability, and extensibility. Now, for the really important
questions, “How does it perform? Is it faster than the ASP/ADO model? If it doesn’t
perform quite as well, what are the tradeoffs?” To answer these questions | have
built two simple websites: one uses the ASP/ADO model, the other uses the XML/XSL
model. The website is a simple drill-down collection of pages that contain
information on courses offered at Texas A&M University (see Figure 6).

Chester, “High Performance Websites: ADO versus MSXML”
Page 4 of 15

(Figure 6 Goes Here)

The first page lists the semesters (Fall, Spring, Summer) for which information is
available. A student can click a link and then see a list of departments offering
courses for the selected semester. Then, a list of courses offered by a selected
department is viewed. From there the student selects a course, and a list of
available sections, instructors, times and locations is displayed. The sample code
contains all of the ASP, XSL, and VB code. Although the production data resides in a
Microsoft SQL Server 2000 server, | have included a Microsoft Access database that
contains similar data.

I have installed the two websites on a Windows 2000 Advanced Server (SP1),
a Compaq Proliant DL580 with 4 Xeon 800 processors and 4 GB Ram. Everything
necessary for the websites, including Microsoft SQL Server 2000, runs directly on
this server. The performances tests were conducted using four Gateway
workstations running Windows 2000 Professional and the Microsoft Web Application
Stress Tool. The WAS tool was used to generate 200 threads of load, which
simulates about 2000 active users in this case.

The first results may be surprising. The ASP/ADO model performed better,
recording a maximum throughput of 166.99 requests per second, including images.
The ASP pages per second counter reported a throughput of 39.40. This compares
to 139.84 requests per second and 33.39 ASP pages per second for the XML/XSL
model. On average, the ADO/ASP pages required 6.3 seconds to load, compared to
8.1 seconds for the XML/XSL pages.

(Figure 7 Goes Here)

To account for this difference two things are apparent. First, it takes more processor
time to transform XML/XSL as opposed to looping through an ADO recordset.
Second, the XSL is loaded from disk for each request and this also reduces
performance. The other performance statistics also bear this out. The XML/XSL
approach consumed 98.61% of available processor time, compared to 90.01% for
the ASP/ADO solution. Also, the wait and execution times were also longer for the
XML/XSL solution, 4803.41 and 2156.95 versus 4155.48 and 1890.67 milliseconds.
Figure 7 summarizes the results of this test.

The ASP/ADO model performs better than the XML/XSL model under this
scenario. While the difference is slight, it is real. But this is only once piece of the
puzzle. The code used in this test retrieves information from our database each time
that a page is requested. If our business rules dictate that our data be fresh for
each and every request, the code in Figure 1 and 2 is the best option. But
sometimes data doesn’t have to be current up to the last second. For example, class
schedule course information doesn’t change often. So, it is not necessary to retrieve
it each and every time from the database. In this situation, MSXML can be used to
cache the presentation of data in the ASP Application object. This is something the
ASP/ADO model can not easily do, and it can provide a tremendous performance
advantage.

CACHING PRESENTATION OF DATA

The great thing about XML, XSL, and HTML is that they are ordinary string
objects. The ASP Application object was designhed for storing this type of
information, thus it can be used to cache XML, XSL, or the HTML presentation of
data. This will only work when the data does not have to be current for each page

Chester, “High Performance Websites: ADO versus MSXML”
Page 5 of 15

request. This will also depend on the business rules underlying the website. There
is no technical reason why data cannot be cached for days, hours, or even seconds.

Using this method a database and processor intensive website can be
transformed into a memory intensive website, provided that the web server has
sufficient RAM when doing this. How much? Again, it depends on how much data
needs to be cached. The entire sample website used here consists of approximately
15,000 courses and sections. When cached, this requires approximately 120 MB of
RAM.

Figure 8 suggests one way an HTML presentation of data can be cached using
the ASP Application object

(Figure 8 Goes Here)

In this code, two variables are stored in the application object. The rendered HTML
is stored in one variable using the MSXML transform node method. Then, another
application variable stores a timestamp that denotes when the HTML was cached.
When requested, the ASP code determines whether the HTML exists in the cache and
whether it is current. If the answer to either question is “no”, the data is retrieved
from the database server, transformed using MSXML, and cached in the application
object. The current date and time is also cached. When this occurs the page
executes more slowly simply since the cache is refreshed. However, subsequent
requests will use the cached HTML, thereby executing much faster. In the example
code, the HTML presentation is cached every 30 minutes. This could just as easily
be 30 hours, 30 minutes, or 30 seconds.

How does this solution perform? "Truly astounding" is perhaps the only way
to accurately describe the results. The web server was able to respond to 1398.84
requests per second, including images and static content. This included 332.04 ASP
pages per second, roughly ten times the throughput of the ASP/ADO model. On
average, the XML/XSL cached pages required less than a second to load (.548
seconds) compared to 6.3 seconds for the ASP/ADO pages. Figure 9 compares
these results.

(Figure 9 Goes Here)
SUMMARY

Website performance is not a black and white subject, but is actually very,
very, gray. One basic premise is often overlooked: the ways in which a website is
coded has as much (or more) to do with performance than the power of the
underlying web server. ADO and MSXML are tools that can be used to create high
performance websites. MSXML provides increased flexibility to developers, but at a
cost. When drawing data directly from a database, MSXML performs slower than
ADO. However, MSXML provides an easy way to cache the presentation of data,
thereby providing up to a ten fold increase in website performance. This is a viable
solution for websites that need to support thousands of concurrent users.

ABOUT THE AUTHOR

Timothy M. Chester is a Senior Systems Analyst and Project Manager for
Texas A&M University in College Station, Texas. He specializes in using XML to
integrate Microsoft DNA solutions with mainframe systems and other non-traditional
data sources. Currently, he is working to web-enable the course registration process
for the 44,000 plus students at Texas A&M.

Chester, “High Performance Websites: ADO versus MSXML”
Page 6 of 15

Chester, “High Performance Websites: ADO versus MSXML”
Page 7 of 15

Figures & Code Snippets

Figure 1

<% Language=VBScri pt %
<l-- ADO ASP Model Exanple Code -->

<%
“//1/Let’s create sone objects
Di m obj Recordset, obj Data
“//lcreate an adodb recordset object
set obj Recordset = server.createobject(“adodb.recordset”)
“//lcreate an instance of ny custom data access object
set obj Data = server. createobject (“nydat aobj ect. sel ectdata”)
“//1go get sone data
strSQL = “Select Title, Year, Term from Courses”
set obj Recordset = obj Data. Sel ect SQL(strSQ.)
“///now render the top of my HTM. table
%
<t abl e>
<tr>
<td>Title</td>
<td>Year</td>
<t d>Ter nx/ t d>
</tr>
<%
“///now | oop through ny recordset to generate
“///nmy table rows
Do whil e obj Recordset.eof <> True
%
<tr>
<t d><%obj Recordset (“Titl e”) %</td>
<t d><%-obj Recordset (“ Year”) %</t d>
<t d><%obj Recordset (“terni) %</t d>
</tr>
<%
obj Recor dset . MoveNext
Loop
“///now finish the bottomof my HTM. table
%
</tabl e>
<%
“///now destroy my objects
set obj Recordset = Not hi ng
set obj Data = Not hi ng
%

Chester, “High Performance Websites: ADO versus MSXML”
Page 8 of 15

Figure 2

<% Language=VBScri pt %

<l--
<%

%

XM/ XSL Model Exanpl e Code -->

“//1/Let’s create sone objects
Di m obj Dat a, obj XM_1, obj XM.2
“//lcreate an instance of ny custom data access object
set objData = server.createobject(“nydataobject. sel ectdata”)

‘///create two instances of the MSXML DomDocunent Obj ect
set obj XML1 = server.createobject(“nsxnl.dondocunent”)
set obj XML2 = server.createobject(“nsxnl.dondocunent”)

“///run my parsers in blocking node
hj XML1. async = FALSE
hj XML2. async = FALSE

“///set mexm 1l to ny xm data returned from ny data object
“///go get sone data, set parserl to xm data

strSQL = “Select Title, Year, Term from Courses”

obj XML1. LoadXM_(obj Dat a. Sel ect SQL(strSQ.))

obj XML2. Load(server. nappat h(“ Courses. xsl "))

‘“///now transformthe xml and xsl and wite it
“///to the browser
response. wite(obj XML1. Tr ansf or nNode(obj XM.2))

Figure 3

HTRL

1

HTRL #SL

f f Active Server Page

ASP HML

1 1

Active Server Page —%]

Visual Basic COM Object —%| ADO ADO W vigal Basic COM Object

R

Database Database

— —
ASPIADO Model HMLESL Model

Chester, “High Performance Websites: ADO versus MSXML”
Page 9 of 15

Figure 4

Public Function Sel ect SQLSt at emrent (byval str SQ.St at enent
as String) As adodb. Recordset

“//1/public nmethod that executes a sql statenent
‘///passed as a paraneter and returns the results
‘///as an ado recordset object

“///create my objects
di m obj Connecti on as adodb. Connecti on
di m obj Recordset as adodb. recordset

“//linitialize ny objects
Set obj Connecti on = New adodb. Connecti on
Set obj Recordset = New adodb. Recor dset

“///use client side cursor
obj Connecti on. CursorLocati on = adUseC i ent

“///open connection on connection string
obj Connecti on. Open "Provi der=M crosoft.Jet. OLEDB. 4. 0; "
& “Data Source=" & App.Path & "\courses. ndb"

“//1/open ny recordset on ny sqgl statemnent
obj Recordset. Qpen strSql Statenent, obj Connection, _
adOpenForwar dOnly, adLockReadOnly, adCndText

“///disconnect ny recordset from ny connection
set obj Recordset. ActiveConnecti on = Not hi ng

“///set recordset to nmy return object
Set Sel ect SQLSt at ement = obj Recor dset

“///close ny database connection
obj Connecti on. Cl ose

“///destroy ny objects
Set obj Connecti on = Not hi ng

End Functi on

Chester, “High Performance Websites: ADO versus MSXML”
Page 10 of 15

Figure 5

Public Function Sel ect SQLSt at emrent (byval str SQ.St at enent
as String) As Variant

“//1/public nmethod that executes a sql statenent
‘///passed as a paraneter and returns the results
“///as an string

“///create my objects

di m obj Connecti on as adodb. Connecti on
di m obj Recordset as adodb. recordset

di m obj Stream as adodb. stream

“//linitialize ny objects

Set obj Connecti on = New adodb. Connecti on
Set obj Recordset = New adodb. Recor dset
Set obj Stream = new adodb. stream

“///use client side cursor
obj Connecti on. CursorLocati on = adUseC i ent

“///open connection on connection string

obj Connecti on. Open "Provider=M crosoft.Jet. OLEDB. 4.0;" _

& “Data Source=" & App.Path & "\courses. ndb"

“//1/open ny recordset on ny sqgl statenent
obj Recordset. Open strSql Statenment, obj Connection, _
adQOpenForwar dOnly, adLockReadOnly, adCndText

“//persist recordset to xm in stream object
obj Recordset . Save obj Stream adPersi st XM_

‘“//lstart streamat first position
obj Stream Position = 0

“///return xsl as function out put
Sel ect SQLSt at enent = obj St r eam ReadText
“///set recordset to nmy return object

“//1close ny database objects
obj St ream C ose

obj Recordset . C ose

obj Connecti on. C ose

“///destroy ny objects

Set obj Connecti on = Not hi ng
Set obj Recordset = Not hi ng
Set obj Stream = Not hi ng

End Functi on

Chester, “High Performance Websites: ADO versus MSXML”
Page 11 of 15

Figure 6

B Tomus AtM Schudul

|I|Ie ol ven o

locs llzla

| Schedule of Courses

WView Available Terms
{default.asp)

Caoursc Schedules for the Followsing Torms are Avallablo:

Fall Semester, 2000

Spring Semsster, 2001

A Trwnz AMM Sehedulr

|—_|Ie Edit “iew Fowortes Tcoals Help

N Schedule of Courses

S U, R

tacr Updatad an Febvnary 23, 2000 172240235 AM

View Available Departments
(viewDepartments.asp)

Departments Offering Courses: Fall Semester, 2000

Department Abbreviation

ACCOUN | LNG (2540] ACCT Wiew Courses
AERDSPACE ENGIMEERING (4032) AERD Wlew Courses
ATROSPACT STUDITS [905) ACRS View Cnurses
AGRICLI TURAI FCONOMTICS (103) MEFC . Micw Caurses

=131

locs llzlz

Wiew Available Courses
[viewCourses. asp)

ACCOUNTING (250) Course Offerings
Fall Semester, 2000

Course Number/Namea

ACCT 200 SURVEY OF ACCT PRIN Wisw Seclions

A 210 MGHTD B COS1 ACCT PHIR
ACCT 229 INTRO ACCOUNTING

Vicw Sorhons

¥iew Secions

Yiew Available Sections
rviewSections. asp)

R Toizns ARM Sohusduh: o i

slew —oweomss ool FEa

-2 Edt

'Schedule of Courses

Last Updatod on Foliudry 23, 2001 12:24.34 FM

ACCT 209 Available Sections
Fall Semester, 2000

ACCT 208-501 SURNVEY O ACCT PRIN
Instructor: STRAMWSLCR R
Total Seats: 0 Currently
Availahle: 0115

ACCT 209-502 SURVEY OF ACCT PRIN

TR O200AM 08 154M
WICTA 59

Chester, “High Performance Websites: ADO versus MSXML”

Page 12 of 15

Figure 7

Website Throughput
XML/XSL 33.39
Model 139.84
| B ASP Pages/Second
O Requests/Second
ASP/ADO 39.4
Model 166.99

0 50 100 150 200

Wait, Execution, TTLB Times (In
Milliseconds)

|8113.22
Xml(_)/(;(e\?L 2156.95
DB, OAverage TTLB
1 B ASP Execution Time
6338.53 OASP Wait Time
ASMIZQEIO 1890.67
4155.48

Chester, “High Performance Websites: ADO versus MSXML”
Page 13 of 15

Figure 8
<%

“///check to see if | have presentation in my cache
“///and howold it is. if it doesn't exist, or the data is
“///older than 30 nminutes | refresh the application object

If isenmpty(application("AvailableTerms")) or _
(datediff("n", application("Avail abl eTernsTi neStanp"), now()) > 30) _
Then

“///nmy cache is old or doesn’t exist
“///therefore | just load it

“//l/create two nexml parsers as before
“//lcreate one data object

set obj Data = server. createobject ("xm Courses. Sel ect")
set obj XML1 = server. Creat eObj ect (" MSXM_2. DOVDOCUMENT")
set obj XML2 = server. Creat eObj ect (" MSXM_2. DOVDOCUMENT")

“///run my parsers in blocking node
bj XML1. async = FALSE
hj XML2. async FALSE

“///1oad xm data from ny data object

obj xm 1.1 oadXM_(obj dat a. Sel ect Ter nsAvai | abl e())
“//1/1oad xsl from di sk

obj xm 2.1 oad(server. MapPat h("terms. xsl "))

“//now refresh ny application object

‘“//and set a tinestanp variable so | know how

‘“//old ny cache is

Appl i cation. Lock

Application("Avail abl eTernms") = objxm 1.transf or mNode(obj xm 2)
Application("Avail abl eTernsTi meStanp”) = now()

Appl i cation. UnLock

“///now destroy my objects

set obj XML1 = Not hi ng
set obj XML2 = Not hi ng
set obj Data = Not hi ng

End If

“///now wite out ny results fromthe cache
“//1if the cache existed and wasn’t old this
“//would be the only thing to occur on this page
Response. Wite(application("avail abl eterns"))

%

Chester, “High Performance Websites: ADO versus MSXML”
Page 14 of 15

Figure 9

Website Throughput
XML/XSL Cache 332.04
Model | 1398.84
XMLIXSL Model 5,3_39 B ASP Pages/Second
139.84 @ Requests/Second
39.4
ASP/ADO Model I:l 166.99

0 500 1000 1500

Wait, Execution, TTLB Times (In
Millseconds)

XML/XSL Cache [1548.07
1
Model

8113.22 OAverage TTLB

XML/XSL Model .] i
803,41 ASP Exe.cutlon Time
- O ASP Wait Time

6338.53
ASP/ADO Model .67
4155.48

0 5000 10000

Chester, “High Performance Websites: ADO versus MSXML”
Page 15 of 15

	“High Performance Websites: ADO versus MSXML”
	“High Performance Websites: ADO versus MSXML”
	Figure 1
	Figure 2
		Set objRecordset = New adodb.Recordset
		Set objRecordset = New adodb.Recordset
	Set objStream = new adodb.stream

