
Implementing DITA XML in a Production Environment
Susan G. Carpenter

IBM Corporation
4205 South Miami Blvd.
Durham, NC USA 27709

(919) 254-1599

carpnter@us.ibm.com

ABSTRACT
This paper describes one information development team’s
experience with implementing a prototype XML vocabulary in a
production environment. This implementation included the
migration of pre-existing content, the writing of XSLT and Perl
scripts to direct migration and production, and the training of
team members.

Categories and Subject Descriptors
I.7.2 [Markup Languages]: Document and text processing.

General Terms
Management, Documentation, Performance, Design,
Experimentation, Human Factors, Standardization, Languages,
Theory.

Keywords
DITA, XML, XSLT.

1. INTRODUCTION
In the fall of 2001, the documentation team for the IBM
WebSphere Application Server producti agreed to participate in
a deployment pilot activity for the Darwin Information Typing
Architecture (DITA), a publicly available XML vocabulary that
originated in IBM’s XML Workgroup. Our primary goal was to
gain productivity and flexibility by separating source and delivery
formats.
The WebSphere development environment is extremely dynamic.
Changes to delivery requirements as well as to product content
occur right up until the product is released on IBM's Internet
product site.
We face additional challenges in our current release: Improving
the usability of the information center in every aspect from the
layout of content through the selection of search engine. We also
needed to achieve greater consistency of content coverage, which
meant analyzing and restructuring nearly every bit of content. We
looked to DITA to help us re-implement our content such that

writers could develop content as other team members sorted out
the evolving presentation and delivery requirements. In addition,
we looked to XSLT to help us do fast prototyping in the planning
stage and eventually to do the "heavy lifting" to transform DITA
articles into finished help and information center articles.

2. A SHORT OVERVIEW OF DITA
Darwin Information Typing Architecture (DITA) is an XML
vocabulary developed for article-based user assistance. DITA
promotes semantic coding primarily by information type; article-
level container elements include <concept>, <task>, and
<reference>. An undifferentiated container element (<topic>) is
also available. DITA enables its users to adapt generalized
markup (for example, the reference type) for more specific uses
(for example, an API reference type). For more information about
DITA, see [1].

3. THE SCOPE OF EFFORT
After our previous product release, writer headcount was cut in
half, but we already knew that the next release would require a
significant amount of work. We needed to do much more with
much less. Our product executive encouraged us to find creative
ways of leveraging the resource we did have, offering us his
support for a much different way of developing information.
We were also told that our Web-based information center would
need an overhaul to meet usability and marketing guidelines. The
new marketing guidelines affected the presentation of the
information center, which took many months to work out. In part,
our usability problems stemmed from uneven and dissimilar
coverage of like functionality, resulting in a rather loose “term
paper” like narrative structure.
In the fall of 2001, we put together a proposal that included a total
overhaul of content, intending to remove as much industry
information we could get away with and to focus on information
directly tied to the product. The idea was that the team would
pare baseline material down to the bone and restructure it before
adding material for the new release. This represented a significant
departure from previous releases.
Conversion of source to XML made sense for several reasons:
� Writers could focus on reducing and restructuring content

while our graphic designer and human factors engineer focused
on improving the interface.

� Our production tooling could evolve with the interface.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGDOC’02, October 20-23, 2002, Toronto, Ontario, Canada.
Copyright 2002 ACM 1-58113-543-2/02/0010…$5.00.

17

� We could use a single set of source to generate the
information center, subject-based PDF compilations, and
contextual help.

� Moving to XML during this overhaul period would put us in
a good position to reap benefits from future improvements in
Web-based technologies.

3.1 Migrating Pre-Existing Content
Pre-existing content included a Web-based information center,
contextual help, and a Getting Started book. In addition, a few
subjects (such as Writing Enterprise Beans) were actually books
tied into the information center as offshoot grafts. By volume,
most of this material was HTML; the grafted books were
IBMIDDoc, an SGML vocabulary that has been in use within
IBM for several years. I converted about 1300 HTML articles to
DITA for writers to use as raw material. I investigated the
migration of IBMIDDoc (migrating over 300 pages worth), but
we used very little of it for raw material, mostly for content
reasons.
Early in the process, I determined that HTML migration would be
difficult, for the following reasons:
� Lack of containment. In a single file that contains several

candidate topics, how does one separate and allocate elements
algorithmically by topic? In addition, Web browsers are
notoriously forgiving of coding such as paragraphs without end
tags, but XML parsers are not, so the tagging must be fixed.

� Nonstandard coding. In the absence of strict coding
guidelines, the sheer variety of ways to express content in
HTML creates significant work for migration tooling.

� Presentational coding. Given the volume of material to be
migrated, how does one account for utterly inappropriate
coding, such as an h4 element used within a table just to get a
desired font?

I set these problems aside for the moment to get a grip on
IBMIDDoc migration issues. By comparison to HTML,
migration of IBMIDDoc was easy: Compliance with the SGML
standard requires containment, and the architecture of IBMIDDoc
promotes semantic coding.
Writing and validating SGML migration tooling for our
requirements took just a few days. I used a Perl script to make the
markup XML-compliant and then used XSLT scripts to convert
the content into an undifferentiated DITA topic structure.
That done, I turned back to HTML migration tooling. When
finished, the process included the following:

1. Run the HTML Tidy tool to add missing end-tags.
2. Run Perl scripts to add topic-level containment.
3. Visually inspect the results and adjust by hand. This markup

still looked enough like HTML that browsers could render it
as such. Cascading Style Sheet (CSS) code visualized the
different levels of nested topics with color so that writers
could inspect renderings rather than code. I followed up
later with a more stringent markup inspection.

4. Run a Perl script to strip CSS and make the markup XML-
compliant.

5. Run the HTML Tidy tool against the XML-compliant
markup for additional cleanup.

6. Run an XSLT script to migrate the XML-compliant markup
to DITA <topic> articles.

Migrating 1284 files took about three weeks of full-time work,
including the scripting and visual inspection. Post-migration
cleanup haunted us for a bit longer; it was managed with content
restructuring and reduction.

3.2 Managing the Effects of a Moving
Baseline
There were two moving baselines to be managed: that for DITA,
and that for the information.

DITA underwent significant change between fall and winter.
Colleagues involved with the activity kept me abreast of the most
significant changes as they happened.

At first, I updated our copy of the DTD as DITA evolved, but I
learned quickly how much of my time that strategy required.
Moreover, we were in the midst of constructing baseline content
for the information center through a significant amount of
restructuring, and the writers could not be distracted from that
activity by markup that changed every week

Ultimately, we “froze” our version of the DTD and then “thawed”
it at two points that were carefully chosen. Each time, the DITA
source had to be converted to the new vocabulary. The “thaw”
points represented our best guess at stability and adequacy for the
moment: At each point, we believed the proposed changes
unlikely to be replaced by another round of future changes, and
we decided that the target DTD would be adequate for our needs
if no further thaws were needed.

DITA itself helped us deal with evolving delivery requirements.
As long as the team held fast to markup that described meaning
rather than presentation, we could confine changes to processing
scripts.

4. AUTHORING TOOLS AND TRAINING
Most of the team uses the Epic editor from Arbortext. Two
writers decided to go with text editors.
The writers wound up needing education on several fronts:
� Information typing
� Article-based writing
� DITA tagging (most writers had HTML backgrounds)
� Working with Epic (most writers had worked only with

WYSIWYG editors)
The team leader and I conducted a number of orientation sessions
to cover these topics. We also set aside a portion of our weekly
team meeting to cover authoring questions or issues. For future
reference, we posted job aids in a Lotus Notes database. This
especially came in handy when my manager was able to borrow
the use of two writers from another department midway through
the release: Orientation information was already waiting for them.

Besides conducting one-time orientation and follow-up sessions,
we wanted to reinforce the concepts of information typing and
article-based writing over the many months that writers added
articles. To that end, we developed a set of information templates

18

in DITA that writers used to assemble new articles. These
included the following:

� Concept
� Task overview
� Basic task
� System-file reference
� Command-line interface reference
� Best-practices reference
� Field help and settings reference
� Troubleshooting reference
� Resources for learning (reference)

5. PROCESSING TOOLS
Our processing scripts relied on the following:
� A Perl interpreter that was part of our existing SGML tooling

performed global string manipulations during HTML and
IBMIDDoc migrations.

� The Xalan-Java tool from the Apache Software Foundation
performs XSLT transformations. The binary distribution for
Xalan also includes Xerces, an XML parser. For more
information about Xalan or Xerces, see [2].

The build tooling is composed of a series of XSLT scripts (one
per process step). This is necessary because of a basic
characteristic of XSLT 1.0: One can operate on the input
document many times in a single invocation but never on the
output. As a result, the output from one step becomes the input
for the next.

A command-line interface written in the Java language
facilitates the setting of production parameters in the scripts,
incorporates limited catalogue support, and does limited locale
processing for internationalization.
Certain support in the XSLT scripts required the use of Xalan-
specific extensions to the XSLT recommendation. Whenever
possible, Xalan-specific code was segregated and kept to a
minimum, keeping open our options for another XSLT engine.

6. LESSONS LEARNED
Given the team’s lack of experience with XML and SGML, I
expected that they would require lots of education. They didn’t.

This isn’t to say that they didn’t have plenty of questions or use
some tagging in ways that I didn’t anticipate. All in all, they had
more trouble with article-based writing than with DITA tagging.
Managing the effects of changing delivery requirements involved
trading off impacts to processing with those to authoring. The
extended writing team consists of approximately 12 people, so
changes to authoring rules have broad impact. Changes to
processing tools involve significant testing but affect the work of
fewer people. Regardless of the nature of the impact, timing the
introduction of changes was important.
Basing a build process on XSLT makes the process very flexible.
This is good and bad: Good because it can respond quickly to
changes, and bad because it can respond quickly to changes! I
rewrote some scripts as many as six times in response to changes
in delivery requirements.
Tooling has its limitations. A certain type of recursion fails
because of overeager document caching. A kluge to release the
cached documents works well but results in less than optimal
code.
Our first attempt at adding the build to an automation
environment yielded extremely poor performance. A process that
took 1.5 hours on the local file system took 11 hours in the first
automated build environment. Moving to another automation
environment shrank the build time to one comparable with local
results. The reason for this behavior is still under investigation.

7. ACKNOWLEDGMENTS
Many thanks go to Don Day for his advice and support. I am also
grateful to my team leader, Tricia York, for her wholehearted
embrace of XML.

8. REFERENCES
[1] Day, Don R, Priestley, Michael, and Schell, David A.

Introduction to the Darwin Information Typing Architecture
(March 2001, updated May 2002). http://www-
106.ibm.com/developerworks/library/x-
dita1/index.html.

[2] Apache Software Foundation. The Apache XML
Project. http://xml.apache.org/index.html.

i IBM and WebSphere are trademarks of International Business Machines Corporation in the United States, other countries, or
both.

19

